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PROBLEMS AND SOLUTIONS

PROBLEMS

98.1.1. Similarity and Distance Matriceproposed by Heinz Neudecker and
Michel Van de VeldenLet C = (c;) be a positive semidefinite similarity matrix
andD = (d;) be a distance matrix obtained fra@rby the definitiond; := (¢; +
¢ — 2c;)*2 Show by using the vector triangle inequalityat the distance;
satisfies the triangle inequality = dy + dj.

98.1.2. Lower Eigenbound foAR(1) Disturbance Covariance Matrjxpro-
posed by Kyung-Taik Han and Eric lksoon liret Q(T X T) denote the distur-
bance covariance matrix for the standard linear model with AR (1) residiUzs)

1 p T-2  T-1 ]
P 1 p T-3 T-2
1 :
Q = 1 _ p2 - ) (1)
pT=2 pT-3 e p 1 p
[ pTt pT? p 1
where|p| <land 2= T < co.
(a) Show that
A (Q) > _ i=12,..T 2
i( ) (1+ |p‘)2 (I T by )9 ( )

where;(-) denote the eigenvalues in descending ardef-) = Ay(+) = --- =
Ar(4).
(b) Show that lin, 1 limT_,., Ai(Q) = 3.

98.1.3. Equivalence of LR Test and Hausman Jpsbposed by Hailong Qian
Suppose that we have the following two equattons

Yot = g + &gt g=12 t=1212,...,T,
where(eq, £5) IS independently and identically distributed normal with mean
2
o1 01

. 2 - .
zero and varianc€ = 5 |- Show that the likelihood ratio test df,:

. LOo21 03
o? = o%is asymptotically equivalent to the Hausman test

© 1998 Cambridge University Press  0266-4886 $950 151

https://doi.org/10.1017/50266466698141075 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466698141075

152 PROBLEMS AND SOLUTIONS
SOLUTIONS

97.1.1. Standard Errors for the Long-Run Variance Matrigelution pro-
posed by Paolo Parual@he solution follows by applying Cramér’s theorem
(i.e., the delta method) to the functiogsC, ) = CQC’ andh(C,Q) = CA ltis
known that

TY2ved(€C — C) -5 N (0,3 1¢ ® CQC)
(see Johanse995 Theorem 137; Paruolg 1997, Theorem 71) and

TY2ved ) — Q) ~5 N(0,2P5(Q ® Q)Pp)

(seei.e, Liitkepohl 1991 p. 85). Moreover C and() are asymptotically inde-
pendent becaugeis a function ofd whered = (a, 8,I;,i = 1,...,k — 1) andd
and () are asymptotically independent (s&g., Paruolg 1997, Lemma 51).
Hence no covariance terms arise in (3) and.(5)
(1) Afirst-order expansion of(-,-) gives
TY2veqCOC’ — CC’)
=TY2(] + K)(CAR® I)ved(C — C) + TYA(C ® C)vecQ) — Q), (6)
whereK is the commutation matrix of ordgr(see Magnus and Neudeck&d88
Sec 3.7) (henceforth MN) Note that(l + K) = 2P, (see MN equation (3.7,
p. 49). Because the two terms on the right-hand sideg) of (6) are asymptotically
independenthe asymptotic variance of the left-hand side is equal to the sum of the
asymptotic variances of the terms on ttiex The first term gives rise to the vari-
ance Pp(CQE'S1EOC ® CAC')Pp and the second toR, (CQC’ X CQC’)Py
becausé¢C & C) Pp = Po(C® C) (cf. MN, equation (38.14), p. 50). Summing the
preceding expressionthe asymptotic variance in (3) is obtained

(2) Differentiating the Choleski decomposition one obtains
dvec(A) 1 , i,
Ivecq) — 5 D(D'(A®1)D) *D".

Thus a first-order expansion df(-,-) gives
TY2veq(C* — C*) = TYA(A ® I)ved(C — C) + T¥2Bved( — ), )

whereB is define after (5)Again, the two terms on theh.s. of (7) are asymptot-
ically independenthe first term gives rise toA'¢ '3 1¢A® CQC’) and the second
to 3B(Q ® Q)B’, thus proving (5)

(3) The asymptotic variance matrix in (3) is singular as a result of two fadi@yshe
long-run variance is symmetric (which is reflected in the presence of the singular
projection matrixPp in (3)); (b) the impact matribC is singular The asymptotic
variance matrix in (5) is singular because of factor (b) only

To illustrate point (b)consider the linear combinatid ZR,, whereZ = CQC/,
i.e, R'vec(Z) with R' = (R, ® R}). This linear combination has asymptotic vari-
ance matrix

G = 2R'Pp(CFC’ ©® CQC')PsR,
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whereF = Q + 20£'S 710, Now

RPp =3(RR®R)(I + K) = 3(R.® Ry) + K(RL® Ry))
(see MN Theorem 3(a)) and it is simple to verify thaG = 0 when eithelR,

and/or R, belongs to spaiB), such thalR' C = 0.
Take nowZ = C*. The asymptotic variance matrix & vec(Z) is in this case

G = (RAE'S AR, ® RiCQC'R;) + RB(Q ® Q)B'R

whereRB = (R, ® RIC)D(D'(A® I)D)"'D". It is easy to verify thatG = 0
wheneveRR; € spar(f), such thaR;C = 0.

(4) If wis added in (1)the representations (2) and (4) possibly present a linear.trend
However nothing changes in the preceding results (3) and (5)
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97.1.2. Asymptotic Inefficiency of an Estimator Derived from a Kernel-Based
Test Statistic-Solution proposed by Oliver LintorAlthough the criterion func-
tion is aU-statistic of order twpits asymptotic properties follow from standard
argumentsWrite

1
Qn(ﬁ) = ﬁ 2 E ul(ﬂ)uj(,g) Ku

i j#i

= ( 1)hd22uluJ ij

i j#Fi
1
T = DR? Eg (B = Bo)T{Xiuy + X Ui }K;
1
+ m 2 J; (B BO)Txl XJ(B BO) Klj

=Qmu + (B~ B0)"Qn2 + (B — Bo) "Quz(B — Bo)s

with Qy; implicitly defined In fact, Qy = Op(n"th~%2), Q,, = Oy(n~Y?), and
Qns = Op(1). Therefore

Qn(ﬂ) —p Q(B) = (B - BO)TQS(B - BO),

whereQn; —, Q3 > 0. The preceding convergences are uniforngiby inspec-
tion. Clearly, Q(/3) is uniquely minimized aBy. In conclusion 8 —, Bo.
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By virtue of the quadratic shape &,(8), we have

_ Qu(B)
B

where

(1) NY2Qna(Bo) — N(O,A[E{XXTo-2(X)f2(X)}]) in distribution
(2) Qs = E{XXT(X)} >0,

using the arguments of Fan and Li (1998he result follows

0 = Qnz + 2Qu3(B — Bo),
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97.1.3. A Joint Test for Functional Form and Random Individual Effects—
Solution* proposed by Dong LiWe rewrite (3) as

oy, d) =&,  i=1..,N; t=1..T, withe,~ND@OL, (4
where
1 K S
fie (Yie, ) = O__[B*(yit,)\) = > BB (X, A) — ’)’szﬁs] (5)
v =1 ]}

and¢ = (B’y’A767UV)'
The contribution of thé th observation to the loglikelihood functidty, ) is

lie(Yie, @) = —3109(27) — 3f2(Vie. ) + ke (Vie, &), (6)
where

kit (Vit,¢) = log

ofic (Yie, d) ‘
it

is a Jacobian ternDefine
ofic (Yie, ) kit (it ) 7)
a; iy
ThenF(y,¢) andK(y,¢) are theNT X (K + S+ 3) matrices with typical ele-
mentsFy; (i, ) andKi; (Vir, ), respectively
Letf(y,¢) be theNTvector with typical elements (i, ¢). Then the decreas-
ing likelihood ratio (DLR) can be written as
FW¢W_[—H%@
K(y, )

wherewyr denotes a vector of ones of dimensigm. This artificial regression is
double-length with RIT observations

Fig (Yit, ¢) = and Ki; (i, d) =

]b + residuals (8)

INT
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From (5) we can obtain

D) L Een, Lz
T
ofi (Vie, @) _ i Clyu. ) — M
oA o, Yit» T
N
K > C(Xix, A)
= 2 B\ Cuo ) =0 = ],

afit(yit,(f)) . _i Zluit afit(yit»d)) o u_IT

0 o, T do, o

whereC(x,A) = Ax*logx — x* + 1/A2 (Note that there is a constant ternn
Also, from (5), the Jacobian term for thieth observation is given by

of; (y. ;) 0
ke (Y, ) = lo ‘ = -7 )+ (= Dlogy; — log(c,),
9)
so that
Kt (Vie» @) _ kit (Yie, &) -0 kit (i, &) — logv
a,Bk 3)’5 ) a/\ gylb
kit (Vie, P) _ 1 kit (Vit, &) _ _i
a0 T—-06’ do, o,
ForH§: A = 1 andd = 0, (3) becomes
K S
ylt = kElﬁkxitk + 217$Zits + uit' (10)
= o

The regressand of the DLR hésh elementl;, /4, and(it + NT)th element 1
whereQ; andg, denote the restricted maximum likelihood (ML) estimates of the
itth residual andr,, respectivelyThe typical elements for the firtNT and the
second\T observations of the regressors are then

for By: (1/6,) (Xiwe — 1) and Q

for ys: (1/6,)Zis and Q

for A: —(1/rru)[yn 10g(yir) = ¥ir + 1 — S Bu(Xin 109 (Xine) — Xiew + D] and logf yie);
for 0: (1/6,)34—104/T and—1/T — 6;

for o,: (1/62)0; and—1/6,,.

The test statistic isI9T — the residuals sum of squardsis asymptotically
distributed asyZ under the null hypothesidé.
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ForH®: A = 0 andd = 0, (3) becomes

K s
log(yir) = kZlBUOg(Xnk) + ZlYSZits + Uy. (11)

The regressand of the DLR hésh element; /&, and(it + NT)th element 1
where(; anddg, denote the restricted ML estimates of tht residual andr,,
respectivelyThe typical elements for the firBtT and the seconNT observations
of the regressors are then

for By: 1/6,10g(Xiw) and Q

for ys: (1/6,)Zis and Q

for A: —(1/&,)[(I0g(yx)%2 — Sk_1Bx(log(Xw))%/2] and logyy) (by noting
lim,_o(Ax*logx — x* + 1/A?) = (logx)%/2);

for 6: (1/,)(S{_10/T) and—1/T — 6;

for o,: (1/62)0; and—1/4,.

The test statistic isI8T — the residuals sum of squardsis asymptotically
distributed ag¢Z under the null hypothesid{.
NOTE

1. An excellent solution has been proposed independently by BaBiallagi the poser of the
problem

97.1.4. Least-Squares Approximation of Off-Diagonal Elements of a Variance
Matrix in the Context of Factor AnalysisSelution proposed by Albert Satorra
and Heinz Neudecke€learly, we need to maximize

¢ = trE2 = (vecE,)’ vecE, = (vecE)’(l — Kq)vecE, (1)

whereE := C — AA andK is the commutation matrixNote that generically
KqvecP = vecPy. Clearly, (1 — Kg)? =1 — Kg.
The differential ofp is

de = 2(vecE)'(I — Ky)vecdE
= —2(vecE)'(I — Ky)ved(dAA + AdA]
= —2(vecE)'(I — Ky)(I + K)(AX I)vecdA
= —4(vecE)'(I — Ky)(AX I)vecdA
—4(vecE,)' (A X l)vecdA

We used the obvious equalities V&) A’ = (A Q) 1)vecdA vecAdA = (I K
A)vecdA = (1 ® A)KvecdA=K(AR I)vecdA and(l — Ky) (I + K)vecE =
2(1 — Ky)vecE. Thus the first-order condition for the solutiofis

(A ® l)vecE, = 0,
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which is equivalent to
E,A=0. (2)
Because
E,= (C — AA), = C, + (AA)y — AA,
we write (2) as
[C, + (AA)4]A = AAA. (3)
Using equation (3)we obtain
E2=[C, + (AA)4][C, + (AA)4] + ANAAN
—[C, + (AA)d]AA — AA[C, + (AA)4]
=[C, + (AA)SIIC, + (AA)4] + AAAA — AAAA — ANAA
=[C, + (AA)G][Cy + (AA)4] — AAAA.
Consequentlye of (1) equals
¢ =tr[Cy + (AA)4]? — tr(A'A)2. 4)

Clearly the solution foAis invariant under orthogonal transformatidinat is
if Ais a solutionthenA = ATwhereT is orthogonal is also a solutiowithout
loss of generalitywe takeA’A = A whereA = Ay, a positive definite diagonal
matrix. Under this normalization oA, equations (3) and (4) become

[Cu + (AA)g]A = AA (5)
and
@ =tr[C, + (AA)4]? — tr A%, (6)

To attain a minimum in (6)we need to search for a maximum of\f;
Equations (5) and (6) suggest the following iterative procedure to find the
matrix A:

(1) Choose an arbitrary diagonal mattix= Uq > 0 and comput€* := C, + U.

(2) Compute the eigenvalues and associated eigenvectGrsaofd determiné andA
so thatthe columns @& are appropriately scaled eigenvector€dfssociated with
the m largest eigenvalued he diagonal elements of will thus be them largest
eigenvalues oC*.

(3) Instep (1)replaceU by (AA)g.

(4) Iterate (1)—(3) until stability has been reached

This solution is called the principal factor analysis solutidm obtain the di-
agonal matriXxJq in step (1) a simple procedure is to set = (WW')4 with Wa
p X mmatrix whose columns are eigenvectoradssociated with then largest
eigenvalues and of squared length equal to the associated eigenvalue
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97.1.5. Inconsistency of Minimum Variance Quadratic Unbiased Estimators
under Non-Gaussian Compound Normal DistributioBetution® proposed by
Jean-Daniel Rolle

1. Becausd&) ~ CN(0,y2l, ¢y,), theny = XB + U ~ CN(XB,y2l, ). Lety’Ay
be a potential estimator for2. Nonnegativity and unbiasedng$sy'Ay) = o ?)
imply AX = 0, as one can show easilenceAu = AXB = 0, and we have that
E(y'Ay) = o?tr A. From (3) we have Vafy’Ay) = ko *(trA)? + 20%(ky +
1)tr A Define the set of matriced = {A€ RNVN; A= 0,AX=0,tr A= 1}. The
quadraticsy’Ay with A € A are unbiased forr2 We are seeking an optimal
estimatory’A*y of o2, with A* € A, such that Vafy’A*y) < Var(y'Ay) forall A€
A. From a computational point of view is very useful to characterize the ma-
tricesA € A. To do sg let us define the open set of matricBs= {P € RNN;
PMy # 0}, whereMy = | — XX* andX ™ is the Moore—Penrose inverseXflet
us prove the following lemma

LEMMA 1. The function h: P — A given by h(P) = |PMy| ~?MyxP'PMy is
surjectve (i.e., hy(P) = A).

Proof LetA > 0, with AX= 0. HereA > 0 implies the existence of @< N
matrix B such thatA = B’'B. Next, 0 = AX = B’'BXimpliesX’B'BX = 0. There-
fore BX = 0. The general solution oBX = 0 is B = PMy (see Magnus and
Neudecker 198&x. 4 p. 38), whereP is an arbitrary matrix of appropriate order
HenceA = B'B = My P'PMy. The unbiasedness condition imposes thAt#r 1,
that is tr(MxP'P) = |PMy|? = 1. Hence A = |PMy| 2MyP'PMy.

To continue the proof of Lemma, Mefine the functionh,: A — R by
h,(A) = var(y’Ay) andh: P — R by h = h, o h;. We will find a P* € P such
thath(P*) = h(P). Because the functioh, is surjective h, takes a minimum
at A* = hy(P%), i.e, hy(A*) = h,(A) for all A € A. Using the representation
A = |PMy| 2MxP’PMyx and (3) one hash(P) = Var(y’'Ay) = kyo? +
2(ky + 1) o *[tr(MxP'P)2][tr(MyP'P)] 2 Therefore we can equivalently min-
imize on the open seP the differentiable functionu(P) = tr(MxP'P)%/
(tr MxP'P)2 Using Theorem 2 in Rolle (1996. 265), a global minimizerP*
of w(P) is given by(N — rX)~¥2J’, whereJ is such thatlJ’ = M. Hence the
optimal matrix A* € A at which h, takes a minimum is given bA* =
hy(P*) = [|3'Mx|"2MxJJ'Myx = My /(N — rX), noting that idempotence dfly
impliesrMy = tr My = N — rX. The optimal estimator is then

2:

5 Ly xxt 4

62 = )y. ©)

Note that this estimator does not depend on any particular (mixing) distribution
of r and hence of any particular compound normal distribution (in that sese

a uniform minimum variance quadratic unbiased estimator) u

2. Noting thatMyxX = 0, we haves? = y'Myy/(N — rX) = U'MyU/(N —
rX). Next, by assumptiotd ~ CN(0,v?2l,¢y), for someH. It follows thatU =

https://doi.org/10.1017/50266466698141075 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466698141075

PROBLEMS AND SOLUTIONS 159

Y27, whereZ is N(0,y?l) and r, Z are independenHences? = (1/N —
rX)U'MxU = (1/N — rX)7Z'MxZ = (1y%/N — rX)Z'(Myx/y?)Z = (ry*N —

rX) x@—ex. But x@—x/(N — rX) converges in probability to,-andé 2 converges

in probability toy27. That is ¢ 2 converges in probability to a random variable
Hence ¢ 2isinconsistent (unless in the Gaussian cageereH is degenerated on

7 = 1 and where 2 converges in probability tg? = o2 because-2¢'(0) = 1).
Another way to see this is to note that the componentsarfe exchangeable (but
notindependent)he law of large numbers for such sequences allows the limit to
be a random variabld his is what happens here

NOTE

1. An excellent solution has been proposed independently by David Greene
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ERRATUM

An excellent solution by GTrenkler to Problem 92.3 was omitted from the
reference to the published solution in vbB, no. 3, p. 466
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