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Abstract

The Qinghai–Tibetan Plateau and Arctic both have an important influence on global climate, but the correlation between climate variations
in these two regions remains unclear. Here we reconstructed and compared the summer temperature anomalies over the past 1,120 yr (900–
2019 CE) in the Qinghai–Tibetan Plateau and Arctic. The temperature correlation during the past millennium in these two regions has a
distinct centennial variation caused by volcanic eruptions. Furthermore, the abrupt weak-to-strong transition in the temperature correlation
during the sixteenth century could be analogous to this type of transition during the Modern Warm Period. The former was forced by
volcanic eruptions, while the latter was controlled by changes in greenhouse gases. This implies that anthropogenic, as opposed to natural,
forcing has acted to amplify the teleconnection between the Qinghai–Tibetan Plateau and Arctic during the Modern Warm Period.
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INTRODUCTION

The Qinghai–Tibetan Plateau (the third pole on Earth) and Arctic
store more snow, ice, and glaciers than anywhere else in the
Northern Hemisphere (Yao et al., 2012). They play a vital role in
the ecological and environmental changes of the polar regions
and also impact other regions to varying degrees through atmo-
spheric and oceanic circulations and the water cycle (Tao and
Ding, 1981; Wu et al., 2012; Pithan and Mauritsen, 2014;
Sévellec et al., 2017; Gao et al., 2019). Thus, the “two poles” in
the Northern Hemisphere are typified by their multi-layer interac-
tion with the global climate system (Yao et al., 2019; Li et al., 2020).

The past millennium includes both the Modern Warm Period,
which has been dominated by anthropogenic forcing, and the
Medieval Warm Period and Little Ice Age, which were mostly
controlled by natural forcing. It therefore provides an opportunity
to understand the relative contribution of human and natural fac-
tors and their impacts on the changing climate of the Qinghai–
Tibetan Plateau and Arctic. Previous studies focused mainly on

individual temperature reconstructions in the Qinghai–Tibetan
Plateau (Yang et al., 2003; Liang et al., 2008; Liu et al., 2009)
and Arctic (Kaufman et al., 2009; Shi et al., 2012; McKay and
Kaufman, 2014) separately. Several studies have investigated the
impact of the internal mode of Arctic climate variability (i.e.,
the North Atlantic Oscillation) on the climate of the Qinghai–
Tibetan Plateau (Wang et al., 2003; Liang et al., 2008; Fang
et al., 2010; Wang et al., 2014). However, few studies have consid-
ered the temperature relationship between these two cryosphere-
dominated regions in the Northern Hemisphere.

The two classifications used here are the climate index recon-
struction and climate field reconstruction (Christiansen and
Ljungqvist, 2017; Shi et al., 2017b). The polar temperature index
reconstruction uses ice core records obtained from an ice sheet
or a high mountain glacier. The oxygen isotope variations of
four ice cores in the Qinghai–Tibetan Plateau (the Puruogangri,
Guliya, Dasuopu, and Dunde ice cores) distinctly characterize
the temperature change there over the past millennium
(Thompson et al., 2006; Yao et al., 2007). International programs
such as the Greenland Ice Core Project (GRIP) in the Arctic region
provide key materials for analyzing Arctic temperature variations
over the past 2,000 yr (Greenland Ice core Project (GRIP)
Members, 1993). As the physical meaning of the oxygen isotopes
in different areas is not always clear (Cheng et al., 2016; Liu
et al., 2017; Clemens et al., 2018), other proxy records, such as
tree rings, which provide additional independent evidence, help
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to identify the real temperature variations in polar regions.
Pioneering research in the early twenty-first century has recon-
structed the temperature variations on the Qinghai–Tibetan
Plateau from the past two millennia based on 16 multi-proxy
records (Yang et al., 2003). Further proxy records, developed
with rigorous data quality control measures, reconstructed regional
temperature variations in China, including the Qinghai–Tibetan
Plateau (Ge et al., 2010). In the Arctic, 21 multi-proxy records
were used to develop Arctic summer temperature variations over
the past two millennia with decadal resolution (Kaufman et al.,
2009). With the updates of Shi and colleagues (2012) and
McKay and Kaufman (2014), we use the improved temperature
index with annual resolution in our work.

The climate field reconstruction estimates past climate patterns
from before the instrumental period using climate proxies and
homogenization methods (Mann et al., 1998; Riedwyl et al.,
2009; Neukom et al., 2019b). The gridded climate field recon-
struction in the Arctic has been released recently (Werner et al.,
2018), and there has been great progress in the integration and
assimilation of global temperature field reconstructions, along
with the publication of the Past Global Changes project
(PAGES) 2k dataset (Neukom et al., 2019b; Tardif et al., 2019).
The Asia 2k regional group, as part of the PAGES2k Network,
agreed to independently produce two gridded reconstructions of
East Asian summer temperatures from the past millennium
using two approaches (Sano et al., 2012): one based on tree ring
data (Cook et al., 2013) and the other based on multi-proxy
records (Shi et al., 2015). The tree ring reconstruction utilizes
multiple high-quality tree ring width chronologies in the
Qinghai–Tibetan Plateau, developed by Edward R. Cook’s team
and Xuemei Shao’s team. These were not included in the multi-
proxy reconstruction. On the other hand, some tree ring chronol-
ogies in the Qinghai–Tibetan Plateau developed by Bao Yang’s
team, along with some other types of proxy records (Wang
et al., 2007), were not used in the tree ring reconstruction, but
were used in the multi-proxy reconstruction. The reconstructions
of Cook and colleagues (2013) and Shi and colleagues (2015) were
conducted independently, and integrating these two reconstruc-
tions can provide better information about temperature changes
in East Asia.

In this study, based on existing temperature reconstructions,
we compare the summer temperature variations in the Arctic
and Qinghai–Tibetan Plateau over the past millennium. We
then analyze the correlation between these over different time
scales and explore the physical mechanisms responsible for the
variations.

DATA AND METHODS

Data

High data quality was ensured in our study as follows: (1) the
resolution of the reconstruction is on an annual scale, which facil-
itates the subsequent analysis of the temperature lead-lag relation-
ship, and (2) the gridded climate reconstruction was prioritized,
since homogenization can effectively remove the inherent non-
climatic errors of single-proxy records (e.g., the low-frequency
trend in one tree ring record is usually indistinguishable because
of the mitigating effects of tree age bias).

We utilized 12 datasets covering the period 900–1999 CE,
including two summer temperature gridded datasets from the
Qinghai–Tibetan Plateau (Cook et al., 2013; Shi et al., 2015),

two summer temperature series from the Arctic (Shi et al.,
2012; McKay and Kaufman, 2014), a summer temperature
gridded dataset from the Arctic (Werner et al., 2018), six global
gridded annual temperature reconstruction datasets (Neukom
et al., 2019b), and a last millennium reanalysis dataset with sea-
sonal resolution (Tardif et al., 2019).

Comparison of the summer temperature reconstructions in the
Qinghai–Tibetan Plateau and Arctic over the past millennium
(900–2000 CE) (Supplementary Fig. S1) shows that the tempera-
ture anomalies in the two regions both have a visibly increasing
trend over the last century, and that the consistency of the
Arctic summer temperature series is better than that of the
Qinghai–Tibetan Plateau. However, there are still distinct differ-
ences in phase, magnitude, and amplitude between different
reconstructions for the same region. Thus, a combination of var-
ious reconstructions is needed to mitigate their distinct regional
coverage.

The summer temperature anomalies (with respect to 1961–
1990 CE) from the CRUTEM4v temperature dataset (Jones
et al., 2012) during the period 1880–2019 CE was taken as the
reconstruction target. The differences among the instrumental
datasets during the instrumental period were ignored, since it is
not the main factor affecting the uncertainty of the reconstruction
record.

The Community Earth System Model Last Millennium
Ensemble (CESM-LME) experiments (Otto-Bliesner et al., 2016)
and LOch-Vecode-Ecbilt-CLio-agIsm Model-Large Common Era
Ensemble (LOVECLIM-LCE) experiments were used to explore
the mechanisms controlling the temperature correlation between
theQinghai–Tibetan Plateau and Arctic. Themain forcings (includ-
ing volcanic eruptions, greenhouse gases, and solar activity) used to
drive the CESM-LME/LOVECLIM simulations are those recom-
mended by the third/fourth phase of the Paleoclimate Modelling
Intercomparison Project (PMIP3) (Schmidt et al., 2012; Jungclaus
et al., 2017). There are 13 members in the CESM-LME simulation
and 70 members in the LOVECLIM-LCE simulation.

The range of latitudes used to calculate the integrated temper-
ature in the Arctic (60°N–90°N) is consistent with previous stud-
ies (Shi et al., 2012), while the area of the Qinghai–Tibetan
Plateau (27°N–36°N, 77°E–106°E) is defined with regard to dis-
tinctive climatic and geographical characteristics (Zhou et al.,
2014). The average regional temperature series were calculated
as the latitude-weighted averages of the global gridded tempera-
ture data according to the above ranges.

Optimal information extraction method

The optimal information extraction (OIE) method is a variant of
the composite-plus-scale method (Bradley and Jones, 1993),
which is based on the ensemble-local method (Christiansen,
2011; Shi et al., 2012), generalized likelihood uncertainty estima-
tion method (Wang et al., 2017), and ensemble reconstructions
(Neukom et al., 2014).

We used the OIE version 2.0 method (Neukom et al., 2019a) to
reconstruct the summer temperatures in the Qinghai–Tibetan
Plateau and Arctic. The reconstructions shown in Supplementary
Figure S1 have a high correlation because of the same target and
similar dataset (i.e., the six global reconstructions were derived
from the same proxy dataset; Neukom et al., 2019b). Thus,
the elastic net regularization is introduced to deal with
multi-co-linearity in the OIE method. The elastic net regulariza-
tion is a convex combination of ridge and Lasso regressions that
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penalizes the sum of the squared coefficients and sum of the abso-
lute values of the regression coefficients. This method is designed
to improve the simple linear regression model and reduce over-
fitting via 10-fold cross-validation (Zou and Hastie, 2005).
Random labeled predictor variables during the different calibration
periods were also applied as recommended by McShane and
Wyner (2011), because the different calibration periods have substan-
tial influence on the regression model. The high correlation between
the instrumental and reconstructed temperatures in Supplementary
Figure S2 shows the robust performance of our reconstruction, as ver-
ified through a random 10-fold cross-validation.

Data assimilation method

Data assimilation for paleoclimate combines proxy climate
records and the underlying dynamical principles from climate
models to develop mechanistically consistent estimates of paleo-
climate variations (Evans et al., 2017). Two approaches (off-line
and online methods) have previously been applied in paleoclimate
data assimilation (Goosse et al., 2012). The difference between
these methods is whether the climate model propagates the
proxy information forward in time or not (Matsikaris et al., 2015).

In this study, an off-line approach is used to assimilate the
temperature data in the two regions under consideration. The
weighted-mean of the covariance between the model simulation
and the proxy reconstruction is calculated by:

w
′
i,j =

1

(x1i,j − y1j)
2 − (x2i,j − y2j)

2 (Eq. 1)

where the term x1i.j is the simulated temperature in the Qinghai–
Tibetan Plateau for ensemble member i in the year j, and the term
y1j is the reconstructed temperature in the Qinghai–Tibetan
Plateau in the year j. The terms x2i,j and y2j are the corresponding
temperatures in the Arctic. The term w′

i,j is the weight of the sim-
ulated temperature for ensemble member i in the year j. The
weights are non-negative, at most one, and sum up to one.

Thus, the weight is revised according to Equation 2,

wi,j =
w

′
i,j

∑n
i=1 w

′
i,j

(Eq. 2)

where the term wi,j is the final weight for ensemble member i in
the year j, and n is the number of ensemble members; n = 13
for the CESM-LME experiments (Otto-Bliesner et al., 2016) and
n = 70 for the LOVECLIM-LCE experiments.

Ensemble empirical mode decomposition method

The ensemble empirical mode decomposition (EEMD) method
(Wu and Huang, 2009) was used to decompose the original signal
into different modes of temporal variability. The ratio of the stan-
dard deviation of the added white noise to the original signal was
set to 0.3, and the number of ensemble members was set to 1,000,
following Qian (2016). Two noise amplitudes (0.2 and 0.3) were
used to assess the decomposition performance; we found the
differences to be minor. The large ensemble approach means
the method is largely invariant to moderate levels of added
noise (Qian, 2016). The classification of the different modes of
temporal variability was made following previous studies (Mann
et al., 1995; Shi et al., 2017a).

RESULTS

The reconstructed summer temperature anomalies during the
period (900–2019 CE) in the Qinghai–Tibetan Plateau and
Arctic are shown in Figure 1a and Supplementary Figure S3. The
correlation coefficient between the reconstructed temperatures in
the two regions over the past 1,120 yr is 0.57. The mean tempera-
ture over the most recent 100 yr (1920–2019 CE) in these two
regions is larger than in other periods, which indicates that the
ModernWarm Period is unprecedented within the last millennium
(Fig. 1b). The temperature difference between the two regions is

Figure 1. Comparison of the composited summer temperature
anomalies (unit: °C, with respect to 1961–1990 CE) over the
period 900–2019 CE in the Qinghai–Tibetan Plateau (black
line) and in the Arctic (red line). (a) The raw data, (b) 100-yr mov-
ing average, where the dashed lines indicate the 100-yr (1920–
2019 CE) average temperatures, and (c) 100-yr moving correla-
tion of the proxy-based reconstructed temperatures (blue line).
The blue shaded bars indicate transitions from a weak to a
strong correlation. (For interpretation of the references to
color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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very small during the Medieval Warm Period, reaches a maximum
during the Little Ice Age, and then decreases to a minimum during
the Modern Warm Period (Fig. 1b). The temperature correlation
between the two regions exhibits an obvious centennial variation
during the period (900–2019 CE) (Fig. 1c). A prominent feature
is that an abrupt transition from a weak to a strong temperature
correlation during the sixteenth century is similar to that occurring
during the twentieth century. This is supported by independent
evidence from the summer temperature in Europe (Luterbacher
et al., 2016) (Supplementary Fig. S4), where the correlation with
the Arctic temperature also shows an abrupt weak-to-strong
transition around the sixteenth century, indicating that volcanic
eruptions at that time had a widespread influence.

The various modes of temporal variability in the two regions
are shown in Figure 2, obtained using the EEMD method. The
correlation and variance of these modes increase from interannual
to multi-decadal scales (Fig. 2a–c). The most significant correla-
tion occurs on a centennial scale (Fig. 2d) except for the trend
correlation in Figure 2e. The long-term temperature trend in
these two regions gradually decreases from the Medieval Warm
Period to the Little Ice Age, and then gradually increases to the
Modern Warm Period (Fig. 2e), which is in line with the overall
variation of the temperature in the Northern Hemisphere (Shi
et al., 2013). However, one marked and dominant difference
between the regions is that the temperature decrease during the
Little Ice Age is substantially bigger in the Arctic than in the
Qinghai–Tibetan Plateau (Fig. 2e).

The lead-lag relationship of the summer temperature variabil-
ity in the two regions over different time scales is shown in
Figure 3. The interdecadal and multi-decadal components of
the summer temperature variation in the Arctic lead that of the
Qinghai–Tibetan Plateau by three years and one year, respectively
(Fig. 3c–d). The raw data and other modes of variability in
Figures 3a, 3b, and 3e all show a clear contemporaneous

correlation. These results imply that the interaction mechanism
is one that occurs on quasi-biennial and multi-decadal time scales
and needs to be further explored.

DISCUSSION

To understand the mechanism controlling the temperature corre-
lation in these two regions, a simple data assimilation method was
used to incorporate the CESM and LOVECLIM simulations
(Supplementary Figs. S5–S6). The proxy-based temperature
reconstructions compare well with those obtained through data
assimilation. The correlation coefficient between the
proxy-reconstructed and CESM data assimilation–based tempera-
tures in the Qinghai–Tibetan Plateau over the period (900–2005
CE) is 0.60 in Supplementary Figure S5a, whereas the value is
0.21 for the correlation between the proxy-reconstructed temper-
ature and ensemble mean temperature of the CESM-LME simu-
lations (figure not shown). Correspondingly, the same
correlation coefficient but for the Arctic is improved from 0.43
to 0.72 during the period (900–2000 CE). Comparing the
proxy-reconstructed and data assimilation–based temperatures
in the Qinghai–Tibetan Plateau (Supplementary Fig. S5a) and
Arctic (Supplementary Fig. S5b), the temperature response to vol-
canic eruptions is more significant in the assimilation than in the
reconstruction (e.g., the volcanic eruption in 1258 CE). The
100-yr moving correlation between the data assimilation–based
temperatures in the two regions is broadly consistent with that
of the reconstructed temperatures, except for some high levels
(e.g., the correlation coefficient between the data assimilation-
based temperatures in the two regions is at a high level around
1258 CE; Supplementary Fig. S5c). This suggests the influence
of volcanic activity on the temperature correlation between the
two regions may be important.

Figure 2. (color online) Comparison of temperature
anomalies (unit: °C, with respect to 1961–1990 CE) in
the Qinghai–Tibetan Plateau and in the Arctic over the
period (900–2019 CE) based on the ensemble empirical
mode decomposition (EEMD) method with their correla-
tion coefficient (r). (a) The interannual, (b) interdecadal,
(c) multi-decadal, and (d) centennial components, and
(e) long-term tendency.
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The LOVECLIM data assimilation–based results are highly
consistent with those from the CESM (Supplementary Fig. S6),
indicating that the result does not strongly depend on which of
the two climate models is used for data assimilation. There is
greater consistency between the proxy-reconstructed and data
assimilation–based temperatures from the LOVECLIM simulations
than from the CESM simulations. The correlation coefficient
between the proxy-reconstructed and data assimilation–based
temperatures in the Qinghai–Tibetan Plateau is 0.69, whereas

the value is 0.25 for the correlation between the reconstructed
temperature and the ensemble mean temperature of the
LOVECLIM-LCE simulations, and in the Arctic the same correla-
tion coefficient is improved from 0.41 to 0.84. Compared with the
results of the FESM-LME results in Supplementary Figure S5,
the 70-member LOVECLIM-LCE simulation performs better
than the 13-member CESM-LME simulation. It also means that
the identification of a mechanism to explain the temperature cor-
relation between the two regions can be investigated just as well

Figure 3. (color online) The lead-lag correlation of the
composited summer temperature anomalies (with
respect to 1961–1990 CE) in the Qinghai–Tibetan
Plateau and in the Arctic. (a) The raw data and (b) inter-
annual, (c) interdecadal, (d) multi-decadal, and (e) cen-
tennial components. Negative (positive) lags mean that
the temperature in the Qinghai–Tibetan Plateau lags
(leads) that of the Arctic.

Figure 4. The 100-yr moving correlations of the temper-
ature anomalies (with respect to 1961–1990 CE) in these
two regions for the proxy-based reconstruction (blue
line) and data assimilation (green line) temperatures
using the (a) CESM-LME and (b) LOVECLIM-LCE simula-
tions. Also depicted are the 100-yr variances of (c) volca-
nic eruptions (unit: W2/m4) in the Northern Hemisphere
and (d) global CO2 concentrations (unit: ppm

2). The blue
shaded bars indicate the transitions from weak to
strong temperature correlations. (For interpretation of
the references to color in this figure legend, the reader
is referred to the web version of this article.)
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using the data assimilation–based reconstructions as the proxy
reconstructions.

The 100-yr variance of volcanic eruptions in the Northern
Hemisphere and the 100-yr variance of global CO2 concentrations
were used to explore their link with the temperature correlation
between the Qinghai–Tibetan Plateau and Arctic. The variance
of volcanic eruptions over the past millennium (Fig. 4c) has a
high correlation with both the data assimilation–based tempera-
ture reconstructions of the CESM-LME (Fig. 4a) simulation and
the LOVECLIM-LCE simulation (Fig. 4b) data assimilation–
based temperature correlation between the two regions.

While the two quick transitions from a weak to a strong cor-
relation during the eleventh and sixteenth centuries appear to be
primarily attributable to volcanic eruptions (as radiative forcing in
the form of an equivalent Total Solar Irradiance) (Fig. 4c), the
rapid transition in the Modern Warm Period is more linked to
the 100-yr variance of the global CO2 concentration (Fig. 4d).
The interregional correlations, as part of the hemispheric mean
signal, are likely stronger when the forcing itself is stronger, but
it is difficult to quantify the relative contributions of various
local feedbacks and influence of internal variability on the ampli-
tude of the signal.

Figures 5 and 6 compare the data assimilation–based tempera-
ture reconstruction from the CESM with the temperature simu-
lated in the CESM-LME single- and full-forcing experiments in
the Qinghai–Tibetan Plateau and Arctic, respectively. The temper-
ature variability in the full-forcing experiment is dominated by

volcanic forcing; the correlation coefficient between the full-forcing
experiment and volcanic single-forcing experiment is 0.83 for the
Qinghai–Tibetan Plateau and 0.69 for the Arctic (figure not
shown). However, when considering the data assimilation–based
reconstruction, greenhouse gas forcing is the dominant factor;
the correlation coefficient between the data assimilation–based
reconstruction and greenhouse gas single-forcing experiment is
0.47 for the Qinghai–Tibetan Plateau and 0.49 for the Arctic
(Figs. 5–6). The influence of solar activity is significant but is less
important than the volcanic activity and greenhouse gases; the
correlation coefficient between the data assimilation–based
reconstruction and solar single-forcing experiment is smaller
than the above two factors. Land change and orbital forcing are
not important, as indicated by their small correlation coefficients
with the proxy-based reconstruction. The correlations of the
CESM-LME single-forcing experiments with the full-forcing
experiments and data assimilation–based reconstructions both
indicate that volcanic forcing has directly modulated the tempera-
ture variability in the Qinghai–Tibetan Plateau and Arctic over the
last millennium.

CONCLUSIONS

The summer temperature variations in the Qinghai–Tibetan
Plateau and Arctic during the period (900–2019 CE) were com-
pared using the OIE method, based on previous regional and
global reconstructed datasets. The reconstructed results show

Figure 5. Comparison of the data assimilation–based temperature anomalies (unit: °C, with respect to 1961–1990 CE, black lines) and the CESM-LME simulated
temperature anomalies (unit: °C, with respect to 1961–1990 CE, blue lines) using single-forcing and full-forcing in the Qinghai–Tibetan Plateau. Smoothing is
applied with an 11-yr running mean. The “r” value is the correlation coefficient between the simulation and data assimilation during the period (855–2000 CE).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that the summer temperatures in the Qinghai–Tibetan Plateau
and Arctic during the Modern Warm Period (1920–2019 CE)
are unprecedented in the last 1,120 yr (900–2019 CE), highlight-
ing how greenhouse gas emissions have amplified warming in
the Arctic and on elevated plateaus. Compared with the temper-
ature anomalies in the Qinghai–Tibetan Plateau, there was
more significant cooling in the Arctic region during the Little
Ice Age, and somewhat colder temperatures during the
Medieval Warm Period. The simulations fail to reproduce the
warming during the Medieval Warm Period and the cooling
during the Little Ice Age shown in the proxy-based temperature
reconstructions.

In the past millennium, the correlation between summer tem-
peratures in the Qinghai–Tibetan Plateau and Arctic has varied
on a centennial time scale, which appears to be related to the cen-
tennial variations in volcanic forcing. The simulated temperature
variations exhibit a high sensitivity to volcanic activity.
Furthermore, the abrupt transition from a weak to a strong tem-
perature correlation between these two regions in the Modern
Warm Period is analogous to the weak-to-strong transition that
occurred in the sixteenth century. The former was forced by
changes in greenhouse gases, and the latter was linked with the
impact of volcanic eruptions.

The summer temperatures in the Qinghai–Tibetan Plateau in
the past millennium were found to lag the Arctic summer temper-
ature by three years on an interdecadal time scale and by one year
on a multi-decadal time scale. However, the teleconnection mech-
anism controlling the lead-lag relationship between summer

temperatures in the Qinghai–Tibetan Plateau and Arctic remains
unclear and should be further investigated.

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/qua.2021.3
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temperature anomalies (unit: °C, with respect to 1961–1990 CE, blue lines) using single-forcing and full-forcing in the Arctic. Smoothing is applied with an
11-yr running mean. The “r” value is the correlation coefficient between the simulation and data assimilation during the period (855–2000 CE). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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