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We prove a new rigorous bound for the mean convective heat transport 〈wT〉, where w
and T are the non-dimensional vertical velocity and temperature, in internally heated
convection between an insulating lower boundary and an upper boundary with a fixed
heat flux. The quantity 〈wT〉 is equal to half the ratio of convective to conductive vertical
heat transport, and also to 1

2 plus the mean temperature difference between the top and
bottom boundaries. An analytical application of the background method based on the
construction of a quadratic auxiliary function yields 〈wT〉 ≤ 1

2(
1
2 + 1√

3
)− 1.6552 R−(1/3)

uniformly in the Prandtl number, where R is the non-dimensional control parameter
measuring the strength of the internal heating. Numerical optimisation of the auxiliary
function suggests that the asymptotic value of this bound and the −1/3 exponent are
optimal within our bounding framework. This new result halves the best existing (uniform
in R) bound (Goluskin, Internally Heated Convection and Rayleigh–Bénard Convection,
Springer, 2016, table 1.2), and its dependence on R is consistent with previous conjectures
and heuristic scaling arguments. Contrary to physical intuition, however, it does not rule
out a mean heat transport larger than 1

2 at high R, which corresponds to the top boundary
being hotter than the bottom one on average.

Key words: variational methods

1. Introduction

Convection driven by internally generated heat is a common physical phenomenon and
underpins several problems in geophysics, such as mantle convection (Schubert, Turcotte
& Olson 2001; Mulyukova & Bercovici 2020). One important open problem is to
characterise the vertical heat transport as a function of the heating strength, measured by
the non-dimensional Rayleigh number R. Simulations and experiments (Hewitt, McKenzie
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Figure 1. The IH convection (a) with isothermal boundaries, studied by Arslan et al. (2021), and (b) with
fixed-flux boundary conditions, studied in this paper. In both panels, IH represents the uniform unit internal heat
generation. Red dashed lines denote the conductive temperature profiles, and red solid lines denote indicative
mean temperature profiles in the turbulent regime.

& Weiss 1980; Ishiwatari, Takehiro & Hayashi 1994; Lee, Lee & Suh 2007; Goluskin 2015)
reveal that the heat transport increases with the heating strength, and heuristic scaling
laws based on physically reasonable, but unproven, assumptions have been put forward
(Goluskin 2016). However, corroborating or disproving such heuristic arguments through
the derivation of rigorous R-dependent bounds remains a challenge (Arslan et al. 2021).

For internally heated (IH) convection between isothermal boundaries, a major difficulty
in bounding the heat transport is the subtle interplay between the lower and upper thermal
boundary layers (Arslan et al. 2021). In contrast to Rayleigh–Bénard convection, for which
fixed-temperature or fixed-flux boundary conditions are symmetric and produce unstable
thermal boundary layers, internal heating produces positive buoyancy that acts in the
positive vertical direction and therefore creates asymmetry in relation to the lower and
upper boundaries (see Figure 1a). In this regard, the lower thermal boundary layer of IH
convection (see, for example, Goluskin & van der Poel 2016) has a different character from
those found in Rayleigh–Bénard convection, and is stably stratified.

In this study, we remove the subtleties associated with the lower boundary by
specifying a zero-flux condition, as illustrated in figure 1(b). The hypothesis behind this
choice is that the resulting problem will be driven primarily by the properties of the
unstably-stratified thermal boundary layer near the top boundary and, therefore, will bear
a closer resemblance to Rayleigh–Bénard convection. To ensure that the energy generated
internally leaves the domain and the fluid’s temperature does not increase without bound,
we also replace the isothermal top boundary with one satisfying a fixed-flux condition.
These boundary conditions idealise models of mantle convection, where radioactive decay
provides the internal heating, the core-mantle boundary is approximated by a thermal
insulator and a warm crust or atmosphere limits the rate of heat loss to space (Kiefer
& Li 2009; Trowbridge et al. 2016; Mulyukova & Bercovici 2020).

Within this flow configuration, our goal is to bound the dimensionless convective
heat flux 〈wT〉, where angled brackets denote an average over volume and infinite time.
This quantity is related to the mean temperature difference between the top and bottom
boundaries: multiplying the equation governing the evolution of temperature (see § 2) by
the vertical coordinate z and integrating by parts over the volume and infinite time yields

〈wT〉 + T0 − T1 = 1
2 , (1.1)

with T0 and T1 denoting the average temperatures of the bottom and top boundaries,
respectively, where the average is over the horizontal directions and infinite time. The
right-hand side of (1.1) represents the input of potential energy (1/2), which balances the
reversible work 〈wT〉 done by the velocity field (equal to the average viscous dissipation)
and the unknown rate T0 − T1 at which the fluid’s potential energy decreases due to
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conduction. Thus, 〈wT〉 = 0 corresponds to the static case of upward conductive transport,
〈wT〉 = 1

2 corresponds to purely convective transport between boundaries of equal mean
temperature, and 〈wT〉 > 1

2 implies downward conduction on average.
The sign of the conductive term T0 − T1 is a priori unknown, but it can be shown

that |T0 − T1| ≤ |〈T〉 − T1|1/2 (Goluskin 2016). For sufficiently large Rayleigh numbers,
this estimate can be combined with the lower bound cR−1/3 < 〈T〉 − T1 (Lu, Doering &
Busse 2004) and the upper bound 〈T〉 − T1 ≤ 1

3 (Goluskin 2015) to yield 〈wT〉 ≤ 1
2 + 1√

3
uniformly in R. However, assuming that T0 and 〈T〉 scale similarly with the Rayleigh
number, Goluskin (2016) conjectured that the mean vertical heat flux should satisfy
〈wT〉 ≤ 1

2 − O(R−1/3).
The present work proves that

〈wT〉 ≤ 1
2

(
1
2

+ 1√
3

)
− cR−(1/3), (1.2)

with c ≈ 1.6552. This bound scales with R exactly as conjectured and asymptotes to
(approximately) 0.5387, which is slightly larger than 1

2 but halves the only existing uniform
bound. To obtain (1.2), we employ the background method (Doering & Constantin 1994,
1996; Constantin & Doering 1995) interpreted as the search for a quadratic auxiliary
function (Chernyshenko et al. 2014; Fantuzzi et al. 2016; Chernyshenko 2017; Rosa &
Temam 2020). This interpretation makes it easier to derive a convex variational problem
that yields bounds on 〈wT〉 even though, contrary to traditional applications of the
background method, the heat flux in IH convection is not directly related to the thermal
dissipation.

The work is structured as follows. Section 2 presents the governing equations. In § 3,
we derive the variational problem to bound 〈wT〉 from above. Analytical and numerical
bounds are presented in §§ 4 and 5, respectively. Section 6 offers concluding remarks.

2. Model

We consider a uniformly heated layer of fluid bounded between two horizontal plates at a
vertical distance d. The fluid has kinematic viscosity ν, thermal diffusivity κ , density ρ,
specific heat capacity cp, and thermal expansion coefficient α. The dimensional heating
rate per unit volume Q is constant in time and space. For simplicity, we assume that the
layer is periodic in the horizontal (x and y) directions, with periods Lx and Ly. While
these values affect the mean vertical heat flux, the analytical bounds derived below do not
depend on Lx or Ly and therefore apply to domains of all sizes (including the limiting case
of a horizontally infinite fluid layer).

To make the problem non-dimensional, we use d as the characteristic length scale,
d2/κ as the time scale and d2Q/κρcp as the temperature scale. The motion of the fluid
in the non-dimensional domain Ω = [0, Lx] × [0, Ly] × [0, 1] is then governed by the
Boussinessq equations

∇ · u = 0, (2.1a)

∂tu + u · ∇u + ∇p = Pr(∇2u + RT ẑ), (2.1b)

∂tT + u · ∇T = ∇2T + 1, (2.1c)

where u is the fluid velocity, p is the pressure, and the unit forcing in (2.1c) represents
the non-dimensional internal heating rate. The no-slip, fixed-flux boundary conditions are
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expressed by

u|z=0 = u|z=1 = 0, (2.2a)

∂zT|z=0 = 0, ∂zT|z=1 = −1. (2.2b)

The dimensionless quantities

Pr = ν

κ
and R = gαQd5

ρcpνκ2 , (2.3a,b)

where g is the acceleration of gravity, are the only two non-dimensional control
parameters. The former is the usual Prandtl number, which measures the ratio of
momentum and heat diffusivity. The latter, instead, measures the destabilising effect of
internal heating compared with the stabilising effects of diffusion, and may therefore be
interpreted as a Rayleigh number.

Since the volume-averaged temperature
ffl

T(x, t)dx is conserved in time, we assume it
to be zero without loss of generality. With this extra condition, the governing equations
admit the solution u = 0, p = constant and T = −(z2/2)+ 1

6 at all R, which represents
a purely conductive state. This state is globally asymptotically stable irrespective of the
horizontal periods Lx and Ly if R < 1429.86, and it is linearly unstable when R > 1440
for sufficiently large horizontal periods (Goluskin 2015). Convection ensues above this
Rayleigh number for at least one choice of the horizontal periods, and cannot currently be
ruled out above the known global stability threshold. We are therefore interested in bounds
on 〈wT〉 that hold for arbitrary R ≥ 1429.86.

3. Bounding framework

To derive an upper bound on 〈wT〉, it is convenient to lift the inhomogeneous boundary
condition on the temperature by introducing the temperature perturbation

θ(x, t) = T(x, t)+ z2

2
− 1

6
. (3.1)

The heat equation (2.1c) and boundary conditions (2.2b) show that θ satisfies

∂tθ + u · ∇θ = ∇2θ + zw, (3.2a)

∂zθ |z=0 = 0, ∂zθ |z=1 = 0. (3.2b)

To rewrite the heat flux in terms of θ , observe that, by virtue of incompressibility and
of the boundary conditions in (2.2a), the horizontal-and-time average w̄(z) of the vertical
velocity w vanishes for all z. Then

〈wf (z)〉 =
ˆ 1

0
w̄(z)f (z) dz = 0 (3.3)

for any z-dependent function f (z), and in particular we conclude that

〈wT〉 = 〈wθ〉. (3.4)

A rigorous upper bound on 〈wθ〉 can be derived using the auxiliary functional method
(Chernyshenko et al. 2014) with the quadratic auxiliary functional

V{u, θ} =
 
Ω

a
2PrR

|u|2 + b
2
|θ |2 − φ(x)θ − ψ(x) · u dx, (3.5)

where the non-negative scalars a and b, the function φ and the vector field ψ are to be
optimised in order to obtain the best possible bound. Chernyshenko (2017) showed that
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this is equivalent to employing the background method: the profile φ/b is the background
temperature (defined with respect to θ ), the vector field (PrR/a)ψ is the background
velocity, and a and b are the so-called balance parameters. Contrary to the classical
background method, there is no need to impose boundary or incompressibility conditions
on ψ or φ when defining V . To simplify the analysis below, however, we take ψ to be
incompressible, horizontally periodic and vanishing at the top and bottom plates. The
optimality of these choices can be proved rigorously, but the details are beyond the scope
of this work.

Arguments identical to those given by Goluskin & Fantuzzi (2019, appendix A) show
that the auxiliary function (3.5) may be taken to be invariant under arbitrary horizontal
translations and under the ‘horizontal flow reversal’ variable transformation⎛

⎝u(x, t)
θ(x, t)
p(x, t)

⎞
⎠ 	→

⎛
⎝Gu(Gx, t)
θ(Gx, t)
p(Gx, t)

⎞
⎠ , G =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ . (3.6a,b)

This is because the governing equations (2.1a), (2.1b) and (3.2a) are invariant under the
same set of transformations. Invariance under horizontal translation requires φ(x) = φ(z)
and ψ(x) = ψ(z). In particular, the incompressibility and no-slip conditions on ψ imply
that we must have ψ(z) = (ψ1(z), ψ2(z), 0). Invariance under (3.6a,b) then requires
ψ1(z) = ψ2(z) = 0, so ψ = 0.

Making these restrictions from now on, it can be shown that V{u(t), θ(t)} remains
uniformly bounded in time along solutions of (2.1b) and (3.2a) for any given initial
velocity and temperature. We can therefore use the fundamental theorem of calculus and
the governing equations to write

〈wθ〉 = lim sup
τ→∞

1
τ

ˆ τ

0

 
Ω

wθ + d
dt
V{u(t), θ(t)} dx dt

= lim sup
τ→∞

1
τ

ˆ τ

0

 
Ω

wθ + a
PrR

u · ∂tu + bθ∂tθ − φ(z)∂tθ dx dt

= U − lim inf
τ→∞

1
τ

ˆ τ

0
S{u(t), θ(t)} dt (3.7)

for any constant U, where

S{u, θ} =
 
Ω

a
R

|∇u|2 + b|∇θ |2 − (a + 1 + bz − φ′)wθ − φ′∂zθ + U dx (3.8)

and primes denote derivatives with respect to z. The last equality in (3.7) is obtained after
a few integrations by parts that exploit the boundary conditions, incompressibility and
the identity (3.3). The bound 〈wT〉 = 〈wθ〉 ≤ U follows from (3.4) and (3.7) if S{u, θ} is
non-negative for all time-independent velocities u and temperature perturbations θ that
satisfy incompressibility and the boundary conditions in (2.2a) and (3.2b). Our goal,
therefore, is to choose a, b and φ(z) such that this condition holds for the smallest
possible U.

To simplify this task, we invoke the horizontal periodicity and expand the velocity and
temperature fields using Fourier series:[

θ(x, y, z)
u(x, y, z)

]
=
∑

k

[
θ̂k(z)
ûk(z)

]
exp(i(kxx + kyy)). (3.9)
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The sum is over wavevectors k = (kx, ky) of magnitude k = √
k2

x + k2
y that are compatible

with the horizontal periods Lx and Ly. The (complex-valued) Fourier amplitudes θ̂k and
ûk = (ûk, v̂k, ŵk) satisfy

ûk(0) = ûk(1) = v̂k(0) = v̂k(1) = 0, (3.10a)

ŵk(0) = ŵ′
k(0) = ŵk(1) = ŵ′

k(1) = 0, (3.10b)

θ̂ ′
k(0) = θ̂ ′

k(1) = 0. (3.10c)

After substituting (3.9) into (3.8), the Fourier-transformed incompressibility condition
ikxûk + ikyv̂k + ŵ′

k = 0 can be combined with Young’s inequality to estimate

S{u, θ} ≥ S0{θ̂0} +
∑

k

Sk{ŵk, θ̂k}, (3.11)

where

S0{θ̂0} := U +
ˆ 1

0
b|θ̂ ′

0(z)|2 − φ′θ̂ ′
0(z) dz (3.12a)

and

Sk{ŵk, θ̂k} :=
ˆ 1

0

a
R

(
|ŵ′′

k(z)|2
k2 + 2|ŵ′

k(z)|2 + k2|ŵk(z)|2
)

+ b|θ̂ ′
k(z)|2

+bk2|θ̂k(z)|2 − [a + 1 + bz − φ′(z)]ŵk(z)∗θ̂k(z) dz. (3.12b)

Standard arguments (see e.g. Arslan et al. 2021) show that the right-hand side of (3.11)
is non-negative if and only if each summand is non-negative, and that to check these
conditions one can assume that ŵk and θ̂k are real functions. Thus, the best bound on
〈wT〉 is found upon solving the optimisation problem

inf
U,φ′(z),a,b

{U : S0{θ̂0} ≥ 0 ∀ θ̂0 s.t. (3.10c),

Sk{ŵk, θ̂k} ≥ 0 ∀ ŵk, θ̂k s.t. (3.10a), ∀k /= 0}.
(3.13)

We refer to the condition Sk{ŵk, θ̂k} ≥ 0 as the spectral constraint and consider φ′, rather
than φ, as the optimisation variable because only the former appears in the problem.

4. Analytical bound

To derive an analytical bound on 〈wT〉, we begin by observing that

S0{θ̂0} =
ˆ 1

0
b
(
θ̂ ′

0(z)− φ′(z)
2b

)2

− φ′(z)2

4b
+ U dz ≥ U −

ˆ 1

0

φ′(z)2

4b
dz, (4.1)

so the constraint on S0 in (3.13) is satisfied if we choose

U =
ˆ 1

0

φ′(z)2

4b
dz. (4.2)

This choice is also optimal because the lower bound in (4.1) is sharp. To see this, let
θ̂0 be such that θ̂ ′

0(z) = (1/2b)φ′(z) except for boundary layers of width ε near z = 0 and
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z

φ′(z)

1

φ
′ (z) =

 (a + 1) (1 +
√ 3z)

δ 1–δ

Figure 2. Sketch of the piecewise linear φ′(z) in (4.5a,b).

z = 1, where θ̂ ′
0(z) = 0 to satisfy (3.10c). Then, let ε → 0 and apply Lebesgue’s dominated

convergence theorem to conclude that S{θ̂0} converges to the right-hand side of (4.1).
Next, we seek constants a and b and a function φ(z) that minimise the right-hand side of

(4.2) whilst satisfying the spectral constraint in (3.13). The simplest way to ensure this is
to set φ′(z) = a + 1 + bz, because then the only sign-indefinite term in Sk vanishes. This
choice yields

〈wT〉 ≤ U = 1
12

[
b + 3(a + 1)+ (a + 1)2

b

]
, (4.3)

which attains the minimum value of 1
2(

1
2 + 1√

3
) when b = √

3(a + 1) and a = 0.
While this simple construction already halves the uniform bound proved by Goluskin

(2016), an even better result that depends explicitly on the Rayleigh number can be
obtained by letting φ′ develop boundary layers of width δ near z = 0 and z = 1.
Specifically, we still fix

b =
√

3(a + 1), (4.4)

but this time take

φ′(z) = (a + 1)ξ(z), ξ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1
δ

+
√

3
)

z, 0 ≤ z ≤ δ,

1 +
√

3 z, δ ≤ z ≤ 1 − δ,(
1 + √

3
δ

−
√

3

)
(1 − z), 1 − δ ≤ z ≤ 1.

(4.5a,b)

This profile, illustrated in figure 2, yields the upper bound

〈wT〉 ≤ U = 1
2

(
1
2

+ 1√
3

− 6 + 5
√

3
9

δ +
√

3
6
δ2

)
(a + 1) (4.6a)

≤ 1
2

(
1
2

+ 1√
3

− Aδ
)
(a + 1), (4.6b)

where the last inequality holds for any constant A satisfying A ≤ 1
9 (6 + 5

√
3)−

√
3

6 δ.
Anticipating that the height of the boundary layers in φ′ will have to be small, we arbitrarily
assume that δ ≤ 1

3 (this will be checked a posteriori) and therefore set A = (4 + 3
√

3)/6
irrespective of δ. These conservative choices considerably simplify the algebra in what
follows.
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Note that although (4.2) suggests setting ξ(z) = 0 throughout the boundary layers, a
linear variation makes the spectral constraint easier to satisfy and results in a smaller
bound on 〈wT〉. The values of a and δ must be chosen as functions of R to minimise
(4.6b) whilst ensuring that the indefinite term in Sk,

I := (a + 1)
ˆ

[0,δ]∪[1−δ,1]
[1 +

√
3z − ξ(z)]ŵk(z)θ̂k(z) dz, (4.7)

can be controlled. For the boundary layer at z = 0, we can use the boundary conditions on
ŵk and ŵ′

k in (3.10b) and the Cauchy–Schwarz inequality to estimate

∣∣ŵk(z)
∣∣ =

∣∣∣∣
ˆ z

0

ˆ ζ

0
ŵ′′

k(η) dη dζ
∣∣∣∣ ≤

ˆ z

0

ˆ ζ

0

∣∣ŵ′′
k(η)

∣∣ dη dζ

≤
ˆ z

0

√
ζdζ ‖ŵ′′

k‖2 = 2
3

z3/2‖ŵ′′
k‖2. (4.8)

Using this estimate, the definition of ξ from (4.5a,b), and the Cauchy–Schwarz inequality
once again, we obtain

∣∣∣∣
ˆ δ

0
[1 +

√
3z − ξ(z)]ŵk(z)θ̂k(z) dz

∣∣∣∣ ≤ δ2

3
√

15
‖ŵ′′

k‖2‖θ̂k‖2. (4.9)

Similar arguments near z = 1 yield

∣∣∣∣∣
ˆ 1

1−δ
[1 +

√
3z − ξ(z)]ŵk(z)θ̂k(z) dz

∣∣∣∣∣ ≤ 1 + √
3

3
√

15
δ2‖ŵ′′

k‖2‖θ̂k‖2. (4.10)

Using these inequalities we can now estimate

Sk{ŵk, θ̂k} ≥ a
Rk2 ‖ŵ′′

k‖2
2 +

√
3(a + 1)k2‖θ̂k‖2

2 − |I|

≥ a
Rk2 ‖ŵ′′

k‖2
2 +

√
3(a + 1)k2‖θ̂k‖2

2 − 2 + √
3

3
√

15
(a + 1)δ2‖ŵ′′

k‖2‖θ̂k‖2. (4.11)

The last expression is a homogeneous quadratic form in ‖ŵ′′
k‖2 and ‖θ̂k‖2, and is

non-negative if its discriminant is non-positive. To ensure that the spectral constraints
hold with the largest possible δ, so the bound (4.6b) is minimised, we therefore set

δ = α

(
a

(a + 1)R

)1/4

, (4.12)

with α = [540(7
√

3 − 12)]1/4. Substituting this into (4.6a) yields an upper bound on 〈wT〉
that depends only on a, and in principle this parameter can be optimised numerically for
each value of R. To obtain a fully analytical bound, however, we substitute (4.12) into the
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weaker bound (4.6b) and use the fact that a > 0 to arrive at

〈wT〉 ≤ 1
2

(
1
2

+ 1√
3

)
(a + 1)− 1

2
Aα a1/4(a + 1)3/4R−(1/4)

≤ 1
2

(
1
2

+ 1√
3

)
(a + 1)− 1

2
Aαa1/4R−(1/4). (4.13)

This bound can be optimised analytically over a by solving the equation ∂U/∂a = 0, which
gives

a = a0R−(1/3) (4.14)

with a0 = [ 1
2 Aα(2

√
3 − 3)]4/3. This translates into the upper bound

〈wT〉 ≤ 1
2

(
1
2

+ 1√
3

)(
1 − 3a0R−(1/3)

)
. (4.15)

Substituting (4.14) into (4.12) shows that δ = O(R−(1/3)), which agrees with scaling
arguments proposed for Rayleigh–Bénard convection (Spiegel 1963). Moreover, the
constraint δ ≤ 1

3 imposed at the beginning is satisfied for all R ≥ 591.51, which is below
the energy stability limit (cf. § 2). As required, therefore, the upper bound (4.15) applies to
all values of R for which convection cannot be ruled out.

5. Numerically optimised bounds

To assess how far the analytical bound (4.15) is from being optimal, we numerically
approximated the best upper bounds on 〈wT〉 implied by problem (3.13) using the
MATLAB toolbox QUINOPT (Fantuzzi et al. 2017). This toolbox employs truncated
Legendre series expansions for the tunable function φ and for the unknown fields θ̂0, θ̂k and
ŵk in order to discretise the convex variational problem (3.13) into a numerically tractable
semidefinite program (SDP) (for more details on this approach, see Fantuzzi & Wynn
2015, 2016; Fantuzzi, Pershin & Wynn 2018). Numerically optimal solutions to (3.13) were
obtained for 103 ≤ R ≤ 109 in a two-dimensional domain with horizontal period Lx = 2.
The number of terms in the Legendre series expansion used by QUINOPT was increased
until the optimal upper bound changed by less than 1 %, and an iterative procedure (see
e.g. Fantuzzi & Wynn 2016) was employed to check the spectral constraints Sk ≥ 0 up to
the cutoff wavenumber

kc :=
(

R
4ab

)1/4

‖a + 1 + bz − φ′‖1/2
∞ , (5.1)

where ‖·‖∞ is the L∞ norm. This value was derived using the method described in Arslan
et al. (2021, appendix B), which ensures that Sk ≥ 0 is non-negative for all k > kc given
any fixed choices of R, a, b and φ′.

The numerically optimal bounds on 〈wT〉 are compared to the analytical bound (4.15) in
figure 3(a). The former are zero until RE = 2147, which differs from the energy stability
limit reported by Goluskin (2015) due to the choice of horizontal period made in our
numerical implementation. The inset (b) reveals that the optimal and analytical bounds
appear to tend to the same asymptotic value as R → ∞. Moreover, as evidenced by panel
(c), they seem to do so at the same rate. This suggests that the only possible improvement
to our analytical bound is in the coefficient of the O(R−(1/3)) correction, which for our
numerically optimal bound is estimated to be 5.184 ± 0.062.
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Figure 3. (a) Numerically optimal bounds Un computed with QUINOPT (black solid line), compared to the
analytical bound Ua (4.15) (blue solid line) and the improved uniform upper bound 1

2 (
1
2 + 1√

3
) (dotted line).

The inset (b) shows the ratio of the two R-dependent bounds. (c) Analytical (blue) and numerical (black)
corrections to the uniform bound 1

2 (
1
2 + 1√

3
), compensated by R1/3. (d) Numerically optimal profiles φ′

for 103 ≤ R ≤ 109 (grey). Highlighted profiles for R = 105 (yellow), R = 107 (red) and R = 109 (brown)
correspond to the circles in panels (a) and (c). (e) Balance parameters a (blue solid line, optimal; blue dashed
line, analytical) and b (orange solid line, optimal; orange dashed line, analytical).

Figures 3(d) and 3(e) show the optimal profiles of φ′ and the optimal balance parameters
a, b in the range of R spanned by our computations. For large R, the optimal φ′ are
approximately piecewise linear, corroborating our analytical choice in (4.5a,b), and the
optimal balance parameters behave like the analytical ones from § 4 (plotted with dashed
lines). The main differences between the optimal and analytical φ′ profiles are oscillations
near the edge of the boundary layers and the fact that the two boundary layers of the
optimal φ′ have different widths. This suggests that a better prefactor for the O(R−(1/3))
term in our analytical bound could be obtained, at the expense of more complicated
algebra, by considering boundary layers of different sizes.

6. Conclusions

We have proved that the mean convective heat transport 〈wT〉 in IH convection with fixed
boundary flux is rigorously bounded above by 1

2 (
1
2 + 1√

3
)− cR−(1/3) uniformly in Pr,

where c ≈ 1.6552. This result is the first to depend explicitly on the Rayleigh number and
halves the previous uniform bound 〈wT〉 ≤ 1

2 + 1√
3

(Goluskin 2016) in the infinite-R limit.
Our proof relies on the construction of a feasible solution to a convex variational problem,
derived by formulating the classical background method as the search for a quadratic
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auxiliary function in the form (3.5). Numerical solution of this variational problem yields
bounds that approach the same asymptotic value as R increases and, crucially, appear to
do so at the same O(R−1/3) rate. This suggests that our analytical bound is qualitatively
optimal within our bounding approach, the only possible improvement being a relatively
uninteresting increase in the magnitude of the O(R−1/3) correction to the asymptotic value.
In particular, we conclude that the background method (at least as formulated here) cannot
prove that 〈wT〉 ≤ 1

2 − O(R−1/3) as conjectured by Goluskin (2016, § 1.6.3.4).
With the identity (1.1), our upper bound on 〈wT〉 can be translated into the lower

bound T0 − T1 ≥ 1
2 (

1
2 − 1√

3
)+ 1.6552 R−(1/3). This bound is negative when R ≥ 78 390,

so conduction downwards from the top to the bottom cannot be ruled out in this regime.
Determining whether T0 − T1 can indeed be negative or is positive at all Rayleigh
numbers, as physical intuition suggests, remains an open question for future work. Possible
approaches to answer this question include direct numerical simulations at high R, the
construction of incompressible flows with optimal wall-to-wall transport (Hassanzadeh,
Chini & Doering 2014; Tobasco & Doering 2017; Doering & Tobasco 2019), and the
computation of certain steady solutions to the Boussinesq equations (2.1a–c), which
in Rayleigh–Bénard convection have been shown to transport heat more efficiently
than turbulence over a wide range of R (Wen, Goluskin & Doering 2020). These and
other alternatives could provide a crucial understanding of the difference between the
conjectured asymptotic value of 1

2 for 〈wT〉 and the larger asymptotic value, 1
2 (

1
2 + 1√

3
),

of the upper bound proved in this paper.
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