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SUMMARY
A robot must have high positioning accuracy and
repeatability for precise applications. However, variations
in performance are observed due to the effect of uncertainty
in design and process parameters. So far, there has been no
attempt to optimize the design parameters of manipulator
by which performance variations will be minimum. A
modification in differential evolution optimization technique
is proposed to incorporate the effect of noises in the
optimization process and obtain the optimal design of
manipulator, which is insensitive to noises. This approach
has been illustrated by selecting optimal parameter of 2-DOF
RR planar manipulator and 4-DOF SCARA manipulator. The
performance of proposed approach has been compared with
genetic algorithm with similar modifications. It is observed
that the optimal results are obtained with lesser computations
in case of differential evolution technique. This approach is
a viable alternative for costly prototype testing, where only
kinematic and dynamic models of manipulator are dealt with.

KEYWORDS: Manipulator performance variations; Noise
factors; Positional error; Orientation error; Mean positional
error: Mean orientation error; Orthogonal array; Evolution-
ary optimization technique.

1. Introduction
There are many industrial applications where manipulator
is required to carry out precise task with high accuracy
and repeatability. However, industrial manipulators fail
to deliver the desired performance because the accuracy
and repeatability of the manipulator is affected by
computational error, machining tolerance, joint clearances
and misalignment, flexibility effect of links, gear backlash,
and host of other static and dynamic effects. These effects
are called as noise factors, which are difficult to model and
costly to control. Hence, design of industrial manipulator to
satisfy desired performance requirement is a complex task.
In last decade and a half, the philosophy of developing stable
products and processes that exhibit minimum sensitivity
to uncontrollable noises has been prevalent in research
community. However, robot manufacturer adopt traditional
methods of experimenting with prototypes that are time
consuming and expensive to manufacture. In order to assuage
these difficulties kinematic and dynamic models of the
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manipulator and an evolutionary optimization approach
are used to obtain the optimal parameters, which are
insensitive to noises. The kinematic and dynamic models
of manipulators are nonlinear and coupled. Thus, explicit
modeling of noises will make dynamic model complex. A
modification in evolutionary technique has been proposed.
This modification is a worst-case approach to incorporate
the effect of noises and simulate the performance. From
this technique optimal kinematic and dynamic parameters
of manipulator, i.e. link lengths and link mass, are obtained.
These parameters are expected to be insensitive to noises and
deliver minimum performance variations.

1.1. Background of research
Lot of research has been conducted to address kinematic
error analysis of robot end-effectors, calibration of
robot manipulators, and parameter optimization of robots
for various performance criteria. Khatib and Burdick1

investigated the dynamic characteristics of manipulators
and developed a method for the dynamic optimization.
The dynamic optimization aimed at providing the largest
isotropic and uniform bounds on the magnitude of end-
effector acceleration at both low and high velocities.
Manoochehri and Seireg2 developed computer programme
for form synthesis and optimal design of robot manipulator
using dynamic programming approach while Shiller
and Sundar3 addressed designing of multi-degree of
freedom (DOF) systems for optimal dynamic performance
based on the acceleration lines. Khatib and Bowling4

investigated the problem of manipulator design for increased
dynamic performance and used optimization techniques to
determine the design parameters, which improve manipulator
performance. Stocco et al.6 proposed a new global isotropy
index (GII) to quantify the configuration-independent
isotropy of a robot’s Jacobian or mass matrix and presented
a new discrete global optimization algorithm to optimize
either the GII or some local measure without placing
any condition on the objective function. Carretero et al.7

undertook architecture optimization of a 3-DOF parallel
mechanism and demonstrated that specific values of design
variables allow minimization of parasitic motion, i.e. motions
in the three unspecified motion coordinates while Rao
and Bhatti8 proposed a probabilistic approach to simulate
manipulator kinematic and dynamic performance in terms of
reliabilities.

Genetic algorithms (GAs) and its variants have been
extensively used in many fields such as controls, parameter
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identifications, modular robot design, planning, scheduling,
and image processing. However, application of evolutionary
techniques to determine optimal parameters of manipulator
for minimum performance variations is rare. Chocron and
Bidaud5 proposed a method for task-based design of modular
robotic systems using GA and introduced a 3D kinematic
description for modular serial manipulators and a two-level
GA to optimize their topology from task specifications.
Shiakolas et al.9 applied three evolutionary techniques
to optimize the required torque of robots for a defined
motion subject to different constraints. Tian and Collins10

studied the base placement problem for a 2-DOF robot and
described the feasible area for the robot base, and formulated
manipulability measure. Kim11 presented the method to
determine the kinematic parameters of 2-DOF manipulator
with a parallelogram five-bar link mechanism from a given
task, i.e. how to map a given task into the kinematic
parameters. Tabandeh et al.12 presented a GA for solving
the inverse kinematics of a serial robotic manipulator. The
algorithm was capable of finding multiple solutions of the
inverse kinematics through niching methods. Huang et al.13

presented a minimum-torque path planning scheme for space
manipulator and used GA to minimize the objective function.
He et al.14 presented mathematical methods for the placement
of serial robot manipulators with respect to pre-defined target
points in arc welding applications where robot is mounted
on a crossbeam and proposed adaptive genetic algorithm
to dynamically modify the parameters of GA in terms of
simulated annealing mechanism. Dolinsky et al.15 introduced
a new inverse static kinematic calibration technique based on
genetic programming, which is used to establish and identify
model structure and parameters. The technique identified the
true calibration model avoiding the problems of conventional
methods. Coello Coello et al.16 developed a technique that
combines GA and the weighted min–max multi-objective
optimization method for robot design. Han et al.17 developed
a modular manipulator and the method of task-based design.
They proposed two-step design algorithm which determines
robot configuration using kinematic relations and determines
link lengths using the proposed efficient GA. Later, Rout
et al.18 optimized the kinematic and dynamic parameters
of a manipulator using evolutionary optimization techniques
for optimal energy usage and subject to different physical
constraints. Rout and Mittal19 discussed a combined array
design of experiment approach to screen the statistically
significant parameters of manipulator.

In the direction of modular manipulator design, Khosla
and his coworkers at Carngie Mellon University and Chen
and his coworkers at Nanyang Technical University have
made significant progress. Paredis and Khosla opined that
the serial manipulators are not general-purpose manipulators.
They addressed the problem of mapping kinematic task
specifications into a kinematic manipulator configuration.
In this regard, an analytical solution is proposed which
determines the Denavit–Hartenberg (DH) parameters of a
nonredundant manipulator with joint limits that can reach
a set of specified positions/orientations in an environment
that may include parallelepiped-shaped obstacles. Paredis
and Khosla20 dealt with two important issues in relation
to modular reconfigurable manipulators, namely, the

determination of the modular assembly configuration
optimally suited to perform a specific task and the synthesis
of fault tolerant systems. Paredis et al. and Khosla21

developed a Reconfigurable Modular Manipulator System
(RMMS). These modules are assembled in a large number of
different configurations to tailor the kinematic and dynamic
properties of the manipulator to the task at hand. The control
software for the RMMS automatically adapts to the assembly
configuration by building kinematic and dynamic models
of the manipulator, which is very transparent to the user.
Paredis22,23 developed an agent-based implementation that
runs on a distributed network of workstations where its aim
was to speed up the search by increasing the computational
resources. They implemented a modified GA to run in
parallel according to a master slave message-passing model.
The most important contribution was the development of
the agent-based design framework for Task-Based Design
(TBD). In TBD all the components of a rapidly deployable
fault tolerant manipulator system are tied together. At later
stage, Yang and Chen24 introduced the optimization of
modular reconfigurable robot configurations for specific task
requirements. The Minimized Degree-of-Freedom problem
is formulated as a design optimization problem. Several
task-related kinematic performance measures are considered
as the design constraints. Based on the problem-specific
coding schemes, the evolutionary algorithm (EA) approach is
employed to search the optimal solutions. Chen25 suggested
that the design of a task-oriented robot configuration becomes
a discrete design optimization problem. A task-performance-
related objective function is formulated and employed
software agent concept to GA to determine the optimal
configuration. Later Chen26 described the development of
a component-based technology robot workcell that can be
rapidly configured to perform a specific manufacturing task.

Differential evolution (DE) Algorithm is a new
evolutionary approach, proposed by Storn27,28 to minimize
nonlinear and nondifferentiable continuous space functions.
Price and Storn29,30 presented a generalized algorithm on
DE to optimize variety of problems. Similar to GA, it has
been applied to various fields successfully. Recently Hacker
and Lewis31 discussed evolutionary-based techniques for
parameter design optimization. They optimized the systems
with multiple local optima and one or more uncertain design
parameters and presented an approach that utilizes both local
and global optimization algorithms to find good design points
more efficiently than either could alone. Bagchi32 proposed
multi-objective GA to uncover the dependency among the
key design factors and obtain robust performance.

From above discussion, it is evident that the techniques
to highlight designers’ and manufactures’ perspective in
manipulator design optimization process are rare. Therefore,
an evolutionary optimization approach is proposed. The
aim of this approach is to optimize the parameters in
such a way that it would be insensitive to the effects of
noises. To implement above philosophy, a modification in
existing evolutionary optimization approach is proposed.
In this approach, the evolutionary optimization technique
is combined with orthogonal array (OA) of the Taguchi
method to optimize the design parameters of manipulator.
The OA is a fractional factorial design used in design of
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experiments technique and assures a balanced comparison
of levels of any factor or interaction of factors.34 It
uses all the genetic operators of DE with modification in
‘cost function’ evaluation process. The cost function of
each population member is evaluated after incorporating
the effect of noises. To incorporate the effect of noises
in the population member, designated OA is embedded
in evolutionary technique. The designs created by OA
experiments are used to simulate the performances. The
simulated performances of designs are consolidated to
a “performance measure.” This “performance measure”
becomes the “cost function” of the population member.
Likewise, cost functions for other population members are
obtained. Subsequently, the population members are allowed
to participate in the evolution process. In this process,
improved designs are achieved in successive generations,
from a pool of candidate designs. This approach has been
illustrated by optimizing the parameters of 2-DOF RR planar
manipulator and 4-DOF SCARA manipulator while carrying
out a specified task, for optimum performance.

The remainder of this paper is organized as follows. In
Section 2, evolutionary optimization approach and proposed
modification is discussed. The worst-case approach to
simulate the performance of manipulator is discussed in
Section 3. Formulation for optimal design parameter of
manipulator is discussed in Section 4. Proposed approach
is illustrated in Section 5. Finally, the results are presented
and compared in Section 6.

2. Optimization Approaches
Many traditional search and optimization techniques are
available but these cannot be used to optimize the
parameters of manipulator for optimal performance. The
major disadvantages of conventional optimization techniques
are that they work using local information to decide which
point to explore next, ready-made objective function, and
good initial guess. This leads to the solution being trapped at
local optimum, which depends on the degree of nonlinearity.
However, population-based algorithms are found to have a
better global perspective than the conventional methods.40

Recently, Onwubolu and Babu40 compiled new techniques
and their applications to various disciplines of engineering
and management.

The evolutionary techniques available do not have features
to handle the effect of uncertainty on decision variables,
which cause variations in objective function. Hence, a simple
modification in existing evolutionary technique is proposed.
This modification has been implemented in DE evolutionary
optimization approach. To simplify the explanation, the
working principle of DE technique is discussed first in
Section 2.1 and proposed modification is discussed in Section
2.2. To present the computational superiority of the proposed
approach, its performance is compared with GA. DE and
GA are population based search and optimization methods
and hence the comparison between them is justified. By this
approach the optimal parameters of a product or process can
be obtained, which is insensitive to noises and deliver the
optimal performance.

2.1. Differential evolution technique
DE is increasingly applied to various search and optimization
problems in the recent past. The advantage of DE is its
simple structure, ease of use, speed, and robustness.17,18 DE
is a parallel search method that operates on D-dimensional
parameter vector. The number of vectors is equal to user-
defined population size. The initial population vectors are
chosen randomly. A cost function C is used to rate the
individual vector according to their capability to minimize
the objective function. The evolution process starts with
selection of a target vector. Then, it randomly selects two
other vectors and generates a difference vector, which is
multiplied with a user-defined weighting factor F to obtain
“weighted difference vector.” The weighted difference vector
and randomly chosen mutation vector are added to create a
noisy vector, which is subjected to crossover process with the
target vector to generate the trial vector. The cost function
of trial vector is then compared with the cost function of
original target vector. The vector having low cost function is
allowed into the new population. Same procedure is adopted
for the entire population member to get a next generation.
This process is continued until a termination criterion is
satisfied, i.e. desired number of generations/constraints. The
detailed algorithm for DE technique is discussed as follows:

2.1.1. Algorithm for differential evolution optimization
technique. A cost function C is used to rate the individual
vector according to their capability to minimize/maximize
the objective function f. The key parameters of control are
NP: the population size, CR: the crossover probability, F: the
weight factor (scaling factor), and D: the number of design
variables.

Step 1. Initialize the value of D, NP, CR, F, and number of
generation.

Step 2. Initialize all the vector population randomly for given
upper and lower limit.

Step 3. Evaluate the cost C of each vector.
Step 4. Perform mutation, crossover, selection, and evaluat-

ion of the objective function for a specified number
of generations.

(a) For each vector Xt (target vector), select three distinct
vectors Xa, Xb, and Xc randomly from a current
population other than vector Xt.

(b) Generate difference vector Xd = (Xa − Xb).
(c) Multiply weighted factor F to difference vector to

obtain “weighted difference vector,” i.e. F × Xd.

(d) Perform mutation by adding weighted difference
vectors to the third vector Xc to get noisy vector
Xn = F × (Xa − Xb) + Xc.

(e) Perform crossover with probability CR for each
target vector Xt with noisy vector Xn to create a
trial vector.

(f) Evaluate the cost C, if the trial vector is Xn else use
saved value of Xt.

(g) Perform selection for each target vector Xt by
comparing its cost function with that of the trial
vector. For minimization/maximization problem,
vector with lower/higher cost function is selected for
next generation.
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(h) Select the next target vector of the population;
repeat the steps 4(a)–4(g) NP times to obtain next
generation.

Step 5. Check for the termination criterion, stop, if it is sat-
isfied else, go to step 4, i.e. repeat the same procedure
for next generation.

To evaluate the computational effort spent in reaching the
optimal solution, a parameter called “number of function
evaluation” (NOF) is considered for a specified number
of generations. The NOF is determined by subjecting the
trial vector to the bound and constraint check. If the vector
succeeds, then it is sent for cost function evaluation and NOF
is incremented. The vector is rejected, if it fails.

2.2. Proposed differential evolution approach
From above discussion, it is quite clear that the population
member is evaluated once for cost function and suitable for
deterministic optimization problems. This paper focuses on
reduction of performance variations of a product caused by
uncertainty in design and process parameters and selection
of optimal design parameters. A modification in existing
approach is proposed and its implementation strategy is
discussed later.

To incorporate the effect of noises in performance,
probabilistic approach could have been used where the effects
of noise factors are assumed to follow particular probability
density functions. However, this approach considers the
effect of noise factors as uncertainties ranges (±Tx/2) in
place of probability distributions, where Tx is the tolerance
of design/process factor x. This deviation captures the worst-
case scenario around the nominal dimension of each factor.
Usually the tolerance of a factor is specified with the
nominal dimension. To incorporate the effect of noises, i.e.
tolerances, in design and process factors systematically OAs
proposed by Taguchi34 are selected and used. Selection of
a particular type of OA is dependent on the number of
design and process parameters for which the effect of noises
is required to be incorporated. Thus, any set of deviations
of design and process factors representing tolerances would
result in number of designs. The number of designs is
equal to the number of points present in an OA (hyper
rectangular design space), in place of single design. The
major advantage in use of OA is that it helps the evolutionary
technique to consider a fraction of the space around the
population member. This method is efficient as compared to
other stochastic optimization methods, which requires large
number of sample point to ensure high accuracy.

Orthogonal arrays are a special set of Latin squares,
constructed by Taguchi to lay out the product design
experiments. It is essentially a matrix of numbers (1s and 2s)
arranged in rows and columns, where each row represents the
level of the factors in each run, and each column represents
a specific parameter that can be changed in each run.23 The
numbers (1s/2s) in the row indicate the parameter level. The
columns of OA are orthogonal because the columns for the
independent parameters are orthogonal to one another and
parameter level occurs same number of times.

To explain the proposed approach, an arbitrary LN (2c) OA
is selected and shown in Table I, where, N, 2, and c represent

Table I. A LN (2c) orthogonal array.

Expt. No. Factor x1 Factor x2 . . . Factor xn

1 1 1 . 1
2 2 1 . 2
. . . . .
. . . . .
N 1 2 . 2

Table II. Candidate design and performance after incorporating
the effect of noise.

Expt. Performance
No. Factor x1 Factor x2 . . . Factor xn (yi)

1 x1 − Tx1/2 x2 − Tx2/2 . xn + Txn
/2 y1

2 x1 + Tx1/2 x2 − Tx2/2 . xn + Txn
/2 y2

. . . . . .

. . . . . .
N x1 + Tx1/2 x2 + Tx2/2 . xn + Txn

/2 yN

the number of experiments, the number of levels of each
factor, and the number of columns in the array, respectively.
The size of selected OA depends on the number of levels and
factors for which the effect of noise needs to be incorporated.
If a population member (vector) X with n independent design
and process factors is represented by X = [x1, x2, . . . , xn]
and the noise for these factors are expressed with the help of
tolerances, ±Tx1/2, ±Tx2/2, . . . , ±Txn

/2, then the design
and process factors with the effect of noise are represented
by several candidate designs. This set of N candidate designs
is shown in Table II. The 1s or 2s of a row in OA provide
the directions of deviation about the nominal dimension of
design and process parameters. Therefore, the corner points
of OA are at a distance of +Tx/2 or −Tx/2 from the nominal
dimension.

By this strategy, each candidate design produces a series
of performances, as opposed to single point design where
every population member delivers a particular performance.
Thus, each design has finite set of performance values.
This evaluation procedure provides worst-case scenario for
the determination of performance variations. The corner
points of the OA are evaluated for the performance (yi) and
consolidated to a performance measure using the set of yi s.
The performance measure becomes the cost function of the
population member and used in evolution process. Except
above procedure, all other steps of DE algorithm remain
same to obtain the next generation. In this way, the algorithm
directs the solutions to the optimal region. Flow chart for the
proposed modification is shown in Fig. 1.

3. Approach to Simulate the Performance
of Manipulator
In manipulator’s performance analysis, unknown variations
in material distribution, uncertainty in manufacturing and
assembly, friction, joint clearances, fluctuations in joint
torques, and uncertainty in boundary condition cause
variations in performance. As it is known that, the dynamic
model is highly coupled and nonlinear, simulation of
performance of a manipulator incorporating the effect of
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Fig. 1. Flow chart for the proposed evolutionary approach.

noise becomes difficult. Given the randomness of robot
parameters, models for their probability distributions are
needed. For the sake of conciseness, the variations of
the parameter are assumed to obey Gaussian distributions
with nonzero mean and nonidentical standard deviations.
Therefore, the variations in length and mass of the links
are assumed to follow the Gaussian distribution and standard
deviations are dependent on the specified tolerance for link
lengths and link masses.

Robot performing commanded task can be modeled as a
stochastic process which is driven by actuators, and when
the time interval between sample values of supplied torque is
small, the process becomes highly correlated over time. As
torque being supplied to manipulator joint is in time order
and highly correlated, the supplied torques by the actuators
are treated as random vectors. These vectors are assumed to
follow Gaussian stochastic process with Markov properties,7

in which the future values of a Markov process depend
only on immediate past or present but not all past events.
The strategy adopted to simulate the joint torque and its
description is available in ref. [19]. To determine the torque
required at the joints of the manipulator following approach
is used.

3.1. Simulation of joint torque for a trajectory
The torque required at joint of manipulator is determined
based on the type of trajectory chosen to perform the task.
For the manipulator a cubic trajectory is considered to carry
out the task. A smooth motion between initial and target
points, the functions q (t) and q̇ (t) have to be smooth,
where qi, qf are joint coordinates and q̇i = 0, q̇f = 0 are joint
velocities, respectively, and time to reach the destination is
Tg. The initial (i) and target (f) boundary conditions are

q (0) = qi, q
(
Tg

) = qf, q̇ (0) = 0, q̇
(
Tg

) = 0. (1)

Let qi and qf be the initial and target point values,
respectively. The time law of cubic trajectory is given38 by

q(t) = a0 + a1t + a2t
2 + a3t

3, (2)

where, a0, a1, a2, a3 are constants. The constants for each
of n joint variables are determined by applying boundary
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conditions to (2), the constants are obtained by

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

1 Tg T 2
g T 3

g

0 1 2Tg 3T 2
g

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

qi

q̇i

qf

q̇f

⎤
⎥⎥⎥⎥⎦ . (3)

Using above information, joint torque for a manipulator is
simulated. The fluctuation in supplied joint torque vector
τ (t) is assumed to follow Gaussian stochastic process with
Markov properties and simulated as a time series. The time
series is a sequence of observation taken sequentially over
time. These observations in a time series are regarded as
a sample realization from an infinite population of such
time series that could have been generated by the stochastic
process. The stochastic model, which can be used for
simulation of supplied joint torque vector, is the auto-
regressive process model. In this model, the current values
of the process are expressed as a finite, linear aggregate of
previous values of the process and a shock at .

3.2. Computation of manipulator performance
To simulate the performance of a manipulator inverse
dynamics and forward dynamics principles are used. Inverse
dynamics approach is used to determine the torque vector
τ (t) required at the manipulator joints. For the computation
of the torque vector, numerical values of manipulator design
parameters, Cartesian coordinates of start and destination
point, time to reach, and type of trajectory to reach the
destination are used. Then the effect of noise is incorporated
in design parameters and torque vector using method
discussed in Section 2.2. Using forward dynamics approach,
the dynamic model is integrated numerically. From this
numerical integration, the joint accelerations, velocities, and
positions, i.e. q(t), q̇(t), q̈(t) are computed. Finally, joint
coordinates q(t) are transformed, using the kinematic model,
to obtain the Cartesian coordinates and the orientation.
The Cartesian coordinates and orientations are used for the
computation of positional error (εi) and orientation error (νi)
at the destination while moving along a trajectory. These
results become the performance of manipulator with the
effect of noises.

3.3. Manipulator performance
For the optimization of design parameters of manipulator,
mean positional error (ε̄) and mean orientation error (ν̄)
are used as the performance measure. These measures are
computed using εi and νi , where εi is the vector distance
between the actual point (xia, yia, zia) reached by the end-
effector and desired point (xd, yd, zd) in ith experiment.19

Similarly, νi is the orientation error between the actual
orientation (φia, ϕia, ψia) reached by the end-effector and
desired orientation (φd, ϕd, ψd) of the ith experiment and
expressed by

νi =
√

(φd − φia)2 + (ϕd − ϕia)2 + (ψd − ψia)2. (4)

Mean positional and orientation error: Mean positional error
(ε̄) is already defined in ref. [19] and mean orientation error
(ν̄) is defined as

ν̄ = 1

N

N∑
i=1

νi, (5)

where N is the number of experiments conducted.

4. Formulation of Optimization Problem for
Parameters of Manipulator
One of the major challenges faced by the robot designers is
to select an optimal parameter, which delivers the desired
performance in presence of various uncertainties. Present
work discusses an approach to select optimal kinematic
and dynamic parameters of the manipulator with effect of
noises. The aim of the optimization problem is to find the
design parameters of manipulator that minimize the mean
positional error and mean orientation error at the destination
while moving along a particular trajectory. The performance
measures used for investigation are already discussed and
design parameter of manipulator for optimization process is
given by X = [x1, x2, . . . , xi, . . . , xn]T . The mathematical
form of the optimization problem is stated as

Find X = [x1, x2, . . . , xi, . . . , xn]T

to Minimize f (x) = ε̄ + ν̄ (6)

subject to xil ≤ xi ≤ xiu, (7)

where xil and xiu are the lower and the upper bounds of
the design parameters i. The value of i change from 1 to n.
The constraints on the joint limits or range of motion of the
manipulator are imposed and defined as

θj,min ≤ θj ≤ θj,max, (8)

where θj is the joint variable for joint j. It is assumed that the
required joint torque to perform the specified task is available
without any restriction.

4.1. Procedure for the optimization of design parameters
of manipulator
The objective function of problem, design parameters, and
constraints are identified. For the optimization, desired
start and destination points in Cartesian space and desired
orientation, time for the motion, and type of trajectory are
assumed. The effect of noises for the design and process
parameters are expressed in terms of tolerances, and control
parameter bounds are chosen.

The design parameters are randomly generated in DE
routine and values are checked for any constraint violation.
These parameters are sent for cost function evaluation, if they
do not violate the bounds. The cost function is obtained using
strategy discussed in Section 2.2. One function evaluation is
completed when one set of design variables is analyzed.

The OA suitable for the parameter optimization problem
is selected. It helps in incorporating the effect of noises in
design and process parameters to generate several design

https://doi.org/10.1017/S0263574709005700 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005700


Optimal design of manipulator parameter using evolutionary optimization techniques 387

Fig. 2. A 2-DOF RR planar manipulator and its parameters.

combinations. These design combinations are utilized to
simulate the performance, i.e. positional error and orientation
error, at the destination point. To simulate the performance
method discussed in Section 3 is used. In this way
performance of one design combination, i.e. one corner
point of OA, is evaluated. Likewise, other corner points of
OA are evaluated for performances. These performances are
consolidated to the defined performance measure, i.e. mean
positional error and mean orientation error. These measures
become the cost function for one population member.
Subsequently, all population members are evaluated for cost
function. Then the entire population members participate in
evolution process to reach the optimum value. This process
is repeated until the termination criterion is satisfied.

5. Optimization of Design Parameters of 2-DOF RR
Planar Manipulator and 4-DOF SCARA Manipulator
To illustrate the methodology, 2-DOF RR planar manipulator
and 4-DOF SCARA manipulator (shown in Figs. 2 and 3)
are considered. The purpose behind taking second example
is to show the robustness of the proposed method. As their
kinematic and dynamic models are used in optimization

process, brief descriptions of models are presented in
different sections. The manipulator models are based on the
DH parameters and the parameters are expressed in the SI
units and the angles are in degrees.

5.1. Kinematic and dynamic models of 2-DOF RR planar
manipulator
The kinematic model in terms of homogenous transformation
matrix 0T2 is available in ref. [19]. Based on Lagrange–
Euler formulation the dynamic behavior of joint i of the
manipulator with contributions of viscous friction is given
by26

τi =
∑

j

Mij q̈j +
∑

j

∑
k

hijkq̇j q̇k + Biq̇ + Gi, (9)

where Mij is the symmetric inertia matrix, hijk are the
centrifugal and Coriollis force coefficients, Gi is the gravity
force vector, τi is the joint torque vector, Bi is the viscous
coefficient of friction. Therefore joint torques τ1(t) and τ2(t)
of manipulator in generalized form are

τ1(t) = M11θ̈1 + M12θ̈2 + H1 + B1θ̇1 + G1 (10)

τ2(t) = M21θ̈1 + M22θ̈2 + H2 + B2θ̇2 + G2 (11)

where M11 =
(

1

3
m1l

2
1 + m2l

2
1 + 1

3
m2l

2
2 + m2l1l2C2

)

M12 =
(

1

3
m2l

2
2 + 1

2
m2l1l2C2

)
= M21, M22 =

(m2

3
l2
2

)

H1 = −m2l1l2S2θ̇1θ̇2 − m2

2
l1l2S2θ̇

2
2 , H2 = m2

2
l1l2S2θ̇

2
1

G1 =
(m1

2
+ m2

)
gl1C1 + m2

2
gl2C12, G2 = m2

2
gl2C12

Fig. 3. Link and joint coordinates of SCARA manipulator.
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and θ̇1, θ̇2, θ̈1, θ̈2 are velocities, accelerations of joints 1 and 2,
respectively. In addition, g is the acceleration due to gravity
in negative y-axis direction. It can be observed that there are
four parameters, i.e. l1 and l2, m1 and m2 for which optimal
parameters are desired. The joint coordinate is computed in
terms of link parameters and violations are checked. Using
inverse kinematics joint variables θ1 and θ2 are given by

θ1 = tan−1

[
y(l1 + l2C2) − xl2S2

x(l1 + l2C2) + yl2S2

]
. (12)

Assuming, D = (x2 + y2 − l2
1 − l2

2)/2l1l2, joint variable θ2

is obtained as

θ2 = tan−1

[√
1 − D2

D

]
. (13)

The objective function of the problem is specified in (6).
The constraints of the optimization problem remain same
as specified in (7) and (8) and no constraints are posed
on the torque required at the joints to perform the task.
This manipulator has limited orientation capabilities, hence
orientation error is not considered. Then, the objective is
to minimize the end-effector’s mean positional error (ε̄). To
compute ε̄, positional error (εi) is defined as

εi =
√

(xd − xia)2 + (yd − yia)2, (14)

where (xd, yd) are the coordinates of the desired point and
(xia, yia) the coordinates of actual point.

5.2. Kinematic and dynamic models of 4-DOF SCARA
manipulator
To obtain optimal design parameters of a 4-DOF SCARA
manipulator kinematic and dynamic models are derived. The
following relationships are formulated for the SCARA to
specify the corresponding cost function. Referring to Fig. 3,
the joint variables qi are constrained to lie in the joint
space work envelope; where β ≥ 0 is the physical constraint
imposed on joint 2, and h and H are the joint constraints on
the prismatic joint 3.36

⎡
⎢⎣

−π

−π + β

h

−π

⎤
⎥⎦ ≤

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

⎛
⎜⎝

q1

q2

q3

q4

⎞
⎟⎠ ≤

⎡
⎢⎣

π

−π − β

H

π

⎤
⎥⎦ .

(15)
Therefore, the locus of points p reachable by the tool tip
satisfies the following inequalities:

a2
1 + a2

2 − 2a1a2 cos β ≤ p2
1 + p2

2 ≤ (a1 + a2)2 (16)

d1 − d4 − H ≤ p3 ≤ d1 − d4 − h (17)

where p1, p2, p3 are the x, y, and z co-ordinates of the tool
tip and a1, a2, d1, and d4 are the link kinematic parameters.

ail ≤ ai ≤ aiu (18)

dil ≤ di ≤ diu (19)

Table III. Kinematic parameters of 4-DOF SCARA manipulator.

Axis θ d a α

1 q1 d1 a1 π

2 q2 0 a2 0
3 0 q3 0 0
4 q4 d4 0 0

mil ≤ mi ≤ miu (20)

where ail, dil mil and aiu, diu miu are the lower and the upper
bounds of the length and mass of link i, respectively. The link
and joint parameters according to DH algorithm are listed in
the Table III.

The tool position with respect to base is given by

0T4 =

⎡
⎢⎢⎢⎢⎣

C1−2−4 S1−2−4 0 a1C1 + a2C1−2

S1−2−4 −C1−2−4 0 a1S1 + a2S1−2

0 0 −1 d1 − q3 − d4

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (21)

where the notation C1−2−4 denotes Cos (q1 − q2 − q4) and
similarly, S1−2−4 denotes Sin (q1 − q2 − q4) . The vector
representation of dynamic model of SCARA manipulator
is given by

τ1 = M11q̈1 + M12q̈2 + M14q̈4 + H1 + B1q̇1 (22)

τ2 = M21q̈1 + M22q̈2 + M24q̈4 + H2 + B2q̇2 (23)

τ3 = M33q̈3 + B3q̇3 + G3 (24)

τ4 = M41q̈1 + M42q̈2 + M44q̈4 + B4q̇4 (25)

where Mij are the elements of 4 × 4 inertia matrix, Hi are
the Coriollis and centrifugal components, Gi are the elements
of gravity matrix, and Bi are the viscous friction coefficient
at the individual joint. Complete derivation of the dynamic
model is avoided to maintain brevity.

5.3. Forward dynamics and numerical integration
The closed-form solutions for above models are difficult
to obtain, the torque obtained from inverse dynamics is
integrated to compute the joint coordinates, velocities, and
accelerations with the effect of noises. In this paper, Euler
numerical integration method36 has been used, to obtain joint
angular accelerations, velocities, and positions. The torque
equation for the manipulator at the start point t = 0 is given
by

τ0 = M(q)q̈0 + h(q0, q̇0) + G(q0) + B(q̇0). (26)

The joint acceleration can be computed as

q̈0 = M−1(q0) [τ0 − h(q0, q̇0) − G(q0) − B(q̇0)] (27)

and future positions and velocities are obtained by integrating
Eq. (27) forward in time steps of size �t . Iteratively the
angular velocities and positions at the (i + 1) th instance are

https://doi.org/10.1017/S0263574709005700 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005700


Optimal design of manipulator parameter using evolutionary optimization techniques 389

Table IV. Manipulator task specifications.

Coordinates of Coordinates of Time to
start point destination point travel

Case (xi mm, yi mm) (xf mm, yf mm) (s)

(i) (650, 0) (400, 300) 2
(ii) (650, 50) (400, 300) 2

(iii) (650, 100) (400, 300) 2
(iv) (650, 50) (−400, 300) 2
(v) (650, 100) (−400, 300) 2

(vi) (400, 300) (650, 0) 2

obtained numerically using

q̇i+1 = q̇i + q̈i�t (28)

qi+1 = qi + q̇i�t + 1

2
q̈i+1(�t)2 (29)

For each iteration, Eqs. (27)–(29) are used to compute the
angular acceleration, velocity, and position, respectively.

6. Simulation and Discussion
The MATLAB software is used as the programming tool and
codes are written to implement the proposed evolutionary
optimization approach.

6.1. Selection of optimal parameters of 2-DOF RR planar
manipulator
To simulate the performance and optimize the parameters of
2-DOF RR planar manipulator following numerical values
are assumed. The effect of task on optimal parameters
is investigated using several cases and specifications are
provided in Table IV.

6.1.1. Assumed process parameters. Following process
parameters are assumed for the optimization:

(I) Weight parameter for first-order autoregressive process
(φ1) = 0.8

(II) Time step for numerical integration (�t) = 0.001s
(III) Values of viscous friction at joints, B1 and B2 are 3.5

and 2 Ns/m, respectively
(IV) Trajectories to perform the tasks are cubic time law
(V) Joint constraints are 0 ≤ θ1 ≤ π and 0 ≤ θ2 ≤ π

radian

The parameter bounds and tolerance ranges for design and
process parameters of manipulator are specified in Table V.
These values are kept same for all the tasks.

The control parameters of the proposed DE technique have
been selected by trial and error method. The parameters
for which optimal results are obtained with less NOF are
selected for the investigations. The values of parameters
are NP = 30, CR = 0.5, and F = 0.8. It is decided
to run the DE algorithm for 100 generations, by which
stochastic nature of performance will continually improve.
The manipulator has four parameters (lengths of the two
links and its corresponding masses). Correspondingly, for
these parameters there will be four noise factors. In addition

Table V. Upper and lower limits and tolerance of design and
process parameters.

Lower Upper
Parameters limit limit Tolerance

Lengths of link1 l1 (mm) 450 550 ±0.3
Lengths of link2 l2 (mm) 350 450 ±0.3
Mass of link1 m1 (kg) 6 10 ±0.015
Mass of link2 m2 (kg) 4 8 ±0.015
Torque at joint 1 τ1(t) (Nmm) Variable Variable ±50
Torque at joint 2 τ2(t) (Nmm) Variable Variable ±50

Table VI. L8 orthogonal array.

Column number

Experiment No. 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Table VII. Assumed population member values sent by DE.

l1 (mm) l2 (mm) m1 (kg) m2 (kg)

425 375 6 4

to above noise factors, fluctuation in joint torque is also
considered as a noise factor. Hence, there are six noise
parameters and two levels for each noise parameter, i.e.
(−Tx/2 and +Tx/2), will have 26 combinations. Simulation
of performance for 32 combinations is impractical and
computation expensive. Thus, the L8 orthogonal array
proposed by Taguchi34 has been selected, to reduce the
number of experiments and amount of computation. The
rational behind this selection is the number of parameters
for which the effect of noises needs to be incorporated to
simulate the performance. The L8 OA shown in Table VI
is a 27−3 fraction factorial design to study maximum of
seven parameters. This OA has been useful in studying
the effect of noises on performance due to six parameters.
From seven columns of OA, first six columns are allotted
to six design and process parameters, and last column is
left unassigned. The noises are deviations of the tolerance
value from nominal parameter value. These represent worst-
case tolerance deviations and satisfy the 3-sigma limits of
normal Monte Carlo variability. Each row of OA is a noise
combination that is treated as repetitive data for each member
of population.

The assumed noises of six design and process parameters
are specified in Table IV. To explain the use of OA in DE
approach, an example has been considered. The detailed
use of OA in DE has been provided in Tables VII and
VIII, respectively. A sample design parameter (population
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Table VIII. Combinations created from the population member values using OA.

Column number parameter

Expt. No. 1 l1 (mm) 2 l2 (mm) 3 m1 (kg) 4 m2 (kg) 5 τ1(t) (Nmm) 6 τ2(t) (Nmm)

1 424.7 374.7 5.985 3.985 −50 −50
2 424.7 374.7 5.985 4.015 +50 +50
3 424.7 375.3 6.015 3.985 −50 +50
4 424.7 375.3 6.015 4.015 +50 −50
5 4253 374.7 6.015 4.985 +50 −50
6 425.3 374.7 6.015 4.015 −50 +50
7 4253 375.3 5.985 3.985 +50 +50
8 425.3 375.3 5.985 4.015 −50 −50

Table IX. Optimal parameters from modified DE technique.

Link 1 length Link 2 length Link 1 mass Link 2 mass Mean positional Number of
Case l1 (mm) l2 (mm) m1 (kg) m2 (kg) error ε̄ (mm) function evaluations

(i) 500.6007 449.9971 9.977832 7.999904 2.85089 1790
(ii) 519.4249 449.98374 9.986784 7.999962 2.84476 1994

(iii) 547.97659 449.99262 9.997117 7.999872 2.83117 2011
(iv) 450.00103 350.06106 6.007054 7.99826 2.35964 1975
(v) 450.00299 350.09026 6.003299 7.994213 2.41807 2193

(vi) 450.2831 449.97079 9.929354 7.99912 2.62124 1959

member) value used for optimization is specified in Table VII.
In Table VIII, all the eight possible combinations are
generated for the four parameters l1, l2, m1, and m2. The
performance is simulated for each combination and mean
positional error is computed. Computed mean positional
error becomes the cost function of the population member
and participates in evolution process. The optimal results
obtained from this approach have been presented in Table IX.
In these tables, the optimal values of the design parameters,
the cost function value, and NOFs are presented. It is
observed that the approach consistently obtains smaller
function value with less function evaluations. The NOFs is
an indication of the computation effort spent in reaching the
optimum function value for the same number of generations.
In case of DE after the trail vector is computed each member
of the trail vector is subjected to bound check and only those
members who pass the bound check will have cost function
evaluation. Thus, the function evaluations of the members,
which fail the bound check, have been avoided and this results
in reduction of the number of function evaluations. The
objective function history for tasks following cubic trajectory
are shown in Fig. 4.

Simulated performance measure of the manipulator is the
indicator of worst-case performance. Hence, the result after
100 generations point to a region where the manipulator will
not deliver performance worse than what has been achieved.
It is observed that the worst-case performance is in a range
of 2.85–2.35 mm for the tasks (i)–(vi).

6.1.2. Optimal parameters of manipulator using modified
genetic algorithm. To compare the performance of above
approach same modification is implemented in GA. In this
case, evaluation of fitness function is carried out in discussed
manner. Rest of the steps remain same as discussed in

Deb.39 The control parameters are selected based on trial
and error method for which it provides optimal solution with
less computation and time. The value of control parameters
are chosen as: NP = 30, Cross over probability = 0.8
and mutation probability = 0.175. Using same parameter
bounds, noises, tasks, and numerical values, another
computer program is developed and simulations are run.
To compare the performance of GA, simulation is run for
100 generations. The results of this optimization process are
presented in Table X and function history of GA is presented
in Fig. 5 for manipulator performing different tasks.

In Fig. 5, the objective function value decreases with
slight fluctuation at the start and the end. In all these cases,
objective function value reduces monotonically. After 100
generations, the mean positional error value ranges from
3.236 to 2.525mm for the tasks (i)–(vi). Finally, from Fig. 4,
monotonic decrease in objective function value is observed
but this is not the case for GA. It is observed that the objective
function value of DE converged by 80th generations whereas
it converged slowly for GA. In case of DE, NOFs required
for convergence are less whereas GA required fixed 3030
NOFs to obtain the optimal solution. It lead to reduction in
computation time. Computational time saving is one of the
important outcomes of the above investigation. This result
became evident when optimal parameters of 4-DOF SCARA
manipulator are found out.

6.2. Selection of optimal parameters of 4-DOF SCARA
manipulator
To investigate the effectiveness of the proposed method,
desired modifications are made in the computer program
to select the optimal parameters of SCARA manipulator.
Performance of the proposed DE method is compared
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Table X. Optimal parameters from modified GA.

Link 1 length Link 2 length Link 1 mass Link 2 mass Mean positional Number of
Case l1 (mm) l2 (mm) m1 (kg) m2 (kg) error ε̄ (mm) function evaluations

(i) 500.90856 448.94164 7.706868 7.627576 2.98985 3030
(ii) 474.13563 447.41994 9.953008 7.720614 2.99325 3030

(iii) 543.46479 431.60096 6.322149 7.602735 3.09823 3030
(iv) 452.34867 360.78641 7.03435 7.697754 2.49708 3030
(v) 531.86493 430.93319 9.415876 7.70108 3.03738 3030

(vi) 529.85308 429.91547 7.672331 4.650942 2.73784 3030

with the performance of GA. The effects of task on
optimal parameters are investigated using several cases
and its specifications are provided in Table XI. In this
table W0, W1 are tool configuration at the start and
destination, respectively. To simulate the performance,

following numerical values are assumed and provided in
Table XII. The constraint values for the design variables,
the link lengths, and mass parameters are defined to be the
same for both the optimization approaches. The tolerance
range for design and process parameters are assumed and

Fig. 4. Function history for modified DE technique.

Fig. 5. Function history with modified GA.
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Table XI. Task specifications for 4-DOF SCARA manipulator.

Tool configuration Tool configuration Motion
Task at the start at the destination time (s)

Task 1 2

W0 =

⎡
⎢⎢⎢⎢⎢⎣

600
0

580
0
0
1

⎤
⎥⎥⎥⎥⎥⎦ W1 =

⎡
⎢⎢⎢⎢⎢⎣

550
325
550

0
0

1.3243

⎤
⎥⎥⎥⎥⎥⎦

Task 2 2

W0 =

⎡
⎢⎢⎢⎢⎢⎣

700
0

600
0
0
1

⎤
⎥⎥⎥⎥⎥⎦ W1 =

⎡
⎢⎢⎢⎢⎢⎣

550
325
560

0
0

1.3243

⎤
⎥⎥⎥⎥⎥⎦

Task 3 2

W0 =

⎡
⎢⎢⎢⎢⎢⎣

560
555
600

0
0
1

⎤
⎥⎥⎥⎥⎥⎦ W1 =

⎡
⎢⎢⎢⎢⎢⎣

520
325
590

0
0

1.3243

⎤
⎥⎥⎥⎥⎥⎦

given in Table XIII. Control parameters for the optimization
process are selected by trial and error method for which
NOF is lowest. For DE algorithm the control parameters
are Number of generations = 100, NP = 30, CR =
0.5, and F = 0.8. The control parameters for GA are:
Population size = 40, Number of generations = 100,
Crossover probability = 0.8, and Mutation probability =
0.175. These values are used in the respective optimization
processes and simulations are run.

There are 12 design and process parameters for SCARA
manipulator and two levels for each noise parameter will
result in 212 combinations. To reduce computation and
incorporate the effect of noises in all these parameters,
suitable OA has been selected. It is observed that the L16

OA proposed by Taguchi fulfills the requirement.34 This OA
has 15 columns and 16 rows and presented in Table XIV. First

Table XII. Constraints for optimization in DE and GA.

Link length Link mass Joint
parameter (mm) parameter (kg) ranges

420 ≤ a1 ≤ 430
370 ≤ a2 ≤ 380
872 ≤ d1 ≤ 882
195 ≤ d4 ≤ 205

8 ≤ m1 ≤ 22
13 ≤ m2 ≤ 17
8 ≤ m3 ≤ 12
3 ≤ m4 ≤ 7

−π + 15 ≤ q2 ≤ π − 15
15 ≤ d3 ≤ 180

Table XIII. Tolerance for design and process parameters.

Tolerance of link
Tolerance of link lengths and joint Tolerance of supplied
masses m1,m2, offsets a1, a2, d1 torque τ1(t), τ2(t),
m3 and m4 and d4 τ3(t) and τ4(t)

±0.015 kg ±0.3 mm ±50 Nmm

12 columns of this OA are assigned to design and process
parameters and remaining columns are left unassigned. The
procedures adopted to incorporate the effect of noises are
already discussed in Section 2.2 and a representative example
is also presented for 2-DOF RR manipulator. The results
of the optimization process utilizing the two evolutionary
techniques are presented in Tables XV and XVI. In these
tables, the values of the design variables, the objective
function value, and number of function evaluations for each
technique are presented. It is observed that the DE algorithm
converges to optimal value by 85 generations, whereas
GA converged very slowly in two cases. DE approach
consistently obtains smaller function values with smaller
number of function evaluations and generations compared
to GA. The objective function history for each case is shown
in Figs. 6 and 7.

The number of function evaluations is an indication of
the computational effort to reach the optimum value for the
same number of generations. It is observed that the cost
function for DE reduces in a monotonic fashion. Possible
reasons for the computational saving can be attributed to the

Fig. 6. Function history with modified DE.
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Table XIV. L16 orthogonal array.

Column no.

Experiment no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1
5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1
7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1
8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2
9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1
11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2
15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2
16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

Table XV. Optimal parameters of 4-DOF SCARA manipulator using modified DE.

Mean
Tasks a1 (mm) a2 (mm) d1 (mm) d4 (mm) m1 (kg) m2 (kg) m3 (kg) m4 (kg) performance NOF

Task 1 425.237251 378.517724 881.049511 200.3349 18.85535 14.29462 11.99494 6.867591 5.337672 1845
Task 2 425.2373 378.5177 881.0495 200.3349 18.85535 14.29462 11.99494 6.867591 5.474955 1617
Task 3 426.6888 371.2306 873.3842 195.3365 20.95148 16.88338 11.96033 6.917716 5.271751 1678

Table XVI. Optimal parameters of SCARA using modified GA.

Mean
Tasks a1 (mm) a2 (mm) d1 (mm) d4 (mm) m1 (kg) m2 (kg) m3 (kg) m4 (kg) performance NOF

Task 1 426.0661 372.2595 875.2899 198.0456 18.25867 16.4518 11.82267 6.845226 5.410652 4040
Task 2 426.252 377.4075 872.0849 195.0988 19.37171 13.21991 11.17549 6.679829 5.97753 4040
Task 3 423.0654 379.8969 876.1713 195.4028 18.89455 14.45755 11.93294 6.883373 5.344304 4040

Fig. 7. Function history with modified GA.
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strategy of evolution in DE. Focus of the present investigation
is to reduce the performance variations by proper selection
of design parameters. It is observed that the optimal design
parameters are different for different tasks. As an industrial
manipulator is desired to perform several tasks, therefore,
design of a manipulator to deliver optimal performance in all
types of task will be difficult. One of the possibilities will be
to design the manipulator for worst-case situation.

7. Conclusion
This paper discusses a systematic methodology for selection
of kinematic and dynamic parameters, i.e. link lengths
and masses, of manipulator, while performing a task. An
evolutionary optimization approach has been proposed which
couples DE optimization techniques with OA of the Taguchi
method to incorporate the effect of noises in optimization
process. The performance of proposed approach is compared
with the performance of GA with similar modifications.
To illustrate the method, parameters of a 2-DOF RR
planar manipulator and a 4-DOF SCARA manipulator are
considered. The objective is to minimize mean positional
and orientation error of manipulator subject to different
constraints. In this optimization process, the kinematic
and dynamic models of the manipulators are used. The
results indicate that the DE converges quickly with less
number of generations and function evaluations. Hence, fast
performance of DE indicates that this approach can be a
viable optimization technique. Proposed approach is suitable
for optimal product parameter design with effect of design
and process parameter noises.
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