
PROBLEMS AND SOLUTIONS

PROBLEMS

98+1+1+ Similarity and Distance Matrices, proposed by Heinz Neudecker and
Michel Van de Velden+ Let C 5 ~cij ! be a positive semidefinite similarity matrix
andD 5 ~dij ! be a distance matrix obtained fromC by the definitiondij :5 ~cii 1
cjj 2 2cij !

102+ Show, by using the vector triangle inequality, that the distancedij

satisfies the triangle inequalitydij # dik 1 djk+

98+1+2+ Lower Eigenbound forAR(1) Disturbance Covariance Matrix, pro-
posed by Kyung-Taik Han and Eric Iksoon Im+ Let V~T 3 T ! denote the distur-
bance covariance matrix for the standard linear model withAR(1) residuals+Then,

V 5
1

1 2 r2 3
1 r + + + r T22 rT21

r 1 r + + + rT23 rT22

L

rT22 rT23 + + + r 1 r

rT21 rT22 + + + r 1

4 , (1)

where6r6 , 1 and 2# T , `+

(a) Show that

li ~V! .
1

~1 1 6r6!2 ~i 5 1,2, + + + ,T !, (2)

whereli ~{! denote the eigenvalues in descending order: l1~{! $ l2~{! $ {{{ $
lT~{!+

(b) Show that lim6r6r1 limTr`li ~V! $ 1
4
_ +

98+1+3+ Equivalence of LR Test and Hausman Test, proposed by Hailong Qian+
Suppose that we have the following two equations:

ygt 5 ag 1 «gt, g 5 1,2; t 5 1,2, + + + ,T,

where~«1t ,«2t! is independently and identically distributed normal with mean

zero and varianceV5Fs1
2 s12

s21 s2
2G+ Show that the likelihood ratio test ofH0:

s1
2 5 s2

2 is asymptotically equivalent to the Hausman test+

ET141-7

Econometric Theory, 14, 1998, 151–159+ Printed in the United States of America+

© 1998 Cambridge University Press 0266-4666098 $9+50 151

https://doi.org/10.1017/S0266466698141075 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698141075


SOLUTIONS

97+1+1+ Standard Errors for the Long-Run Variance Matrix—Solution, pro-
posed by Paolo Paruolo+ The solution follows by applying Cramér’s theorem
(i+e+, the delta method) to the functionsg~C,V! 5 CVC ' andh~C,V! 5 CA+ It is
known that

T 102 vec~ ZC 2 C!
w
&& N ~0,j 'S21j J CVC '!

(see Johansen, 1995, Theorem 13+7; Paruolo, 1997, Theorem 7+1) and

T 102 vec~ ZV 2 V!
w
&& N~0,2PD~V J V!PD!

(see, i+e+, Lütkepohl, 1991, p+ 85)+ Moreover, ZC and ZV are asymptotically inde-
pendent becauseZC is a function of Zq whereq 5 ~a,b,Gi , i 5 1, + + + ,k 2 1! and Zq
and ZV are asymptotically independent (see, e+g+, Paruolo, 1997, Lemma 5+1)+
Hence, no covariance terms arise in (3) and (5)+

(1) A first-order expansion ofg~{,{! gives

T 102 vec~ ZC ZV ZC ' 2 CVC '!

. T 102~I 1 K !~CV J I !vec~ ZC 2 C! 1 T 102~C J C!vec~ ZV 2 V!, (6)

whereK is the commutation matrix of orderp (see Magnus and Neudecker, 1988,
Sec+ 3+7) (henceforth MN)+ Note that~I 1 K ! 5 2PD (see MN, equation (3+8+7,
p+ 49)+Because the two terms on the right-hand side (r+h+s+) of (6) are asymptotically
independent, the asymptotic variance of the left-hand side is equal to the sum of the
asymptotic variances of the terms on the r+h+s+ The first term gives rise to the vari-
ance 4PD~CVj 'S21jVC ' J CVC '!PD and the second to 2PD~CVC ' J CVC '!PD

because~CJ C! PD 5 PD~CJ C! (cf+MN, equation (3+8+14), p+ 50)+Summing the
preceding expressions, the asymptotic variance in (3) is obtained+

(2) Differentiating the Choleski decomposition one obtains

] vec~A!

] vec~V!'
5

1

2
D~D '~A J I !D!21D '+

Thus, a first-order expansion ofh~{,{! gives

T 102 vec~ ZC* 2 C*! . T 102~A' J I !vec~ ZC 2 C! 1 T 102B vec~ ZV 2 V!, (7)

whereB is define after (5)+ Again, the two terms on the r+h+s+ of (7) are asymptot-
ically independent; the first term gives rise to~A'j 'S21jAJ CVC '! and the second
to 1

2
_B~V J V!B', thus proving (5)+

(3) The asymptotic variance matrix in (3) is singular as a result of two factors: (a) the
long-run variance is symmetric (which is reflected in the presence of the singular
projection matrixPD in (3)); (b) the impact matrixC is singular+ The asymptotic
variance matrix in (5) is singular because of factor (b) only+

To illustrate point (b), consider the linear combinationR1
' ZR2,whereZ 5 CVC ',

i+e+, R' vec~Z! with R' 5 ~R2
' J R1

' !+ This linear combination has asymptotic vari-
ance matrix

G 5 2R'PD~CFC' J CVC '!PD R,
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whereF 5 V 1 2Vj 'S21jV+ Now

R'PD 5 1
2
_~R2

' J R1
' !~I 1 K ! 5 1

2
_~~R2

' J R1
' ! 1 K~R1

' J R2
' !!

(see MN, Theorem 3+9(a)), and it is simple to verify thatG 5 0 when eitherR1

and0or R2 belongs to span~b!, such thatRi
'C 5 0+

Take nowZ 5 C*+ The asymptotic variance matrix ofR' vec~Z! is in this case

G 5 ~R2
' A'j 'S21jAR2

' J R1
'CVC 'R1! 1 1

2
_R'B~V J V!B'R,

whereR'B 5 ~R2
' J R1

'C!D~D '~A J I !D!21D '+ It is easy to verify thatG 5 0
wheneverR1 [ span~b!, such thatR1

'C 5 0+
(4) If m is added in (1), the representations (2) and (4) possibly present a linear trend+

However nothing changes in the preceding results (3) and (5)+
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97+1+2+ Asymptotic Inefficiency of an Estimator Derived from a Kernel-Based
Test Statistic—Solution, proposed by Oliver Linton+Although the criterion func-
tion is aU-statistic of order two, its asymptotic properties follow from standard
arguments+Write

Qn~b! 5
1

n~n 2 1!hd (
i
(
jÞi

ui ~b!uj ~b!Kij

5
1

n~n 2 1!hd (
i
(
jÞi

ui uj Kij

2
1

n~n 2 1!hd (
i
(
jÞi

~b 2 b0!T$xi uj 1 xj ui %Kij

1
1

n~n 2 1!hd (
i
(
jÞi

~b 2 b0!Txi
Txj ~b 2 b0!Kij

5 Qn1 1 ~b 2 b0!TQn2 1 ~b 2 b0!TQn3~b 2 b0!,

with Qnj implicitly defined+ In fact, Qn1 5 Op~n21h2d02!, Qn2 5 Op~n2102!, and
Qn3 5 Op~1!+ Therefore,

Qn~b! rp Q~b! [ ~b 2 b0!TQ3~b 2 b0!,

whereQn3 rp Q3 . 0+ The preceding convergences are uniform inb by inspec-
tion+ Clearly, Q~b! is uniquely minimized atb0+ In conclusion, Db rp b0+
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By virtue of the quadratic shape ofQn~b!, we have

0 5
]Qn~ Db!

]b
5 Qn2 1 2Qn3~ Db 2 b0!,

where

(1) n102Qn2~b0! r N~0,4@E$XXTsu
2~X!f 2~X!%#! in distribution

(2) Q3 5 E$XXTf ~X!% . 0,

using the arguments of Fan and Li (1996)+ The result follows+

REFERENCE
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97+1+3+ A Joint Test for Functional Form and Random Individual Effects—
Solution,1 proposed by Dong Li+We rewrite (3) as

fit ~ yit ,f! 5 «it , i 5 1, + + + ,N; t 5 1, + + + ,T, with «it ; NID~0,1!, (4)

where

fit ~ yit ,f! [
1

sn
FB*~ yit ,l! 2 (

k51

K

bkB*~Xitk ,l! 2 (
s51

S

gsZits
* G (5)

andf 5 ~b,g,l,u,sn!+
The contribution of theit th observation to the loglikelihood functionl ~ y,u! is

l it ~ yit ,f! 5 2 1
2
_ log~2p! 2 1

2
_ fit

2~ yit ,f! 1 kit ~ yit ,f!, (6)

where

kit ~ yit ,f! [ log* ]fit ~ yit ,f!

]yit
*

is a Jacobian term+ Define

Fitj ~ yit ,f! 5
]fit ~ yit ,f!

]fj
and Kitj ~ yit ,f! 5

]kit ~ yit ,f!

]fj
+ (7)

ThenF~ y,f! andK~ y,f! are theNT 3 ~K 1 S1 3! matrices with typical ele-
mentsFitj ~ yit ,f! andKitj ~ yit ,f!, respectively+

Let f ~ y,f! be theNTvector with typical elementsfit ~ yit ,f!+ Then the decreas-
ing likelihood ratio (DLR) can be written as

Ff ~ y,f!

iNT
G 5 F2F~ y,f!

K~ y,f!
Gb 1 residuals, (8)

whereiNT denotes a vector of ones of dimensionNT+ This artificial regression is
double-length with 2NT observations+
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From (5), we can obtain

]fit ~ yit ,f!

]bk
5 2

1

sn
B*~Xitk ,l!,

]fit ~ yit ,f!

]gs
5 2

1

sn
Zitk
* ,

]fit ~ yit ,f!

]l
5

1

sn

FSC~ yit ,l! 2 u
(
t51

T

C~ yit ,l!

T
D

2 (
k51

K

bk
SC~Xitk ,l! 2 u

(
t51

T

C~Xitk ,l!

T
DG,

]fit ~ yit ,f!

]u
5 2

1

sn

(
t51

T

uit

T
,

]fit ~ yit ,f!

]sn
5 2

uit
*

sn
2 ,

whereC~x,l! [ lxl log x 2 xl 1 10l2+ (Note that there is a constant term inZ+!
Also, from (5), the Jacobian term for theit th observation is given by

kit ~ yit ,f! [ log* ]fit ~ yit ,f!

]yit
* 5 logS1 2

u

T D 1 ~l 2 1! log yit 2 log~sn!,

(9)

so that

]kit ~ yit ,f!

]bk
5

]kit ~ yit ,f!

]gs
5 0,

]kit ~ yit ,f!

]l
5 log yit,

]kit ~ yit ,f!

]u
5 2

1

T 2 u
,

]kit ~ yit ,f!

]sn
5 2

1

sn
+

For H0
a: l 5 1 andu 5 0, (3) becomes

yit 5 (
k51

K

bkXitk 1 (
s51

S

gsZits 1 uit+ (10)

The regressand of the DLR hasit th element [uit 0 [sn and~it 1 NT!th element 1,
where [uit and [sn denote the restricted maximum likelihood (ML) estimates of the
it th residual andsn, respectively+ The typical elements for the firstNT and the
secondNT observations of the regressors are then

for bk: ~10 [sn!~Xitk 2 1! and 0;
for gs: ~10 [sn!Zits and 0;
for l:2~10 [sn!@ yit log~ yit ! 2 yit 1 1 2 (k51

K Zbk~Xitk log~Xitk! 2 Xitk 1 1!# and log~ yit !;
for u: ~10 [sn!(t51

T [uit 0T and210T 2 Zu;
for sn : ~10 [sn

2! [uit and210 [sn+

The test statistic is 2NT 2 the residuals sum of squares+ It is asymptotically
distributed asx2

2 under the null hypothesisH0
a+
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For H0
b: l 5 0 andu 5 0, (3) becomes

log~ yit ! 5 (
k51

K

bk log~Xitk! 1 (
s51

S

gsZits 1 uit+ (11)

The regressand of the DLR hasit th element Iuit 0 Isn and~it 1 NT!th element 1,
where Iuit and Isn denote the restricted ML estimates of theit th residual andsn,
respectively+The typical elements for the firstNTand the secondNTobservations
of the regressors are then

for bk: 10 Isn log~Xitk! and 0;
for gs: ~10 Isn!Zits and 0;
for l: 2~10 Isn!@~log~ yit !!

202 2 (k51
K Zbk~log~Xitk!!202# and log~ yit ! (by noting

limlr0~lxl log x 2 xl 1 10l2! 5 ~log x!202!;
for u: ~10 Isn!~(t51

T Iuit 0T ! and210T 2 u;
for sn: ~10 Isn

2! Iuit and210 Isn+

The test statistic is 2NT 2 the residuals sum of squares+ It is asymptotically
distributed asx2

2 under the null hypothesisH0
b+

NOTE

1+ An excellent solution has been proposed independently by Badi H+ Baltagi, the poser of the
problem+

97+1+4+ Least-Squares Approximation of Off-Diagonal Elements of a Variance
Matrix in the Context of Factor Analysis—Solution, proposed by Albert Satorra
and Heinz Neudecker+ Clearly, we need to maximize

w 5 tr Eu
2 5 ~vecEu!' vecEu 5 ~vecE!'~I 2 Kd!vecE, (1)

whereE :5 C 2 AA' andK is the commutation matrix+ Note that generically
Kd vecP 5 vecPd+ Clearly, ~I 2 Kd!2 5 I 2 Kd+

The differential ofw is

dw 5 2~vecE!'~I 2 Kd!vecdE

5 22~vecE!'~I 2 Kd!vec@~dA!A' 1 AdA'#

5 22~vecE!'~I 2 Kd!~I 1 K !~A J I !vecdA

5 24~vecE!'~I 2 Kd!~A J I !vecdA

5 24~vecEu!'~A J I !vecdA+

We used the obvious equalities vec~dA!A' 5 ~A J I !vecdA, vecAdA' 5 ~I J
A!vecdA' 5 ~I J A!K vecdA5 K~A J I !vecdA, and~I 2 Kd!~I 1 K !vecE 5
2~I 2 Kd!vecE+ Thus, the first-order condition for the solutionA is

~A' J I !vecEu 5 0,
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which is equivalent to

EuA 5 0+ (2)

Because

Eu 5 ~C 2 AA'!u 5 Cu 1 ~AA'!d 2 AA',

we write (2) as

@Cu 1 ~AA'!d#A 5 AA'A+ (3)

Using equation (3), we obtain

Eu
2 5 @Cu 1 ~AA'!d#@Cu 1 ~AA'!d# 1 AA'AA'

2 @Cu 1 ~AA'!d#AA' 2 AA' @Cu 1 ~AA'!d#

5 @Cu 1 ~AA'!d#@Cu 1 ~AA'!d# 1 AA'AA' 2 AA'AA' 2 AA'AA'

5 @Cu 1 ~AA'!d#@Cu 1 ~AA'!d# 2 AA'AA'+

Consequently, w of (1) equals

w 5 tr@Cu 1 ~AA'!d# 2 2 tr~A'A!2+ (4)

Clearly the solution forA is invariant under orthogonal transformation+That is,
if A is a solution, then DA 5 AT whereT is orthogonal is also a solution+Without
loss of generality, we takeA'A 5 L whereL 5 Ld, a positive definite diagonal
matrix+ Under this normalization ofA, equations (3) and (4) become

@Cu 1 ~AA'!d#A 5 AL (5)

and

w 5 tr@Cu 1 ~AA'!d# 2 2 tr L2+ (6)

To attain a minimum in (6), we need to search for a maximum of trL2+
Equations (5) and (6) suggest the following iterative procedure to find the

matrix A:

(1) Choose an arbitrary diagonal matrixU 5 Ud . 0 and computeC* :5 Cu 1 U+
(2) Compute the eigenvalues and associated eigenvectors ofC* and determineA andL

so that the columns ofAare appropriately scaled eigenvectors ofC* associated with
the m largest eigenvalues+ The diagonal elements ofL will thus be them largest
eigenvalues ofC*+

(3) In step (1), replaceU by ~AA'!d+
(4) Iterate (1)–(3) until stability has been reached+

This solution is called the principal factor analysis solution+ To obtain the di-
agonal matrixUd in step (1), a simple procedure is to setUd 5 ~WW'!d with Wa
p 3 mmatrix whose columns are eigenvectors ofC associated with them largest
eigenvalues and of squared length equal to the associated eigenvalue+
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97+1+5+ Inconsistency of Minimum Variance Quadratic Unbiased Estimators
under Non-Gaussian Compound Normal Distribution—Solution,1 proposed by
Jean-Daniel Rolle+

1+BecauseU ; CN~0,g2I,fH !, theny5 Xb 1 U ; CN~Xb,g2I,fH !+ Lety'Ay
be a potential estimator fors 2+Nonnegativity and unbiasedness~E~ y'Ay! 5 s 2!
imply AX 5 0, as one can show easily+ HenceAm 5 AXb 5 0, and we have that
E~ y'Ay! 5 s 2 tr A+ From (3), we have Var~ y'Ay! 5 kHs 4~tr A!2 1 2s 4~kH 1
1!tr A2+Define the set of matricesA 5 $A [ RN3N;A f 0,AX5 0, tr A 5 1%+ The
quadraticsy'Ay with A [ A are unbiased fors 2+ We are seeking an optimal
estimatory'A*yof s 2,with A*[A, such that Var~ y'A*y! # Var~ y'Ay! for all A[
A+ From a computational point of view, it is very useful to characterize the ma-
tricesA [ A+ To do so, let us define the open set of matricesP 5 $P [ RN3N;
PMX Þ 0%,whereMX 5 I 2 XX1 andX1 is the Moore–Penrose inverse ofX+ Let
us prove the following lemma+

LEMMA 1 + The function h1:PrA given by h1~P! 5 7PMX722MXP'PMX is
surjective ~i+e+ , h1~P! 5 A!+

Proof+ Let A f 0, with AX5 0+ HereA f 0 implies the existence of anN 3 N
matrix B such thatA 5 B'B+ Next, 0 5 AX5 B'BX impliesX 'B'BX5 0+ There-
fore BX 5 0+ The general solution ofBX 5 0 is B 5 PMX (see Magnus and
Neudecker 1988, ex+ 4 p+ 38),whereP is an arbitrary matrix of appropriate order+
HenceA 5 B'B 5 MXP'PMX+ The unbiasedness condition imposes that trA 5 1,
that is, tr~MXP'P! 5 7PMX72 5 1+ Hence, A 5 7PMX722MXP'PMX+

To continue the proof of Lemma 1, define the functionh2 :A r R by
h2~A! 5 var~ y'Ay! andh :P r R by h 5 h2 + h1+ We will find a P* [ P such
that h~P*! # h~P!+ Because the functionh1 is surjective, h2 takes a minimum
at A* 5 h1~P*!, i+e+, h2~A*! # h2~A! for all A [ A+ Using the representation
A 5 7PMX722MXP'PMX and (3), one hash~P! 5 Var~ y 'Ay! 5 kH s 4 1
2~kH 1 1!s 4@tr~MXP'P!2#@tr~MXP'P!#22+ Therefore we can equivalently min-
imize on the open setP the differentiable functionm~P! 5 tr~MXP'P!20
~tr MXP'P!2+ Using Theorem 2 in Rolle (1996, p+ 265), a global minimizerP*

of m~P! is given by~N 2 rX !2102J ', whereJ is such thatJJ' 5 MX+ Hence the
optimal matrix A* [ A at which h2 takes a minimum is given byA* 5
h1~P*! 5 7J 'MX722MXJJ'MX 5 MX0~N 2 rX !, noting that idempotence ofMX

implies rMX 5 tr MX 5 N 2 rX+ The optimal estimator is then

[s 2 5
1

N 2 rX
y'~I 2 XX1!y+ (4)

Note that this estimator does not depend on any particular (mixing) distribution
of t and hence of any particular compound normal distribution (in that sense, it is
a uniform minimum variance quadratic unbiased estimator)+ n

2+ Noting thatMXX 5 0, we have [s 2 5 y'MX y0~N 2 rX ! 5 U 'MXU0~N 2
rX !+ Next, by assumptionU ; CN~0,g2I,fH !, for someH+ It follows thatU 5
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t 102Z, whereZ is N~0,g2I ! and t, Z are independent+ Hence [s 2 5 ~10N 2
rX !U 'MXU 5 ~10N 2 rX !tZ'MXZ 5 ~tg20N 2 rX !Z'~MX0g2!Z 5 ~tg20N 2
rX !xN2rX

2 + But xN2rX
2 0~N 2 rX ! converges in probability to 1, and [s 2 converges

in probability tog2t+ That is, [s 2 converges in probability to a random variable+
Hence, [s 2 is inconsistent (unless in the Gaussian case,whereH is degenerated on
t 5 1 and where [s 2 converges in probability tog2 5 s 2 because22f'~0! 5 1!+
Another way to see this is to note that the components ofU are exchangeable (but
not independent)+The law of large numbers for such sequences allows the limit to
be a random variable+ This is what happens here+

NOTE

1+ An excellent solution has been proposed independently by David Greene+
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ERRATUM

An excellent solution by G+ Trenkler to Problem 96+2+3 was omitted from the
reference to the published solution in vol+ 13, no+ 3, p+ 466+
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