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ABSTRACT

We consider a profitable, risky setting with two separate, correlated asset and
liability processes (first introduced by Gerber and Shiu, 2003). The company
that is considered is allowed to distribute excess profits (traditionally referred
to as dividends in the literature), but is regulated and is subject to particular
regulatory (solvency) constraints. Because of the bivariate nature of the surplus
formulation, such distributions of excess profits can take two alternative forms.
These can originate from a reduction of assets (and hence a payment to own-
ers), but also from an increase of liabilities (when these represent the wealth of
owners, such as in pension funds). The latter is particularly relevant if distribu-
tions of assets do not make sense because of the context, such as in regulated
pension funds where assets are locked until retirement. In this paper, we extend
the model of Gerber and Shiu (2003) and consider recovery requirements for
the distribution of excess funds. Such recovery requirements are an extension of
the plain vanilla solvency constraints considered in Paulsen (2003), and require
funds to reach a higher level of funding than the solvency level (if and after it is
triggered) before excess funds can be distributed again. We obtain closed-form
expressions for the expected present value of distributions (asset decrements or
liability increments) when a distribution barrier is used.
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1. INTRODUCTION

1.1. Motivation and main contributions

In actuarial risk theory, the stability problem is about modelling the dynamics
of risky businesses in a stylised fashion, in order to help them make decisions
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about how to manage their risks; see Bühlmann (1970) for a classical reference.
Over the past century, a variety of (decision) criteria were considered, including
the probability of ruin (see Asmussen and Albrecher, 2010, for a recent compre-
hensive review) or the expected present value of dividends (see Albrecher and
Thonhauser, 2009; Avanzi, 2009, for recent reviews). In their purest form, these
criteria have various shortcomings that researchers have tried to address over
time. The criteria are also sometimes modified or augmented to better fit some
specific contexts.

In this paper, we consider a profitable, risky setting with two separate, cor-
related asset and liability processes; see Section 1.2. One of the criticisms for-
mulated against the expected present value of dividends criterion (see Gerber,
1974, for instance) as introduced in de Finetti (1957) is the lack of explicit fo-
cus on (or consideration of) solvency in the criterion, and in its optimisation.
The company considered by our model is allowed to distribute excess profits
(traditionally referred to as dividends in the literature), but is regulated and is
subject to particular regulatory (solvency) constraints. Importantly, because of
its bivariate nature, such distributions of excess profits can take two alternative
forms. These can originate from a reduction of assets (and hence a payment
to owners), but also from an increase of liabilities (when these represent the
wealth of owners, such as in pension funds), see also Section 1.3. The latter
is particularly relevant if leakages do not make sense because of the context,
such as in regulated pension funds where assets are locked until retirement (see,
for instance, Müller and Wagner, 2017, who consider the case of Swiss pension
funds).

Mathematically, both distribution avenues are treated in a very similar way
(although there are material differences in some cases). For sake of brevity, we
will provide full details only for one case, and only results for the other. We
elected to focus primarily on the ‘increase of liabilities’ case, as we believe this
is the most innovative in this context.

In this paper, we extend the model of Gerber and Shiu (2003) and consider
recovery requirements (see, for instance, Avanzi and Wong, 2012) for the dis-
tribution of excess funds. The recovery requirements are an extension of the
plain vanilla solvency constraints considered in Paulsen (2003) and Avanzi et al.
(2017), and require funds to reach a higher level of funding than the solvency
level (if and after it is triggered) before excess funds can be distributed again.
This is further developed and motivated in Section 1.4. In Section 2, we obtain
closed-form expressions for the expected present value of distributions (asset
decrements or liability increments) when a distribution barrier is used. Section
3 illustrates our results. The solvency requirements considered in this paper im-
proves the stability of the company substantially, for only minimal reductions
in expected present value of distributions. We also illustrate how different the
optimal barrier of our model is, when compared to that in the existing literature
(without or with simple solvency constraints), as this relationship is non-trivial
(see Section 2.4).
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1.2. A bivariate asset and liability process

As mentioned earlier, we consider a bivariate surplus process, where assets and
liabilities are modelled as correlated geometric Brownian motions. Such a bi-
variate geometric Brownian motion was introduced by Gerber and Shiu (2003).
They considered two problems: (a) to keep the funding ratio (ratio of assets to
liabilities) within a band, by equalising inflows and outflows at the boundaries
of the band — they conjectured a fund “should” do so; and (b) to maximise
(in absence of inflows) the expected present value of outflows (dividends). They
conjectured that a barrier dividend strategy should be optimal. Decamps et al.
(2006) extended (a) to finite time horizon, while Decamps et al. (2009) proved
that the conjecture in (b) is correct. Also, Chen and Yang (2010) extended the
results of Gerber and Shiu (2003) to a regime-switching environment. Avanzi
et al. (2017) determined that barrier-type distributions are optimal in presence
of a solvency constraint (such as in Paulsen, 2003) or in presence of forced rescue
measures below a pre-specified level.

The dynamics of the assets {A(t)} and liabilities {L(t)}, which we also denote
by X1 := A and X2 := L, respectively, are given by

d �X (t) = d
(
A(t)
L(t)

)
=

(
μA 0
0 μL

)(
A(t)
L(t)

)
dt +

(
σAA(t) 0
ρσLL(t)

√
1 − ρ2σLL(t)

)
dW (t)

= μ( �X (t))dt + σ ( �X (t))dW (t),
(1.1)

where A(0) = A0, L(0) = L0, and where W is a standard two-dimensional
Brownianmotion and ρ ∈]−1, 1[. Following the lines ofGerber and Shiu (2003),
we assume that the time value of money δ (for the decision maker) is greater
than the drift of the assets, which itself is greater than the drift of the liabilities.
That is,

δ > μA (1.2)

and

μA > μL. (1.3)

Equation (1.2) is required for the expected present value of dividends to be finite,
and (1.3) is required for the problem to be non-trivial (otherwise immediate
liquidation and ruin are optimal), see Gerber and Shiu (2003, Section 9). The
funding ratio {Y (t)} is defined as the ratio of assets to liabilities, that is,

Y (t) =
A(t)
L(t)

, t ≥ 0.

This model setting is identical to that of Gerber and Shiu (2003). Note that Sethi
and Taksar (2002) considered dividends and capital injections for a company
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whose surplus is modelled by a (univariate) geometric Brownian motion, which
is a more traditional, unidimensional formulation.

1.3. Distribution of excess profits

In what follows, we will consider the following two ways of distributing excess
profits:

A. Increase liabilities.
B. Decrease assets.

For the rest of the paper, we will refer to both cases as to “Case A” and “Case
B”, respectively. The result of either will be referred to as a “distribution”.

The increase of liabilities (Case A) could be used in themodelling of non-for-
profit mutual funds or pension funds. On the other hand, the decrease of assets
(Case B) could be used in the modelling of for-profit companies. The latter case
is equivalent to paying out dividends, which is the standard assumption in the
actuarial dividend literature.

In this paper, we consider barrier-type distributions (defined in Section 1.4
below). Note that we do not show that such a strategy is optimal in this paper
(although we conjecture it is), but we do determine the optimal level of the bar-
rier, which turns out to be surprisingly non-trivial. Importantly, the barrier is
defined here on the funding ratio (distributions are made if the funding ratio is
beyond a certain barrier level, so that the funding ratio is brought back to that
particular level). Such a policy is observed in practice. While some insurance
companies define their dividend payout strategy based on a target capital in
dollars, others do define their dividend policy as a target ratio of the minimum
capital requirements as defined by the regulator (see, e.g. Australian Actuaries
Institute, 2016).

The model is illustrated in Figure 1, where assets, liabilities, and funding
ratio are displayed (for a given sample path of the two-dimensional Brownian
motion), both for the ratio without distributions (black lines) and the ratio with
distributions (grey lines). Moreover, the dotted line in the figures show the pos-
itive distribution processes {Dπ

A(t)} and {Dπ
B (t)} defined below when a barrier

β∗ is applied. Note that while the funding ratio after distributions is the same
for both cases, the respected expected present values of distributions will be dif-
ferent. This is because the two types of distributions have a different impact on
the scale of the processes.

Distributions will either translate into increasing liabilities (Case A) or de-
creasing assets (Case B). The asset and liability processes after distributions,
which we denote { �X π

A (t)} and { �X π
B (t)}, have dynamics

d �X π
A (t) = μ

(
�X π
A (t)

)
dt + σ

(
�X π
A (t)

)
dW (t) +

(
0

dDπ
A(t)

)
(1.4)
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FIGURE 1: Figure illustrating the model. Left: Case A. Right: Case B. The asset and liability processes before
distributions are in black, and after distributions in grey. The dotted lines depict the undiscounted, aggregated

payment processes.

and

d �X π
B (t) = μ

(
�X π
B (t)

)
dt + σ

(
�X π
B (t)

)
dW(t) −

(
dDπ

B (t)
0

)
, (1.5)

where Dπ
A represents the process of aggregate increases of the liabilities (Case

A) and Dπ
B is the aggregate dividends process. We denote by {Lπ (t)} liabilities

after addition ofDπ
A and by {Aπ (t)} assets after subtraction ofDπ

B . The funding
ratios of the asset and liability processes after distributions are then given by

Y π
A (t) =

A(t)
Lπ (t)

andY π
B (t) =

Aπ (t)
L(t)

, t ≥ 0, (1.6)

respectively.

Remark 1.1. The model (before dividends) allows for deterministic (multiplica-
tive) increases of the assets and liabilities, plus (correlated) random variations.
Because of the nature of the processes, these variations are continuous, and one
might argue that abrupt changes in assets and liabilities (jumps) should be allowed
in order to reflect the random nature of the businesses, and/or expected changes in
scale. Beyond the fact that these would require developments beyond the scope of
a single paper, we believe our model is still reasonable for the following reasons:

1. Case A: the formulation of our model means that we consider an accumulation
scheme in equilibrium, that is, where contributions are continuously offset by
payouts. This is an approximation, but we believe it is good enough for our
analysis. If significant assets and liabilities were to enter or leave the fund, this
typically would lead to a specific procedure and distribution rule (e.g. partial
liquidation).
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2. Case B: additional contributions to the company can be made from time to
time without affecting the conclusions as long as these are made so as not to
make existing shareholders richer or poorer. In terms of our model, this means
that they would be made at the existing funding ratio. We will see later that a
change of scale that does not impact the funding ratio has no impact on how
to control the process.

1.4. Bankruptcy and recovery requirements

Of course, the fund may become bankrupt. This will occur as soon as the fund-
ing ratio reaches a given level α0. For either of the cases A and B, we denote
by τα0 the time of ruin, which is the stopping time defined as the first time the
funding ratio of the processes after distributions equals α0. For the rest of the
paper, we will use the notation 	 ∈ {A,B} to simplify notation where possible.
Using this notation, the bankruptcy time for the two cases is given by

τα0 = inf
{
t ≥ 0|Y π

	 (t) = α0
}
.

For Case A, α0 could be below or above 1, depending on the nature of the fund
(partially funded public or fully funded private, for instance). For Case B, the
level α0 would typically be at least 1 (higher for financial institutions).

A solvency constraint of the type introduced by Paulsen (2003) is con-
sidered in Avanzi et al. (2017). In this framework, distributions cannot bring
the funding ratio below a level α1 ≥ α0 (a target buffer above a given min-
imum capital requirement). With this, we have two areas: between α0 and
α1, where no distribution is allowed, and beyond α1, where distributions are
allowed.

In this paper, we consider an extension to the solvency constraint described
above. In Australia, insurers know that the regulator will take action if their
level of capitalisation downcrosses a certain trigger ratio (α1), which is com-
pany specific (e.g., companies do not have the same level of risk appetite when
investing their assets, and this is recognised). We do not expect that companies
would want to pay dividends down to that level to avoid the trigger. Perhaps,
more importantly, the regulator would not let them pay dividends if that alarm
was raised. Instead, the company should recover and recapitalise up to a certain
level α2 before being able to freely pay dividends again. This is what we call the
“recovery requirement”. Note that this mechanism further incentivises the com-
pany to not pay to levels that are too close to α1, whichmakes the determination
of the optimal barrier both interesting and difficult.

The solvency and recovery requirements {α0, α1, α2} are illustrated on
Figure 2. When the process is in the region between α1 and α2 and coming from
α2 — that is, when the last visit at either α1 or α2 was α2 — distributions are
allowed. When the last visit was α1, we consider that the process is in recovery
and no distribution is allowed.
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Funding ratio

0
Ruin

α0

Not allowed to distribute

α1

Depends. Allowed to distribute if coming from α2, but not if coming from α1

α2

Allowed to distribute

FIGURE 2: Graphical illustration of a model with recovery requirements {α0, α1, α2}.

Note that this recovery requirement has another advantage, which is one reason
which had motivated Avanzi andWong (2012) to introduce it at first. In a diffu-
sion environment (such as in this paper), absence of recovery requirement would
lead to erratic periods of dividend payments if the barrier is equal to α1 (this
will sometimes be the case, see Avanzi et al., 2017), which is unrealistic (see also
Avanzi et al., 2016, for a discussion of this). Such erratic dividend payments with
optimal barrier strategies was another criticism formulated by Gerber (1974).

2. BARRIER STRATEGIES UNDER RECOVERY REQUIREMENTS

In this section, we consider recovery requirements with the boundaries
{α0, α1, α2} as introduced and described in Section 1.4, see in particular Fig-
ure 2. Here, we are allowed to pay dividends when the funding ratio is in the
interval (α1, α2) if and only if the funding ratio last crossed α2, rather than α1
(as in Avanzi andWong, 2012). In this paper, we consider barrier strategies only.
Main challenges are to formulate the constraint mathematically (Section 2.1),
to obtain a value function explicitly (Sections 2.2 and 2.3 for cases A and B,
respectively), and to determine the optimal barrier level (Section 2.4). Note that
we initially consider α1 < β < α2, where β is the barrier level for the funding
ratio at which the company either pays out dividends or increases liabilities,
respectively; discussion of other cases is deferred to Section 2.4.

2.1. Mathematical formulation of the recovery requirements

We start by defining a set of stopping times τπ
	,n, n ∈ N0 given by

τπ
	,0 = inf

{
t ≥ 0 : (Y π

	 (t) ≤ α1) ∨ (Y π
	 (t) ≥ α2)

}
, (2.1)

τπ
	,i = inf

{
t > τπ

	,i−1 :
(
(Y π

	 (t) ≤ α1) ∧ (
Y π

	 (τπ
	,i−1) ≥ α2

))
∨ (

(Y π
	 (t) ≥ α2) ∧ (

Y π
	 (τπ

	,i−1) ≤ α1
))}

, (2.2)
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for i = 1, 2, . . .. Here, ∨ is the logical “or” operator and ∧ is the logical “and”
operator. That is, the first stopping time is the first time the funding ratio is either
below α1 or above α2. The next stopping times are given by the time points where
the funding ratio either becomes greater than or equal to α2 after the value in
the previous stopping having been less than or equal to α1, or at the time points
where the funding ratio become less than or equal to α1 after the value in the
previous stopping having been greater than or equal to α2. Now that we are
equipped with those stopping times, we define a 0–1 process φ	 such that

φ	 (t) = 1{t<τπ
	,0∪Y π

	 (t)≥α1} +
∞∑
i=1

(
1{t∈[τπ

	,i−1,τ
π
	,i[}1{Y π

	 (τπ
	,i−1)≥α2}

)
. (2.3)

The process φ	 is 1when we are allowed to control the funding ratio (distribute)
and 0, when we are not. With this, we can formulate the recovery requirement
as ∫ τα0

0
(1 − φ	 (s))dDπ

	 (s) = 0. (2.4)

Due to the form of the function φ	 given by (2.3), we assume that distributions
are initially allowed if α1 < Y π

	 (0) < α2 (until the first stopping time τπ
	,0).

An example of a sample path for α1 < β < α2 is found in Figure 3 where
β is the optimal barrier β∗

2 (which will be determined later). The dashed and
dotted lines show the distributions in Case A and Case B, respectively. The grey
parts of the funding ratio process illustrates time spans where it is not allowed to
pay out dividends (φ = 0) and the black parts of the line illustrates time spans
where it is allowed to pay out dividends (φ = 1). We observe that distributions
consist of infinitesimal payments at the barrier β∗

2 (when φ = 1) and lump sum
payments of size (1/β∗

2 − 1/α2)A (Case A) and (α2 − β∗
2 )L (Case B), when the

funding ratio hits α2.

2.2. Value of distributions when liabilities are increased (Case A)

First, we consider the value function of a barrier strategy with an arbitrary bar-
rier level β. We assume that α1 ≤ β, since a control strategy within the present
solvency regime clearly does not allow β < α1. We denote by V β

A (�x) the value
function for a barrier strategy with barrier β on the funding ratio, that is,

V β

A (�x) = E
�x
[∫ τα0

0−
e−δsdCβ(s)

]
,

whereCβ is notation for a strategy, where we increase liabilities in order to keep
the funding ratio below β. Using the martingale approach of Gerber and Shiu
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FIGURE 3: Illustration of the funding ratio and distributions in case of recovery requirements.

(2003) and results from Decamps et al. (2009), the value ofV β

A is given by

V β

A (�x) =

⎧⎪⎪⎨
⎪⎪⎩

V 0
A(�x; β), x1 ∈ [α0x2, α2x2[ ∧ φ = 0,

V 1
A(�x; β), x1 ∈ [α1x2, βx2] ∧ φ = 1,

x1
β

− x2 +V 1
A

(
x1,

x1
β

; β
)

, x1 > βx2 ∧ φ = 1,

(2.5)

whereV 0
A(·; β) andV 1

A(·; β) fulfil the following systems of PDEs:

(A − δ)V 0
A(�x; β) = 0 for α0 ≤ x1

x2
≤ α2, V 0

A(α0x2, x2; β) = 0,

V 0
A

(
x1,

x1

α2
; β

)
= V 1

A

(
x1,

x1

α2
; β

)
,

(A − δ)V 1
A(�x; β) = 0 for α1 ≤ x1

x2
≤ β, V 1

A

(
x1,

x1

α1
; β

)
= V 0

A

(
x1,

x1

α1
; β

)
,

∂

∂x2
V 1
A(x1, x2; β)|x2=

x1
β

= −1.

(2.6)

The boundary conditions are due to ruin, continuity (twice) and the oscillation
of the process. For the latter (which is the last line in (2.6)), a proof is included in
Gerber (1972, Section 8), see also Gerber and Shiu (2003, heuristic justification
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of (6.1)) or Decamps, Schepper, and Goovaerts (2009, Proposition 1). Now,

A f (�x) =μAx1
∂

∂x1
f (�x) + μLx2

∂

∂x2
f (�x) +

1
2
σ 2
Ax

2
1

∂2

∂x2
1
f (�x)

+
1
2
σ 2
Lx

2
2

∂2

∂x2
2
f (�x) + ρσAσLx1x2

∂2

∂x1∂x2
f (�x).

(2.7)

Note that for x2 ≤ x1/α2 we automatically have that φ = 1. The notation V 0
A

highlights that this is the value function for φ = 0 and the notationV 1
A highlights

that this is the value function for φ = 1. Moreover, for the optimal level of the
barrier, β∗

2 , we have the smooth fit condition that

∂2

∂x2
2
V 1
A (x1, x2; β∗

2 ) |x2=
x1
β∗
2

= 0. (2.8)

The boundary conditionsV 1
A

(
x1,

x1
α1

; β
)

= V 0
A

(
x1,

x1
α1

; β
)
andV 1

A

(
x1,

x1
α2

; β
)

=

V 0
A

(
x1,

x1
α2

; β
)

are due to the continuity of the diffusion term. Since

V 1
A

(
x1,

x1
α1

; β
)

= V 0
A

(
x1,

x1
α1

; β
)
and V 1

A

(
x1,

x1
α2

; β
)

= V 0
A

(
x1,

x1
α2

; β
)
depend on

each other, the system of PDEs needs to be solved simultaneously. A graphi-
cal representation of the value function for a given barrier β is illustrated in
Figure 4. The left rectangle illustrates the domain of V 0

A and the right “open”
rectangle illustrates the domain ofV 1

A.
Before calculating the value functions, we state the following lemma:

Lemma 2.1. The solution to

(A − δ)GA(�x; β) = 0 for α0 ≤ x1

x2
≤ β, (2.9)

(without any boundary conditions) is given by

GA(x1, x2; β) = C1xζ1
1 x

1−ζ1
2 +C2xζ2

1 x
1−ζ2
2 , (2.10)

where

σ̃ 2 = σ 2
A + σ 2

L − 2ρσAσL,

ζ1 =
1
2 σ̃

2 − (μA − μL) −
√

1
4 σ̃

4 + (μA − μL)2 − σ̃ 2 (μA + μL − 2δ)

σ̃ 2 ,

ζ2 =
1
2 σ̃

2 − (μA − μL) +
√

1
4 σ̃

4 + (μA − μL)2 − σ̃ 2 (μA + μL − 2δ)

σ̃ 2 ,

(2.11)

andC1 andC2 are some constants.

Proof. See Appendix A.1.
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FIGURE 4: Illustration of the domains and boundary conditions in the case of recovery requirements.

We know from Lemma 2.1 thatV i
A, i = 0, 1, are given by

V i
A(x1, x2; β) = KA

1,ix
ζ1
1 x

1−ζ1
2 + KA

2,ix
ζ2
1 x

1−ζ2
2 , (2.12)

for some constants KA
1,i and KA

2,i that fulfil the equation (A− δ)V i
A = 0. That is,

including the boundary conditions, we get that the value function is specified by

V 0
A(x1, x2; β) = KA

1,0x
ζ1
1 x

1−ζ1
2 + KA

2,0x
ζ2
1 x

1−ζ2
2 , (x1 ∈ [α0x2, α2x2]), (2.13)

V 1
A(x1, x2; β) = KA

1,1x
ζ1
1 x

1−ζ1
2 + KA

2,1x
ζ2
1 x

1−ζ2
2 , (x1 ∈ [α1x2, βx2]), (2.14)

V 0
A(α0x2, x2; β) = 0, (2.15)

V 0
A

(
x1,

x1

α2
; β

)
= V 1

A

(
x1,

x1

α2
; β

)
, (2.16)

V 1
A

(
x1,

x1

α1
; β

)
= V 0

A

(
x1,

x1

α1
; β

)
, (2.17)

∂

∂x2
V 1
A(x1, x2; β)|x2=

zx1
β

= −1, z ≤ 1. (2.18)

The solution to this system is provided in Theorem 2.2.
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Theorem 2.2. The solutions V 0
A and V 1

A to the system of equations given by
(2.13)–(2.18) are given by

V 0
A(x1, x2; β) = KA

1,0

(
xζ1

1 x
1−ζ1
2 − α0

ζ1−ζ2xζ2
1 x

1−ζ2
2

)
and

V 1
A(x1, x2; β) =

(
KA

1,0

(
1 − α0

ζ1−ζ2α1
ζ2−ζ1

)−KA
2,1α1

ζ2−ζ1
)
xζ1

1 x
1−ζ1
2 + KA

2,1x
ζ2
1 x

1−ζ2
2 ,

where

ξA =
min (β, α2)

ζ2−1 − α1
ζ2−ζ1 min (β, α2)

ζ1−1

(1 − ζ2) βζ2 − (1 − ζ1) α
ζ2−ζ1
1 βζ1

,

KA
1,0 =

(
1
β

− 1
α2

)+
− ξA

α2
ζ1−1 − α0

ζ1−ζ2 α2
ζ2−1 + (α0

ζ1−ζ2 α1
ζ2−ζ1 − 1) min (β, α2)

ζ1−1 + ξA (1 − ζ1) (1 − α0
ζ1−ζ2 α1

ζ2−ζ1 ) βζ1
,

KA
2,1 =

−1 − (1 − ζ1)
(
KA

1,0 − KA
1,0α0

ζ1−ζ2 α1
ζ2−ζ1

)
βζ1

(1 − ζ2) βζ2 − (1 − ζ1) α
ζ2−ζ1
1 βζ1

.

Proof. See Appendix A.2.

2.3. Value of distributions when assets are decreased (Case B)

For Case B, the value function is given by

V β

B (�x) =

⎧⎪⎨
⎪⎩

V 0
B (�x; β), x1 ∈ [α0x2, α2x2[∧φ = 0,

V 1
B (�x; β), x1 ∈ [α1x2, βx2] ∧ φ = 1,

x1 − βx2 +V 1
B (βx2, x2; β), x1 > βx2 ∧ φ = 1,

(2.19)

whereV 0
B andV 1

B are given by the following specification:

V 0
B (x1, x2; β) = KB

1,0x
ζ1
1 x

1−ζ1
2 + KB

2,0x
ζ2
1 x

1−ζ2
2 , (x1 ∈ [α0x2, α2x2]), (2.20)

V 1
B (x1, x2; β) = KB

1,1x
ζ1
1 x

1−ζ1
2 + KB

2,1x
ζ2
1 x

1−ζ2
2 , (x1 ∈ [α1x2, βx2]), (2.21)

V 0
B (α0x2, x2; β) = 0, (2.22)

V 0
B (α2x2, x2; β) = V 1

B (α2x2, x2; β), (2.23)

V 1
B (α1x2, x2; β) = V 0

B (α1x2, x2; β), (2.24)

∂

∂x1
V 1
B (x1, x2; β)|x1=zx2 = 1, z ≥ β. (2.25)

Theorem 2.3. The solutions V 0
B and V 1

B to the system of equations given by
(2.20)–(2.25) are given by

V 0
B(x1, x2; β) = KB

1,0

(
xζ1

1 x
1−ζ1
2 − α0

ζ1−ζ2xζ2
1 x

1−ζ2
2

)
and

V 1
B(x1, x2; β) =

(
KB

1,0

(
1 − α0

ζ1−ζ2α1
ζ2−ζ1

)−KB
2,1α1

ζ2−ζ1
)
xζ1

1 x
1−ζ1
2 + KB

2,1x
ζ2
1 x

1−ζ2
2 ,
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where

ξB =
min (β, α2)

ζ2 − α1
ζ2−ζ1 min (β, α2)

ζ1

ζ2βζ2−1 − ζ1α
ζ2−ζ1
1 βζ1−1

,

KB
1,0 =

(α2 − β)+ + ξB

α2
ζ1 − α0

ζ1−ζ2α2
ζ2 + (α0

ζ1−ζ2α1
ζ2−ζ1 − 1) min (β, α2)

ζ1 + ξB (1 − α0
ζ1−ζ2α1

ζ2−ζ1 ) ζ1βζ1−1
,

KB
2,1 =

1 − ζ1
(
KB

1,0 − KB
1,0α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1−1

ζ2βζ2−1 − ζ1α
ζ2−ζ1
1 βζ1−1

.

2.4. Discussion of optimal barrier levels

We denote the optimal barrier in the model without any solvency constraints by
β∗

0 (such as considered in Gerber and Shiu, 2003), and we denote the optimal
barrier in the model with recovery requirements by β∗

2 .
In order to formulate a conjecture about an optimal barrier strategy, we con-

sider different possibilities for the relationship between β∗
0 and {α0, α1, α2}. We

know that β∗
0 > α0, so we only need to consider the following cases:

Case 1: α0 < β∗
0 < α1.

Case 2: α1 ≤ β∗
0 < α2.

Case 3: β∗
0 ≥ α2.

Let us consider each of the three cases separately:

Case 1: The conjecture is not that you distribute as much as you are allowed to
(down to α1) — that is, that β∗

2 = α1 — as is shown to be optimal in
Avanzi et al. (2017). Instead the conjecture is that the optimal strategy
is a barrier strategy with level Λ > α1 (strictly higher), which enables
you to keep paying dividends for some time. If the barrier was α1, we
would lose any opportunity to pay dividends until we reach α2 again.

Case 2: Following the lines of the previous point, we conjecture that the optimal
strategy is a barrier strategy with barrier Λ ≥ β∗

0 because of that new
danger of hitting α1. The supplement Λ − β∗

0 would be larger as β∗
0

is close to α1. This leads to a mix of lump sum distributions of size
(1/Λ − 1/α2)A for Case A and (α2 − Λ)L for Case B (when φ switches
from 0 to 1) and payments at the barrier according to the oscillation
of the Brownian motion (when the process φ is in state 1). This control
can be seen both as alternating between a non-singular and an impulse
control, or it can be seen as a singular control.

Case 3: In this case, the solvency constraint is no constraint at all in terms of
optimal dividend strategies, and we get the same result as in the uncon-
strained case. That is, β∗

2 = β∗
0 .

Numerical studies concur with the above-mentioned conjectures. The opti-
mal barrier β∗

2 is obtained by maximising the value functionV 1 with respect to
β. Unfortunately, a closed-form expression for β∗

2 does not seem to be available,
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but numerical studies suggest that the optimisation is not problematic. Further-
more, it turns out thatmaximisingV 1 is equivalent tomaximisingV 0, or to solve
(2.8). This means that the easiest way to obtain β∗

2 is to minimise KA
1,0, which we

also note does not depend on the initial surplus or ratio. As for β∗
0 and β∗

1 , we
omit the superscript A for β∗

2 to simplify notation, because the optimal barrier
is the same for Case A and Case B. The fact that the funding ratio after distri-
bution is the same in both cases supports this claim, but to prove this formally
is surprisingly challenging. However, based on numerical studies, β∗

2 is indeed
the same in both cases. Furthermore, the optimal barrier seems to behave nicely
and we did not encounter any problems with existence or uniqueness.

Remark 2.1. Let β∗
1 be the optimal barrier level as established in Avanzi et al.

(2017) for a simple solvency constraint (without α2). As often with the introduc-
tion of a simple solvency constraint α1, β∗

1 = β∗
0 as long as β∗

0 > α1. Otherwise,
β∗

1 = α1. Interestingly, it appears that β∗
2 > β∗

1 in both Cases 1 and 2, which is
not trivial. In Case 3, β∗

2 = β∗
1 .

3. NUMERICAL STUDIES

In this section, we illustrate numerically the impact of imposing recovery re-
quirements. For all the numerical illustrations (where applicable), the value pro-
cess of the assets starts at (1.2), whereas the value process of the liabilities starts
at 1.0.

3.1. Impact of the introduction of a recovery constraint

We start by investigating the overall effects of imposing recovery requirements
on aggregated distributions and ruin times. In return for accepting a small de-
crease in expected aggregated distributions, recovery requirements achievemuch
more stable outcomes and reduce the likelihood of early ruin significantly.

Figure 5 consists of comparisons of models without constraints (as in
Gerber and Shiu, 2003), with simple solvency constraints (as in Avanzi
et al., 2017), and with solvency and recovery requirements (as in this pa-
per). We focus on the aggregate value of dividends (first column) and time to
ruin (second column), using 10,000 simulated couples (censored at 15,000).
The first row compares absence of constraints with solvency and recovery
requirements, whereas the second row compares solvency constraints with and
without recovery requirements. The numbers in the axes’ labels correspond to
(mean, standard deviation) of the related outcomes.

While aggregate dividends are slightly less without constraints (in expected
value), differences are strongly in favour of the recovery requirements (under the
diagonal) when these are large (most likely because of a related rescue that led
to more dividends). Furthermore, we observe that recovery requirements lead
to significant improvements with respect to ruin times compared to the solvency
constraint, of a nature that is qualitatively similar to as what was discussed in

https://doi.org/10.1017/asb.2017.42 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.42


DISTRIBUTION OF EXCEDENTS WITH SOLVENCY AND RECOVERY REQUIREMENTS 661

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

With recovery requirements [0.769,0.2142]

W
ith

ou
t c

on
st

ra
in

ts
 [0

.7
78

,0
.2

17
2 ]

0 5000 10000 15000

0
50

00
10

00
0

15
00

0

With recovery requirements [6903.531,5132.9062]

W
ith

ou
t c

on
st

ra
in

ts
 [2

42
0.

87
1,

24
03

.1
01

2 ]

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

With recovery requirements [0.769,0.2142]

W
ith

 s
ol

ve
nc

y 
co

ns
tr

ai
nt

, b
ut

 w
ith

ou
t r

ec
ov

er
y 

re
qu

ire
m

en
ts

 [0
.7

74
,0

.2
14

2 ]

0 5000 10000 15000

0
50

00
10

00
0

15
00

0

With recovery requirements [6903.531,5132.9062]

W
ith

 s
ol

ve
nc

y 
co

ns
tr

ai
nt

, b
ut

 w
ith

ou
t r

ec
ov

er
y 

re
qu

ire
m

en
ts

 [5
04

0.
92

7,
43

48
.9

31
2 ]

FIGURE 5: Scatterplots for unconstrained and recovery requirements (above) and for solvency constraint and
recovery requirements (below), respectively. Aggregate dividends are displayed on the LHS, whereas times to

ruin are displayed on the RHS. For parameters used, see Table B.1 in Appendix B, set no. 1.

Avanzi et al. (2017). In other words, there is an additional, substantial difference
between recovery requirements and solvency constraints.

Next, we investigate whether most of the differences between solvency con-
straints and recovery requirements occur when α2 is closest to α1, or whether
they occur slowly as α2 moves away from α1. We also investigate this as α1 moves
away from α0 in the simple framework. This is illustrated in Figure 6 for Case B.
We see that small spacing between the αs have marginal impact on the expected
present value of distributions initially, even though they can have a large impact
on stability as discussed above.
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(left plot) and set no. 3 (right plot).

3.2. Moving from β∗
0 to β∗

2

The relationship between β∗
1 and β∗

0 is trivial, but the relationship between β∗
2

and β∗
0 is not, as explained early in the paper; see Section 2.4. Figure 7 compares

the optimal barrier level in a model without solvency constraints with the opti-
mal barrier level in the model with recovery requirements, and shows how the
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optimal barrier without constraints, β∗
0 , is no longer optimal. Instead we get the

optimal barrier β∗
2 (adjusted compared to β∗

0 ) when recovery requirements are
introduced. Note that on both graphs, the floor is at β∗

0 .
Note that it is reasonable to assume that β∗

2 → β∗
1 when α2 → α1. This is

observed on the right edge of the surfaces, which correspond to this limit. There
we can see the trivial, linear relationship between β∗

1 and β∗
0 , which is flat as long

as β∗
0 > α1, and then increases linearly such that β∗

1 = α1. On the LHS, one can
see that the kink occurs when α1 = β∗

0 , which is indicated with a pin.
When the volatility is rather low (as on the left plot), and as wemove towards

the left of the surface (α2-wards), for given low α1, the optimal barrier does not
change and is very close to β∗

0 . This is because β∗
0 is far enough from α1, and

the process is very stable. When we increase volatility (moving to the right plot),
β∗

0 increases (the floor is higher) and even for low values of α1, β∗
2 increases

with α2.
Now, if wemove towards the right of the surface for given α2, we can observe

an increase of the optimal barrier even before the kink. This is because moving
α1 towards the barrier level makes periods when no distributions are allowed
more likely, which is a problem particularly for low volatility (a low volatility
means that the process can get stuck in a non-distribution state for a very long
period of time). This effect seems to dominate the “kink” effect especially for
low volatilities.

3.3. The cost of not being able to distribute

Under the recovery requirements, we have two different value functions when
the funding ratio is in the interval between α1 and α2. One can interpret the
differences between these two value functions as the cost of being in the unde-
sirable no distribution state. The difference between the value functions for φ = 0
(the “undesirable” state) and φ = 1 (the “good” state) in Case A is illustrated in
Figure 8. The left plot is for a high value of σA (0.25), whereas the right figure
is for a low value of σA (0.01). The reason that the differences are smallest for
the most volatile model is that higher volatility leads to more switches between
both environments, decreasing the influence of whether φ = 0 or φ = 1.

3.4. Sensitivity analysis for the volatility and correlation

Figure 9 shows the impact of the volatility σ̃ defined in (2.11) (first row)
and the correlation ρ (second row) on the optimal barrier in absence of
recovery constraints (first column), or with recovery requirements (second col-
umn). The immediate observation is that effects that were trivial before the in-
troduction of recovery requirements are not trivial anymore; because the intro-
duction of recovery requirements has mixed effects on the level of the optimal
barrier.

In terms of volatility (first row), absence of recovery requirementsmeans that
higher volatility levels will generally lead to higher barrier levels. Note that the
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FIGURE 8: Differences betweenV 0
A andV 1

A. Note thatV 0
A(α1) = V 1

A(α1) andV 0
A(α2) = V 1

A(α2). The
differences illustrated with the dotted line are relative to the values ofV 0

A. Note that magnitudes of the
differences are very different in the two plots. For parameters used, see Table B.1 in Appendix B, set no. 4 (left

plot) and set no. 5 (right plot).

flat segments correspond to those cases where β∗ has been “floored” at α1, see
Section 2.4. When we include recovery requirements, things get more interest-
ing. First, optimal barrier levels are higher, and not “floored” at α1 any more.
Furthermore, something drags the increasing effect down for moderate levels
of volatility. For low levels of σ̃ , the barrier is increasing in volatility which is
similar to the effect in the model without recovery requirements. However, for
a σ̃ that is not too high, there is an advantage in decreasing β∗

2 for increasing
volatility as it will make it easier to leave state φ = 0 if you fall into a no distri-
bution period. As σ̃ tends to infinity, this effect fades and the risk of bankruptcy
becomes dominant again.

In terms of correlation (second row), one can observe that higher correla-
tion levels will lead to decreasing levels of the optimal barrier (except when it
is “floored” as explained above). This is because high correlation makes the
funding ratio evolve in a (relatively) stable manner, such that we can choose
a barrier that is not too far away from α1. With the introduction of recovery
constraints, one should avoid down-crossing α1 as it will switch the process into
recovery mode. This leads to a global increase in the optimal barriers, espe-
cially when those were close to their respective α1. For instance, for α1 = 1.35,
the optimal barrier is “floored” at α1 in absence of recovery constraints, but
strictly higher than α1 for any levels of correlation when recovery constraints are
introduced.
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FIGURE 9: Sensitivity plots with respect to σ̃ (above) and ρ (below). For parameters used, see Table B:
Parameter values, set no. 6.

4. CONCLUSION

In this paper, we considered a model for the dynamics of risky businesses, whose
assets and liabilities can be approximated by two correlated geometric Brownian
motions. Because we assume that those businesses are profitable, excess levels of
profits are likely to be available for distribution in the future. Such distributions
can materialise either as asset payouts (case B), or liability increases (case A).

Inspired by the regulatory frameworks of some jurisdictions, we assumed
that fund distributions are subject to the following constraints. Because a fund-
ing ratio below α0 will lead to bankruptcy, no surplus can be distributed if
the surplus is inferior to α1 (which is assumed to be strictly greater than α1).
Furthermore, if the funding ratio down-crosses that same trigger ratio α1, the
fund is required to recover — that is, to reach a higher level α2 > α1 — before
it is allowed to distribute surplus again.
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We derived explicit expressions for the expected present value of distribu-
tions under that framework, and for both cases A and B. This allowed us to
show how such regulation increases the stability of the fund substantially, while
only minimally reducing the expected present value of distributions when com-
pared to an optimal distribution with no regulation (as discussed in Decamps
et al., 2009; Avanzi et al., 2017).
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APPENDIX A: PROOFS

A.1. Proof of Lemma 2.1

We introduce the notation G̃(·; β) by

GA(x1, x2;β) = (x1 + x2)GA

(
x1

x1 + x2
,

x2

x1 + x2
; β

)
= (x1 + x2)GA (y, 1 − y; β)

= (x1 + x2)G̃ (y;β) ,

where y = x1
x1+x2

. For reformulating (2.9), we need the following derivatives:

∂

∂xi
GA(�x; β) and

∂2

∂xi∂xj
GA(�x; β), i, j = 1, 2.

We get

∂

∂x1
GA(x1, x2; β) = G̃

(
x1

x1 + x2
;β

)
+ (x1 + x2) G̃′

(
x1

x1 + x2
; β

)(
1

x1 + x2
− x1

(x1 + x2)2

)

= G̃(y; β) + G̃′(y; β)(1 − y),

∂

∂x2
GA(x1, x2; β) = G̃

(
x1

x1 + x2
;β

)
+ (x1 + x2) G̃′

(
x1

x1 + x2
; β

)(
− x1

(x1 + x2)2

)

= G̃(y; β) + G̃′(y; β)(−y),

∂2

∂x2
1
GA(x1, x2; β) = G̃′

(
x1

x1 + x2
; β

)(
1

x1 + x2
− x1

(x1 + x2)2
− x2

(x1 + x2)
2

)

+
x2

x1 + x2
G̃′′

(
x1

x1 + x2
;β

)
x2

(x1 + x2)2

= G̃′′(y; β)
x2

2

(x1 + x2)3
.

Likewise,

∂2

∂x2
2
GA(x1, x2; β) =G̃′′(y; β)

x2
1

(x1 + x2)3
,

∂2

∂x1∂x2
GA(x1, x2; β) = − G̃′′(y; β)

x1x2

(x1 + x2)3
.

In total, we get that

AGA(�x;β) − δGA(�x;β)
x1 + x2

=
1
2

(
σ 2
A + σ 2

L − 2ρσAσL
)
y2(1 − y)2G̃′′(y; β) + (μA − μL) y(1 − y)G̃′(y; β)

+ (μAy + μL(1 − y) − δ) G̃(y; β). (A.1)
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We guess that the solution to the right-hand side of Equation (A.1) equal to 0 has a solution
of the form

G̃(y; β) = yϑ(1 − y)ϕ.

Inserting this in (A.1) gives

AGA(�x;β) − δGA(�x;β)
x1 + x2

=
1
2

(
σ 2
A + σ 2

L − 2ρσAσL
)
y2(1 − y)2

×
(
yϑ−2 (

ϑ2 − ϑ
)
(1 − y)ϕ − 2 yϑ−1ϑ (1 − y)ϕ−1

ϕ + yϑ (1 − y)ϕ−2 (ϕ2 − ϕ)
)

+ (μA − μL) y(1 − y)
(
ϑyϑ−1(1 − y)ϕ − ϕyϑ(1 − y)ϕ−1)

+ (μAy + μL(1 − y) − δ) yϑ(1 − y)ϕ.

Dividing the above equation with yϑ(1 − y)ϕ = G̃(y) and setting σ̃ 2 = σ 2
A + σ 2

L − 2ρσAσL

yields that the right-hand side is equal to

1
2

(
ϑ2 − ϑ

)
σ̃ 2 + ϑ(μA − μL) + μL − δ︸ ︷︷ ︸

:=(∗)

+ (ϑ + ϕ − 1)︸ ︷︷ ︸
:=(∗∗)

(
(−ϑσ̃ 2 − μA + μL)y +

1
2
σ̃ 2(ϑ + ϕ)y2

)
. (A.2)

Setting the part of (A.2) not depending on y equal to 0 gives us a quadratic equation for ϑ :

1
2
σ̃ 2ϑ2 +

(
μA − μL − 1

2
σ̃ 2

)
ϑ + μL − δ = 0, (A.3)

and setting the last term of (A.2) equal to 0, we get that ϕ = 1 − ϑ . We denote by ζ1 and ζ2

the two solutions to the quadratic equation. The solutions are given by

− (
μA − μL − 1

2 σ̃
2
) ±

√(
μA − μL − 1

2 σ̃
2
)2 − 4 1

2 σ̃
2 (μL − δ)

σ̃ 2

=
1
2 σ̃

2 − (μA − μL) ±
√

1
4 σ̃

4 + (μA − μL)2 − (μA − μL) σ̃ 2 − 2σ̃ 2 (μL − δ)

σ̃ 2

=
1
2 σ̃

2 − (μA − μL) ±
√

1
4 σ̃

4 + (μA − μL)2 − σ̃ 2 (μA + μL − 2δ)

σ̃ 2
. (A.4)

Because the coefficient of the quadratic term of (A.3), 1
2 σ̃

2, is greater than 0 and because the
left-hand side of (A.3) is negative for ϑ = 0 by (1.2) and (1.3) the quadratic equation (A.3)
has a positive solution, which we denote ζ2, and a negative solution, which we denote ζ1.
Because the left-hand side of (A.3) is equal to μA − δ < 0 for ϑ = 1, we get that ζ2 > 1.
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By using that G̃(y; β) = GA(y, 1 − y; β), we get that a general solution is given by

GA(x1, x2;β) = C1xζ1
1 x

1−ζ1
2 +C2xζ2

1 x
1−ζ2
2 . (A.5)

This ends the proof.

A.2. Proof of Theorem 2.2

Using (2.13) and (2.15), we get

KA
2,0 = −KA

1,0α0
ζ1−ζ2 , (A.6)

such that

V 0
A(x1, x2; β) = KA

1,0x
ζ1
1 x

1−ζ1
2 − KA

1,0α0
ζ1−ζ2xζ2

1 x
1−ζ2
2 .

Condition (2.17) states that

KA
1,0x

ζ1
1

(
x1

α1

)1−ζ1

+ KA
2,0x

ζ2
1

(
x1

α1

)1−ζ2

= KA
1,1x

ζ1
1

(
x1

α1

)1−ζ1

+ KA
2,1x

ζ2
1

(
x1

α1

)1−ζ2

.

This is a binding condition for eitherKA
1,1 orKA

2,1, whereas the other parameter can vary freely.
That is, we choose to represent KA

1,1 as

KA
1,1 =

KA
1,0x

ζ1
1

(
x1
α1

)1−ζ1
+ KA

2,0x
ζ2
1

(
x1
α1

)1−ζ2 − KA
2,1x

ζ2
1

(
x1
α1

)1−ζ2

xζ1
1

(
x1
α1

)1−ζ1

= KA
1,0 + KA

2,0x
ζ2−ζ1
1

(
x1

α1

)−ζ2+ζ1

− KA
2,1x

ζ2−ζ1
1

(
x1

α1

)−ζ2+ζ1

= KA
1,0 + KA

2,0α
ζ2−ζ1
1 − KA

2,1α
ζ2−ζ1
1 .

(A.7)

Using (2.14), (A.7) and (A.6), we get thatV 1
A has the representation

V 1
A(x1, x2;β) =

(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1 − KA

2,1α1
ζ2−ζ1

)
xζ1

1 x
1−ζ1
2 + KA

2,1x
ζ2
1 x

1−ζ2
2 . (A.8)

That is, we have the representations for V 0
A and V 1

A given in the theorem but we still need to
determineKA

1,0 andKA
2,1. The partial derivative ofV 1

A with respect to x2 in the point x1
β
is given

by

∂

∂x2
V 1

A(x1, x2; β)|x2= x1
β

= (1 − ζ1)
(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1 − KA

2,1α1
ζ2−ζ1

)
xζ1

1

(
x1

β

)−ζ1

+ (1 − ζ2)KA
2,1x

ζ2
1

(
x1

β

)−ζ2

= (1 − ζ1)
(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1 − KA

2,1α1
ζ2−ζ1

)
βζ1

+ (1 − ζ2)KA
2,1β

ζ2 .
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This means that we get the following equation by using condition (2.18):

(1 − ζ1)
(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1 − KA

2,1α1
ζ2−ζ1

)
βζ1 + (1 − ζ2)KA

2,1β
ζ2 = −1.

From this, it follows that

KA
2,1

(
(1 − ζ2) βζ2 − (1 − ζ1)α

ζ2−ζ1
1 βζ1

)
+ (1 − ζ1)

(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1 = −1,

such that KA
2,1 is given by

KA
2,1 =

−1 − (1 − ζ1)
(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1

(1 − ζ2)βζ2 − (1 − ζ1) α
ζ2−ζ1
1 βζ1

. (A.9)

We can representV 0
A

(
x1,

x1
α2

; β
)
by

V 0
A

(
x1,

x1

α2
; β

)
= KA

1,0x
ζ1
1

(
x1

α2

)1−ζ1

− KA
1,0α0

ζ1−ζ2xζ2
1

(
x1

α2

)1−ζ2

=
(
x1

α2

)
KA

1,0

(
α2

ζ1 − α0
ζ1−ζ2α2

ζ2
)
,

(A.10)

andV 1
A

(
x1,

x1
α2

;β
)
by

V 1
A

(
x1,

x1

α2
; β

)
=

(
1
β

− 1
α2

)+

x1 +V 1
A

(
x1,

(
x1

min (β, α2)

)
;β

)

=x1

((
1
β

− 1
α2

)+

+
(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1 − KA

2,1α1
ζ2−ζ1

)
min (β, α2)

ζ1−1

+ KA
2,1 min (β, α2)

ζ2−1

)
,

(A.11)

where we have used (A.8). By condition (2.16), we have that (A.10) equals (A.11). Using this
and rearranging the terms give us that

KA
1,0

(
α2

ζ1−1 − α0
ζ1−ζ2α2

ζ2−1 + (α0
ζ1−ζ2α1

ζ2−ζ1 − 1) min (β, α2)
ζ1−1

)

=
(

1
β

− 1
α2

)+

− KA
2,1

(
α1

ζ2−ζ1 min (β, α2)
ζ1−1 − min (β, α2)

ζ2−1

)
.

(A.12)

Inserting KA
2,1 given by (A.9) in (A.12) leads to the equation

KA
1,0

(
α2

ζ1−1 − α0
ζ1−ζ2α2

ζ2−1 + (α0
ζ1−ζ2α1

ζ2−ζ1 − 1) min (β, α2)
ζ1−1

)

=
(

1
β

− 1
α2

)+

+ ξA
(−1 − (1 − ζ1)

(
KA

1,0 − KA
1,0α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1

)
,
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where

ξA =
min (β, α2)

ζ2−1 − α1
ζ2−ζ1 min (β, α2)

ζ1−1

(1 − ζ2) βζ2 − (1 − ζ1)α
ζ2−ζ1
1 βζ1

. (A.13)

Solving with respect to KA
1,0 gives us that

KA
1,0 =

(
1
β

− 1
α2

)+ − ξA

α2
ζ1−1 − α0

ζ1−ζ2α2
ζ2−1 + (α0

ζ1−ζ2 α1
ζ2−ζ1 − 1) min (β, α2)

ζ1−1 + ξA ((1 − ζ1) (1 − α0
ζ1−ζ2α1

ζ2−ζ1 ) βζ1 )
.

This concludes the proof.

APPENDIX B: PARAMETER VALUES

TABLE B.1

PARAMETER VALUES FOR NUMERICAL ILLUSTRATIONS.

No. ρ δ μA μL σA σL α0 α1 α2 κ A0 L0

1 0.5 0.055 0.05 0.04 0.03 0.01 1 1.3 1.35 1.05 1.2 1
2 0.5 0.055 0.05 0.04 0.02 0.01 1 – – 1.05 1.2 1
3 0.5 0.055 0.05 0.04 0.3 0.01 1 – – 1.05 1.2 1
4 0.5 0.05 0.04 0.02 0.25 0.1 1 2 4 1.05 – –
5 0.5 0.05 0.04 0.02 0.01 0.1 1 2 4 1.05 – –
6 0.5 0.055 0.05 0.03 0.03 0.01 1 1.3 1.5 1.05 1.2 1
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