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The main requirement for milk processed in most cheese typologies is its rennet coagulation ability.
Despite the increasing number of studies, the causes for abnormal coagulation of milk are not fully
understood. The aim of this study was to ascertain relationships between milk characteristics
and its rennet coagulation ability, focusing on the influence of calcium (Ca) and phosphorus (P).
Ca and P are essential constituents of the micelles. Micellar P can be present as part of colloidal
calcium phosphate (inorganic-P) or covalently bound to caseins as phosphate groups (casein-P).
Eighty one herd milk samples (SCC<400000 cell/ml) were classified as Optimal (8), Suboptimal (39)
Poor (29) and Non-coagulating milk (5), according to their rennet coagulation parameters as assessed
by lactodynamographic test. Samples were analysed for their chemical composition (basic
composition, protein fractions, minerals and salt equilibria), physicochemical parameters (pH and
titratable acidity) and rheological properties. Optimal milk was characterised by the highest contents
of major constituents, protein fractions and minerals, lowest content of chloride and highest values
of titratable acidity. Non-coagulating milk was characterised by the highest values of pH and
the lowest of titratable acidity. At micellar level, Optimal milk showed the highest values of colloidal
Ca, casein-P and colloidal Mg (g/100 g casein), while Non-coagulating milk showed the lowest
values. Interestingly, there was no statistical difference regarding the content of colloidal inorganic-P
(g/100 g casein) between Optimal and Non-coagulating milks. Overall, high mineralisation of the
micelle (expressed as g inorganic-P/100 g casein) positively affect its rennetability. However,
excessive mineralisation could lead to a reduction of the phosphate groups (g casein-P/100 g casein)
available for curd formation.
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The most important requirement of milk used in most cheese
typologies is its aptitude to coagulate on addition of rennet.
Milk with proper rennet coagulation ability gives rise to
curds with better rheological properties (syneresis), with
positive repercussions on cheese yield and quality. Curds
obtained from milk with poor coagulation aptitude are more
susceptible to cheesemaking losses during the vat phase and
could undergo incomplete and non-homogeneous whey
drainage, with possible defects during the early or late
phases of ripening (Mariani et al. 2001).

The lactodynamography (LDG) is one of the most wide-
spread methods to analyse the rennet coagulation ability
of milk (McMahon & Brown, 1982). This technique detects

the change of viscosity in a milk sample induced by rennet-
gel formation. The output of LDG analysis is a typical
diagram or profile from which it is possible to calculate
rennet coagulation parameters (RCP): rennet clotting
time, curd firming time and curd firmness. Currently, in the
Parmigiano-Reggiano cheese area, RCP are measured every
15 d on herd milk samples and the resulting values are used
to reward or penalise milk producers.
Because of the influence of RCP on cheese quality and

yield, it is important to investigate reasons for poorly or non-
coagulating milk. Naturally occurring variations of RCP are
related to genetic (breed and genetic polymorphisms of milk
proteins) and environmental factors affecting milk com-
position (stage of lactation, somatic cell content, feeding,
season, etc.) (Okigbo et al. 1985; Ostersen et al. 1997;
Verdier-Metz et al. 1998; Ikonen et al. 2004; Malacarne
et al. 2005; Bittante et al. 2012). Most studies underline*For correspondence; e-mail: massimo.malacarne@unipr.it
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the key role played by caseins in milk RCP, in terms of their
contents, relative proportions, genetic types, and extent
of post-translational modifications (Comin et al. 2008;
Jõudu et al. 2008; Jensen et al. 2012a, b; Vallas et al. 2012).

Besides caseins, calcium (Ca) and phosphorus (P) are
essential constituents of the micelles (Gaucheron, 2005).
Micellar P can be present as part of colloidal calcium
phosphate (CCP) (inorganic-P) or covalently bound to
caseins as phosphate groups (casein-P). A fraction of the
phosphate groups of calcium-sensitive caseins contribute
to micellar casein structure by a Ca2+-mediated secondary
interactions with CCP (Horne, 1998). The phosphate groups
not involved in internal CCP-crosslinks are supposed to play
a key role during curd formation (secondary phase of rennet
coagulation) by the formation of soluble Ca2+-mediated
crosslinks among paracasein micelles (Green & Grandison,
1993). It is reported that failure in milk coagulation is
mostly due to alterations in the secondary phase of rennet
coagulation, as the hydrolysis of kappa-casein is also de-
tectable in non-coagulating milk (Frederiksen et al. 2011).

The role of micellar Ca and P in milk RCP has not been
extensively studied. Higher colloidal contents of Ca, P and
Magnesium (Mg) in milk are associated with better rennet
coagulation properties in individual milk samples collected
from Jersey and Holstein cows (Jensen et al. 2012b). These
authors do not distinguish between inorganic-P and casein-
P. Furthermore, as the content of casein increases from
poorly to well coagulating milk, colloidal values are not
useful to assess the possible influence of the degree of
mineralisation of the casein micelle (expressed as inorganic-
P in 100 g of casein) on rennet coagulation of milk. The
influence of phosphate groups of casein on rennet coagu-
lation was studied by Pearse et al. (1986). These authors
observe that dephosphorylation of reconstituted casein
micelle has an adverse effect on rennet coagulation and
syneresis.

In recent years, an increase of the proportion of herd
milk samples with the worst LDG types has been reported in
the Parmigiano-Reggiano cheese production area (Tedeschi
et al. 2010). Despite the increasing number of studies,
the causes of abnormal coagulation of milk are not fully
understood. The objective of this study was to contribute to
the knowledge of this phenomenon, emphasising relation-
ships between milk characteristics and naturally occurring
variations in herd milk LDG profiles, with particular regard
to the possible influence of the content of micellar Ca,
P and Mg.

Materials and methods

Samples collection

The study was carried out over one year and 118 cattle
herds producing milk for Parmigiano-Reggiano cheese
were involved. Herds were randomly selected out of
500 cattle herds assisted by the Centro Lattiero-Caseario

(Dairy Center) of Parma (Italy). Each herd was sampled
once and therefore a total of 118 herd milk samples
were collected. About 2 herds (from a minimum of 1 to a
maximum of 3) were sampled each week, during the year.
Herds involved milked on average 50 lactating cows,

reared in free-stall barns, and parities were equally
distributed throughout the year. Feeding of cows was very
similar among herds, as this practice was strictly regulated
by the Pamigiano-Reggiano Cheese Consortium. (http://
www.parmigianoreggiano.com/consortium/rules_regulation_
2/default.aspx). Sampling was carried out from the herd
tank, at the end of the morning milking, according to the
International Dairy Federation standard (IDF, 2008). The
milk sample was cooled to 4 °C, transferred to the laboratory
within 30min and analysed immediately.

Milk analyses

The following standard analyses were carried out in
duplicate: pH and titratable acidity were measured with a
potentiometer (Crison Instruments, Barcelona, E-08328,
Spain) and by titration with 0·25 M-NaOH using the
Soxhlet-Henkel method (Anonymous, 1963), respectively.
Fat and lactose were determined by infrared analysis (Biggs,
1978) with a Milko-Scan 134 A/B (Foss Electric, DK-3400
Hillerød, Denmark). The somatic cell count (SCC) was
assessed by the fluoro-opto-electronic method according
to Schmidt-Madsen (1975). Total nitrogen (TN) in milk, non-
casein nitrogen (NCN) in pH 4·6 acid whey and non-protein
nitrogen (NPN) in milk after treatment with trichloroacetic
acid (TCA; 120 g/l), were determined by the Kjeldahl method
(Aschaffenburg & Drewry, 1959). Proteose peptone N (PPN)
was measured by the Kjeldahl method in acid whey
obtained according to van Boeckel & Crijns (1994). From
these nitrogen fractions, total protein (TN×6·38), casein
nitrogen (CN=TN–NCN), casein (CN×6·38), whey proteins
N (WN=NCN–NPN), whey proteins (WN ×6·38), proteose
peptone (PP=PPN×6·38), casein number (casein nitrogen
×100/total nitrogen) were calculated. Total Ca and Mg
in milk and soluble Ca and Mg in rennet whey were
determined by atomic absorption spectrometry (AAS)
(De Man, 1962). Total P, soluble P and total acid-soluble
P were assessed in milk, in rennet whey and in milk after
treatment with TCA (120 g/l), respectively, with the colori-
metric method proposed by Allen (1940). Distribution of
Ca and P fractions were calculated according to White &
Davies (1958). Colloidal P was corrected for the quota of
P in phospholipids according to Bonaga & Mascolo (1977).
Dry matter was determined in 10 g milk in a drying oven
at a temperature of 102 °C according to Savini (1946). Ash
content was determined using the gravimetric method
according to Savini (1946) after calcination of the milk
sample in a muffle furnace at 530 °C.
A 0·2 ml (1 :100) rennet solution (1 :19 000; Chr. Hansen,

I-20094 Corsico MI, Italy) was added to milk samples
(10 ml). The RCP, milk clotting time (r), curd firming time
(k20) and curd firmness (a30), were measured at 35 °C
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(Malacarne et al. 2006) using a Formagraph (Foss Electric).
Milk clotting time is the time from the addition of rennet to
the onset of gelation. Curd firming time is the time from the
onset of gelation till the signal attains awidth of 20 mm. Curd
firmness is the width of the signal 30 min after the addition
of rennet. To record k20 values even in milk samples that do
not reach a width of 20 mm within 30min, the analysis was
prolonged to 60min.

Analyses of milk rheological properties resistance to
compression and resistance to cut of the coagulum were
measured 30min after the beginning of coagulation, using
the Gel Tester apparatus (Marine Colloids Inc. Springfield,
NJ 07081, USA) (Annibaldi, 1973).

Classification of milk samples

The milk samples were classified as Optimal, Suboptimal,
Poor and Non-coagulating according to their RCP values
(Table 1). This classification is in accordance with the
original research of Annibaldi et al. (1977) and Pecorari
et al. (1984). Briefly, Annibaldi et al. (1977) analysed the
RCP of about 15000 herd milk samples collected in the
Parmigiano-Reggiano production area. Originally, the milk
samples were classified in eight LDG types identified by
capital letters: A, B, C, D, DD, E, F, FF. Later, 5 new types
were introduced. Pecorari et al. (1984) grouped LDG types
into four classes (Optimal, Suboptimal, Poor and Non-
coagulating). This categorisation is made on the basis of
data collected by the technicians of the Parmigiano-
Reggiano Cheese Consortium during their assistant activity.
Each class is constituted including milk LDG types with the
same technological behaviour during Parmigiano-Reggiano
cheesemaking. These four categories are currently used

in the milk quality payment system used for Parmigiano-
Reggiano cheese (Pecorari et al., 1984).

Statistical analysis

The average value resulting from the duplicate experiment
was submitted to statistical analysis. Data were submitted
to ANOVA univariate (IBM SPSS Statics 20, Armonk,
New York 10504-1722, USA), using as fixed factor the
lactodynamographic classification (4 levels: Optimal,
Suboptimal, Poor and Non-coagulating).

Results and discussion

According to their RCP values, the 118 herd milk
samples could be classified into 5 (A, B, AE, E or FF) out of
13 potential LDG types and 18 of them (15%) were grouped
within the Non-coagulating class (Table 2). Low proportions
of Non-coagulating milk are reported both in Holstein
Friesian (8%, Cassandro et al. 2008) and Finnish Ayrshire
(8–13%, Ikonen et al. 1999, 2004) at individual milk level.

Table 1. Method of herd milk samples classification (Annibaldi et al. 1977; Pecorari et al. 1984)

r, clotting time, min a30, curd firmness, mm LDG type Classification

r<5 04a30<100 DD Poor
54 r<8 a30<30 C Suboptimal

304a30<54 AB Optimal
544a30<100 CC Suboptimal

84 r<11 a30<30 C Suboptimal
304a30<40 AB Optimal
404a30<100 AD Suboptimal

114 r<17·30 a30<19 AE Suboptimal
194a30<40 A Optimal
404a30<100 B Optimal

17·304 r<20 a30<19 E Poor
194a30<40 EA Suboptimal
404a30<100 B Optimal

204 r<22 a30<19 E Poor
194a30<100 EA Suboptimal

224 r<26 a30<100 E Poor
264 r<28 a30<4 EF Poor

44a30<100 E Poor
284 r<29·45 a30<100 EF Poor
29·454 r<100 a30<100 FF Non-coagulating

Table 2. Classification of herd milk samples above or below the
legal limit for somatic cell (400000 cell/ml). N. of samples

Classification

Somatic cells, cells/ml

All samples<400000 >400000

Optimal 8 1 9
Suboptimal 39 10 49
Poor 29 13 42
Non-coagulating 5 13 18
Total 81 37 118
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The high percentage of Non-coagulating observed at
herd milk level here may depend on the presence of milk
from some infected glands that impair the rennet coagulation
properties of the whole mass of milk in the herd tank
(Fleminger et al. 2013). Eighty-one milk samples had a
somatic cell count below the legal limit of 400000 cells/ml
(Table 2). In this subsample the proportion of Non-
coagulation milk was lower than in milk samples with
>400000 cells/ml (6 vs. 35%). This difference is expected
because of the positive relationships existing between the
somatic cell count of bulk tank milk and the number of
infected glands in the herd (Eberhart et al. 1982). To reduce
the influence of mastitic milk, only data from the subsample
with SCC<400000 cells/ml (n=81) were submitted to
ANOVA, whose results are reported and discussed hereafter
(Tables 3–7).

The descriptive statistics of herd milk samples with
SCC<400000 cell/ml are reported in Table 3. Values of
pH and lactose were seen to be within the normal range for
cow’s milk. The contents of fat, protein, lactose and ash
are comparable with those reported by Tedeschi et al. (2010)
for herd milk in the Parmigiano-Reggiano cheese production

area. About 25% of samples had a value of titratable acidity
43·20 °SH/ml (hypoacid milk). This confirms the increasing
prevalence of hypoacid milk over recent years (Formaggioni
et al. 2005). Among RCP, curd firming time and curd
firmness showed a higher coefficient of variation (CV)
compared with clotting time. Four milk samples showed a
clotting time higher than 30min and 27 samples did not
reach a width of 20 mm within 30 min.
Titratable acidity, pH, RCP and rheological properties are

given in Table 4. The highest value of pH was reported in
Non-coagulating milk, whereas no significant differences
were observed among other classes, although an increasing
trend was reported from Optimal to Poor milk. This is in
agreement withmost studies that report a positive correlation
between milk pH and rennet clotting time (Ikonen et al.
2004; Cassandro et al. 2008). Actually, reducing milk pH
increases both the activity of chymosin and the amount of
diffusible ionic calcium, with positive repercussions for the
first and the second phases of rennet coagulation (Tsioulpas
et al. 2007). Non-coagulating milk showed the lowest
titratable acidity value, whereas Optimal milk manifested
the highest one. Similarly, Cassandro et al. (2008) found

Table 3. Descriptive statistics of herd milk samples analysed (N. 81)

Mean SD Minimum Maximum CV (%)†

Dry matter, g/100 g 12·61 0·49 11·91 14·32 3·87
Fat, g/100 g 3·68 0·29 2·99 4·45 7·83
Lactose, g/100 g 4·92 0·09 4·70 5·13 1·79
Protein, g/100 g 3·24 0·20 2·94 3·95 6·25
Ash, g/100 g 0·71 0·02 0·68 0·77 2·64
Calcium, mg/100 g 114·17 7·28 103·67 138·28 6·37
Phosphorus, mg/100 g 90·70 7·31 78·10 118·00 8·06
Magnesium, mg/100 g 9·55 0·80 8·02 12·61 8·40
pH 6·71 0·04 6·61 6·82 0·54
Titratable acidity, °SH/50ml 3·31 0·21 2·73 3·86 6·31
r, clotting time, min 21·21 4·11 13·50 34·50 19·40
k20, curd firming time, min 7·69 3·51 2·00 28·75 45·59
a30, curd firmness, mm 22·93 9·87 0·00 50·68 43·04
Somatic cell content, cells×103/ml 245 98 71 394 40

†Coefficient of variation.

Table 4. Values of pH, titratable acidity, rennet coagulation parameters and rheological properties of herd milk samples grouped according
to their LDG classification. Mean±SD

Lactodymographic classification (LDG types)

Optimal (A, B) Suboptimal (AE) Poor (E) Non-coagulating (FF)

No. of samples 8 39 29 5
pH 6·70±0·03a 6·70±0·02a 6·71±0·04a 6·76±0·05b

Titratable acidity, °SH/ml 3·60±0·32c 3·32±0·12b 3·26±0·17b 2·98±0·25a

r, clotting time, min 14·84±1·22a 19·49±1·27b 23·29±1·19c 30·73±1·80d

k20, curd firming time, min 4·48±3·28a 6·71±1·42b 8·61±2·20c 17·15±7·78d

a30, curd firmness, mm 42·02±9·81d 25·70±3·25c 17·88±2·48b 0·16±0·35a

Resistance to compression, g 34·67±8·55b 43·00±5·92c 36·69±8·77b 20·00±2·32a

Resistance to cut, g 75·83±12·11b 23·17±7·99a 22·17±7·24a 11·00±1·16a

Values without a common superscript are different at P<0·05.
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a favourable genetic correlation between titratable acidity
and RCP at individual milk level. As expected, all rennet
coagulation parameters were seen to be different among
milk classes. Rheological properties of the curd were
expressed by the parameters resistance to compression and
resistance to cut, both of which were measured 30min after
its formation and are descriptive of the elasticity, contrac-
tility, and permeability of the curd and, consequently, of
its capacity and rate of syneresis. The higher the values
of both parameters, the better the rheological properties
of the curd. The value resistance to compression was seen
to be markedly higher – and thus more favourable – in

Suboptimal milk than in other milks. The highest value of
resistance to cut was reported in Optimal milk, while the
lowest was observed in Non-coagulating milk. Similarly,
Malacarne et al. (2006) report the highest values of both
parameters in milk with the better rennet coagulation
parameters. This confirms the strict relationships between
the behaviour of the rennet coagulation and the develop-
ment physico-mechanical properties of the resulting curd.
Basic composition, somatic cell content and protein

fractions of herd milk samples are shown in Table 5.
Optimal milk was characterised by the highest content of
dry matter and its constituents (fat, lactose, protein, and ash)

Table 5. Basic composition, somatic cell content and protein fractions in herd milk samples grouped according to their LDG classification.
Mean±SD

Lactodymographic classification (LDG types)

Optimal (A, B) Suboptimal (AE) Poor (E) Non-coagulating (FF)

No. of samples 8 39 29 5
Dry matter, g/100 g 13·54±0·75b 12·54±0·36a 12·49±0·29a 12·38±0·08a

Fat, g/100 g 3·99±0·44b 3·69±0·27a 3·60±0·23a 3·60±0·08a

Lactose, g/100 g 5·01±0·06b 4·92±0·08a 4·89±0·08a 4·85±0·06a

Protein, g/100 g 3·69±0·29c 3·20±0·12b 3·20±0·10b 3·07±0·18a

Ash, g/100 g 0·74±0·03b 0·71±0·02a 0·71±0·01a 0·70±0·02a

Somatic cells, cells×103/ml 202·88±115·48 249·18±99·62 248·38±96·49 271·60±62·52
Casein, g/100 g 2·88±0·24b 2·49±0·10a 2·49±0·07a 2·38±0·08a

Wheyprotein, g/100 g 0·62±0·06b 0·54±0·03a 0·54±0·03a 0·50±0·03a

NPN×6·38 0·19±0·01b 0·17±0·01a 0·17±0·02a 0·19±0·03ab

Proteose-peptone (PP), g/100 g 0·11±0·03 0·10±0·02 0·10±0·03 0·10±0·03
Casein number, % 78·04±0·75 77·75±0·85 77·84±0·61 77·48±1·31
PP/Casein, % 3·79±0·79 3·96±0·87 4·11±1·29 4·40±1·36

Values without a common superscript are different at P<0·05.

Table 6. Mineral content and salt equilibria in herd milk samples grouped according to their LDG classification. Mean±SD

Lactodymographic classification (LDG types)

Optimal (A, B) Suboptimal (AE) Poor (E) Non-coagulating (FF)

No. of samples 8 39 29 5
Calcium (Ca), mg/100 g 129·54±11·08b 113·12±4·15a 111·88±4·48a 112·13±2·73a

Soluble Ca, mg/100 g 37·24±2·05 37·82±2·93 36·91±2·90 36·99±3·57
Colloidal Ca, mg/100 g 92·30±9·43b 75·29±4·33a 74·97±3·99a 74·14±3·14a

Colloidal Ca, % 71·15±1·51b 66·55±2·53a 67·01±2·27a 66·73±2·79a

Phosphorus (P), mg/100 g 106·59±9·80c 89·75±3·59b 88·75±4·64b 84·05±5·66a

Soluble P, mg/100 g 49·21±5·09c 44·29±2·52b 43·24±3·60b 37·16±4·48a

Colloidal P, mg/100 g 54·93±5·13b 43·24±2·28a 43·43±2·13a 44·83±2·24a

Colloidal inorganic-P, mg/100 g 29·03±5·05b 23·32±2·54a 23·35±2·65a 26·86±2·34b

Casein-P, mg/100 g 25·91±5·46b 19·93±2·32a 20·09±2·79a 17·97±2·88a

Colloidal P, % 51·56±1·69b 48·19±1·89a 49·00±2·37a 53·45±2·95b

Colloidal inorganic P, % 27·32±4·48a 25·99±2·77a 26·41±3·68a 32·12±3·83b

Casein-P, % 24·24±3·91 22·20±2·47 22·59±2·57 21·33±2·51
Magnesium (Mg), mg/100 g 10·47±1·12c 9·54±0·76b 9·47±0·53b 8·59±0·58a

Soluble Mg, mg/100 g 7·50±0·64b 7·38±0·60b 7·22±0·32b 6·48±0·61a

Colloidal Mg, mg/100 g 2·98±0·77b 2·17±0·39a 2·25±0·35a 2·10±0·28a

Colloidal Mg, % 28·19±4·47b 22·65±3·23a 23·63±2·65a 24·56±3·40a

Chloride, mg/100 g 84·54±9·15a 97·80±5·49b 99·03±6·46b 101·37±6·05b

Values without a common superscript are different at P<0·05.
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than other milk classes. Non-coagulating milk showed the
lowest amount of protein. At individual milk level, Auldist
et al. (2004) report a positive correlation between milk total
solids (and its constituents) and curd firmness measured
60min after rennet addition. Similarly, Martin et al. (1997)
report better rennet coagulation parameters in protein-rich
bulk milk and Kriščiunaite et al. (2012) find a positive
correlation between protein content and curd firmness
at herd milk level. Furthermore, Optimal milk showed the
highest amount of casein and whey protein. Optimal
and Non-coagulating milk had the highest content of
NPN×6·38. Non-coagulating milk showed the lowest
value of lactose, whereas no differences were reported in
other classes. As a decrease of lactose is a typical feature of
mastitic milk, this observation suggests the presence of a
higher quota ofmilk from infected glands inNon-coagulating
milk than in milk from other classes. The presence of milk
from infected glands was also confirmed by the increasing
trend of proteose peptone (in 100 g of casein) from Optimal
to Non-coagulating milk – although differences among
classes were not significant – as proteose peptone arose from
the breakdown of β-casein by plasmin (Andrews, 1983),
which activity increases in mastitic milk (Leitner et al. 2006).
Furthermore, some of the breakdown products of β-casein
(fragment 1–28) show impairing properties towards milk
rennet coagulation, probably by chelating diffusible ionic Ca
(Fleminger et al. 2013). However, the somatic cell count of
Non-coagulating milk was below the legal limit and not
different from other classes. Actually, the predictive value of
somatic cell count on milk quality became less effective at
herd milk level because of the dilution of mastitic milk with
milk from bacterial-free glands (Leitner et al. 2008).

Optimal milk had the highest content of total Ca, total
P and total Mg and of their correspondent colloidal fractions
(Table 6). No differences were observed among Suboptimal,
Poor and Non-coagulating milks for the same parameters.
Concerning soluble fractions, no differences, among milk
classes, were observed for Ca, whereas soluble P was
highest in Optimal milk and lowest in Non-coagulating
milk. This latter also had the lowest value of soluble Mg. As
colloidal fractions are constituents of the casein micelle, the
greater contents of Ca, P and Mg in the colloidal phase were
related to the elevated content of casein in Optimal milk.

The percentage (relative to corresponding total contents)
of colloidal Ca and colloidal Mg were higher in Optimal
milk than other milk classes. Interestingly, the values of
colloidal inorganic-P (mg/100 g) and colloidal P (%) in
Non-coagulating milk were not different from those
in Optimal milk. Similarly, Jensen et al. (2012b) underline
a higher percentage of colloidal Ca, P and Mg in well than
in poor and Non-coagulating milk, at individual level. The
lowest value of chloride was reported in Optimal milk,
while no differences were observed among milks of other
LDG classes. Increase of chloride is associated with a
decrease in milk rennetability (Patel & Reuter 1986) and it
is a marker of the presence subclinically infected quarters
in the herd.
Chemical characteristics of casein micelles are shown in

Table 7. The casein micelle in Optimal milk showed the
highest values of Ca, P, and Mg. As mentioned above,
micellar P can be present in two different chemical forms, as
inorganic-P (constituents of CCP) or casein-P (as phosphate
groups of caseins). Optimal milk showed the highest values
of casein-P. No differences for this parameter were observed
among other milk classes. The quota of inorganic-P in
Optimal milk was seen to be higher than in Suboptimal and
Poor milks, and not different when compared with Non-
coagulating milk value. According to these results, the
higher the content of Ca, P, andMg in the casein micelle, the
better the RCP values of milk. However, even the relation-
ships between the different forms of micellar-P play a role in
rennet coagulation of milk. In fact, besides being poorer in
colloidal P, the casein micelle of Non-coagulating milk
was characterised by the same degree of mineralisation as
Optimal milk (expressed by the content of inorganic-P).
Consequently, the number of phosphate groups available
for curd formation in NC milk is supposed to be low, which
could lead to an increase of the time necessary for
paracasein to form the curd that, if longer than 30min
from rennet addition, results in the classification of milk as
Non-coagulating. The key role play by phosphate groups of
casein in micelle aggregation which occur during coagu-
lation was reported by Pearse et al. (1986) in artificial
micelle. They observe that dephosphorylation of casein
(mainly β-casein) negatively influence the aggregation of
artificial micelles.

Table 7. Micellar contents of Ca, P and Mg (g/100 g casein) in herd milk samples grouped according to their LDG classification. Mean±SD

LDG types

Lactodymographic classification

Optimal (A, B) Suboptimal (AE) Poor (E) Non-coagulating (FF)

No. of samples 8 39 29 5
Colloidal (Coll) Ca 3·75±0·38b 3·06±0·18a 3·05±0·16a 3·06±0·10a

Coll P 2·23±0·21b 1·76±0·09a 1·77±0·09a 1·86±0·13a

Coll inorganic-P 1·18±0·21b 0·95±0·10a 0·95±0·11a 1·11±0·13b

Casein-P 1·05±0·22b 0·81±0·09a 0·82±0·11a 0·74±0·11a

Coll Mg 0·12±0·03b 0·09±0·02a 0·09±0·01a 0·09±0·01a

Values without a common superscript are different at P<0·05.
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Conclusions

Results observed here emphasised the importance of SCC
as a parameter to predict the rennet coagulation aptitude
of milk. However, the predictive value of SCC became
less effective at herd milk level because of the dilution of
mastitic milk with milk from bacterial-free glands. The use
of a milking system that separates quarter milk or cow’s
individual milk on the basis of on-line measurements of its
rennet coagulation aptitude would improve the processing
quality of milk at herd level. This study suggested that the
amount of CCP and the number of phosphate groups inside
the casein micelle also seem to influence its behaviour
during rennet coagulation. Overall, high content of CCP
positively affect micelle rennetability. However, excessive
content of CCP could lead to a reduction of the phosphate
groups available for curd formation in the secondary
phase of rennet coagulation. Given low number of samples
analysed in the extreme classes, further observations are
necessary to confirm this hypothesis, especially at individual
and quarter milk level. Analysis of Ca and P in their different
forms will give technicians further parameters to consider
when facing the increasing problem of poor or non-
coagulating milk recorded in several areas involved in
Italian PDO cheeses production. Furthermore, in recent
years, particular attention has been paid by Italian cattle
breeders associations to improving the content of casein in
milk by means of genetic selection, because of its positive
effects on cheese yield and quality. Besides casein, the
results of this study suggest that the mineral counterpart of
the micelle should also be carefully considered, in order
to avoid alterations of chemical equilibria inside the micelle.
However, to date methods employed are not only time-
consuming but also expensive, and therefore can not be
used in current milk recording system.
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