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Explosive volcanic jets present an unusual dynamic situation of reversing buoyancy.
Their initially negative buoyancy with respect to ambient fluid first opposes the
motion, but can change sign to drive a convective plume if a sufficient amount of
entrainment occurs. The key unknown is the entrainment behaviour for the initial flow
regime in which buoyancy acts against the momentum jet. To describe and constrain
this regime, we present an experimental study of entrainment into turbulent jets of
negative and reversing buoyancy. Using an original technique based on the influence of
the injection radius on the threshold between buoyant convection and partial collapse,
we show that entrainment is significantly reduced by negative buoyancy. We develop a
new theoretical parameterization of entrainment as a function of the local (negative)
Richardson number that (i) predicts the observed reduction of entrainment and (ii)
introduces a similarity drift in the velocity and buoyancy profiles as a function of
distance from source. This similarity drift allows us to reconcile the different estimates
found in the literature for entrainment in plumes.

1. Introduction
Turbulent plumes and jets are created by a maintained source of buoyancy and/or

momentum at large Reynolds number. The dynamics of these flows has been a vivid
source of theoretical, numerical and experimental studies in fluid mechanics since the
1950s. They represent a canonical model of free shear flow and are especially pertinent
in environmental and geophysical science. Volcanic jets stand as the most energetic and
dangerous turbulent flow on Earth (figure 1). They also represent a special case that
can give rise to varied dynamics. Two regimes have been identified (Sparks & Wilson
1976). In the buoyant (or Plinian) regime, the initial jet is a hot dense mixture
of gas and pyroclasts, but it becomes buoyant in the atmosphere owing to vigorous
entrainment and heating of air, and then rises to high altitudes. In the collapse regime,
the jet consumes its initial momentum before becoming buoyant and collapses to
produce dangerous hot gravity currents on the local topography known as pyroclastic
flows. It has been shown that the transition between these regimes is a sensitive
function of the rate of entrainment of air which controls the evolution of buoyancy of
the jet (Woods 1995; Kaminski & Jaupart 2001). Because of the huge fluxes involved
in such flows (e.g. mass fluxes larger than 1010 kg s−1 (Kaminski & Jaupart 2001)) the
realistic prediction of their behaviour, and the safe forecasting of their consequences,
require an accurate description of entrainment in physical models of volcanic jets.

At small scale, the agents of entrainment are turbulent eddies forming a mixing layer
between the jet and its surroundings. Taylor (1945) and Morton, Taylor & Turner
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Figure 1. Photograph by C. G. Newhall on 23 September 1984 of pyroclastic flows sweeping
down the side of Mayon Volcano, Philippines.

(1956) were at the origin of the most successful macroscopic quantitative description
of entrainment. Using a ‘top-hat’ formalism, in which the velocity and buoyancy
force are assumed constant across the jet and zero outside it, they proposed that the
entrainment rate at the edge, Uε , was proportional to the average vertical velocity W ,

Uε = αeW, (1.1)

with αe the entrainment constant. Numerous experimental studies provide values of
entrainment constants (see Fischer et al. 1979; Chen & Rodi 1980; Wang & Law
2002 for reviews at different stages of the subject). The estimates vary between values
as small as αj ≈ 0.07†, for non-buoyant jets, and as large as αp ≈ 0.16†, for buoyant
plumes (Linden 2000). Although some variability can be found among the different
studies, a robust result is that entrainment is always notably more efficient in buoyant
plumes than in non-buoyant jets. In the case of a volcanic jet, the crucial regime is that
in which the initial momentum is being consumed by the action of a negative buoyancy
force. However, no values of the entrainment constant in the case of negative buoyancy
can be found in the literature, and geophysicists usually use the gross approximation
that αe ≈ 0.1 (Woods & Caulfield 1992). The first aim of this paper is to provide a
better estimate of the entrainment constant for negatively buoyant jets.

Various techniques can be used to estimate the entrainment constant. Early studies
were based on the relationship between the opening angle of the jet and the
entrainment constant. More recent studies have relied on careful measurements of
the velocity and buoyancy profiles in the jets as a function of distance from the
source. For jets, the different estimates converge remarkably well to an average value
of αe =0.075 ± 0.05. For plumes, however, it remains difficult to cite a definitive
value for the entrainment constant as the different studies give notably divergent
results. The inferred value for a plume varies between 0.10 in Baines (1983) to 0.16
in Shabbir & George (1994), i.e. a 60 % variation. Such differences – usually ignored

† Values of αe are often quoted with respect to a Gaussian profile of axial velocity, but here we
convert systematically to corresponding top-hat values.
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in engineering – may have non-negligible consequences in the case of the huge fluxes
involved in volcanic eruptions. The variability may have different origins that are
discussed in detail in Wang & Law (2002). Measurements with flying hot-wire probes
apparently differ from measurements with stationary hot-wire probes that themselves
differ from measurements using laser-Doppler anemometry. The fluid used and the
origin (compositional or thermal) of buoyancy and the distance from the source are
also put forward as possible factors giving rise to discrepancies between the results,
but in unknown ways. This discussion remains largely unresolved and no convincing
explanation is given for the apparent discrepancies. We propose in this paper a direct
determination of the entrainment constant for negatively buoyant jets that bypasses
the measurement of accurate local velocity and buoyancy profiles. Together with
a self-consistent derivation of the entrainment constant as a function of buoyancy,
this determination will help to reconcile the different estimates of the entrainment
constant.

2. Experimental study of entrainment in negatively buoyant jets
The usual determination of the entrainment constant is based on the measurement

of the velocity profiles at different heights above the source, which raises the problem
of the dependence of the result on the chosen technique. Alternative approaches have
been proposed to bypass the determination of accurate profiles, in which the inflow
is directly measured. Such global measurements are judged as the most accurate
(Turner 1973; Linden 2000). For jets, Ricou & Spalding (1961) found indeed a
consistent value of αj = 0.08. For plumes, however, Baines (1983) found quite a small
value of αp = 0.10. This result is smaller than the smallest value obtained from profile
measurements, αp =0.12 (Rouse, Yih & Humphreys 1952; Papanicolaou & List 1988),
and is hardly taken into account, probably because no physical justification was given
for such a finding. Here we propose also a ‘bulk’ determination of the entrainment,
sensitive enough to contribute significantly to the debate. This method is based on
the criterion for the collapse of negatively buoyant jets.

Jets with negative buoyancy will eventually collapse down to the ground once their
initial momentum has been exhausted by gravity forces. Volcanic jets have the ability
to reverse their buoyancy by entrainment and heating of air. If entrainment is efficient
enough, the jets may then become buoyant. To study the behaviour of such jets with
reversing buoyancy, Woods & Caulfield (1992) developed laboratory experiments
using a mixture of methanol and ethylene glycol (MEG). This mixture is less dense
than fresh water but becomes denser when mixed with more than 60 % of water. A
downward propagating jet of MEG in a tank of fresh water is initially buoyant. Hence,
if the entrainment of water is insufficient the jet ‘collapses’ to the top of the tank
whereas if entrainment is efficient enough the jet becomes negatively buoyant and
reaches the bottom of the tank (figure 2). Using a top-hat formalism, Woods &
Caulfield (1992) expressed the criterion for collapse of the jet as an analytical
relationship between the initial density anomaly of the jet, �ρ0, and the minimum
volume flux Fm required to generate a plume,

�ρ0

[
1 −

(
1 − �ρ0

�ρm

)1/2]
= 16

5
αe

ρwF 2
m

gR5
0

, (2.1)

where �ρm is the maximum (positive) density anomaly a mixture of MEG and water
can reach, R0 is the initial jet radius, ρw is the density of fresh water and g is gravity.
The experiments were performed for a constant R0, for initial dimensionless density
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(a) (b)

Figure 2. Video image of turbulent jets in (a) ‘buoyant’ and (b) collapse regimes.

anomalies �ρ0/�ρm varying between 1 and 6, and for volume fluxes varying between 2
and 12 cm3 s−1. Using an average value of 0.1 for the entrainment constant, they
showed a satisfactory agreement between the threshold volume flux measured in the
experiments and the top-hat prediction. However, the small range of experimental
conditions was not sufficient to provide an accurate determination of the entrainment
constant.

We can note in (2.1) that the initial vent radius appears with the largest power,
a power of 5. The solution is then much more sensitive to the initial radius than
to the initial density anomaly. We thus performed a new set of experiments based on
the same principle, but keeping a constant initial density anomaly and systematically
varying the initial radius. To generate a forced plume with a reversing buoyancy, we
used a mixture of ethanol and ethylene glycol, or EEG, which has a qualitatively
similar behaviour to MEG. The precise EEG starting mixture was composed of 40 %
ethanol and 60 % ethylene glycol by mass. EEG is miscible with water in all propor-
tions and the evolution of the density of the EEG–water mixture is given in figure 3.
The density is a nonlinear function of mixing ratio. Moreover, the mixture density is
less than that of water when the fraction of EEG is >0.6 and greater than that of
water when the fraction of EEG is <0.6. The EEG is injected from a reservoir held
at a prescribed pressure through a nozzle fixed at the top of a 45 × 45 × 45 cm3 tank
filled with distilled water. The mass of the EEG reservoir is monitored as a function
of time to give mass and volume fluxes for each experiment (figure 4).

The jet is filmed using a video camera (figure 2). The injection device was used with
different radii in order to change the momentum flux for a given overpressure and
hence the conditions of collapse. For a given injection radius, the jet can be in the
buoyant, total collapse or partial collapse regimes. If the volume flux is large enough,
the jet becomes buoyant, whereas the jet collapses if the volume flux is too small
(figure 5). When the volume flux is close to the threshold volume flux (equation (2.1))
partial collapse occurs, in which only part of the jet goes down to the bottom of
the tank. As soon as partial collapse occurs, the top-hat formalism does not apply,
because the jet is not in steady state. We put partial collapse in the collapsing regime in
order to compare experiments with theory. For each experiment, the jet was not fully
turbulent at the nozzle – its exterior remained smooth and cylindrical for distances of
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Figure 3. Evolution of the density of the mixture between EEG and water. The circles are
measurements, whereas the dashed line is the polynomial fit used for numerical calculation.
For concentrations of water larger than 0.6, the mixture becomes denser than water.
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Figure 4. Experimental apparatus.

the order of a centimetre. We measured from video images the effective radius Rf of
the jet at which it becomes rough and irregular, i.e. at which turbulent entrainment
began. The parameters for each experiment are given in table 1.

The raw output of the experiments is then a regime diagram of the jet (collapsing
fountain or buoyant plume) as a function of the effective radius and of the initial
volume flux. According to (2.1), in a graph Fo = f (R2.5

0 ) the threshold between the
two regimes is a straight line, the slope of which is proportional to the square root
of the entrainment constant αe. We plot our experimental results in such a diagram
(figure 6) and compare the threshold condition with that obtained with the reference
value of the entrainment constant used for negatively buoyant volcanic jets (αe = 0.1).
This value of αe clearly underestimates the threshold fluxes for collapse, which shows
that the entrainment is reduced in a negatively buoyant plume. The best agreement
between the experiments and the theoretical prediction is obtained for αe =0.057.

In each experiment, we determined the regime, which can be done without
ambiguity, and measured two variables: mass flux at the input nozzle and effective
initial radius. The former is measured using an accurate weighing balance, while the
latter is measured precisely from video images using standard high-resolution image
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Figure 5. Qualitative diagram illustrating the principles of determination of the maximal
(threshold) volume flux for collapse. For a given initial radius R0, collapse occurs for volume
flux smaller than the threshold flux Fm (or here for an initial velocity smaller than Um ≡ Fm/R2

0).

Experiment
number F0 (cm3 s−1) R0 (cm) Rf (cm) Re Ri Regime

6 2.50 0.300 0.74 833 −0.107 collapse
7 3.14 0.300 0.44 1047 −0.005 plume
8 1.71 0.300 0.59 570 −0.073 collapse
9 1.71 0.300 0.46 570 −0.021 collapse (p)

16 20.41 0.605 0.74 3402 −0.002 plume
17 9.55 0.605 0.77 1592 −0.009 collapse (p)
18 18.83 0.605 0.86 3138 −0.004 plume
19 13.74 0.605 0.87 2290 −0.008 plume
20 10.43 0.605 0.99 1738 −0.026 collapse (p)
21 22.79 0.605 0.81 3798 −0.002 plume
22 19.76 0.605 0.86 3293 −0.004 plume
23 6.72 0.605 0.77 1120 −0.018 collapse
24 6.82 0.605 0.82 1137 −0.024 collapse (p)
25 9.19 0.605 0.76 1532 −0.009 collapse (p)
33 8.07 0.605 0.87 1345 −0.023 collapse (p)
34 5.32 0.605 0.95 887 −0.082 collapse
35 4.51 0.300 0.43 1503 −0.002 plume
36 3.39 0.300 0.54 1130 −0.012 plume
37 2.57 0.300 0.49 857 −0.013 plume
38 1.49 0.300 0.51 497 −0.047 collapse
39 1.80 0.300 0.53 600 −0.039 collapse (p)
40 0.89 0.200 0.46 445 −0.078 plume
41 0.73 0.200 0.43 365 −0.083 collapse
42 0.86 0.200 0.43 430 −0.060 collapse
45 3.78 0.405 0.64 945 −0.023 collapse
46 4.77 0.405 0.72 1193 −0.026 collapse (p)
47 5.68 0.405 0.66 1420 −0.012 plume

Table 1. Experimental conditions. Cases of partial collapse are referred to as collapse (p).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003209


Entrainment in turbulent buoyant jets 367

1

10

0.1 1

F
0 

vo
lu

m
e 

fl
ux

 (
cm

3 
s–1

)

Effective radius, Rf
5/2 (cm5/2)

Figure 6. Comparison of conditions for collapse in laboratory experiments and according to
the analytical prediction of (2.1.) Solid circles correspond to jets in the collapse regime, and
open circles correspond to jets in the buoyant regime. The dashed line gives the theoretical
prediction for the value of the entrainment constant typically used for volcanic negatively
buoyant plumes (αe = 0.1), whereas the solid line shows the best fit obtained for αe = 0.057.

analysis software. Both measurements are accurate, and the method gives a robust
result because we avoid the technically very difficult procedures involved in measuring
precise profiles of flow variables. The error bars on the regime diagram clearly show
that the reduced value of αe is meaningful and must be accounted for.

The value of the entrainment constant, αe =0.057, is the smallest ever found in
the literature on classical non-buoyant jets and positively buoyant plumes. This value
is, indeed, not only much smaller than the values inferred for positively buoyant
plumes (by a factor of 2–3), but also significantly smaller than the value found for
non-buoyant jets (αj = 0.075). Values as small as ours have been proposed only for the
very specific case of volumetrically heated jets (Bhat & Narasimha 1996). For these
flows, the increase of buoyancy by volumetric heating is supposed to be responsible
for the entrainment deficiency. In our case, however, buoyancy is negative and the link
between the two observations is not straightforward. The question reduces then to
the role played by buoyancy in the reduction of entrainment, and a detailed physical
parameterization of entrainment is necessary to understand their relationship.

3. A theoretical model of entrainment for negatively buoyant plumes
3.1. Parameterization of entrainment as a function arbitrary buoyancy

The larger entrainment in plumes than in jets is usually interpreted as an effect of
buoyancy-induced turbulence. Two parameterizations have been proposed to account
for this effect. The first one is purely empirical (Fischer et al. 1979)

αe = αj exp

[
ln

(
αp

αj

)(
Frp

Fr

)2]
, (3.1)
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Symbol Variable

r Distance from the axis
z Distance from the source
u = u + ũ Radial velocity
w = w + w̃ Vertical velocity
g′ = g′ + g̃′ Reduced gravity
u Reynolds-averaged radial velocity
w Reynolds-averaged vertical velocity
g′ Reynolds-averaged reduced gravity
ũ Turbulent fluctuations of radial velocity
w̃ Turbulent fluctuations of vertical velocity
g̃′ Turbulent fluctuations of reduced gravity
−ρũw̃ Turbulent shear stress
Q Mass flux
M Momentum flux
B Buoyancy flux
R Top-hat radial length scale
W Top-hat vertical velocity scale
G′ Top-hat reduced gravity scale
bm Lateral extent of the jet
wm Axial vertical velocity
g′

m Axial reduced gravity
f (r, z) Velocity shape function
h(r, z) Buoyancy shape function
j (r, z) Turbulent shear stress shape function
Ri Richardson number
Re Reynolds number

Table 2. Notation.

with Frp the Froude number of a plume. The second one is semi-empirical and
inspired by the theoretical work of Priestley & Ball (1955)

αe = αj + (αp − αj )

(
Frp

Fr

)2

. (3.2)

Although these equations predict successfully the change of entrainment between jets
and plumes (Wang & Law 2002), their physical basis is not clear and they can be seen
as more useful than meaningful. To gain some insight into the physics hidden behind
these parameterizations, we propose to revisit the work of Priestley & Ball (1955).

We first write down mass, momentum and buoyancy conservation for a ring-shaped
volume of an axisymmetric turbulent buoyant jet, in Boussinesq approximation and
steady state,

∂

∂z
(rw) +

∂

∂r
(ru) = 0, (3.3)

∂

∂z
(rw2) +

∂

∂r
(ru w) = rg′ − ∂

∂r
(rũw̃), (3.4)

∂

∂z
(rwg′) +

∂

∂r
(rug′) = 0, (3.5)

using the notation given in table 2. All quantities relate to mean values for the ring
obtained by Reynolds-averaging (Hinze 1975). As in Morton (1971) we neglect all
contributions from turbulent fluctuations in velocity and reduced gravity which are
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of second order. The turbulent shear stress −ρũw̃ (which drives entrainment) is of
leading order. From mass and momentum conservation, we then derive the balance
equation for the kinetic-energy of axial mean motion,

∂

∂z

(
1
2
rw3

)
+

∂

∂r

(
1
2
ru w2

)
= rwg′ − w

∂

∂r
(rũw̃). (3.6)

Integrating these equations from r = 0 to ∞ taking as boundary conditions
limr→∞ ruw = limr→∞ rũw̃ = limr→∞ rug′ = 0, yields

d

dz

∫ ∞

0

rw2 dr =

∫ ∞

0

rg′ dr, (3.7)

d

dz

∫ ∞

0

rwg′ dr = 0, (3.8)

d

dz

∫ ∞

0

1
2
rw3 dr =

∫ ∞

0

rwg′ dr +

∫ ∞

0

rũw̃
∂w

∂r
dr. (3.9)

We then define a top-hat using the momentum and buoyancy fluxes, and the reduced
gravity,

R2W 2 =

∫ ∞

0

rw2 dr, (3.10)

R2G′ =

∫ ∞

0

rg′ dr, (3.11)

R2WG′ =

∫ ∞

0

rwg′ dr. (3.12)

Note that we do not use the mean kinetic energy flux to define one of the top-hat
integrals but rather the total buoyancy force. This allows us to recover a momentum
equation identical to the one used in Morton et al.’s (1956) formalism, whereas in
Priestley & Ball (1955) an additional constant is introduced in the momentum flux
conservation. We now look for an expression for the energy flux by introducing three
shape functions,

w(r, z) = wm(z)f (r, z), (3.13)

g′(r, z) = g′
m(z)h(r, z), (3.14)

ũw̃(r, z) = − 1
2
wm(z)2j (r, z). (3.15)

Note that at this point we do not make any assumption about self-similarity of the
flow. The shape functions are then used to define five integral profiles that arise in
(3.7)–(3.9),

I1 =

∫ ∞

0

r∗f (r∗, z)h(r∗, z) dr∗, (3.16)

I2 =

∫ ∞

0

r∗h(r∗, z) dr∗, (3.17)

I3 =

∫ ∞

0

r∗f (r∗, z)2 dr∗, (3.18)

I4 =

∫ ∞

0

r∗f (r∗, z)3 dr∗, (3.19)
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I5 =

∫ ∞

0

r∗j (r∗, z)
∂f

∂r∗ dr∗, (3.20)

where r∗ = r/bm, with bm a radius scale. These integral profiles provide the relation
between the ‘notional’ top-hat value and the ‘real’ value of the different variables,

R =
I 0.5
3 I2

I1

bm, (3.21)

W =
I1

I2

wm, (3.22)

G′ =
I 2
1

I2I3

g′
m. (3.23)

Using the integral profiles, we can rewrite the conservation of kinetic energy
(equation (3.9)) as

d

dz
R2W 3 =

2

A
R2WG′ − R2W 3 d lnA

dz
− CW 3R, (3.24)

where A and C are combinations of the various integral profiles,

A =
I2I4

I1I3

, (3.25)

C =
I2I

0.5
3 I5

I1I4

. (3.26)

We then express the mass conservation as a function of the energy flux as in Priestley
& Ball (1955),

d

dz
R2W = − 1

W 2

d

dz
R2W 3 +

2R2G′

W
, (3.27)

in which we used the top-hat version of the momentum flux conservation
(equation (3.7)),

d

dz
R2W 2 = R2G′. (3.28)

Substituting the energy flux by its expression as a function of A and C we finally
obtain Morton et al. (1956)-like top-hat conservation equations, explicitly including
mass flux conservation,

d

dz
R2W = 2RW

[
Ri

(
1 − 1

A

)
+ 1

2
R

d lnA

dz
+ 1

2
C

]
, (3.29)

d

dz
R2W 2 = R2G′, (3.30)

d

dz
R2WG′ = 0, (3.31)

where Ri is the local Richardson number defined as

Ri ≡ RG′

W 2
. (3.32)
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The resulting equation of mass flux conservation, (3.29), gives an explicit expression
for the entrainment constant,

αe ≡ Ri

(
1 − 1

A

)
+ 1

2
R

d lnA

dz
+ 1

2
C, (3.33)

as a function of integral parameters A and C.
The parameterization we have obtained is close to the more classical linear

dependence of entrainment on Ri (equation (3.2)). Our formula, however, provides
a physical interpretation of the different terms involved in the formula. In order to
interpret the expression of the entrainment constant given in (3.33), it is useful to
write A and C in alternative forms,

A =

∫ ∞

0

1
2
rw̄3 dr

1
2
R2W 3

, (3.34)

C =
R

bm

∫ ∞

0

r∗j
∂f

∂r∗ dr∗

∫ ∞

0

r∗f 3 dr∗
. (3.35)

C is revealed as the ratio between the energy dissipated by turbulent stress, i.e.
transferred from the kinetic energy of mean motion to the fluctuating velocity field via
the action of turbulent stress, over the total flux of mean kinetic energy. In other
words, C gives the fraction of the total energy flux available for entrainment. The
parameter A reflects the influence of the shape of the velocity profile on the transfer
of gravitational energy to turbulent stress via the local Richardson number. For
purely top-hat profiles, A= 1 and we retrieve the mass flux conservation used by
Morton et al. (1956). In that case, however, (3.33) predicts αj = αp = C/2. This is not
consistent with the observation that entrainment is larger in plumes than in jets. For
Gaussian profiles, A can be expressed as a function of λ, the ratio of the half-width
of the buoyancy profile over the half-width of the velocity profile,

A = 2
3
(λ2 + 1). (3.36)

If λ is constant and larger than 1/
√

2, A is also constant, and larger than 1.
Our parameterization is then equivalent to linear equation (3.2) and provides an
explanation for the greater entrainment in plumes because they have a positive
Richardson number. If the flow is not completely self-similar, however, the value of A

does not have to be constant. In that case, an intriguing third term also appears in the
parameterization of entrainment, R/2 (d lnA/dz), which encompasses the similarity
hypothesis. This term has not been recognized in the literature before and will require
a more detailed discussion on its own.

3.2. Experimental determination of the parameterization of entrainment

The actual values of the parameters A and C (and maybe their variation) are the key
parameters of the entrainment process. They cannot be obtained directly by theory, but
can be estimated from laboratory experiments on positively buoyant plumes. We have
reviewed the literature on the subject, with special care given to the studies in which the
profiles of velocity, buoyancy and turbulent stresses are provided. All the profiles we
have used are given far from the source as measured in terms of the classical ‘jet
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Reference A C λ z/R0

Schmidt (1941) 1.23 — 0.92 14.5
Rouse, Yih & Humphreys (1952) 1.60 — 1.24 75
Nakagome & Hirita (1977) 1.18 — 0.88 11.5
George, Alpert & Tamanini (1977) 1.10 — 0.92 8–16
Papanicolaou & List (1988) 1.46 0.11 1.07 22–80
Panchapakesan & Lumley (1993) 1.90 0.10 1.24 90–120
Shabbir & George (1994) 1.10 0.14 0.92 10–28
Wang & Law (2002) 1.45 0.14 1.04 31–55

Table 3. Values of A and C inferred from literature. Values for Schmidt (1941), Rouse et al.
(1952) and Nakagome & Hirita (1977) are calculated from Gaussian fits of the velocity and
buoyancy profiles, whereas other values are obtained from best fits of the profiles. The ratio
of the buoyancy to velocity half-widths is obtained assuming Gaussian profiles.

length’ lm (Fischer et al. 1979)

lm =
M5/4

o

B
1/2
o

, (3.37)

and can be defined as ‘pure plumes’. In Panchapakesan & Lumley (1993), the regime
is more intermediate as z/lm ≈ 2. This study corresponds, however, to the largest
value of z/D and is kept for the sake of the argument. We fitted the profiles by the
following forms using the method of least-squares residual:

f (η) = exp(a1η + a2η
2 + a3η

3), (3.38)

h(η) = exp(b1η + b2η
2 + b3η

3), (3.39)

j (η) = −2co[exp(−c1(η − c2)) − exp(−c1(η − c2))], (3.40)

where η = r/z and ai , bi , ci are fitting parameters. The corresponding values obtained
for A and C are given in table 3.

We can see from the table that the value of C is constant (0.12 ± 0.02). Using this
value for C in (3.33), we obtain αj = 0.06 ± 0.01 for a pure momentum jet (i.e. for
Ri= 0). This value is very close to the reference value of 0.07 ± 0.01. This observation
is in line with the previous finding that the turbulent stress profile is very similar in
the different studies on plumes and on jets (Papanicolaou & List 1988; Wang & Law
2002). The value of A shows, however, large variations from one study to the other,
and differs by almost a factor of two between the two extreme values (1.1 deduced
from Shabbir & George 1994 and 1.9 deduced from Panchapakesan & Lumley 1993).
At first order, the variation of A is well correlated to the variation of λ, the ratio
of the two half-widths, that can be either larger or smaller than 1. The actual value
of λ relative to 1 has, in fact, always been at the heart of the debate between the
different groups working on the subject and the definitive argument in favour of one
particular value of λ is still lacking.

To try to provide an additional constraint on the effective value of A, we compare
our experimental measurements to theoretical predictions given by (3.33) using the
various values of A (and C) given in table 3. Instead of using the analytical relation-
ship between the entrainment constant and the threshold volume flux for collapse, we
took into account the dependence of αe on Ri using a numerical scheme. At that stage,
we made the hypothesis of complete similarity and kept A constant. In the numerical
calculation, the conservation of weight deficiency is replaced by the conservation of
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Figure 7. Comparison of conditions for collapse in laboratory experiments and according to
turbulent jet theory. Solid circles correspond to jets in the collapse regime, and open circles
correspond to jets in the buoyant regime. The dashed line gives the theoretical prediction for
A = 1.90 and C =0.10 whereas the solid line is obtained for A = 1.10 and C = 0.14.

the flux of EEG to obtain the amount x of EEG in the mixture,

x = x0

W0R
2
0

WR2
, (3.41)

where x0 is the initial fraction of EEG and W0R
2
0 the initial volume flux. Once x is

known, the density of the jet is obtained from a polynomial fit of figure 3. We solved
the equations using a fourth-order Runge–Kutta scheme, looking for the threshold
mass (or volume) flux at which collapse occurs. Figure 7 shows the results of the
numerical calculation. We show in the figure the predictions for the two extremal
parameterizations, the one deduced from Shabbir & George (1994) (A = 1.10,
C = 0.14) and the one deduced from Panchapakesan & Lumley (1993) (A = 1.90,
C = 0.10). It is clear from the experimental results that the values calculated for the
profiles given in Shabbir & George (1994) predict the actual entrainment better. We
then conclude (i) that a linear parameterization based on local Richardson number
successfully reproduces the reduction of entrainment due to negative buoyancy and
(ii) that λ is required to be smaller than 1 in our case. The remaining question is why
our experiments are closest to the results of Shabbir & George (1994).

4. Discussion: entrainment and self-similarity drift
Because our study does not rely on actual measurements of profiles, the technique

by itself is not an issue in the comparison of our results with those described in the
literature. The fluid used is different in our case (water + EEG) and in Shabbir &
George (1994) (heated air) and cannot be advocated in the discussion. The common
point that we can identify is, however, the distance from the source. In our experiments,
collapse occurs always quite close to the source (z/R0 ≈ 20) and the profiles were
measured at similar distance in Shabbir & George (1994). In Panchapakesan &
Lumley (1993) on the other hand, the measurements were made at a much larger
distance (z/R0 ≈ 100). From that observation, we went back to the values given in
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Shabbir & George (1994)
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Nakagome & Hirata (1977)
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A

z/R0

Figure 8. Evolution of A as a function of dimensionless distance from the source. The bars
show the range of distances for each study.

table 3 and plotted the value of A as a function of the dimensionless distance from
the source. The resulting plot (figure 8) shows a clear and systematic increase of A as
a function of downstream distance from the source. The direct consequence of that
finding is that self-similarity is not completely respected in the flows. All the authors
have, however, found that the shape of both the velocity profiles and of the buoyancy
profiles were themselves self-similar and close to Gaussian. The changes in A are thus
only due to the change of the relative width of the two profiles that is smaller than 1
close to the source and larger than 1 far from the source. In our study, the nonlinear
variation of density as a function of mixing with water may impede the development
of a fully self-similar profile. However, the comparison with other experiments dealing
with linear density change positively shows that the variation of A is a robust result.
We propose to refer to this fact as a similarity-drift.

The second unexpected consequence of the variation of A, is that the nonlinear
term that arises in our parameterization, R/2 d lnA/dz is not actually zero. A rough
linear regression through the points of figure 8 furthermore yields

1
2
R

d lnA

dz
≈ 10−3. (4.1)

This small similarity-drift is not large enough to be detected in a given set of
experiments in which all the profiles are measured within a restricted range of z/R0.
This explains why this effect has not yet been advocated to resolve the discrepancy
between the observations of the different groups. This drift is, however, large enough
to explain the variability of A between the different studies.

The other case of reduced entrainment has been observed for volumetrically heated
jets (Bhat & Narasimha 1996) in which entrainment can diminish to zero, even though
the Richardson number is increasing. From our parameterization, it is clear that only
the nonlinear term can explain such a reduction of entrainment as Ri is positive for
these jets. In their study, Bhat & Narasimha (1996) found that the profiles keep a
self-similar Gaussian shape before, during and after heating. They also found that
λ changed from 1.25 to 1.05 during heating. From their figure 13, we calculated the
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value of the nonlinear term and found

1
2
R

d lnA

dz
≈ −0.11. (4.2)

This is larger than the value of the entrainment constant inferred by the authors
before heating (αe =0.09) and can explain the slightly negative entrainment constant
they observed after heating. In other words, because the change of A is so abrupt in
their case, the term due to the similarity-drift may even control entrainment.

The origin of the variation of λ – which induces the change in A – is beyond the
scope of this paper, but we may, however, propose a sensible hypothesis. Close to
the source, the buoyancy profile is narrower than the velocity profile, whereas far from
the source, it is much wider. The origin of such variation might be linked to a change
of the turbulent Prandtl number (or equivalently the Schmidt number) that controls
the profiles in a similar way as it does for laminar plumes (Yih 1977; Kaminski &
Jaupart 2003). If the turbulent Prandtl number is exactly 1, Taylor’s mixing length
theory predicts that the buoyancy profile follows exactly the vorticity profile. The
corresponding velocity profile will be in turn 1/

√
2 narrower than the buoyancy

profile (Hinze 1975, p. 366), i.e. for Gaussian profiles λ=
√

2 and A= 2. Far from the
source, when turbulence is fully developed, the turbulent Prandtl number should be
close to 1 and it is reassuring to find that the data of Panchapakesan & Lumley (1993)
give A= 1.9, as they are the furthest from the source. Much closer to the source,
the actual value of the turbulent Prandtl number may be affected by the molecular
Prandtl number which is larger than 1 and would yield velocity profiles wider than
the buoyancy profiles.

5. Conclusions
We have presented the first experimental study of entrainment in jets with negative

and reversing buoyancy. Using an original ‘bulk’ technique of determination, we have
found that entrainment is much reduced by negative buoyancy.

To first order, the effect of negative buoyancy on entrainment is well described by
a linear dependence of the entrainment constant on the local (negative) Richardson
number. At second order, a similarity drift, corresponding to a weak evolution of
the shapes and, above all, relative widths of the profiles as a function of distance
from the source, must be taken into account to reconcile the various experimental
studies on the subject. This nonlinear term can even explain the drastic reduction
of entrainment observed in volumetrically heated jets that have been studied with
application to latent heat released in convecting clouds.

The variation of entrainment with negative buoyancy may have large consequences
for the dynamics of explosive eruptions. First, the conditions for collapse should
be affected by the drastic reduction of entrainment close to the vent. Secondly, the
entrainment in the high atmosphere and thus the maximal height reached by the
eruptive column should be affected by the similarity drift identified in the present
study. These consequences will be the object of a companion paper.

This paper has been much improved thanks to the editor P. Huerre and to three
anonymous reviewers. The experimental device used during this study was built by
Yves Gamblin at the IPGP workshop. We thank him for his enthusiasm and efficiency.
The authors thank Dr C. G. Newhall for permission to use the picture of figure 1
and Pr. Law for giving us access to his data.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003209


376 E. Kaminski, S. Tait and G. Carazzo

REFERENCES

Baines, W. D. 1983 A technique for the direct measurement of the volume flux of a plume. J. Fluid
Mech. 132, 247–256.

Bhat, G. S. & Narasimha, R. 1996 A volumetrically heated jet: large-eddy structure and entrainment
characteristics. J. Fluid Mech. 325, 303–330.

Chen, J. C. & Rodi W. 1980 Turbulent Buoyant Jets – A Review of Experimental Data. Pergamon.

Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and
Coastal Waters. Academic.

George, W. K., Alpert, R. L. & Tamanini, F. 1977 Turbulence measurements in an axisymmetric
buoyant plume. Intl J. Heat Mass Transfer 20, 1145–1154.

Hinze, J. O. 1975 Turbulence. McGraw-Hill.

Kaminski, E. & Jaupart, C. 2001 Marginal stability of atmospheric eruption columns and
pyroclastic flow generation. J. Geophys. Res. 106, 21 785–21 798.

Kaminski, E. & Jaupart, C. 2003 Laminar starting plumes in high-Prandtl-number fluids. J. Fluid
Mech. 478, 287–298.

Linden, P. F. 2000 Convection in the environment. In Perspectives in Fluid Dynamics (ed. G. K.
Batchelor, H. K. Moffatt & M. G. Worster). Cambridge University Press.

Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from
maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 1–23.

Morton, B. R. 1971 The choice of conservation equations for plume models. J. Geophys. Res. 30,
7409–7416.

Nakagome, H. & Hirita, M. 1977 The structure of turbulent diffusion in an axizymmetric turbulent
plume. Proc. 1976 ICHMT Seminar on Turbulent Buoyant Convection, pp. 361–372.

Panchapakesan, N. R. & Lumley, J. L. 1993 Turbulent measurements in axisymmetric jets of air
and helium. Part 2. Helium Jet. J. Fluid Mech. 246, 225–247.

Papanicolaou, P. N. & List, E. J. 1988 Investigations or round vertical turbulent buoyant jets.
J. Fluid Mech. 195, 341–391.

Priestley, C. H. B. & Ball, F. K. 1955 Continuous convection from isolated source of heat. Q. J.
R. Mech. Soc. 81, 144–157.

Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent
jets. J. Fluid Mech. 11, 21–32.

Rouse, H., Yih, C. S. & Humphreys, H. W. 1952 Gravitational convection form a boundary source.
Tellus 4, 201–210.

Schmidt, W. 1941 Turbulente Ausbreitung eines Stromes erhitzter Luft. Z. Angew. Math. Mech. 21,
265–278, 351–363.

Shabbir, A. & George, W. K. 1994 Experiments on a round turbulent buoyant plume. J. Fluid
Mech. 275, 1–32.

Sparks, R. S. J. & Wilson, C. J. N. 1976 Model for the formation of ignimbrite by gravitational
column collapse. J. Geol. Soc. 132, 441–456.

Taylor, G. I. 1945 Dynamics of a mass of hot gas rising in air. US Atomic Energy Commission
MDDC 919. LADC 276.

Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.

Wang, H. & Law, A. W.-K. 2002 Second-order integral model for a round turbulent buoyant jet. J.
Fluid Mech. 459, 397–428.

Woods, A. W. 1995 The fluid dynamics of explosive volcanic eruptions. Rev. Geophys. 33, 495–
530.

Woods, A. W. & Caulfield, C. P. 1992 A laboratory study of explosive volcanic eruptions. J.
Geophys. Res. 97, 6699–6712.

Yih, C.-S. 1977 Turbulent buoyant plumes Phy. Fluids 8, 1234–1237.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003209

