
GA shearing stiffness
GJ warping stiffness
J Jacobian
K, A structural, aerodynamic sti  ness matrix
l0 undeformed beam element length
lw wake length
L lift, wing segment length
Mf,s,t folding, shearing, twisting actuation moment
Ma aerodynamic moment
n normal vector
p degree-of-freedom vector
pα augmented degree-of-freedom vector
q dynamic pressure
R residual vector
ℜ rotation matrix
s aerodynamic panel vector
T co-ordinate frame orientation
u global displacements
ū local beam elongation
U strain energy
V∞ undisturbed flow direction 
wi induced velocity
W aircraft weight
xc collocation point
xqc quarter chord location
xtqc three-quarter chord location
xte trailing edge location
xn, xp structural, aerodynamic nodes

ABSTRACT

A nonlinear aeroelastic model capable of assessing arbitrary
morphing manoeuvres and calculating the associated morphing
energy requirement is presented in this paper. The aeroelastic model
consists of a close coupling between a corotational beam element,
accounting for geometric nonlinearities, and a Weissinger method
aerodynamic model, containing the Prandtl-Glauert correction for
high-subsonic Mach numbers. The morphing deformations are
discretised into three distinct morphing modes; fold morphing, twist
morphing, and shear morphing, because of which virtually any
morphed shape can be achieved, given a proper distribution of the
three modes over the wing. The proposed aeroelastic morphing
framework is used to design morphing winglets, and it has been
shown that morphing winglets can improve the performance of fixed
winglets significantly for regional airliners.

NOMENCLATURE

aij aerodynamic influence coefficient
B transformation matrix
c deformed chord direction
c0 undeformed chord direction
C constitutive matrix
CD;v viscous drag coecient
CL lift coefficient
Di induced drag
Ef,s,t folding, shearing, twisting actuation energy
f, fa structural, aerodynamic force vector
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Lisbon, Portugal in December 2008(10).
This paper describes a nonlinear aeroelastic model which can

calculate morphing deformations of arbitrary planform wings. The
morphing deformations are discretised in three distinct morphing
modes; wing folding, wing twisting, and wing shearing. With the
combination of arbitrary combinations of these three mechanisms,
and their distribution over the wing, virtually any morphed wing
shape is attainable. The actuator energy consumption associated with
the morphing deformations is evaluated as well, including
aeroelastic effects. The aeroelastic model consists of a close
coupling between a nonlinear beam model, using a corotational
approach, and high-subsonic aerodynamics, modelled by the
Weissinger method which is corrected using the Prandtl-Glauert
correction. Using this aeroelastic analysis code, a morphing winglet,
which is retrofitted to a regional airliner, is optimised to minimise
the wing drag over an entire flight.

The paper is structured as follows. First the morphing wing
problem formulation is given, which describes the morphing wing
discretisation, and the relevant co-ordinate frames. Next, the
nonlinear beam element model is described, followed by the aerody-
namic model. The next section elucidates the way both the structural
and aerodynamic model are coupled to obtain the aeroelastic
solution. Then the mathematical details are given on how the
morphing mechanisms are embedded into the aeroelastic solution
procedure. This is followed by the results section showing the
optimal configuration of the morphing winglet and compare its
merits to a fixed winglet equipped wing. Finally an overview of the
paper is given, and pertinent conclusions are drawn.

2.0 PROBLEM FORMULATION

The wing is divided into wing segments which have actuators
between the two end-ribs of the segment, called intra-rib mecha-
nisms, and actuators between two end-ribs of two adjacent wing
segments, called inter-rib mechanisms. A detailed description of the
morphing wing discretisation method can be found in De Breuker et
al (2011)(11). Arbitrary changes in wing shape are decomposed into
three distinct deformation modes; (1) wing folding, (2) wing
twisting, and (3) wing shearing, see Fig. 1. Twisting and shearing are
intra-rib modes and folding is an inter-rib mode. A short description
of these deformation modes follows:

1. Wing folding: the two end-ribs of two adjacent wing segments
can rotate with respect to each other around an axis which is
aligned the chord. This morphing concept is applied in the
Lockheed Folding Wing Concept(12). Also the Hyper-elliptic
Cambered Span (HECS) aircraft is an example of fold
morphing(13), as well as the work carried out at the University of
Bristol on folding winglets(14).

2. Wing twisting: a relative rotation around the segment axis is
prescribed. This morphing concept is investigated by many
researchers(15-17).

3. Wing shearing: wing shearing is realised by moving the two
end-ribs of a wing segment parallel to each other in the
direction of the chord. In this fashion, the wing centre line
shows a change in sweep. This concept has been investigated
by multiple researchers(18-20).

Virtually any wing shape is attainable by an appropriate combination
of prescribed folding, twisting, and shearing angles, while
maintaining the continuity of the wing surface.

In order to analyse the morphing of wings. an appropriate model
should include four important phenomena; large morphing deforma-
tions, aeroelasticity, structural straining during morphing, and the
required actuator energy for the morphing manoeuvre. Aerodynamic
loads change significantly due to the large deformations of the

Greek symbols

α angle-of-attack
Γ vortex strength per unit length
ε strain vector
θ global rotation
θf folding angle
λ load parameter
ξ nondimensional co-ordinate
ρ air density
φt twisting angle 
{φ;θ;ψ} local nodal rotations
ψs shearing angle

Subscript/Superscript

l local
g global
m master
r rigid, root
s slave
t transpose

Co-ordinate frames

Tb = [E1 E2 E3] inertial frame
Tg = [e1

b e2
b e3

b] body-fixed frame
Tr = [e1 e2 e3] rigid element frame
Ta = [el em eα] aerodynamic frame
T0 = [e1

0 e2
0 e3

0] initial orientation frame
Ti = [t1

i t2
i t3

i] elastic frame

1.0 INTRODUCTION

Morphing of an aerospace structure is the radical change in shape of
that structure. The aim of such large shape changes is to allow the
aircraft to fly optimally in contradictory flight conditions. For
instance a commercial airliner faces different flight conditions
during its flight; flying slowly at high-lift during a holding
manoeuvre, or flying at high speed during the cruise phase. A
morphing outboard section of the wing could facilitate the aircraft to
fly at the lowest possible drag for both flight conditions. In the
broadest sense of the term, morphing aircraft have existed ever since
the dawn of aviation, because in 1895, Otto Lilienthal, the father of
modern aviation(1), developed his Vorflügelapparat, a glider which
had an adaptive leading edge, and hence could actively change the
camber line of the wing, as was stated during a presentation at the
AIAA SDM conference 2010(2).

Co-ordinated research to morphing aircraft structures started in
the last decade of the previous century by the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research
Laboratory (AFRL), and NASA, and was extended to well into the
first decade of this century(3-5). The focus was mainly on application
of smart materials to aircraft structures and development of multi-
role combat aircraft. Ever since the start of the abovementioned
initiative, the number of morphing wing research efforts has
increased, and morphing is still under intensive research today(6).
Dedicated tools have been developed to analyse and design
morphing aircraft as well(7,8,9). Usually, these tools make use of
commercially available analysis software packages and couple them
loosely. This can cause the analysis to be slow, and it is more
difficult to assess the structural, aerodynamic, and actuator effects,
and their interaction. Therefore “there is a need for a fast and
integrated analysis tool which can model arbitrary shape changes of
a morphing wing.” These are in fact the very words of Anna-Maria
McGowan, program manager of the Morphing Program, during a
presentation at a morphing aircraft workshop at IST, University of
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the morphing deformations. The morphing can be considered as a series
of static snapshots. It is important, however, to check the dynamic
aeroelastic stability of each of these snapshots to prevent phenomena
such as flutter from happening during the slow morphing.

Some other dynamic aspects may not be as amenable to such a
solution, for example making an assessment of the energy consumed
by the morphing actuators. This is an inherent dynamic effect and it
requires the modelling of the wing mass distribution. Nonetheless,
the static results of the model should produce an order of magnitude
estimate of morphing energy consumption.

3.2 Structural and aerodynamic model

The use of a beam model to model aeroelastic deformations limits
the accuracy of the model, however, the prediction of deformations
is suciently accurate for slender wings(21). The model is not used for
detailed sizing of the wing, and the aerodynamic model is naturally
restricted to high-subsonic Mach numbers and for aspect ratios of no
less than four. Transonic effects, shocks and separation, are not
included. Since the model is trimmed to a given load factor, the
model needs only to predict load distribution with sucient accuracy.
The trimming analysis is done for a wing rather than for a total
aircraft configuration. This affects the value of the trimmed angle-of-
attack, but the trends predicted should be helpful to designers.

The weight of the wing is excluded from the static aeroelastic
analysis. There is no inertia relief which means that the occurring
root-bending-moment and deformations of the wing are overesti-
mated. For conventional aircraft, which are considered in this paper,
the weight of the wing is relatively small as compared to the total
weight of the aircraft. Therefore, the lift on the wing in trimmed
condition is significantly larger than the weight of the wing, because
of which the effects of inertia relief on the static analysis of the
morphing wing are expected to be minor.

The static aeroelastic model is applied to the design of a morphing
wing excluding the presence of a fuselage and tail of the aircraft.
The morphing wing is assumed to be clamped to a fixed point at its
root. The implications of these assumptions is that the effects of
flight dynamics are not included and that a trimmed condition of the
wing means that the force equilibrium between the aerodynamic
forces generated by the wing and the aircraft weight is ensured, but
no overall aircraft moment equilibrium.

4.0 STRUCTURAL MODEL

The morphing wing is modelled using beam elements. The type of
beam element used is a shear-flexible element which allows for the
use of anisotropic materials. The structural model accounts for large
displacements and rotations. The latter ones are complex due to their
nonvectorial nature(22).

A corotational framework is used to account for the large defor-
mations. Using the corotational approach, the elastic beam deforma-
tions are solved in the local element frame, which moves rigidly
along with the element displacements and rotations(23-25) in a global
frame. If the elastic deformations are small, one can suce with a
linear local beam element. The use of the corotational framework
makes the beam model geometrically nonlinear, which means that
the beam stiffens when exhibited to large deformations. This causes
the large deformations to become smaller when compared to linear
analysis results.

The reason for using a shear flexible element stems from aeroelas-
ticity, which requires the knowledge of the location of the shear
centre of the cross-section. If the cross-sectional properties of the
beam change, the shear centre would move as well. In case of a
Timoshenko beam element, this is not an issue, since the coupling
between shear and torsion of the beam, in case the stiffness matrix is
calculated around a reference point di  erent from the shear centre, is
taken care of automatically.

morphing, hence aeroelasticity needs to be taken into account.
Furthermore the aerodynamic loads and their change during the
morphing affect actuator energy requirements and structural
straining.

A corotational structural model is chosen which uses a linear
beam element able to model composite wing cross-sections. The
aerodynamics are modelled using Weissinger’s method including the
Prandtl-Glauert correction for high-subsonic flows. The structural
and aerodynamic models are closely coupled, and the nonlinear
aeroelastic equilibrium equations are solved using the Newton-
Raphson iteration technique. Due to the nature of this model, four
co-ordinate frames need to be constructed; (i) an element frame
connected to each wing segment, (ii) a body-fixed coordinate frame
in which all the wing segment deformations — sum of the elastic
and rigid body deformations — are assembled, (iii) an aerodynamic
frame in which the aerodynamic properties are calculated, and (iv)
an inertial frame in which the morphing wing is free to ‘fly‘. In this
frame, gravity is oriented in the negative E3-direction. The co-
ordinate frames are shown in Fig. 2.

3.0 LIMITATIONS OF THE MODEL

The use of a low-fidelity static aeroelastic model is well-suited for
fast analysis and for quick sizing a morphing wing, however, when
interpreting the results, one should always take the assumptions of
such a model into consideration when interpreting the results.
Therefore a discussion on the limitations of the model is in order.

3.1 Dynamic aeroelasticity

This model consists of a static coupling between a nonlinear beam
model and a Weissinger method aerodynamic model; therefore
dynamic effects were not considered. This excludes important
aeroelastic effects from the design considerations such as the effect
of gust and flutter. In the case of gust load, and for preliminary
design purposes for which the approach was designed, applying an
appropriate load factor, e.g. taken from airworthiness manuals, to the
static load cases is sufficient.

Using a static approach to model a morphing wing inherently assumes
that the morphing is slow, i.e. no dynamic effects are to be expected from
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Figure 1. Wing morphing mechanisms 
(dashed line shows original straight configuration).

Figure 2. The four main co-ordinate frames of the morphing wing model.
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4.1 Local element formulation

The local element is a linear shear-flexible Timoshenko element,
which allows the use of anisotropic materials. The beam strain
energy U is calculated to be(26),

U = 

where ε is the strain vector, C is the constitutive matrix, which is
interpolated linearly over the element, ξ is the nondimensional co-
ordinate, and l0 is the beam undeformed element length.

The local element equilibrium equation can be written as,

Klpl = fl . . . (2)

where Kl is the local stiffness matrix. fl is the local force vector
associated with the local degrees-of-freedom (DOF) pl  . 

4.2 Corotational framework

The method which is used to link the force vector and stiffness
matrix expressed in the local element frame to those expressed in the
body-fixed frame, also referred to as global frame, is adopted from
Battini and Pacoste(25). For each beam element, the global DOF
vectors looks like, 

where vectors u are the global displacements and θ are the pseudo-
vectors of the global nodal rotations. The relative positions of the
global and local co-ordinate frames are depicted in Fig. 3.

In this figure it is shown that there are in total five co-ordinate
systems. Two of them are already known from Fig. 2, namely the
body-fixed or global co-ordinate frame Tb, and the rigid element
frame Tr. The other two are the element initial orientation frame T0,
which indicates the initial orientation of the element in the global co-
ordinate frame, and the elastic beam node triads Ti which define the
orientation of the local beam nodal cross-sections.

The relation between the global and local force vectors and sti
ness matrices is defined by Battini(25) as,

f = Btfl . . . (4)

where the colon indicates a contraction, and transformation matrix
B, which is an explicit function of p, can be found in Battini and

Pacoste(25). Transformations of the displacements from the local to
the global framework is a matter of redefining the nodal positions of
the beam element in the other co-ordinate frame, and the relation
between the global and local rotations is obtained by looking at the
orientation of the nodal cross-sections in Fig. 3,

5.0 AERODYNAMIC MODEL

A high-subsonic flow of a slender high aspect ratio wing can be
solved using theWeissinger(27) method to which a Prandtl-Glauert
correction is applied(28). The latter correction scales the chordwise
co-ordinate with a factor                  , where M is the Mach number
of the undisturbed flow. The vortex distribution over the wing is
discretised into a number of horseshoe vortices. This type of vortex
consists of a bound vortex, which is located on the quarter-chord line
of the wing (xqc), and trailing vortices, which extend downstream to
infinity, hence forming a horseshoe.

To account for large angles-of-attack, the trailing vortices are split
up into a part on the wing in the direction of the wing chord, and a
part extending from the wing trailing edge in the direction of the free
stream. This can be inspected in Fig 4.

In the special horseshoe case, adapted for large angles-of-attack,
each horseshoe vortex consists of six points, two at infinity, two at
the trailing edge (xte), and two at the quarter-chord line. The panel
co-ordinate points xp of each horseshoe vortex are derived from the
beam nodal locations xn as follows,

where lw is the length of the wing wake, α is the angle-of-attack, and
c is the direction of the chord in the deformed configuration, 

where c0 is the undeformed initial chord direction and ℜg is shown in
Fig. 3.

The unknown vortex distribution is solved using Weissinger’s
method by requiring the flow normal to the wing to be equal to zero.
This requirement is fulfilled in the collocation point at the three
quarter chord point (xtqc), see Fig. 4. The positions of the collocation
point xc are calculated as,
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Figure 3. Relative position of the local and global co-ordinate frames.

Figure 4. Aerodynamic discretisation of the wing and aerofoil.
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enforced, an additional equilibrium equation is added to the system,
namely that the total vertical aerodynamic force is equal to the
aircraft weight, yielding the following system to be solved,

where W is the total weight of the aircraft, and Rr are the reaction
forces at the root of the wing.

Vector er
l is the direction of the lift force at the root of the wing,

expressed as,

er
l = {–Sinα 0 Cosα}t . . .  (17)

In case trimming of the aircraft is required, the angle-of-attack
becomes a degree-of-freedom as well, since it is not known a priori.
Therefore the DOF vector p is augmented to pα = {pt α}t.

In order to solve the nonlinear aeroelastic system, the Newton-
Raphson method is employed(33). This is a root-finding algorithm
based on Taylor series expansions. Since the system is highly
nonlinear, it is not possible to solve the equilibrium equation at a
given flight speed in one step. Therefore the intended flight speed is
divided in steps, controlled by the parameter λ ranging from 0 to 1.
Every time λ is advanced to the next velocity level, a converged set
of degrees-of-freedom p needs to be found. A prediction of the
aeroelastic deformation pα for increasing λ can  be obtained by
expanding Equation (16) around an equilibrium point pα,0,

where ,                 and R0 is the residual force vector evaluated

at pα,0. The variation of p is indicated with a δ. The prediction of the
aeroelastic deformation is now, 

pα = pα,0 + δpα . . . (19)

This prediction now needs to be corrected following a similar strategy
as described above, but while keeping λ constant. The above
derivation also holds for non-trimmed configurations, but in that case,
all derivatives with respect to α are equal to zero, and there is no
requirement that the wing lift should be equal to the aircraft weight.

7.0 MORPHING MECHANISMS

The morphing deformations of the wing are obtained by using three
distinct morphing modes, as described in Section 2. The implemen-
tation of each of these modes into the aeroelastic solution procedure,
described in Section 6, is given in detail in this section.

7.1 Fold morphing

The morphing wing is modelled as a beam. At the locations where
the wing is allowed to fold, each node is replaced by two colocated
nodes, which transfer the structural displacements, but not the
rotations. The rotational stiffness is provided by springs, which
mimic the folding actuator stiffness. One of the nodes’ rotations are
dependent on the rotations of the other colocated node. The
dependent node is called the slave node (referenced using a super-
script s), and the independent one is the master node (referenced
using a superscript m).

In order to ensure continuity of the wing surface, the relative folding
rotation θf between two wing segments must take place around the rib
axis c connecting those two wing elements. Vector c rotates along with
the aeroelastic deformations, so from a mathematical point-of-view it is
more convenient to express the relative rotation θf around the

The normal velocity in the collocation point of a horseshoe vortex
consists of two parts; the induced velocity caused by the vortex
distribution over the wing (the influence of vortex Γj on collocation
point i is influence coecient aij), and the normal velocity component
of the undisturbed flow velocity V∞. Equating both yields the
governing equation of the unknown vortex distribution, 

aijΓj = –V∞ 
.ni . . . (10)

where ni is the normal vector of the ith horseshoe vector.
The solution of this equation results in the unknown vortex distri-

bution over the wing span. This vortex distribution is a measure for
the lift distribution. The lifting force on the ith aerodynamic panel is
expressed, following the Kutta-Joukowski theorem(29,30), as,

where ρ is the air density, and ||s|| is the length of the projection of
the bound vortex of the quarter-chord line on the Trefftz plane(27,30,31).

The induced drag is calculated using a Trefftz plane analysis. This
type of analysis basically derives the force in flow direction by
looking at the momentum change over a control volume, containing
the wing, which is closed by the Trefftz plane. The induced drag on
aerodynamic panel i becomes,

where wi,i is the induced velocity on panel i generated by all the
trailing vortices of the wing.

Since Weissinger method is an inviscid aerodynamic theory, no
viscous drag can be calculated directly. However this drag contri-
bution is important because of which an estimate of the viscous drag
coecient CD,v can be made, based on for instance aerodynamic results
for NACA aerofoils(32), as,

where coefficients C1 and C2 are characteristic for a particular
aerofoil, and CL is the lift coefficient.

The aerodynamic moment Ma is is calculated as the multiplication
of the normal component of the lifting force and the distance
between the aerodynamic centre and the reference point in the cross-
section around which the constitutive matrix is calculated,

where el is the direction in which the lift acts, see Fig. 2.
The lift force, the total drag and aerodynamic moment are now used

to calculate the aerodynamic force vector fa by decomposing the scalar
quantities derived above into their appropriate directions of the aerody-
namic frame, which is shown in Fig. 2, and assigning them to the appro-
priate degrees-of-freedom in the vector. Differentiating each individual
component of vector fa with respect to the global elements of degree-of-
freedom vector p yields the aerodynamic stiffness matrix A.

6.0 STATIC AEROELASTIC SOLUTION

The aeroelastic solution is obtained by equilibrating the internal
forces, f, and the external aerodynamic forces fa. The following
equation is then to be solved, 

f(p) = fa(p, q, α); . . . (15)

where q is the dynamic pressure. In case the trimming condition is
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An additional moment requirement can come from the fact that skin
spanning the wing segment shears and possesses a shear stiffness
GA. In this case, a linear relation between the shearing moment and
the shearing angle ψs is assumed, which leads to the updated
equation for the required shearing moment,

The energy Es associated with the shearing deformation becomes,

7.3 Twist morphing

A morphing twist angle φt is obtained by imposing this twisting
differential rotation on the local element rotations around the
element e1 axis. This is done in the following fashion,

where ū is the beam axial elongation and φ, θ and ψ are the local 
nodal rotations. This approach makes sure that the beam element
needs to twist around its own axis, which results in a set of rotations
at both nodes of which the difference is exactly the imposed twisting
angle. These rotations are obtained without straining the element, so
in the absence of external loads, this twisting angle is obtained in a
force-free way. The associated twisting moment is obtained by di
erentiating the strain energy in the element by the twisting angle φt,

An additional moment requirement can come from the fact that the
wing segment is restrained to warp. In this case, a linear relation
between the twisting moment and the twisting angle φt is assumed,
which leads to the updated equation for the required twisting
moment,

where GJ is only nonzero if a warping restraint is present(17). The
twisting energy Et associated with the morphing manoeuvre becomes
the integral of the moment, which changes with changing twisting
angle, over the twisting angle range,

undeformed chord c0, and apply the aeroelastic deformation afterwards.
A rotation θf around c0 can be written as the rotation matrix ℜf or in
pseudo-vectorial format as θf. This results in the following relation
between the slave and the master rotations at the node where the folding
takes place,

ℜt,mℜs = ℜf . . . (20)

where ℜm is the master node rotation matrix, ℜs is the slave node
rotation matrix. The left-handside of Equation (20) can be denoted
with ℜx, which yields the following equation in pseudo vectorial
format for a particular rotation level λ,

θx – λ θf = 0 . . . (21)

Equation (21) can be added to the aeroelastic equilibrium equations
15 as a constraint equation for each folding station. The corre-
sponding folding moment Mf is obtained from the Newton-Raphson
analysis and are essentially the Lagrange multipliers associated with
the constraint Equation (21). The energy consumed by the actuators
to effectuate the folding action is expressed as, 

7.2 Shear morphing

Shear morphing makes the wing shear in its own plane. The
objective is to change the sweep angle distribution over the wing
span. A shear angle can be imposed on every beam element individ-
ually, with the important boundary condition that the shearing
should not result in an elastic rotation of the beam element cross-
sections. Therefore the following relation holds,

where superscript el indicates the fact that the rotations are only
elastic, and ℜr

s is the rotation matrix representing the shear around
the normal axis e3 in the rigid rotation frame Tr with a shear angle ψs.
This equation shows that the elastic rotations, expressed in the global
frame, are imposed on the rigid element frame Tr, which is rotated
back by the shearin g rotation ℜs should be equal to the total rotation
imposed on the initial element orientation frame T0. Therefore the
shearing as such does not cause elastic rotation of the element nodes.
Equation 23 can be rearranged as,

Premultiplying Equation (24) with Ttr yields the expression for the
elastic rotations in the rigid beam element frame,

If this relation is compared to Equation 6, it becomes clear that
imposing shear morphing on a beam element means that the shearing
can be imposed on the element in its original orientation state before
applying the loads onto the element. Note that initially the rotation
matrix ℜs was defined in the rigid beam element frame, hence the
superscript r, but that this matrix does not change when defined in
the initial beam orientation frame T0, so therefore superscript r can
be removed from ℜs.

The associated shearing moment is obtained by differentiating the
strain energy in the element by the shearing angle ψs,
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Table 1
Aeroelastic validation case wing properties

Half span [m] 16
Chord [m] 1
Elastic axis 50% chord
Bending rigidity [Nm2] 2 × 104

Torsional rigidity [Nm2] 1 × 104

Bending rigidity (edgewise) [Nm2] 5 × 106

Table 2
Aeroelastic validation case flight conditions

Altitude [km] 20
Air density [kg m3 ] 0.0889
Flight speed [ms] 25
Angle-of-attack [deg] 2

. . . (27)

. . . (28)

p�     u t
t t

t             0 00 001
2

1
2 . . . (29)

. . . (30)

. . . (22)

. . . (23)

. . . (24)

. . . (25)

. . . (26)

. . . (32)

. . . (31)
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are compared. There is no need to validate the deformation field of a
twisted wing, since the straight wing configuration(21) at the given
angle-of-attack can be considered as a twisted wing with a constant
twist angle. The undeformed morphed configurations are shown in
Figs 6(a) and 6(b). The wings have the same material and geometric
properties as the straight wing, only for the flight conditions, the
sheared and twisted wing have a flight speed of 25ms–1, as the
straight wing, but the folded wing flies at 10ms–1 because 25ms–1

would lead to nonlinear deformations.
The results for vertical wing displacement and wing twist are

shown below and show good correspondence. Only the tip twist of
the folded configuration shows a difference of 10%, but that is
because the twist angle as such is very small (one order of
magnitude lower that the other morphed results), which makes the
comparison prone to larger discrepancies, but this has clearly no
influence on the deformation results.

The validation of the actuation moments is done using the same
wing as is used for the aeroelastic displacement and rotation
validation.

For the validation of the folding moment, the actuation moment
required to prevent the tip wing element from rotation with respect
to its neighbour is looked at. The wing is loaded with a static tip

8.0 AEROELASTIC MORPHING MODEL 

VALIDATION

As a validation case, the aeroelastic deformations of a highly flexible
wing are used. The wing is taken from Patil and Hodges(21) and is
designed for a high-altitude long-endurance (HALE) aircraft. This
model from Patil and Hodges(21) includes geometrical nonlinearities,
which stiffens the wing at large deflections, and hence limits the
displacements. Its geometric and stiffness properties are listed in
Table 1. The flight conditions of the aeroelastic test case are listed in
Table 2. The vertical wing displacement and wing twist of the
straight wing configuration, as described in Patil and Hodges(21), are
compared to the results of the present aeroelastic model.

Moreover, a Nastran aeroelastic model is developed with the same
properties as in Tables 1 and 2 to compare to the results of the
present model and the results of Patil and Hodges(21). Reason for this
additional validation of the Nastran model is to compare Nastran
results to aeroelastic results of the present model for morphed
configurations. The vertical displacement and wing twist results are
shown in Figs 5(a) and 5(b), respectively. It can be observed that
good correspondence exists between all three results.

For the morphing deformation validation, fold and shear morphing
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(a) Vertical wing displacement (b) Wing twist

Figure 5. Straight wing validation.

(a) Folded configuration (b) Sheared configuration

Figure 6. Morphed configurations for the aeroelastic validation.
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The comparison between the calculated moment and the analytical
expression is shown in Fig. 11 and very good correspondence can be
observed.

9.0 RESULTS

In this section, results are presented for a morphing winglet which is
retrofitted to an existing regional airliner, to be more specific the ATR42-
300. The properties of the ATR42-300 wing are listed in Table 3.

The discretised wing model can be viewed in Fig. 12 for both the
case of the ATR42-300 wing without and with a winglet. Figure
12(b) is identical to Fig. 12(a) with the sole exception that two beam
elements are attached to the wing tips of the original ATR42-300
wing which are a structural model for the winglet. Initially, the
winglet is unfolded, unswept, and untwisted. The root chord of the
winglet is equal to the tip chord of the wing, the winglet length is
1.5m, and the taper ratio of the winglet is 0.5. Figure 12 shows the
aerodynamic and structural discretisation used for the optimisation
cases. The boxes are the aerodynamic panels on which the horseshoe
vortices are defined, and the black dots indicate the location of the
structural nodes. The lines connecting those nodes are the beam
elements. The continuous black line which is located in front of the
beam elements is the quarter chord line of the wing where the bound
vortex of the horseshoe vortices is located.

9.1 Regional airliner mission

The morphing winglet is optimised for a flight with a length of
approximately 800km, which is divided into four parts; climb,
cruise, descent, and a holding pattern. Along this path, the altitude,
equivalent airspeed, and mass of the aircraft change continuously.
The flight path itself is discretised into distinct flight points at which
one single value for the flight speed, altitude, and aircraft mass is
defined. Furthermore each flight point has a never exceed speed, or
dive speed. The values of the flight data is shown in Fig. 13. The
black crosses indicate the flight points.

The drag of the original ATR42-300 wing along this flight path at
cruise speed is the reference value which the morphing winglet should
decrease. The drag variation along the flight is shown in Fig. 14.

9.2 Optimisation formulation

The morphing winglet is optimised for two types of objective
functions. The first one is to minimise the drag at each individual

force Fz in a direction perpendicular to the wing surface, and with a
magnitude of 500N. This shear force leads to a tip deflection which
is 76% of the wing semi-span. The folding moment is compared to
the following analytical expression,

Mf = Fz (L –Δy) . . . (33)

In this equation, L is the length of the wing segment, and Δy is the di
erence in spanwise displacement of the begin and end node of the tip
wing segment. The comparison is plotted in Fig. 9 and good corre-
spondence can be observed.

For the validation of the shear moment, the required moment to
restrain the tip wing element from shearing is investigated. The wing
is loaded with a tip shear force in chord direction with a magnitude
of 105N. This leads to a deflection which is 72% of the wing semi-
span. Obviously this is a nonlinear deflection. The required actuation
moment is compared to an analytical expression, which expresses
the required moment as follows,

Ms = Fx (L –Δy) . . . (34)

In this equation, Fx is the applied shear force. The comparison can be
found in Fig. 10, and as can be seen, the correspondence is excellent.

For the validation of the twisting moment, a restraining twisting
moment is looked at. The external twisting moment is applied at the
tip of the wing which is also used for the aeroelastic displacement
and rotation validation. The last wing segment is prevented from
twisting under this loading by applying an actuation twisting
moment. The external twisting moment is generated by a vertical
force Fz of 2,500N which is applied at the quarter chord line of the
wing and which acts perpendicular to the wing surface. This force
leads to a tip twist of 0.75rad. The actuation twisting moment is
calculated analytically as,

Mt = Fz Cosφ 0.25c . . . (35)
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(a) Vertical wing displacement (b) Wing twist

Figure 7. Folded wing validation.

Table 3
ATR42-300 wing data

Wing span [m] 24.60
Wing surface area [m2] 54.70
Aspect ratio [-] 11.10
Root chord [m] 2.57
Tip chord [m] 1.45
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simplified to the integration of the wing drag over the flight path.
This leads to a winglet which is fixed in one optimal configuration,
and which is used as a comparison to the morphing winglet. Another
comparison case is a winglet which is optimised to minimise the
drag at the first flight point of the cruise flight. This yields three di
erent winglet configurations which performance can be compared to
the original ATR42-300 wing.

There are two nonlinear constraints associated with the optimi-
sation problem. The first one is of aerodynamic origin. If the
optimiser is leading the design into the direction of large morphing
angles, it might be so that local stall occurs at specific parts of the
wing. Therefore the local lift coefficient at each aerodynamic panel
of the wing, including winglet, should remain between –1 and 1. The
second constraint is of structural origin. Since the winglet under
investigation is a retrofitted winglet, it is to be mounted onto an
existing aircraft. In order not to compromise the structural integrity
of the original wing structure, the increase in root bending moment
(RBM) due to the retrofitted winglet should not exceed 2.5% at dive
speed and at a load factor of 2.5. The increase in root bending
moment of 2.5% stems from literature, where it was found that the
allowed increase in RBM due to retrofitted winglets is between
1.4%(34) and 4.5%(35).

The design variables of the optimisation problem are the folding
angle, shear angle, and twist angle of one of the two winglets. The

flight point along the flight. This leads to a winglet which changes
shape from one flight point to the other. The second objective is to
optimise a winglet which minimises the total consumed energy of
the aircraft wing over the flight. The energy consumption can be
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(a) Vertical wing displacement

Figure 9. Folding moment validation. Figure 10. Shear moment validation.

(b) Wing twist

Figure 8. Sheared wing validation.

Figure 11. Twist moment validation.
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(a) Original ATR42-300 wing (b) ATR42-300 wing with winglet

(a) Flight altitude (b) Aircraft mass

Figure 12. ATR42-300 wing models.

(c) Cruise speed (d) Dive speed

Figure 13. ATR42-300 flight data.

other winglet is the mirrored version of the winglet which shape is
defined by the design variables. The bounds on the design variables
are listed in Table 4.

The optimisation technique used for the morphing winglet

problem is nonlinear gradient based optimisation. A gradient-based
method which is well-suited for nonlinear structural minimisation
problems with nonlinear inequality constraints is the method of
moving asymptotes (MMA)(36). In this method, the nonlinear optimi-
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wing(38). The reason for folding down is that the induced drag is
reduced by increasing the aspect ratio of the wing while reducing the
increased root bending moment due to the winglet. The aerodynamic

sation is carried out by iteratively solving a convex approximation of
the nonlinear objective function and inequality constraints. Since in
aeroelastic optimisation problems, one is often confronted with non-
smooth response surfaces with multiple extrema, the updated version
of MMA, the globally convergent MMA (GCMMA)(37) is chosen in
this paper. Since a gradient-based method is used, also the sensitiv-
ities of the objective function and potential constraint(s) with respect
to the design variables are needed.

9.3 Morphing winglet optimisation results

The results for the three winglet cases (morphing winglet, fixed
winglet optimised for the first flight point of cruise, and a fixed
winglet optimised to minimise the consumed energy over the entire
flight) are expressed as the drag reduction with respect to the
original wing. The results are shown in Fig. 15. In this figure, the
line of zero drag reduction is highlighted using a thick dashed line in
order to indicate where the winglet is outperforming the original
wing. This figure shows clearly that the morphing winglet outper-
forms the fixed winglets. The two fixed winglets which are
optimised with two different strategies do not di  er significantly in
terms of drag reduction performance.

In order to compare the performances quantitatively, the
consumed energy in terms of integration of drag over the flight, of
the three winglet cases is compared to the consumed energy of the
original aircraft. This is done in Table 5. Table 5 shows that the
morphing winglet can reduce the energy consumption over an entire
flight with 3.5%, which is more than two times as much as the
energy saving of a fixed winglet.

One of the explanations can be found by looking at the moment
constraint over the entire flight for the three winglet cases in Fig 16.
In this figure, the bound is indicated with a thick dashed line.
Furthermore it can be seen that the root bending moment for both
fixed winglets is at its maximum at the flight point where the aircraft
weight is the largest. Then it decreases gradually over the flight. The
morphing winglet keeps the root bending moment close to the
allowed value for a large part of the flight, except during the descent
phase. Because of this, the morphing winglet can always manoeuvre
itself into more favourable configurations, hence improving the drag
performance of the wing further.

Now the change of the morphing angles over the flight is
discussed. The fold angle starts from a negative value, which means
that the winglet is folded down. This is an interesting result, since
most of the winglets on commercial aircraft are folded upwards. The
main reason for doing this is ground clearance during landing and/or
take-off. There are many examples of winglets with a negative
folding angle, such as the McDonnell Douglas MD-11 aircraft, the
Gulfstream Peregrine, or the hyper-elliptic cambered span (HECS)
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Table 4
Bounds on the design variables

Lower bound [deg] Design variable Upper bound [deg]

–90 Fold angle 90
–60 Shear angle 60
–57 Twist angle 57

Figure 14. Drag change during flight.

Table 5
Consumed energy results for the three winglet cases

Wing case Energy Relative wrt 
consumption [Nm] original

Original 4.96 × 109 -
Morphing winglet 4.53 × 109 –3.5%
Fixed winglet cruise 4.62 × 109 –1.6%
Fixed winglet flight 4.62 × 109 –1.6%

Figure 15. Relative drag for the three optimised winglet cases.

Figure 16. Moment constraint for the three optimised winglet cases.
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aerodynamic loading inboard. The twisting angle is the most
negative, which indicates washout of the wing, at the part of the
flight where the aircraft weight is the largest. Then as the moment
constraint becomes more easy to satisfy because of the reduction in
aircraft weight, the wing twist can also become closer to zero in
order to reduce the local lift coecient and, as such, the induced and
viscous drag on the winglet. The change in wing twist can be
inspected in Fig. 19. The fixed winglets have a winglet twist of
around 10 to 15 degrees washout. These angles seem to be rather
large, but one should keep in mind that the winglet twist is not the
twisting angle of the entire winglet, but the twisting difference
between the two end-ribs of the winglet.

9.4 Morphing energy analysis

The energy requirement to morph the winglet is a direct conse-
quence of the aerodynamic forces and moment acting at the winglet
tip because of the fact that the winglet is modelled using one single
beam element. Furthermore the skin strain energy resulting from a
morphing manoeuvre influences the required morphing energy as
well. It is assumed that the largest contribution from the skin
straining comes from the wing shearing. There is no strain involved
for wing folding since this morphing mechanism rotates wing
segments rigidly with respect to each other. For wing twisting, it is
assumed that this morphing mode does not strain the wing skin
either, which is a safe assumption when looking at the wing twisting
mechanism proposed by Vos et al(17).

The required energy to morph from the configuration of one flight
point to the next one is calculated. The take-off position is assumed
to be a straight wing, meaning all morphing angles equal to zero.
The final wing position, i.e. the landing position, is again assumed to
be a straight wing. The reason for both take-off and landing configu-
rations to be straight is to maximise lift and hence minimise the
corresponding speeds for noise and safety. Furthermore the
morphing energy is calculated by varying the three morphing angles
linearly and simultaneously from the configuration of one flight
point to the one of the next flight point. Obviously the energy
consumption is dependent on the order of morphing of the winglet.
Therefore the results below are just exemplary and an optimisation
of the morphing angle order is necessary to determine the minimal
required morphing energy. This, however, is left to the detailed
design of the winglet, and is therefore not included in this paper.

Wing folding is mainly dictated by the shear force in lift direction
on the winglet tip. The change of the shear force in lift direction at
the winglet tip, Fwl;z, over the flight is shown in Fig. 20(a).

force on the winglet causes a counter-acting moment contrary to the
moment due to the lift on the wing. The beneficial direction of lifting
force on the winglet is caused by a washout angle of the winglet,
which is shown in Fig. 19 and will be discussed below. The winglet
folding angle reduces when the flight progresses because the weight
of the aircraft reduces, and hence the loading on the wing. Therefore
the winglet starts to extend to almost zero degrees folding angle to
maximise the wing aspect ratio and hence reduce the induced drag.
The change in folding angle is shown in Fig. 17. The constant
folding angles of the fixed winglets are between 45 and 60 degrees
downwards.

The winglet shears downstream to its bound of 60 degrees. The
reason for this is that the addition of a winglet to the original wing
causes the viscous drag to increase. In order to remove as much wing
surface area as possible, the winglet shears downstream. And, as is
also the case for the change in folding angle of the morphing
winglet, the shear angle reduces when the wing loading reduces in
order to maximise the wing aspect ratio to reduce the induced drag.
The change in shear angle can be inspected in Fig. 18. The fixed
winglets both have a shearing angle of 60 degrees downstream.

The winglet twist angle plays an important role in the alleviation
of the root bending moment since the twisting angle can directly
reduce the local angle-of-attack on the winglet and as such shift
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Figure 17. Change in folding angle of the morphing winglet.

Figure 18. Change in shearing angle of the morphing winglet.

Figure 19. Change in twisting angle of the morphing winglet.
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However, when looking at the force in global e1
b-direction, see Fig.

2, it appears that this force is acting against a shearing back motion
of the winglet. This can be inspected in Fig. 22(a).

The reason for this phenomenon is that the drag force component
along the global e1

bf-direction is smaller than the component of the lift
in e1

bf-direction. The latter is opposite to the drag component
direction, and upstream in case of a positive angle-of-attack. It can
be observed that the forward force decreases significantly at the first
flight point. This is caused by the dump in lift due to the shearing
backwards and twisting downwards of the winglet, resulting in a
reduction in lift coefficient, which reduces the forward component of
the lift force on the wing, and the drag component as well due to the
reduction in both induced and viscous drag. The forward force is
also smaller during the descent phase; again because of the lift dump
due to the backward shearing of the winglet while the drag as such
was smaller already because of the smaller values of the lift coecie t.
However, overall, the aerodynamic force in e1

bf-direction remains in
forward direction, because of which the aerodynamics do not aid a
downstream shear morphing motion, as also appears from Figs 22(b)
and 23.

From Fig. 23 it appears that most of the shearing energy is spent
during flight point 1. Also the shearing backwards at the beginning
of the descent costs energy, however significantly less than for flight
point 1.

The required energy to twist the winglet is comparable to the
energy requirements for folding, since the needed twisting moment
is determined by the aerodynamic moment around the winglet beam,
which is nothing more than the lift force on the winglet multiplied
by the distance between the beam and the aerodynamic centre of the
wing (see Equation (14)). This trend can be observed in Fig. 24. The
resulting energy requirement in Fig. 25. The analogy with the fold
morphing is obvious.

The total energy consumed during the flight of all three morphing
deformations is listed in Table 6 for the individual morphing angles.
It is clear from the table that the energy consumption is significantly
less than the energy consumption difference over the entire flight
between the morphing and the fixed winglet (see Table 5), and
hence, the morphing winglet is always the best solution from an
energy perspective.

The above presented energy results are calculated excluding skin
stiffness or morphing restraint. At the beginning of this section, it is
mentioned that the largest contribution to morphing energy is the
shearing of the winglet skin. The skin is assumed to be 1mm thick,
and have a shear modulus of 1GPa, which is a realistic value for a

It is clear from Fig 20(a) that initially the force reduces due to the
sweep back and twist of the winglet, see Figs 18 and 19, respec-
tively. Afterwards it increases again because the winglet sweeps
forward and twists back to its neutral position, with the exception of
the descent phase, where the force lowers temporarily due to the
increase in sweep back.

In Fig. 20(b) the change of folding moment over the flight is
shown. It is obvious that Figs 20(b) and 20(a) correspond qualita-
tively because of the aforementioned reasons. The only difference is
that both figures are mirrored with respect to each other because of
sign conventions.

In Fig. 21, the required energy to fold the winglet to its optimal
position is shown for each flight point. Note that the largest energy is
spent right after take-off to fold the winglet to the optimal climb
configuration, after which the energy requirement reduces consid-
erably. There are also flight points for which the folding energy is
zero because of the fact that the aerodynamic forces aid the winglet
to fold to its optimal position without the necessity of external
actuator interference.

The required winglet shear moment is predominantly influenced
by the drag acting on the winglet. This force acts in the direction of
the flow, and is therefore assumed to aid shearing back the winglet.
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(a) Change in winglet tip shear force in lift direction over the flight (b) Change in folding moment over the flight

Figure 20. Change in winglet shear force and corresponding folding moment.

Figure 21. Required folding energy at each flight point.
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flexible skin(39). The energy consumption of the shearing actuators
for each flight point is shown in Fig. 26. The total amount of
consumed energy for the shear morphing becomes 4:28 × 106Nm,
which is 5% of the energy difference between the morphing and
fixed winglet energy consumption of the total wing over the entire
flight. In this case, it might be useful not to shear back during the
descent phase. An amount of 44% of the total straining energy is
spent on the shearing backwards during descent in exchange for less
than 1% in drag reduction, as appears from Fig. 15.

The actuators effectuating the morphing manoeuvres come at a
weight penalty, which affects the overall energy balance of the
aircraft. An increase in total weight increases the power the engines
of the aircraft have to deliver and hence add fuel and structural
weight. Nonetheless, it is expected that the added weight of the
actuators will be small compared to the overall weight of the existing
aircraft and its systems and as such, a net reduction in total fuel
carried will still result. This reduces the total take-off weight and
hence further reduces the structural weight of the aircraft. Although
the weight increase of the actuators is located near the wing tips, the
expected increase in root-bending-moment can be cancelled by a
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(a) Change in winglet tip shear force 
in drag direction over the flight

(b) Change in shearing moment over the flight

Figure 22. Change in winglet shear force and corresponding shearing moment.

Figure 23. Required shearing energy at each flight point. Figure 25. Required twisting energy at each flight point.

Figure 24. Change in twisting moment over the flight.
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wing: modeling and experiments, 2007, AIAA Atmospheric Flight
Mechanics Conference and Exhibition.

17. VOS, R., GRDAL, Z. and ABDALLA, M. Mechanism for warp-controlled
twist of a morphing wing, J Aircr, 2010, 47, (2), pp 450-457.

18. MAUTE, K., REICH, G. and SANDERS, B. In-plane morphing designs by
topology optimization, 2003, 16th International Conference on
Adaptive Structures and Technologies.

19. SIMMONS, F. and FREUND, D. Morphing concept for quiet supersonic jet
boom mitigation, 2005, 43rd AIAA Aerospace Sciences Meeting and
Exhibition.

20. INOYAMA, D., SANDERS, B.P. and JOO, J.J. Conceptual design and multi-
disciplinary optimization of in-plane morphing wing structures, 2006,
SPIE Conference on Smart Structures and Materials, pp 61-66.

proper morphing winglet setting. Overall, it is clear that there is a
system level trade-off between energy reduction due to morphing,
and energy consumption and weight of the additional actuators.

10.0 CONCLUSIONS

A nonlinear aeroelastic analysis model to assess the aerodynamic,
structural, and actuator performance of a morphing manoeuvre was
presented in this paper. Arbitrary global morphing is achieved by
discretising the morphing deformation into three distinct morphing
modes; fold morphing, twist morphing, and shear morphing. The
aeroelastic model consists of a corotational beam element model,
which accounts for geometric nonlinearities. Furthermore a high-
subsonic aerodynamic model is used, based on Weissinger’s method
with a Prandtl-Glauert correction for larger Mach numbers. Both the
structural and aerodynamic model are closely coupled. The code
mentioned above is embedded in a gradient-based optimisation
routine to optimise a winglet which is retrofitted to an existing
regional airliner. The design variables of this optimisation are the
folding, shearing, and twisting angle of the winglet. The aim of the
optimisation is to minimise the drag over the entire flight of the
regional airliner. The results for the morphing winglet are compared
to optimised fixed winglets. It is demonstrated that a morphing
winglet outperforms a fixed winglet in the sense that the morphing
winglet can improve the energy consumption reduction of a fixed
winglet by a factor of two. At the part of the flight where the aircraft
weight is the largest, the main objective of the winglet, next to
minimising the drag, is to keep the root bending moment within
limits. This is obtained by folding the winglet downwards, and
creating a washout angle over the winglet. This creates a counter-
acting bending moment around the wing root, while still reducing
the wing induced drag. The shear of the winglet is mainly to remove
wing surface area to remove viscous drag. When the wing loading
decreases over the flight, the winglet extends more to maximise the
aspect ratio of the wing, leading to a reduction in induced drag.
Evaluation of the required energy to morph the winglet shows that
the actuator energy consumption is significantly less than the energy
savings because of the winglet morphing. This statement is also true
if skin straining is taken into account.
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