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Abstract

We study networks of interacting queues governed by utility-maximising service-rate
allocations in both discrete and continuous time. For finite networks we establish sta-
bility and some steady-state moment bounds under natural conditions and rather weak
assumptions on utility functions. These results are obtained using direct applications of
Lyapunov–Foster-type criteria, and apply to a wide class of systems, including those for
which fluid-limit-based approaches are not applicable. We then establish stability and
some steady-state moment bounds for two classes of infinite networks, with single-hop
and multi-hop message routes. These results are proved by considering the infinite sys-
tems as limits of their truncated finite versions. The uniform moment bounds for the
finite networks play a key role in these limit transitions.
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1. Introduction

In this paper we consider networks of interacting queues. These models are primarily moti-
vated by wireless systems, where the interference between simultaneous transmissions by
different nodes imposes certain constraints. For example, ‘neighbouring’ nodes may not be
allowed to transmit simultaneously, and/or a node’s effective transmission rate may depend on
the transmission powers of the node and its neighbours. However, the basic model studied in
this paper takes a more abstract point of view; namely, it is an arbitrary network of queues
such that individual instantaneous service rates may depend on the state of the entire system.
The network state is represented as a set X̄ = (Xi, i ∈N ) of the queue lengths Xi (of jobs, or
messages, or customers) at the network nodes i ∈N . Each node receives exogenous arrivals of
jobs (messages). We consider both discrete-time and continuous-time models, and both finite
and infinite networks. Also, in addition to single-hop networks, where each job leaves the sys-
tem after its service is completed, we consider one special class of multi-hop networks, where,
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after a service completion at one node, a customer may either leave the network or be routed to
another node, and these routing decisions are taken according to a certain random procedure.

In discrete-time models, time is divided into slots of the same (unit) size, and each job
(or message) takes exactly one slot to complete service at a node. A service allocation algo-
rithm (or rule) is any mapping (deterministic or random) of a network state X̄ into the set
of nodes that serve jobs (transmit messages) in a slot. (See, e.g., [15] for a recent model
of an algorithm in discrete time employing a random procedure.) The instantaneous service
rate μi of node i in a slot is the probability that it will serve a job. Thus, the deterministic
mapping ψ̄(X̄) = (ψi(X̄), i ∈N ) of a network state X̄ into a set of instantaneous service rates
μ̄= (μi, i ∈N ) is determined by the service algorithm; the mapping ψ̄(X̄) is referred to as a
service-rate allocation algorithm (or rule).

In continuous-time models, the instantaneous service rate μi of a node represents the inten-
sity of the Poisson process modelling departures (service completions) of the node. In this case,
the service-rate allocation algorithm ψ̄(X̄), mapping a network state X̄ into a set of instanta-
neous service rates μ̄, is all that is needed to specify the service allocation algorithm (see, e.g.,
[11] for a recent model of an algorithm in continuous time).

In this paper we study service allocation algorithms (in both discrete and continuous time)
such that the corresponding service-rate allocation ψ̄(X̄) maximises some utility function
within some set C. In some cases, the set C arises naturally as the set of all feasible instan-
taneous rates μ̄ given the model structure, but this is not necessarily true in all cases. For
instance, in the networks considered in [15], as well as in Section 3 here, the set C is a sub-
set of the set of all feasible rates. Our main goal is to obtain network stability conditions, in
terms of the set C. For example, our main stability results (Theorems 1 and 7) for single-hop
networks show that the network is stable when the exogenous arrival rates λ̄= (λi, i ∈N ) are
(‘strictly’) within the set C. In addition to stability, we are able to obtain some steady-state
moment bounds (Theorems 2 and 8). These moment bounds turn out to be key to establish-
ing stability of infinite networks, because they allow a limit transition from finite to infinite
networks (Theorems 4 and 9).

Service-rate allocations ψ̄(X̄), under many natural service allocation algorithms, are such
that ψi(X̄) is decreasing in each Xj for j �= i, as for these algorithms a higher load in queue j
usually leads to all other queues receiving less service. This property is in fact satisfied by the
rates defined by algorithms introduced in [11] and [15] that we will study here as examples.
We would like to emphasise, however, that for our general results we are not going to make
this assumption. Our motivation for this stems, again, from wireless networks, where there are
many competing factors at play, and in many situationsψi may not be decreasing in Xj for some
j �= i (see, e.g., the model considered in [14], where the authors consider an algorithm designed
to ensure avoidance of conflicts which gives advantage to a transmitter if its non-immediate
neighbours are transmitting). This leads to a potentially wide range of possible assumptions on
the dependence of service rates assigned to different queues on the state of the network.

We are interested in conditions guaranteeing stability. In finite networks stability, informally
speaking, means the ability of all queues to complete service of all jobs, without the number of
outstanding jobs building up infinitely. More formally, this means that the Markov chain X̄(·) is
positive recurrent. This also implies the existence and uniqueness of a stationary distribution.

In infinite networks, by stability we will understand the existence of a proper invariant
distribution. In the cases when the system process is monotone, this implies that the process
distribution converges to a proper steady state (namely, the lower invariant measure), starting
from the ‘empty’ initial state, as time goes to infinity.
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An important concept, explored extensively in the literature, is that of maximum stability (or
throughput optimality). To illustrate this concept, consider a finite network and let C be the set
of all feasible long-term rates that can be provided to the nodes, given model constraints. Such a
set C is typically convex. Then, an algorithm is called maximally stable (or throughput-optimal)
if it guarantees stability as long as λ̄ < ν̄ for some ν̄ ∈ C; in other words, essentially, as long as
stability is feasible at all. For a large class of networks, the celebrated MaxWeight algorithm
([18]) and α-fair algorithm are known to be maximally stable. (See [7], [8], [9] for introduction
of the fair-allocation concepts and [1] , [4] for stability proofs.) These algorithms, however, are
centralised in that service-rate allocations are given by a solution to an optimisation problem
that needs to be found by a certain central entity. There are also decentralised algorithms
(where each node regulates its own behaviour according to its queue length) guaranteeing
maximal stability (see [6], [12]), but they are known to suffer from large job delays. (This,
in particular, prompted the introduction and analysis of algorithms which are not maximally
stable, and instead ensure stability for λ̄ within a ‘smaller’ set than the set of all feasible long-
term rates, with this stability being not necessarily convex. See, e.g., [17].)

Some maximally stable algorithms are designed in such a way that the average service rates
maximise a certain utility function. A notable example is presented by α-fair algorithms, where
the rates ψi are such that

ψ ∈ arg max
μ∈C

∑
i

Xi
1

1 − α

(
μi

Xi

)1−α
when α > 0, α �= 1,

or
ψ ∈ arg max

μ∈C

∑
i

Xi log (μi/Xi) when α = 1,

where the set C is usually assumed to be convex. The known stability proofs are based on
the fluid limit approach ([10], [2], [16]) and, in particular, implicitly use the fact that α-fair
service-rate allocations are 0-homogeneous (or asymptotically 0-homogeneous), which allows
a relatively simple characterisation of fluid limit dynamics.

In this paper we consider general utility-maximising algorithms, which, in particular, do
not necessarily assign 0-homogeneous rates to queues. We also do not require that the maximi-
sation set is necessarily convex. Our goal is threefold. First, we show that these very general
algorithms for finite networks ensure stability when λ̄ is within C. Second, we also find some
moment bounds for the stationary queue-length distributions. And finally, we demonstrate how
our moment bounds may be used to extend the stability results and moment bounds to some
infinite networks.

In the first part of our paper, we consider a class of general utility-maximising algorithms
and prove that they are stable when λ̄ is within C. Namely, we study average service-rate
allocations ψi such that

ψ ∈ arg max
μ∈C

∑
i

g(Xi)h(μi),

with some conditions on the functions g and h. Our conditions do not imply that the service-rate
allocations are 0-homogeneous; hence the existing stability results, based on fluid limits, do not
apply. Moreover, we do not even require that the function g be defined for non-integer values of
the argument. Our results are valid for a large class of functions g such that g(n + 1)/g(n) → 1
as n → ∞. This class includes the functions g(n) = nα used in α-fair allocations, as well as
functions of the form g(n) = elogβ n with β > 0 and g(n) = enγ with γ ∈ (0, 1), among others.
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Our results are also valid for a very general class of functions h. Our stability proofs in both
discrete- and continuous-time settings are based on the direct application of Lyapunov–Foster
techniques.

In discrete time, for our general results (Theorem 1 and Theorem 2) we impose a strong
additional assumption that the number of arrivals into each queue in a time slot is given by a
Bernoulli random variable, while if we restrict our attention to a particular scenario of interest
(see Theorem 3), we only need to assume a finite third moment of the per-slot number of
arrivals. In continuous time, however (which is the standard setting for α-fair allocations),
no additional assumptions are needed. We note again that we do not assume that the set C is
convex.

Once stability is established, one is interested in characteristics of the stationary regime. For
both discrete- and continuous-time settings, we demonstrate how essentially the same tech-
niques used to prove stability may be employed to establish explicit bounds on the moments
of queue states in stationarity.

These bounds are interesting in their own right, especially as very few results are known
on the stationary regimes of networks governed by utility-maximising algorithms. We note
[13] where an exponential bound has been established for the tail of the total stationary queue
length of a system under an α-fair algorithm in a Markovian setting, and [3] where sufficient
conditions for the existence of finite moments were established for general arrival streams.
We note however that the results of both [3] and [13] imply finiteness of some moments of
the stationary queue-length distributions but do not imply any bounds on them as the various
constants are not explicit. In the second part of our paper, having explicit bounds is crucial for
the analysis of some infinite networks.

In the second part of the paper, we apply the moment bounds established in this paper to
obtain stability results for some infinite networks in discrete and continuous time that were
considered in the recent papers [15] and [11], respectively. The models considered in the two
papers are motivated by different wireless networks but share similar service-rate allocations.
As our stability and moment analysis is based on service-rate allocations only, it allows us to
handle both discrete and continuous cases, and the particular characteristics of the two models
(which are very different), beyond the service-rate allocation, do not play any role in the proofs.

The simplest example of the two networks (results for more general settings are presented
in the paper; we focus on a simple example in the introduction only) is given by nodes located
on an infinite line Z and such that, given the state of the system X̄, the service-rate allocation
is given by

ψi = Xi

Xi−1 + Xi + Xi+1
.

The so-called rate stability (guaranteeing that the queue lengths do not grow linearly in time)
is demonstrated in both discrete and continuous settings in [15] for arrival rates λ̄ within some
natural set C. The authors of [11] considered a continuous-time model where arrival rates
into all nodes are the same and equal to λ, say. They considered the system dynamics on
intervals of the form (−n, . . . , n), viewed as a circle, with a growing n. These systems are
stable for any n, provided λ< 1/3, and one can thus consider their stationary measures. Using
the natural monotonicity of the corresponding process and the tightness of these measures, a
stationary measure (in fact, the lower invariant measure) is constructed for the infinite network.
To establish uniqueness of this stationary measure among those with finite second moments of
the queue lengths, one needs a bound on the second moments of stationary measures of the

https://doi.org/10.1017/apr.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.8


Stability and moment bounds under utility-maximising allocations 467

systems on the circle, independent of their size. This was not established in [11], but was left
as a conjecture (Conjecture 1.12).

Our analysis is based on showing that the rates of [11] and [15] are in fact utility-maximising
(or 2-fair in the α-fair terminology) in a certain natural set C—a fact already mentioned in
[15]. This allows us to use our results on stability and moment bounds for finite systems. In
particular, our moment bounds immediately imply a uniform (not depending on the size of the
network) bound for second moments. This, in turn, proves [11, Conjecture 1.12] in the case of
identical arrival rates, along with all its implications, including the uniqueness of the stationary
measure constructed there among stationary measures with finite second moments of the queue
lengths.

Our analysis, however, allows us to demonstrate the existence of a stationary measure with
a finite second moment in far more general settings, where arrival rates do not need to be
the same at all nodes, but may be periodic (or dominated by periodic rates). Our analysis of
systems with the specific service rates of [11] and [15] does rely on the existence and stability
of fluid limits of the systems.

As our analysis is based on utility-maximisation and continuity properties of the processes
(see Section 1.2 for the definition of the continuity property), it is not specific to the rates
considered in [11] and [15] and may be applied to other infinite networks. We present further
examples of models where the same strategy applies. The examples provided in this paper are
however not exhaustive.

Finally, we also consider a multi-hop network from [15]. In a multi-hop network, jobs, after
being served at one queue, may either leave the network or join another queue to be served
there. The analysis of multi-hop networks is notoriously difficult. As in [15], we restrict our
attention to symmetric routing. We use similar techniques to the ones we applied in the single-
hop setting to first obtain moment bounds for finite networks and then apply these bounds to
establish stability of an infinite network. Stability in this case is weaker than that obtained in
the single-hop case, as the multi-hop network lacks monotonicity, which is at the core of the
construction of the lower invariant measure in [11].

To summarise, our contributions are the following:

• We provide a proof of stability of utility-maximising algorithms in a general setting,
covering cases in which fluid limit techniques cannot be applied. In particular, we do not
assume that service-rate allocations are 0-homogeneous, and thus we use more general
utility functions compared to the classical α-fair algorithms. This comes at the expense
of additional assumptions on the arrival processes in discrete time. There are, however,
no additional assumptions made in the case of a Markovian (driven by Poisson arrivals
and departures) continuous-time system.

• Using a similar approach, we obtain steady-state moment bounds, provided stability
conditions hold.

• The same ideas allow us to obtain further explicit steady-state moment bounds in some
special cases of interest, which, in turn, allow us to establish stability and moment
bounds of some infinite networks. When restricting our attention to some specific service
rates, we do use the existence and stability of fluid limits.

• We use similar techniques to establish moment bounds for a certain finite multi-hop
network and use these bounds to establish stability and moment bounds for its infinite
version.
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FIGURE 1: An illustration of connections between various parts of the paper. Solid lines represent strict
logical connections, dashed lines connections in terms of ideas.

1.1. Structure of the paper

In order to facilitate a smooth presentation, we first present our main results in the discrete-
time setting. Section 2 is devoted to finite networks. We describe the model and present our
stability results and steady-state moment bounds. Sections 3 and 4 are devoted to infinite net-
works in the single- and multi-hop settings, respectively. In Section 3, we first analyse the
model introduced in [11] and [15] and then demonstrate how our analysis may be extended to
treat other related models. Section 4 is devoted to a symmetrical multi-hop extension of the
model of [11] and [15] .

Section 5 is devoted to the continuous-time setting. We describe the model, explain why
the analysis is a simplified version of our analysis in the discrete-time setting, and present
continuous-time versions of our results.

The paper contains many parts, some of which are connected directly through statements,
while others are only connected through ideas. The structure of the paper is thus nonlinear. We
present an illustration of how the various parts are related in Figure 1.

1.2. Basic notation, conventions, and definitions

We will use the following notation throughout: R and R+ are the sets of real and real
nonnegative numbers, respectively; Zd is the d-dimensional lattice; Z+ is the set of nonnegative
integers; ȳ means the (finite- or infinite-dimensional) vector (yi); for a finite-dimensional vector
ȳ, ‖y‖ =∑

i |yi|; for a set of functions ( fi) and a vector ȳ, f̄ (ȳ) denotes the vector ( fi(ȳ)); vector
inequalities are understood componentwise; we also use the convention that 0/0 = 0.

The abbreviation w.p.1 means with probability 1. Convergence in distribution of random
elements is denoted by ⇒. A discrete-time random process (Y(k), k = 0, 1, 2, . . . ) is often
referred to as Y(·), and similarly for a continuous-time process (Y(t), t ≥ 0).

We will say that a sequence of random processes Y(m)(·),m = 1, 2, . . . , and a random
process Y(·) satisfy the continuity property if the following holds. Given any (random) ini-
tial state Y(0) and any sequence of (random) initial states Y (m)(0),m = 1, 2, . . . , such that
Y (m)(0) ⇒ Y(0), all processes can be coupled (constructed on a common probability space) so
that Y (m)(k) → Y(k) w.p.1 for any k = 0, 1, . . . (or, for continuous time, Y (m)(t) → Y(t) w.p.1
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for any t ≥ 0). This continuity property could be called generalised Feller-continuity, because
in the special case when all Y (m)(·) are copies of the same process Y(·), differing only in the
initial state, the property defined above is Feller-continuity of Y(·); we call it continuity for
short.

2. Finite single-hop networks: stability analysis and moment bounds

In this section we consider finite single-hop networks, where a job, after being served at
any queue (node), leaves the system. Since the number of nodes is finite, the process describ-
ing system evolution is a countable (irreducible) Markov chain. The finite-network process
stability is defined as positive recurrence of the Markov chain, which (because of irreducibil-
ity) is equivalent to the existence of a unique stationary distribution. We first introduce the
model and make general assumptions, then state and prove stability results, and finally obtain
moment bounds on stationary distributions.

2.1. Model and assumptions

Assume that there are N queues, each having its own arrival stream of jobs, and having an
infinite buffer to store outstanding jobs. For models in discrete time, we will assume that all
jobs require service that lasts 1 time unit, time is split into slots of length 1, and all arrivals and
all service initiations happen at the beginning of a time slot, so that all services are completed
by the end of a time slot. These assumptions are motivated mainly by wireless networks.

For convenience we assume that at the beginning of each time slot, first new services are
started, and then new arrivals happen. We will denote time slots by k = 0, 1, . . .. We can then
write the evolution of the queue of node i as

Xi(k + 1) = Xi(k) + ξi(k) − ηi(k), (1)

where ξi(k) denotes the number of new job arrivals into queue i at time slot k, and ηi(k) denotes
the number of service completions in queue i at time k.

We will assume that for each i, the sequence ξi(k), k = 0, 1, 2, . . ., consists of independent,
identically distributed (i.i.d.) random variables such that E(ξi) = λi, where, here and through-
out, by ξi we denote a random variable with the distribution of any of ξi(k). Note that arbitrary
dependence between random variables with different values of i is allowed.

We will assume also that the random variables ηi(k) take values 0 and 1 and are such that,
on average, they maximise a global utility function in the following sense. Define

ψi(x̄) =E(ηi(k)|X̄(k) = x̄),

and assume that ψi(x̄) ∈ [0, 1] for all x̄, ψi(x̄) = 0 if xi = 0, and

ψ̄(x̄) ∈ arg max
μ̄∈C

∑
i

g(xi)h(μi), (2)

where the set C is compact and coordinate-convex (i.e. if a vector μ̄ belongs to C and μ̄∗ ≤ μ̄
coordinate-wise, then μ̄∗ ∈ C). We impose, in addition, the following conditions:

Condition (H): the function h : [0,∞) →R is strictly increasing, differentiable, and
concave (both the cases limy↓0 h(y) = h(0)>−∞ and limy↓0 h(y) = −∞ are allowed); and

Condition (G): the function g : Z+ → [0,∞) is strictly increasing and such that

g(y)


(y)
→ ∞ (3)

https://doi.org/10.1017/apr.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.8


470 S. SHNEER AND A. STOLYAR

as y → ∞, where 
(y) = g(y + 1) − g(y). Note that (3) is equivalent to

g(y + 1)

g(y)
→ 1, (4)

as y → ∞.

Remark 1. Note that for what are usually referred to as α-fair algorithms, either g(y) = yα and

h(y) = y1−α
1−α with α > 0, α �= 1, or g(y) = y and h(y) = log y, so all of the above conditions hold.

The class of functions satisfying the conditions above is however much wider. It includes,
for instance, the functions g(y) = elogβ y with β > 0 and g(y) = eyγ with 0< γ < 1.

Throughout this section, we are going to assume the following:

There exists ν̄ ∈ C such that λ̄ < ν̄. (5)

We will also use the notation

G(z) =
z∑

y=0

g(y) (6)

and
F(ȳ) =

∑
i

h′(νi)G(yi). (7)

2.2. Stability

In this section we prove that the utility-maximising algorithms described in the previous
section are stable as long as the average arrivals λ̄ are within the set C. Our proof does not use
fluid limits, which have been the standard tool for proving stability of algorithms of this type.
The advantages and disadvantages of our approach are described in the introduction.

Theorem 1. Consider the discrete-time model in Section 2.1 and assume that ξi is a Bernoulli
random variable with E(ξi) = λi. Assume that the vector λ̄ is such that Condition (5) holds.
Then the Markov chain {X̄(k), k = 0, 1, . . .} is positive recurrent.

Proof of Theorem 1. We will use the standard Lyapunov–Foster criterion [5]. Fix ε > 0 such
that λi < νi − ε for all i. Note that, by (2) and the concavity of the function h,

0 ≤
∑

i

g(xi)(h(ψi(x̄)) − h(νi)) ≤
∑

i

g(xi)h′(νi)(ψi(x̄) − νi). (8)

We are going to consider

E
(
F(X̄(1)) − F(X̄(0))|X̄(0) = x̄

)=E
(
F(x̄ + ξ̄ (0) − η̄(0))|X̄(0) = x̄

)− F(x̄).

In what follows we are going to assume that X̄(0) = x̄ is fixed and will drop the dependence on
this event. We will also write ξi and ηi instead of ξi(0) and ηi(0), for simplicity. We can write

E(F(x̄ + ξ̄ − η̄)) − F(x̄) =E

(∑
i

G(xi + ξi − ηi)h′(νi)
)

−
∑

i

G(xi)h′(νi)

=
∑

i

h′(νi)
(
λiψi(x̄)G(xi) + (1 − λi)(1 −ψi(x̄))G(xi)

+ λi(1 −ψi(x̄))G(xi + 1) + (1 − λi)ψi(x̄)G(xi − 1) − G(xi)
)
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=
∑

i

h′(νi)
(
λi(1 −ψi(x̄))(G(xi + 1) − G(xi)) + (1 − λi)ψi(x̄)(G(xi − 1) − G(xi))

)

= −
∑

i

h′(νi)λiψi(x̄)(G(xi + 1) + G(xi − 1) − 2G(xi))

+
∑

i

h′(νi)
(
λi(G(xi + 1) − G(xi)) +ψi(x̄)(G(xi − 1) − G(xi))

)
= −

∑
i

h′(νi)λiψi(x̄)(g(xi + 1) − g(xi)) +
∑

i

h′(νi)
(
λig(xi + 1) −ψi(x̄)g(xi)

)
≤
∑

i

h′(νi)
(
λig(xi + 1) −ψi(x̄)g(xi)

)
(9)

=
∑

i

h′(νi)(λi −ψi(x̄))g(xi) +
∑

i

h′(νi)λi(g(xi + 1) − g(xi))

=
∑

i

h′(νi)(λi − νi)g(xi) +
∑

i

h′(νi)(νi −ψi(x̄))g(xi) +
∑

i

h′(νi)λi
(xi)

≤ −ε
∑

i

h′(νi)g(xi) +
∑

i

h′(νi)
(xi) =
∑

i

h′(νi)(−εg(xi) +
(xi)),

where in the last inequality we used (8).
This, together with (3), implies that if F(x̄) is large, then its expected drift may be made

arbitrarily small, and certainly negative and bounded away from zero (and then the classical
Lyapunov–Foster stability criterion in [5] applies).

Indeed, if F(x̄) is larger than a certain constant, say C, then there exists i such that
h′(νi)G(xi)>C/N, which, since G is strictly increasing, implies that xi >C1 for a certain
constant C1.

The condition (3) implies that there exists a constant C2 such that

g(y)


(y)
≥ C2

for all y. If εC2 > 1, then the drift of F is always negative. Assume now εC2 < 1. For any C3
there exists Y such that

g(y)


(y)
≥ C3

for all y> Y . We can always choose C3 and C so that C3 > 1/ε and C1 > Y , and then the drift
of F may be bounded from above by

∑
i

h′(νi)g(xi)

(
−ε+ 1

C2
I(xi ≤ Y) + 1

C3
I(xi > Y)

)

≤ (N − 1)hug(Y)

(
−ε+ 1

C2

)
+ hlg(C1)

(
−ε+ 1

C3

)
,

where hu = maxi h′(νi) and hl = mini h′(νi). It is clear that we can always choose C1 such that
the above is negative. This completes the proof.

2.3. Moment bounds

Once stability is established, one can employ arguments similar to those used in the proof of
Theorem 1 to obtain bounds on some moments of the stationary distributions of queue states.
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The stationary regime exists under the conditions of Theorem 1; in this section we will write
X̄ to represent a random vector with distribution equal to that of X̄(k) in the stationary regime.

Theorem 2. Assume that all conditions of Theorem 1 hold and fix ε > 0 such that λi < νi − ε

for each i. Then ∑
i

h′(νi)Eg(Xi) ≤ 1

ε

∑
i

h′(νi)E
(Xi).

Proof of Theorem 2. Consider the process with an arbitrary fixed initial state X̄(0). Then,
because of the assumptions on the input flows, E(F(X̄(k)))<∞ for any k ≥ 0. By Theorem 1
the process is stable, and therefore X̄(k) converges in distribution to X̄. Following the lines of
(9), we have the following drift estimate:

E
(
F(X̄(k + 1)) − F(X̄(k))|X̄(k) = x̄

)
≤
∑

i

h′(νi)
(
λig(xi + 1) −ψi(x̄)g(xi)

)
(10)

≤ −ε
∑

i

h′(νi)g(xi) +
∑

i

h′(νi)
(xi) ≤ c,

where c is a fixed finite constant, and the last inequality follows from the properties of the
function g. Indeed, thanks to (3), there exists a finite Y such that

g(y)


(y)
≥ 1/ε

for all y ≥ Y . Define

C = min
y≤Y

g(y)


(y)
.

Then

E
(
F(X̄(k + 1)) − F(X̄(k))|X̄(k) = x̄

)≤
(

−ε+ 1

C

)∑
i

h′(νi)g(xi)I(xi < Y).

Now c may be taken to be

c =
{

0, C ≥ 1/ε,

N
(
−ε+ 1

C

)
g(Y) maxi h′(νi), C< 1/ε.

Then we obtain

E[F(X̄(k + 1)) − F(X̄(k))] ≤E

[
−ε

∑
i

h′(νi)g(Xi(k)) +
∑

i

h′(νi)
(Xi(k))

]
.

Recall that X̄(k) converges in distribution to X̄. Using Skorohod representation and the last
inequality in (10), we can apply Fatou’s lemma to take lim supk→∞ of the right-hand side of
the above inequality. Thus, we obtain

lim sup
k→∞

E[F(X̄(k + 1)) − F(X̄(k))] ≤E

[
−ε

∑
i

h′(νi)g(Xi) +
∑

i

h′(νi)
(Xi)

]
.
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The left-hand side of the above must be greater than or equal to 0 (because otherwise we would
have EF(X̄(k)) → −∞). This completes the proof.

In certain cases (such as, e.g., when g(x) = xα with α an integer) one can significantly
weaken the assumptions on the random variables ξi. We provide the following theorem in
order to illustrate this, and also to introduce the specific choice of functions g and h which we
will use in Section 3 to prove stability of an infinite network. We note however that we do rely
on fluid limits in the proof of the following result.

Theorem 3. For a discrete-time model as defined in Section 2.1, assume that g(y) = y2 and
h(y) = −y−1. Assume also that ξi is a nonnegative integer-valued random variable with
E(ξ3

i )<∞ and E(ξi) = λi, where the vector λ̄ is such that Condition (5) holds. Then the
Markov chain {X̄(k), k = 0, 1, . . .} is stable.

Moreover, fix ε > 0 such that λi < νi − ε for all i. Then

ε
∑

i

E(X2
i )

ν2
i

≤ A
∑

i

E(Xi)

ν2
i

+ B,

where X̄ denotes a random element with the stationary distribution of X̄(· ),

A = 3
∑

i

E(ξ2
i ) + λi(1 − 2λi)

ν2
i

,

and

B =
∑

i

E(ξ3
i ) − λi + 3λ2

i − 3(1 − 2λi)(λ2
i − λi/2 +E(ξ2

i )/2)

ν2
i

.

The specific functions g(·) and h(·) are such that the fluid limits of the process are well-
defined. We use this fact in applying previous results on stability and existence of moments, as
will be seen shortly.

Proof of Theorem 3. Under the assumptions of the theorem (in fact the existence of only the
first moments of the ξi is sufficient for stability), positive recurrence of the Markov chain X̄(·)
holds by [15, Lemma 12], where the stability of the corresponding fluid limits is established.
(Note that if one assumed convexity of the set C, stability would follow from earlier results (see,
e.g., [1], [4]); however, as pointed out in [15], the convexity of the set C is not in fact necessary
for stability results). We will consider the stationary version of the process. The finiteness of
the third moment of ξi (along with stability of fluid limits) guarantees that E(X2

i )<∞ (see [3]).
By stationarity, E(Xi(k + 1)) =E(Xi(k)), and hence

E(ψi) = λi, (11)

where for simplicity we write ψi instead of ψi(X̄).
Note that

E(Xl
iηi) =E(E(Xl

iηi|X̄)) =E(Xl
iE(ηi|X̄)) =E(Xl

iψi) (12)

for any l. Note also that ηl
i = η almost surely for any l> 0. By stationarity, we also have

E(X2
i (k + 1)) =E(X2

i (k)), which is equivalent to

0 =E(ξ2
i ) +E(ψi) − 2E(ξi)E(ψi) + 2E(ξi)E(Xi) − 2E(Xiψi)

=E(ξ2
i ) + λi − 2λ2

i + 2λiE(Xi) − 2E(Xiψi),
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where we used (11), and hence

E(Xiψi) = λiE(Xi) − λ2
i + λi/2 −E(ξ2

i )/2. (13)

Assume now that E(X3
i )<∞ (we will demonstrate how to drop this additional assumption

at the end of the proof). Then the equality of the third moments in stationarity implies

0 =E(ξ3
i ) −E(ψi) + 3E(ξi)E(ψi) − 3E(ξ2

i )E(ψi) + 3E(Xiψi) − 3E(X2
i ψi) + 3E(Xi)E(ξ2

i )

+ 3E(X2
i )E(ξi) − 6E(Xiψi)E(ξi)

=E(ξ3
i ) − λi + 3λ2

i − 3λiE(ξ2
i ) − 3E(X2

i ψi) + 3E(Xi)E(ξ2
i ) + 3λiE(X2

i )

+ 3(1 − 2λi)(λiE(Xi) − λ2
i + λi/2 −E(ξ2

i )/2)

= 3(λiE(X2
i ) −E(X2

i ψi)) + AiE(Xi) + Bi, (14)

where we used (11) and (13), and where

Ai = 3E(ξ2
i ) + 3λi(1 − 2λi)

and
Bi =E(ξ3

i ) − λi + 3λ2
i − 3(1 − 2λi)(λ

2
i − λi/2 +E(ξ2

i )/2).

By (8),

0 ≤
∑

i

x2
i

ν2
i

(ψi(x̄) − νi)

for any x̄, and hence

∑
i

λiE(X2
i ) −E(X2

i ψi)

ν2
i

=
∑

i

(λi − νi)E(X2
i )

ν2
i

+
∑

i

E((νi −ψi)X2
i )

ν2
i

≤ −ε
∑

i

E(X2
i )

ν2
i

.

The statement of the theorem now follows from dividing (14) by ν2
i and summing over all i.

We now show that the assumption E(X3
i )<∞ can be dropped. Let M <∞ and consider

the system with arrivals given by ξ (M)
i = min{ξi,M} instead of ξi. Of course, Eξ (M)

i ≤Eξi.
Therefore the system is stable for each M; let us denote by X̄(M) a random element which has
its stationary distribution. For each M, E((X(M)

i )3)<∞ (because E((ξ (M)
i )4)<∞; see [3]), and

the derivations above imply that

∑
i

E((X(M)
i )2)

ν2
i

≤ A(M)
∑

i

E(X(M)
i )

ν2
i

+ B(M),

with the obvious expressions for A(M) and B(M). Since E((ξ (M)
i )l) →E(ξ l

i ) as M → ∞ for l =
1, 2, 3, we have A(M) → A and B(M) → B as M → ∞.

It is easy to check that the sequences X̄(M)(·) and X̄(·) satisfy the continuity property. Indeed,
if X̄(M)(0) ⇒ X̄(0), we can use Skorohod representation to construct all (random) initial states
X̄(M)(0) and X̄(0) on a common probability space so that X̄(M)(0) → X̄(0) w.p.1. Now, we aug-
ment that probability space to the following natural probability space, on which all processes

https://doi.org/10.1017/apr.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.8


Stability and moment bounds under utility-maximising allocations 475

X̄(M)(·) and X̄(·) are constructed. The service process is driven by the (independent) sequence
of i.i.d. random mappings from a queue length vector X̄ to a service vector (ηi). The arrival pro-
cess is driven by an (independent) sequence of i.i.d. arrival vectors (ξi). All processes X̄(M)(·)
and X̄(·) are then constructed in exactly the same natural way, except that in the Mth processes
the number of job arrivals is ‘clipped’ at M; i.e. it is ξ (M)

i = min{ξi,M}. We directly observe
that, w.p.1, for any time k and all sufficiently large M, X̄(M)(k) = X̄(k).

Note that all X(M)
i have uniformly (in M) bounded second—and then also first—moments.

Therefore we can choose a subsequence of values of M along which X̄(M) ⇒ X̃. We now con-
struct the stationary versions of the processes X̄(M)(·) (along the subsequence) and a process
X̄(·) with X̄(0) distributed as X̃, on a common probability space as described above. Since the
sequences X̄(M)(·) and X̄(·) satisfy the continuity property, we see that, w.p.1, X̄(M)(k) → X̄(k)
for any k, and the X̄(·) thus constructed is in fact stationary. This, in turn, implies that X̄(M) ⇒ X̄.

It remains to rewrite the last display as∑
i

1

ν2
i

E[X(M)
i − A(M)/2]2 ≤ B(M) +

∑
i

(A(M))2

4ν2
i

and apply Fatou’s lemma to obtain∑
i

1

ν2
i

E[Xi − A/2]2 ≤ lim inf
M→∞

∑
i

1

ν2
i

E[X(M)
i − AM/2]2 ≤ B +

∑
i

A2

4ν2
i

.

This completes the proof.

3. Stability analysis of infinite single-hop networks

In this section we provide an application of our moment bounds to establishing the stability
of infinite networks considered in [11] and [15]. The stability of an infinite network we define
as the existence of a proper stationary distribution (with all queues finite with probability 1).

In our analysis of finite systems in the previous sections, only the average service rates
(at a given time, given the system state) were of importance, and any dependencies between
the departures from different queues were not relevant. When we move to analysis of infinite
systems, we still will not require that the departures in each time slot be independent (given the
system state), but we do have to specify the departure (service) mechanism to make sure that
the processes we consider satisfy the continuity and/or monotonicity properties. In particular,
continuity will be the key property which we need in order to make limit transitions from finite
systems to infinite ones.

For the motivation of the specific service mechanisms that we consider (in particular related
to wireless networks), we refer the reader to [11] and [15].

3.1. Model

The queues (or nodes) are assumed to be located on a d-dimensional lattice, with the service
rates given by

ψi(x̄) = xi∑
j∈Zd aj−ixj

, (15)

where a0 = 1, ai = a−i ≥ 0 for all i ∈Z
d, and L = sup{|i| : ai > 0}<∞. For each i, the nodes j

within the finite set Ni = {j|aj−i > 0} are called neighbours of i. Note that i ∈Ni.
Recall that the arrivals are driven by the set of independent random variables ξi(k), which

represent the number of arrivals into node i at time k. The sets {ξi(k)} are i.i.d. across k, and for
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each fixed i, the ξi(k) are i.i.d. across k. As before, we denote by ξi the generic ξi(k), and we
assume

Eξ3
i <∞.

We consider the following two service algorithms for the discrete-time case. Our results apply
to both. (Again, see [15] for the motivation of the algorithms.) Recall that the Xi(k) are the
queue lengths at time k.

Discrete-time service algorithm 1 (D1). The algorithm is driven by the set of i.i.d. (across
node indices i and times k) random variables νi(k), distributed uniformly in [0, 1]. The access
priority of node i at time k is τi(k) = [ − log νi]/Xi(k); it is exponentially distributed with mean
1/Xi(k). (The smaller the τi(k), the ‘higher’ the priority.) Node i transmits in slot k if Xi(k)> 0
and

τi(k)< τj(k)/aj−i for all j ∈Ni \ i.

Note that the probability of node i transmitting, conditioned on X̄(k), is exactly ψi(X̄(k)), as
required by (15). At the same time, the transmissions of the nodes at time k, even conditioned
on X̄(k), are not independent (except in the degenerate case Ni = i). In fact, in the case when
all ai are either 1 or 0, neighbouring nodes can never transmit simultaneously.

Discrete-time service algorithm 2 (D2). This algorithm is much simpler. It is also driven by
the set of i.i.d. (across node indices i and times k) random variables νi(k), distributed uniformly
in [0, 1]. Node i transmits in slot k if Xi(k)> 0 and

νi(k)<ψi(X̄(k)).

In other words, conditioned on X̄(k), the probabilities of nodes transmitting are exactlyψi(X̄(k))
(as required by (15)), and the transmissions are independent.

3.2. Continuity and monotonicity

For the infinite system process, we will use the continuity property (defined in Section 1.2)
and the monotonicity property (defined below).

For a continuity property to be well-defined, a topology on the process state space needs to
be specified. A state of the process is a set X̄ = {Xi} of the queue lengths, i.e. a function of i. On
this state space (which is uncountable for an infinite system), we consider the natural topology
of componentwise convergence.

We also consider the natural componentwise order relation X̄ ≤ X̄∗ on the state space. With
respect to this partial order, it is easy to see that the process for the system defined above
has the following monotonicity property: two versions of the process such that X̄∗(0) ≤ X̄(0)
can be coupled (constructed on a common probability space) so that X̄∗(k) ≤ X̄(k) at all times
k ≥ 0. We note that this monotonicity only holds for single-hop systems; it does not hold for
the multi-hop system which we will consider later in Section 4.

3.3. Auxiliary system on a finite torus

For a vector N̄ = (N1, . . . ,Nd), denote by T = {i : ik ∈ {−Nk, . . . ,Nk − 1}} ⊂Z
d the finite

subset of points, ‘wrapped around’ to form a torus. Consider the auxiliary version of our sys-
tem, defined on the finite torus T , with the node neighborhood structure being that of the torus.
Denote by n =∏

k (2Nk) the number of points in T . We will only consider vectors N̄ such that
Nk > l for each k.
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Along the lines of [15, Lemma 11], we can show that for any such T , the rates (15) are in
fact utility-maximising in a certain set. Indeed, let

C = {μ̄ : there exists p̄ such that μ̄≤ ψ̄(p̄)}.
We can prove the following optimality result.

Lemma 1. The rates (15) are utility-maximising (they satisfy the relation (2)) for the functions
g(y) = y2 and h(y) = −y−1 and the set C.

Remark 2. Using the standard terminology of α-fairness, Lemma 1 states that the rates (15)
are 2-fair in the set C.

Proof of Lemma 1. Indeed, by the definition of the set C, for any μ̄ ∈ C,

∑
i

xi

(
μi

xi

)−1

≥
∑

i

xi

(
ψi(p̄)

xi

)−1

for the corresponding vector p̄. Hence it is sufficient to show that

∑
i

xi

(
ψi(x̄)

xi

)−1

≤
∑

i

xi

(
ψi(p̄)

xi

)−1

for all vectors p̄. Note that the left-hand side of the above is equal to∑
i

xi

∑
j∈T

aj−ixj =
∑

i

x2
i +

∑
i

∑
j∈T ,j �=i

aj−ixixj.

Consider now

∑
i

xi

(
pi

(
∑

j∈T aj−ipj)xi

)−1

=
∑

i

x2
i

⎛
⎝1 +

∑
j∈T ,j �=i

aj−ipj

pi

⎞
⎠

=
∑

i

x2
i + 1

2

∑
i

∑
j∈T ,j �=i

(
x2

i
aj−ipj

pi
+ x2

j
ai−jpi

pj

)
.

For any i and j,

x2
i

aj−ipj

pi
+ x2

j
ai−jpi

pj
= aj−i

(
x2

i
pj

pi
+ x2

j
pi

pj

)
≥ 2aj−ixixj,

where we used the symmetry of the sequence ai. Equality in the above is possible if and only
if x2

i
pj
pi

= x2
j

pi
pj

, which is equivalent to pi
xi

= pj
xj

. Therefore we obtain

∑
i

xi

(
pi

(
∑

j∈T aj−ipj)xi

)−1

≥
∑

i

x2
i +

∑
i

∑
j∈T ,j �=i

aj−ixixj,

and equality is possible if and only if pi
xi

= pj
xj

for all i and j. This implies that pi
xi

has to be a
constant for each i. This completes the proof.

Lemma 2. If λi = λ for each i, then the existence of ν̄ ∈ C such that λ̄ < ν̄ is equivalent to the
inequality

λ<
1∑

j∈T aj
= 1∑

j∈Zd aj

for any vector N̄ such that Nk > L for all k.
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Proof of Lemma 2. Indeed, if

λ<
1∑

j∈T aj
,

we can take p̄ = (1, . . . , 1) and ν̄ = ψ̄(p̄)—such a vector clearly belongs to C, and it is also
clear that λ̄ < ν̄. In the opposite direction, assume that λ̄ < ν̄ for some ν̄ ∈ C, and fix the
corresponding vector p̄. Then

1

λ
>

∑
j∈T aj−ipj

pi

for each i ∈ T . If we add up these inequalities over all i ∈ T , we obtain

n

λ
>
∑
i∈T

∑
j∈T aj−ipj

pi
= n +

∑
i

∑
j∈T ,j �=i

aj−ipj

pi

= n + 1

2

∑
i

∑
j∈T ,j �=i

(
aj−ipj

pi
+ ai−jpi

pj

)

= n + 1

2

∑
i

∑
j∈T ,j �=i

aj−i

(
pj

pi
+ pi

pj

)

≥ n + n
∑

j∈Zd,j �=0

aj,

which concludes the proof (recall that a0 = 1).

3.4. Stability analysis

In this section we demonstrate how our results on moment bounds allow us to obtain a
stability result for an infinite network, along with a second moment bound for a stationary
distribution.

We will say that the arrival rates λi are periodic if the following properties hold: (a) the
values of λi are given for i within the rectangle I = [0, . . . ,C1 − 1] × . . .× [0, . . . ,Cd − 1],
where C1, . . . ,Cd are fixed positive integers; (b) for any i ∈Z

d and any k = 1, . . . , d,
λi+Ckek = λi, where ek is the kth unit coordinate vector (with kth entry equal to 1 and all other
entries equal to zero). We define periodicity of any other function of i similarly. We will say
that random variables ξi are i.i.d. up to periodicity if they are all independent, and ξi+Ckek and
ξi have identical distribution for any i and k.

Theorem 4. Consider periodic rates λ̄. Assume that ξi are i.i.d. up to periodicity, and Eξ3
i <∞

for all i. Assume that there exists a periodic ν̄ from the set

C = {μ̄ : there exists p̄ such that μ̄≤ ψ̄(p̄)}
such that λ̄ < ν̄. Consider an infinite network with arrival rates λ̄′ ≤ λ̄, and assume in addition
that the per-slot (random) number of arrivals ξ ′

i is dominated by ξi w.p.1: ξ ′
i ≤ ξi. Then this

infinite network is stable, and there exists a stationary regime with finite second moments EX2
i

of the queue lengths.

Proof of Theorem 4. Because of the monotonicity of the process, it suffices to prove the
theorem for the periodic arrival rates λ̄ and the arrival process ξ̄ .
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Consider the auxiliary finite version of our system on the sets Rn = {i : ik ∈
{−nCk, . . . , nCk − 1}} ‘wrapped around’ to form a torus (the node neighbourhood structure
being that of the torus). Then the conditions of the theorem, along with Lemma 1, imply stabil-
ity and therefore existence of the (unique) stationary measure for the process on Rn. Lemma 1
and Theorem 3, along with the periodicity, imply that

∑
i∈I

E

(
(X(n)

i )2
)

ν2
i

≤ A1

∑
i∈I

E(X(n)
i )

ν2
i

+ A2 (16)

for some constants A1 and A2, where the upper index n is used to indicate the finite system on
the torus Rn. Note that A1 and A2 do not depend on n. This implies a second moment bound

E

(
(X(n)

i )2
)

≤ C<∞ (17)

which is uniform in n and i ∈ I. Let us view each process X̄(n)(·) as a process on the entire
infinite lattice Z

d; say, by letting Xi(·) ≡ 0 for i �∈Rn. (We note that the node neighbourhood
structure remains that of the torus, and so the process is still equivalent to that on the torus.)
Correspondingly, we will view the (stationary) distributions of X̄(n) as distributions on the
entire infinite lattice Z

d; we see from (17) that these distributions are tight (as distributions on
Z

d). Then there exists a subsequence of (stationary) processes X̄(n)(·) along which X̄(n)(0) ⇒
X̄∗, where X̄∗ is some proper random element (with all components being finite w.p.1), and
then X̄(n)(k) ⇒ X̄∗ for each k.

It is easy to observe that the sequence of processes X̄(n)(·) and the process X̄(·) (which is the
true infinite system process) satisfy the continuity property (from Section 1.2). This means the
subsequence of (stationary) processes X̄(n)(·) and the process X̄(·) with X̄(0) distributed as X̄∗
can be coupled in a way such that X̄(n)(k) → X̄(k) w.p.1 for each k ≥ 0. This means that X̄(k)
is equal in distribution to X̄∗ for each k; i.e. we have constructed a stationary version of X̄(·).
Since X(n)

i ⇒ X∗
i , Fatou’s lemma and (17) imply that EX2

i ≤ C<∞. This completes the proof.
Consider now a special case—a symmetric infinite system, which means that the random

variables ξi are i.i.d. From Theorem 4 we obtain the following.

Corollary 1. Consider the symmetric system and assume

λ<
1∑

j∈Zd aj
. (18)

Assume additionally that Eξ3
i <∞. Then the system is stable, and its lower invariant measure

(i.e. the stationary distribution dominated by any other) is such that EX2
i <∞.

Indeed, by Lemmas 1 and 2 and Theorem 4, the condition (18) ensures stability. By
Theorem 4, EX2

i <∞ holds for some stationary distribution, and therefore it holds for the
lower invariant measure as well.

Remark 3. The simplest case where the λi are not all the same is when we consider a network
on the line such that the rates are periodic with period 2. Denote the different values by λ1 and
λ2. Theorem 4 implies stability as long as there exist p1 and p2 such that

λ1 <
p1

p1 + 2p2
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and
λ2 <

p2

p2 + 2p1
.

One can see that by taking, for instance, p1 = 1 and p2 = δ > 0, the values of λ1 for which
stability holds may be taken arbitrarily close to 1 (of course at the expense of very low values
of λ2).

Remark 4. The proof of Theorem 4 uses only the utility-maximising properties of the rates and
the process continuity properties. It is clear that similar arguments may be used to demonstrate
stability of infinite networks in many other cases (see the next section for some examples).

3.5. Other networks

So far in Section 3 we have only looked at a particular infinite network, motivated by [11]
and [15]. In this subsection we demonstrate that the methods developed above are rather gen-
eral and may be applied to a much wider class of networks. We present some examples below
but would like to stress that we think this list is not exhaustive.

For simplicity, we restrict ourselves here to the case when queues are located on a one-
dimensional lattice (i.e. at the integers). One can easily see that the results described below
also hold for the more general location and neighbourhood structures described in the rest of
Section 3.

Consider rates given by

ψ∗
i (x̄) = log

(
1 + xi

xi−1 + xi + xi+1

)
= log (1 +ψi(x̄)), (19)

which provide a better approximation to the wireless channel capacity than the rates considered
in Section 3 so far. (The ratio xi/(xi−1 + xi + xi+1) represents the signal-to-interference ratio
(SIR).) Consider the auxiliary finite version of our system on the finite set {−n, . . . , n − 1}
(with the 2n nodes ‘wrapped around’ to form a torus, the node neighborhood structure being
that of the torus). Define

C∗ =
{
μ̄ :μi ≤ log

(
1 + pi∑

j∈Ni
pj

)
for some p̄ ∈R

2n+

}
. (20)

The following result is immediate.

Lemma 3. We have that
ψ̄∗ ∈ arg max

μ̄∈C∗

∑
i

g(xi)h̃(μi),

where g(x) = x2 and

h̃(y) = − 1

ey − 1
.

Indeed, the statement of the lemma reads∑
i

g(xi)h̃(μi) ≤
∑

i

g(xi)h̃(ψ∗
i )

for all μ̄ ∈ C∗. This is equivalent to∑
i

g(xi)h̃

(
log

(
1 + pi

pi−1 + pi + pi+1

))
≤
∑

i

g(xi)h̃(ψ̃∗
i )
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for all p̄ ∈R
2n+ . Taking into account the definitions of g, h̃, and ψ̃i, the above is equi-

valent to

−
∑

i

x2
i

(
pi

pi−1 + pi + pi+1

)−1

≤ −
∑

i

x2
i ψ

−1
i ,

which follows immediately from Lemma 1.
As the functions g and h̃ in the statement of Lemma 3 satisfy all the conditions imposed in

Section 2, we obtain stability for any finite network, as long as λ̄ is within C∗. Moreover, one
can also readily see that fluid limits for such a system are well-defined and stable. From here
we obtain that the conclusion of Theorem 3 holds, with the same finite-system second-moment
bound, except with 1/ν2

i replaced by h̃′
i(νi). The strategy of Section 3.4 can thus be followed

to obtain stability of the infinite version of the network with rates ψ̄∗.
More generally, assume that∑

g(xi)h(ψi(x̄)) ≥
∑

g(xi)h(μi)

for all μ̄ ∈ C. We can rewrite this as∑
g(xi)h̃( f (ψi(x̄))) ≥

∑
g(xi)h̃( f (μi))

for all μ̄ ∈ C, where h̃ = h ◦ f −1 and f −1 is the inverse of f (which we assume to be increasing).
The above may be rewritten again as∑

g(xi)h̃( f (ψi(x̄))) ≥
∑

g(xi)h̃(νi)

for all ν̄ ∈ C∗, where

C∗ = f (C) = {ν̄ : ( f −1(ν1), . . . , f −1(νN)) ∈ C}.
Therefore, as long as h̃ is concave (which in general does not necessarily hold), all conditions
of Section 2 are satisfied, and we obtain stability of a finite network with rates f (ψi), provided
λ̄ is within C∗. If, further, fluid limits of finite networks are well-defined and stable, addi-
tional steady-state moment bounds can be obtained, which in turn leads to stability of infinite
networks.

It is important to note that, if one is only interested in the stability of finite networks with
the rates considered so far in Section 3 (including the rates considered in this subsection), this
may be established without the use of utility maximisation. In fact, for finite networks, one can
demonstrate stability for a still wider class of rates, including rates of the form

log

(
1 + xi

xi−1 + xi + xi+1 + B

)
.

(The proof is a slight generalisation of that of Lemma 9 in [15].) Here B> 0 represents the
‘background noise’, and xi/(xi−1 + xi + xi+1 + B) is the signal-to-interference-plus-noise ratio
(SINR). These rates provide an even more realistic approximation of the wireless channel
capacity. We are not aware of any utility-maximisation properties satisfied by these rates, yet
(a slight generalisation of) [15, Lemma 9] provides stability of a finite network with these
transmission rates, as long as the vector of arrival intensities belongs to the set C∗ defined in
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(20). This is thanks to the fact that fluid limits for the system with these rates are the ‘same’
(satisfy the same properties) as for the system with rates (19).

We emphasise again that it is the utility-maximisation property enjoyed by the rates (19) that
allows us to obtain not only stability, but also steady-state moment bounds, for finite networks.
The finite network moment bounds, in turn, allow us to apply the methods developed in this
paper to construct a stationary distribution for an infinite network, and moreover to obtain
moment bounds for this stationary distribution.

4. Stability analysis of an infinite multi-hop network

In this section we demonstrate how techniques similar to the ones we used in the single-
hop case may be used to demonstrate the existence of invariant measures for infinite multi-hop
networks, where, upon a service completion at a given queue, a job may either leave the system
or enter the queue of a neighbouring node.

Multi-hop networks have an additional layer of difficulty as the movement of jobs between
different queues complicates the dependence structure of the queue states further. Multi-hop
networks are notoriously difficult to analyse, and we consider significantly stronger assump-
tions on the structure of the network, with strictly i.i.d. arrival processes and with symmetric
routing (see [15]).

Specifically, the model is as follows. Just as in Section 3, the nodes (queues) are located
on the d-dimensional lattice. The exogenous arrival processes are strictly i.i.d.; that is, the
random variables ξi representing the numbers of new arrivals are i.i.d., with E(ξi) = λq for a
fixed q ∈ (0, 1), and with E(ξ2

i )<∞. The service is governed by either the algorithm (D1) or
the algorithm (D2) specified in Section 3. Upon a service completion at any node i, a job either
leaves the system, with probability q, or joins the queue of a neighbour of node i (i.e. a node
connected to node i by one lattice edge) chosen independently at random (i.e., each neighbour
is chosen with probability (1 − q)/2d)). All the routing decisions are taken independently of
everything else. The service rates are given by

ψi(x̄) = xi∑
j∈Ni

xj
,

where Ni is the neighbourhood of node i on the Zd lattice, which by convention includes node i
itself. (In other words, the service rates are a special case of those considered in Section 3, with
the neighbourhood Ni of node i including specifically the neighbours in terms of the lattice,
and with aj−i = 1 for all j ∈Ni.)

Consider the auxiliary finite version of our system on the set Tn = {i : ik ∈ {−n, . . . , n − 1}},
‘wrapped around’ to form a torus. (The node neighbourhood structure is that of the torus.)
Then Tn is a finite 2d-regular graph, and [15, Theorem 5] implies that if λ< 1/(2d + 1), then
the system is stable. Therefore, there exists a stationary distribution of the number of messages
in each queue. By symmetry, the (stationary) numbers of messages in any two queues are
identically distributed; we will consider queue 0 for simplicity. Denote the stationary number
of messages in queue 0 in the system on the torus Tn by X(n).

We want to emphasise that the described multi-hop process (for both the infinite system and
a finite torus) is not monotone (unlike in the single-hop model of Section 3), and this is in fact
one of the key challenges of the multi-hop system analysis. Versions of this process, however,
do have continuity properties, which we will exploit, just as in the single-hop case.
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Theorem 5. Consider the multi-hop model on the torus Tn described above, and denote by ξ
a random variable with the distribution of ξi(k) for any i and k. Assume that E(ξ2)<∞ and
E(ξ ) = λ< 1

2d+1
. Then

E(X(n)) ≤ E(ξ2) + 2d(1 − q)λ+ λ− 2λ2q2

2q
(

1
2d+1

− λ
) . (21)

Proof of Theorem 5. Consider the stationary version X̄(n)(·) of the Markov chain. For ease
of notation, in this proof we will drop the superscript (n), and write X̄(·) instead of X̄(n)(·).
Similarly, we will write X instead of X(n) for a random vector distributed as X(n)

i (k) (for any i
and k, by stationarity and symmetry). We can describe the evolution of Xi(k) as

Xi(k + 1) = Xi(k) + ξi(k) +
∑

j∈Ni,j �=i

Iji(k)ηj(k) − ηi(k), (22)

where the random variable Iji(k) is the indicator function of the event that a message potentially
leaving node j in time slot k will choose node i as its destination. For ease of notation, as we
only consider a single time slot in what follows, we are going to simply write ξi, ηl, and Iji.

As in the previous sections, note that the random variables ηl can only take values 0 and 1,
and

E(ηl|X̄) = P(ηl = 1|X̄) =ψl(X̄) almost surely.

Note also that

E(Iji) = (1 − q)
1

2d

for all j and i. By the stationarity of the process X̄(·), Xi(k) and Xi(k + 1) have the same
distributions.

Moreover, this distribution has a finite mean:

E(Xi(k + 1)) =E(Xi(k)) =EX <∞. (23)

Indeed, Eξ2 <∞. We also know from [15] that the system fluid limits are stable. (For our
system, the definitions of fluid limits—called fluid sample paths in [15]—and of fluid limit
stability for a finite system are given in Section 4 of [15]. The proof of fluid limit stability is in
Section 6 of [15].) By results of [3], the combination of the finite second moment of the arrival
process Eξ2 <∞, the finite second (in fact, any positive) moment of the number of departures
from any node at any time, and the fluid limit stability implies that EX <∞.

From (22) and (23),

0 = λq +
∑

j∈Ni,j �=i

(1 − q)
1

2d
E(ηj) −E(ηi), (24)

where we used the fact that Iji and ηj are independent. Note now that

E(ηl) =E(E(η|X̄)) =E(ψl(X̄)) =E

(
Xl∑

j∈Nl
Xj

)

for any l, and, because of the symmetry of the model, this quantity does not depend on l. Hence,
continuing (24),

0 = λq + 2d(1 − q)
1

2d
E(ηi) −E(ηi),
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which implies
E(ηi) = λ (25)

for any i. Let Ai =∑
j∈Ni,j �=i Ijiηj.

Assume first that EX2 <∞. (We will show later in the proof how to get rid of this additional
assumption.) Stationarity of the process X̄(·) implies that E(X2

i (k + 1)) =E(X2
i (k)), and hence,

from (22),

0 =E(ξ2
i ) +E(A2

i ) +E(η2
i ) − 2E(Aiηi) + 2E(ξi(Ai − ηi)) + 2E(Xiξi) + 2E(Xi(Ai − ηi))

≤E(ξ2
i ) +E(A2

i ) + λ+ 2λq (E(Ai) −E(ηi))+ 2λqE(Xi) + 2E(Xi(Ai − ηi))

=E(ξ2
i ) +E(A2

i ) + λ− 2λ2q2 + 2λqE(Xi) + 2E(Xi(Ai − ηi)). (26)

In the derivations above we used the independence of ξi from all other random variables, the
fact that E(η2

i ) =E(ηi) = P(ηi = 1), Equation (25), and finally, in the last equality, a simple
calculation of E(Ai) already performed earlier in this proof (see (24)).

We consider some of the terms above separately. First,

E(A2
i ) =E

⎛
⎜⎝
⎛
⎝ ∑

j∈Ni,j �=i

Ijiηj

⎞
⎠

2
⎞
⎟⎠≤ 2d

E

(∑
I2
jiη

2
j

)
= 2d

E

(∑
Ijiηj

)
= 2d(1 − q)λ, (27)

where we used the convexity of the function x2, the independence of the I’s and η’s, and the
fact that all the random variables concerned only take values 0 and 1 and therefore are equal to
their squares.

Let us note now that

E(Xiηj) =E(E(Xiηj|X̄)) =E(XiE(ηj|X̄)) =E(Xiψj) =E

(
Xi

Xj∑
l∈Nj

Xl

)

for any i and j. It is clear from the symmetry of the model that for any j ∈Ni, the pairs (Xi, ηj)
and (Xj, ηi) have identical distributions, which implies, in particular, that

E(Xiηj) =E(Xjηi).

Consider now

E(Xi(Ai − ηi)) =
∑

j∈Ni,j �=i

E(XiIjiηj) −E(Xiηi) = (1 − q)
1

2d

∑
j∈Ni,j �=i

E(Xiηj) −E(Xiηi)

= (1 − q)
1

2d

∑
j∈Ni,j �=i

E(Xjηi) −E(Xiηi) = (1 − q)
1

2d

∑
j∈Ni,j �=i

E(Xjψi) −E(Xiψi)

=E

⎛
⎝ψi

⎛
⎝(1 − q)

1

2d

∑
j∈Ni,j �=i

Xj − Xi

⎞
⎠
⎞
⎠

=E

⎛
⎝ Xi∑

j∈Ni
Xj

⎛
⎝(1 − q)

1

2d

∑
j∈Ni,j �=i

Xj + (1 − q)
1

2d
Xi −

(
1 + (1 − q)

1

2d

)
Xi

⎞
⎠
⎞
⎠

= (1 − q)
1

2d
E(Xi) −

(
2d + 1

2d
− q

1

2d

)
E(Xiψi). (28)
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The convexity of the function 1/x implies that

1∑
i Xi

∑
i

Xiψi =
∑

i

Xi∑
i Xi

1

(
∑

j∈Ni
Xj)/Xi

≥
∑

i Xi∑
i
∑

j∈Ni
Xj

= 1

2d + 1

for any X̄. The summation above is taken over all nodes i in our graph. We can rewrite the
above as ∑

i

Xiψi ≥ 1

2d + 1

∑
i

Xi

and take the expectations on both sides of the inequality. Noting that, because of the symmetry
of the model, E(Xiψi) does not depend on i, we conclude that

E(Xiψi) ≥ 1

2d + 1
E(Xi).

Plugging this into (28), we obtain

E(Xi(Ai − ηi)) ≤ −q
1

2d + 1
E(Xi). (29)

We can now plug (27) and (29) into (26) to obtain

0 ≤E(ξ2
i ) + 2d(1 − q)λ+ λ− 2λ2q2 + 2qE(Xi)

(
λ− 1

2d + 1

)
,

which implies the statement of Theorem 5.
We now show how to remove the additional assumption EX2 <∞. Consider the system

with truncated arrival quantities ξ (M) = max{ξ,M}. The corresponding process is stable for
any M> 0; we denote by X̄(M)(·) its stationary version, and by X(M) a generic X(M)

i (k). For
each M, E[ξ (M)]3 <∞ (in fact, of course, E[ξ (M)]m <∞ for any m ≥ 0). As already described
above in this proof, it is proved in [15] that the system fluid limits are stable. Using again the
results of [3], the combination of the finite third moment of the arrival process E[ξ (M)]3 <∞,
the finite third (in fact, any positive) moment of the number of departures from any node at any
time, and the fluid limit stability implies that E[X(M)]2 <∞ for any M. (In fact, E[X(M)]m <∞
for any M and any m ≥ 0).

Therefore, for EX(M), we have the upper bound (21) with λ replaced by Eξ (M) and Eξ2

replaced by E[ξ (M)]2. Choose a sequence M ↑ ∞. Then EX(M) is uniformly bounded above
along this sequence, and therefore the sequence of distributions of X(M) is tight. We further
observe that the sequence of processes X̄(M)(·) and the process X̄(·) satisfy the continuity prop-
erty (defined in Section 1.2). Proceeding analogously to the argument we used at the end of the
proof of Theorem 4, we obtain that X(M) ⇒ X. By Fatou’s lemma, EX ≤ lim infM→∞ EX(M),
and the lim inf is bounded above by the right-hand side of (21). This completes the proof.

The fact that the bound in (21) does not depend on n allows us to prove a result on an
infinite-lattice multi-hop model.

Theorem 6. Consider the multi-hop model of this section defined for the entire lattice Z
d

and assume that λ< 1/(2d + 1). Then the process is stable. Moreover, there is a translation-
invariant stationary distribution, for which

EX ≤ E(ξ2) + 2d(1 − q)λ+ λ− 2λ2q2

2q
(

1
2d+1

− λ
) , (30)

where X has the distribution of Xi(k) (for any i and k) in steady-state.
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Remark 6. Since the multi-hop process is not monotone, constructions similar to that of
[11] cannot be applied. We provide a different construction, based on continuity alone. Note
that Theorem 6 does not claim any form of uniqueness for the stationary distribution. The
uniqueness properties (among stationary distributions with finite second moments of the queue
lengths) derived in [11] and in this paper for single-hop models relied in essential way on the
process monotonicity.

Proof of Theorem 6. We already know that for each torus Tn there exists a (unique) stationary
distribution of the corresponding process X̄(n)(·). (It is translation-invariant, of course, by sym-
metry.) We can view this distribution as a distribution on the entire lattice Z

d. Moreover, the
uniform-in-n bound (21) on the expected queue length implies that these distributions (viewed
as distributions on the entire lattice) are tight. It is easy to see that the sequence of processes
X̄(n)(·) and the process X̄(·) (i.e. the ‘true’ infinite-lattice process) satisfy the continuity prop-
erty of Section 1.2. Proceeding analogously to the argument we used in the last two paragraphs
of the proof of Theorem 4, we can construct a proper stationary process X̄(·) for the infinite
system. The constructed stationary distribution of X̄(·) is a limit of those of X̄(n)(·), and there-
fore translation-invariant. Finally, (30) follows from (21) and Fatou’s lemma. This completes
the proof.

5. Continuous-time setting

In this section we describe how our results translate to the continuous-time Markovian set-
ting. The proofs are along the same lines as those provided in Sections 2–4 for the discrete-time
setting, with minor changes. In the case of finite networks, the proofs of stability and moment
bounds in continuous time (results corresponding to those in Section 2) turn out to be simplified
versions of the proofs in discrete time, as, thanks to Markovian assumptions, the probability
that two or more events happen in a small time interval is negligible. We thus restrict ourselves
to short descriptions of the proofs, pointing out where they start to repeat the discrete-time
proofs.

As far as construction of stationary distributions for infinite networks is concerned, the
proofs in continuous time are based on the same continuity and monotonicity properties as
their discrete-time analogues and thus repeat them almost verbatim. For this reason, for infinite
networks, we present only statements, not proofs, of the results corresponding to those in
Sections 3 and 4.

5.1. Finite networks: model

Assume, as before, that there are N interacting queues. Arrivals into queue i occur accord-
ing to a Poisson process with a constant rate λi, independent of all the other processes. The
instantaneous departure rate from queue i at time t, conditioned on the state X̄(t), is ψi(X̄(t));
more precisely, the number of departures up to time t is �i(

∫ t
0 ψi(X̄(τ ))dτ ), where the �i(·)

are independent unit-rate Poisson processes.
We assume that all the conditions imposed in Section 2.1 on the functions ψi(· ), i =

1, . . . ,N, and on the arrival intensities λ̄ hold. More precisely, we assume that the functions
ψi(· ), i = 1, . . . ,N, satisfy the condition (2) with functions h and g satisfying Conditions (H)
and (G), respectively; and we assume that the arrival intensities λ̄ satisfy Condition (5). We
will also use the functions G and F defined in (6) and (7), respectively.
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5.2. Finite networks: stability analysis

Theorem 7. For the continuous-time model defined in Section 5.1 such that Condition (5)
holds, the Markov process {X̄(t)}t≥0 is stable.

Proof of Theorem 7. The proof is a simplified version of that of Theorem 1. By the
Lyapunov–Foster criterion, in order to show positive recurrence, it is sufficient to show that
for the function F defined in (7),

∑
i

(λi(F(xi + 1) − F(xi) +ψi(x̄)(F(xi − 1) − F(xi))<−δ

for some δ > 0, for values of x̄ outside of a compact set. This may be found e.g. in [19].
Note that the expression on the left-hand side of the above may be written as

∑
i

h′(νi)(λi(G(xi + 1) − G(xi)) +ψi(x̄)(G(xi − 1) − G(xi)),

which is equal to (9), and then the rest of the proof of Theorem 1 applies.

5.3. Finite networks: moment bounds

As in discrete time, once stability is established, one can use similar arguments to establish
steady-state moment bounds.

Since the stationary regime exists under the conditions of Theorem 7, in this section we will
write X̄ to represent a random vector with distribution equal to that of X̄(t) in the stationary
regime.

Theorem 8. Assume that all conditions of Theorem 7 hold. Fix ε > 0 such that λi < νi − ε for
all i. Then ∑

i

h′(νi)E(g(Xi)) ≤ 1

ε

∑
i

h′(νi)E(
(Xi)).

Proof of Theorem 8. Note that the condition (4) implies that g(x) = o(eax) as x → ∞, for
any a> 0. This, in turn, implies that G(x) = o(eax) as x → ∞, for any a> 0. Note also that, as
arrival flows are given by Poisson processes, for any t and x̄ there exists a> 0 such that

E(eaX̄(t)|X̄(0) = x̄)<∞.

Then E(F(X̄(t))|X̄(0) = x̄)<∞ for any t and any x̄.
Fix ε > 0 such that λi < νi − ε for all i. Standard Poisson-process arguments imply that

d(E(F(X̄(t))|X̄(0) = x̄))

dt

=
∑

i

h′(νi)(λiE(G(Xi + 1) − G(Xi)) +E(ψi(x̄)(G(xi − 1) − G(xi))),

and the right-hand side of the above is equal to (10). The rest of the proof is the same as that

of Theorem 2, with E
(
F(X̄(k + 1)) − F(X̄(k))|X̄(k) = x̄

)
replaced by

d(E(F(X̄(t))|X̄(0) = x̄))

dt
.
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5.4. Stability analysis of infinite single-hop networks

We now turn our attention to infinite networks. In the single-hop setting, as in the discrete
case, the queues (or nodes) are assumed to be located on a d-dimensional lattice, with the
service rates given by

ψi(x̄) = xi∑
j∈Zd aj−ixj

, (31)

where a0 = 1, ai = a−i ≥ 0 for all i ∈Z
d, and L = sup{|i| : ai > 0}<∞. For each i, the nodes j

within the finite set Ni = {j|aj−i > 0} are called neighbours of i. Note that i ∈Ni.
In the continuous-time case, unlike the discrete-time case, these assumptions describe the

system completely and no additional structural constructions are needed.
We say that the arrival rates λi are periodic if the following properties hold: (a) the values

of λi are given for i within the rectangle I = [0, . . . ,C1 − 1] × . . .× [0, . . . ,Cd − 1], where
C1, . . . ,Cd are fixed positive integers; (b) for any i ∈Z

d and any k = 1, . . . , d, λi+Ckek = λi,
where ek is the kth unit coordinate vector (with kth entry equal to 1 and all other entries equal
to zero).

The following result is a continuous-time analogue of Theorem 4.

Theorem 9. Consider periodic rates λ̄. Assume that there exists a periodic ν̄ from the set

C = {μ̄ : there exists p̄ such that μ̄≤ ψ̄(p̄)}
such that λ̄ < ν̄. Consider an infinite network with arrival rates λ̄′ ≤ λ̄. Then this infinite net-
work is stable, and there exists a stationary regime with finite second moments EX2

i of the
queue lengths.

As in the discrete-time case, we immediately obtain the following corollary.

Corollary 2. Consider the symmetric system where λi = λ for all i, and assume

λ<
1∑

j∈Zd aj
. (32)

Then the system is stable and its lower invariant measure (i.e. the stationary distribution
dominated by any other) is such that EX2

i <∞.

In the continuous-time setting, the corollary above proves Conjecture 1.12 in [11], along
with all the implications stated in [11, Section 1.1]; in particular it proves the uniqueness of the
stationary regime with finite second moments of the queue lengths, for the infinite symmetric
network.

We note also that our results allow us to consider networks which are not necessarily sym-
metric, and Remark 3 applies to the continuous-time setting too, significantly expanding the
range of arrival intensities for which stability of infinite networks holds.

5.5. Stability analysis of infinite multi-hop networks

We now consider infinite multi-hop networks. Just as in the single-hop setting, the nodes
(queues) are located on the d-dimensional lattice.

The arrival processes are such that λi = λq for a fixed q ∈ (0, 1), for all i.
Upon a service completion at any node i, a job either leaves the system, with probability q,

or joins the queue of a neighbour of node i (i.e. a node connected to node i by one lattice edge)
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chosen independently at random (i.e., each neighbour is chosen with probability (1 − q)/2d)).
All the routing decisions are taken independently of everything else. The service rates are
given by

ψi(x̄) = xi∑
j∈Ni

xj
,

where Ni is the neighbourhood of node i on the Z
d lattice, which by convention includes node

i itself.
Consider the auxiliary finite version of our system on the set Tn = {i : ik ∈ {−n, . . . , n − 1}},

‘wrapped around’ to form a torus. (The node neighbourhood structure is that of the torus.)
Then Tn is a finite 2d-regular graph, and [15, Theorem 5] implies that if λ< 1/(2d + 1), then
the system is stable. Therefore, there exists a stationary distribution of the number of messages
in each queue. By symmetry, the (stationary) numbers of messages in any two queues are
identically distributed; we will consider queue 0 for simplicity. Denote the stationary number
of messages in queue 0 in the system on the torus Tn by X(n).

Theorem 10. Consider the multi-hop model on the torus Tn described above. Assume that
λ< 1

2d+1
. Then

E(X(n)) ≤ λ

q
(

1
2d+1

− λ
) . (33)

The fact that the bound in (33) does not depend on n allows us to prove a result on an
infinite-lattice multi-hop model.

Theorem 11. Consider the multi-hop model of this section defined for the entire lattice Z
d

and assume that λ< 1/(2d + 1). Then the process is stable. Moreover, there is a translation-
invariant stationary distribution, for which

EX ≤ λ

q
(

1
2d+1

− λ
) , (34)

where X has the distribution of Xi(k) (for any i and k) in steady-state.
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