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In this article, we derive a tight closed-form upper bound on the expected value
of a three-piece linear convex function E[max(0, X, mX 2 z)] given the mean m

and the variance s2 of the random variable X. The bound is an extension of the
well-known mean–variance bound for E[max(0, X )]. An application of the bound
to price the strangle option in finance is provided.

1. INTRODUCTION

Computing upper bounds on the expected value of a convex function E[ f (X )] for a
random variable X with mean m and variance s2 is a classical problem in prob-
ability and optimization. One such commonly studied function is the two-piece
linear convex function f (X ) ¼ max(0, X ). A simple mean–variance bound in this
case is

E½max (0;X)� � 1
2

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s 2

p� �
; (1)

which is obtained from the Cauchy–Schwarz inequality. The two-point distribution
that attains the bound is

X ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ m2

p
w.p.

1
2

1� mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ m2

p
 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ m2

p
w.p.

1
2

1þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ m2

p
 !

:

8>>>><
>>>>:

(2)
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Scarf [6] used this bound for the function f(X ) ¼ max(0, X 2 z) in a min-max news-
vendor model wherein X denotes the random demand for a product and z denotes the
order quantity. Likewise, Lo [3] used the bound to obtain an upper bound on a call
option price where X denotes the stock price and z denotes the strike price.

We extend this result to find a new closed-form upper bound on the expected
value of the three-piece linear function

f (X) ¼ max (0;X;mX � z): (3)

The bound is tight and, in certain cases, is shown to be attained by a three-point
distribution. In the remaining cases, it reduces to the two-point distributions as
earlier. We indicate an application of the bound to price a strangle option in finance.
We alsobelieve that the bound can be used in newsvendor models with recourse oppor-
tunities (cf. Gallego and Moon [1]) and multiple simple recourse problems in stochastic
programming (cf. van der Vlerk [7]), but we have not explored it as yet.

2. A NEW MEAN--VARIANCE BOUND

We are interested in solving the primal problem

Z ¼ max
X�(m;s 2)

E½max (0;X;mX � z)�; (4)

where the maximization is over the set of probability distributions, of the random
variable X satisfying the given mean and variance requirements. The related dual
formulation is

Z ¼ min y0 þ my1 þ (m2 þ s 2)y2 s.t. g(x) ¼ y0 þ y1xþ y2x2

� max (0; x;mx� z); 8x [ <; (5)

where y0, y1, and y2 are the dual variables corresponding to the probability-mass,
mean, and second moment constraints. The dual constraint implies that the quadratic
function g(x) is greater than or equal to f (x) ¼ max(0, x, mx 2 z) for all x. We assume
that s . 0. It is then well known that the two formulations have the same optimal
objective value (cf. Isii [2]). Our approach to finding Z is based on solving the
primal and dual formulations in closed form. Before proceeding, we make the follow-
ing assumption.

ASSUMPTION 1: Let m . 1 and z . 0.

This ensures that each of the lines in f (x) is maximum in some nonempty interval.
All other cases can be easily handled by simple linear transformations of the
function. The graphical representation of the functions f (x) and g(x) are provided in
Figure 1.

A classical result due to Rogosinsky [5] states that there there exists an extremal
distribution for problem (4) with at most three support points. However, finding this
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in closed form is typically not possible (cf. Popescu [4]). We now identify these distri-
butions and the corresponding bounds in closed form for our problem of interest.

THEOREM 1: Define

x1 ¼
�z

m(m� 1)
, x2 ¼

z

m(m� 1)
, and x3 ¼

(2m� 1) z

m(m� 1)
:

The tight upper bound Z in (4) reduces to the following four cases:

Region 1: Three-point distribution. If max[(x2 2 m)(m 2 x1), (x3 2 m)(m 2 x2)]
� s2 � (x3 2 m)(m 2 x1), then

Z ¼ 1
2

mþ m(m� 1)(m2 þ s 2)
2z

þ z

2 m(m� 1)

� �
:

Region 2: Two-point distributions.

(2a) If s2 � (x2 2 m)(m 2 x1), then

Z ¼ 1
2

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s 2

ph i
:

(2b) If s2 � (x3 2 m)(m 2 x2), then

Z ¼ 1
2

(mþ 1)m� zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((m� 1)m� z)2 þ (m� 1)2s 2

q� �
:

(2c) If s2 � (x3 2 m)(m 2 x1), then

Z ¼ 1
2

mm� zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mm� z)2 þ m2s 2

q� �
:

FIGURE 1. Graphical representation of the functions f (x) and g(x).
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PROOF: Our proof is based on constructing a primal and dual feasible solution to
(4) and (5), respectively, with the same objective value. Using strong duality, we
can then claim that this is indeed the tight upper bound.

Region 1: Three-point distribution. The dual feasible function g(x) lies above the
lines y ¼ 0, y ¼ x, and y ¼ mx 2 z, respectively. From Figure 1, it is clear that
this function can intersect each of these lines at, at most, one point. Suppose
that the points are x1, x2, and x3, respectively. Equating the derivative of the func-
tion g(x) with the slope of the lines at these points, we get

g0(x1) ¼ 0 ) x1 ¼ �
y1

2y2
;

g0(x2) ¼ 1 ) x2 ¼
1� y1

2y2
;

g0(x3) ¼ m ) x3 ¼
m� y1

2y2
:

(6)

Similarly, equating the value of the dual function g(x) and the lines at these
points, we get

g(x1) ¼ y0 þ y1x1 þ y2x2
1 ¼ 0;

g(x2) ¼ y0 þ y1x2 þ y2x2
2 ¼ x2;

g(x3) ¼ y0 þ y1x3 þ y2x2
3 ¼ mx3 � z:

(7)

By substituting (6) into (7), the dual variables are obtained as

y0 ¼
z

4(m� 1)m
;

y1 ¼
1
2
;

y2 ¼
(m� 1)m

4z

(8)

The objective value for this dual feasible solution is

y0 þ my1 þ (m2 þ s 2)y2 ¼
1
2

mþ m(m� 1)(m2 þ s 2)
2z

þ z

2 m(m� 1)

� �
:

We next construct a primal solution using the three points x1, x2, and x3 found in
(6). From (8), we have

x1 ¼
�z

m(m� 1)
;

x2 ¼
z

m(m� 1)
;

x3 ¼
(2m� 1)z
m(m� 1)

:

(9)
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Let p1, p2, and p3 denote the probabilities of these three points. To satisfy the
probability-mass, mean, and variance requirements, we have

p1 þ p2 þ p3 ¼ 1;

p1x1 þ p2x2 þ p3x3 ¼ m;

p1x2
1 þ p2x2

2 þ p3x2
3 ¼ m2 þ s 2:

Solving for the values of pi that satisfy these three equations, we get

p1 ¼
s 2 þ (m� x2)(m� x3)

(x2 � x1)(x3 � x1);

p2 ¼
s 2 þ (m� x1)(m� x3)

(x1 � x2)(x3 � x2)
;

p3 ¼
s 2 þ (m� x1)(m� x2)

(x1 � x3)(x2 � x3)
:

(10)

For the solution to be primal feasible, we need to ensure that the values of pi are
nonnegative. From (10), this is ensured if

max½(x2 � m)(m� x1); (x3 � m)(m� x2)� � s 2 � (x3 � m)(m� x1):

Assuming that the above condition is satisfied, the objective function for this
primal feasible solution is given as

E½f (X)� ¼ p10þ p2x2 þ p3(mx3 � k)

¼ s 2 þ (m� x1)(m� x3)
(x2 � x1)(x2 � x3)

x2

þ s 2 þ (m� x1)(m� x2)
(x3 � x1)(x3 � x2)

(mx3 � k)

¼ 1
2

mþ m(m� 1)(m2 þ s 2)
2z

þ z

2 m(m� 1)

� �
:

Both the primal and dual feasible solutions have the same objective value, imply-
ing that these are the primal and dual optimal solutions.

Region 2: Two-point distributions. The remaining three bounds correspond to
different two-point distributions. We indicate the proof for region (2a) only.

Suppose that the dual feasible function g(x) touches the lines y ¼ 0 and y ¼ x
only. Let these points be a and b, respectively. In this case, equating the

MEAN--VARIANCE BOUND 615

https://doi.org/10.1017/S0269964807000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000356


derivatives and the values as earlier, we get

y0 ¼
1

16y2
;

y1 ¼
1
2
;

a ¼ �1
4y2

;

b ¼ 1
4y2

:

The best dual solution of this form is obtained by minimizing the dual objective
y0 þ my1 þ (m2 þ s2)y2 with respect to y2. This yields

y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ m2

p
4

;

y1 ¼
1
2
;

y2 ¼
1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ m2

p :

The corresponding primal solution is

X ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ m2

p
w.p.

1
2

1� mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ m2

p
 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ m2

p
w.p.

1
2

1þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ m2

p
 !

:

8>>>><
>>>>:

The primal and dual objectives are equal to

1
2

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ s 2

ph i
:

In this case, we still need to guarantee that the dual feasibility condition is satisfied
by checking y0 þ y1x þ y2x2 � mx 2 z for all x [ < . Let D be the discriminant of
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the quadratic function y2x2 þ ( y1 2 m)x þ ( y0 þ z). Then we have

D ¼ (y1 � m)2 � 4y2(y0 þ z)

¼ m(m� 1)� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ m2

p
� m(m� 1)� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x2 � m)(m� x1)þ m2
p (if s 2 � (x2 � m)(m� x1))

¼ m(m� 1)� m(m� 1)
z

z as x1 þ x2 ¼ 0 and x1x2 ¼ �
z2

m2(m� 1)2

� �

¼ 0:

Since D is less than or equals to zero and y2 . 0, the dual feasibility condition is
satisfied. Thus the two-point distribution is feasible and the optimal solution in this
case. B

Figure 2 provides a graphical representation of the different cases in Theorem 1 in
the mean–variance space. We can interpret the result in Theorem 1 as follows:
Suppose that we fix the mean of the random variable m in the range [x1, x2]. As we
increase the variance s2 of the random variable, the extremal distribution moves
from region 2a (two point) to region 1 (three point) to region 2c (two point). These
can be interpreted as regions of low variance, medium variance, and high variance,
respectively, for the particular mean. The characterization of region 1 with the extre-
mal three-point distribution is new. This occurs due to the three-piece structure of the
objective function. The support points for the three-point distribution in region 1 in
fact remain unchanged. It is also easy to verify that the bound in region 1 is also
an upper bound for the remaining three regions (although not necessarily tight).

FIGURE 2. Characterization of the different regions in Theorem 1.
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3. AN APPLICATION IN FINANCE

We indicate an application of the bound to price a strangle option in finance. Suppose
X denotes the random price of a financial asset at a future time T . 0. Consider an
investor who at time 0 buys a call and a put option on this asset, both expiring at
the same maturity T. Let K1 and K2 be the strike prices of this call and put option,
respectively. In options terminology, with K1 . K2 this is known as a strangle.
Such a strangle option is valuable to the investor when the asset price is expected
to be volatile, but the exact direction of the price movement is unknown. The
payoff of the strangle is plotted in Figure 3 and given as

f (X) ¼ max(K2 � X; 0;X � K1): (11)

The three-piece payoff structure makes it suitable to use our bounds for this option.
Suppose that we know the mean and the variance of the asset price under the

risk-neutral distribution. The exact distribution is, however, unknown. A simple
upper bound on the expected payoff of the strangle is obtained by using (1):

E½ f ðxÞ� � E½K2�X�þ þE½X�K1�þ;

� 1
2

K2�K1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m�K1)2þs 2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m�K2)2þs 2

q� �
:

(12)

Such option prices bounds are termed “semiparametric bounds” (cf. Lo [3]).
However, this is not the tightest possible upper bound on the strangle price
because the two-point extremal distributions for the call and the put options are
different. We obtain a tighter estimate on the price of the strangle option in this setting.

FIGURE 3. Payoff of strangle.
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PROPOSITION 1: The tight upper bound on E[max(K2 2 X, 0, X 2 K1)] with K1 . K2

and X � (m, s2) is

1
2

K2�mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m�K2)2þs 2

q� �
if 4s 2 � (K1þK2� 2m)(3K2�K1� 2m),

1
2

m�K1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m�K1)2þs 2

q� �
if 4s 2 � (3K1�K2� 2m)(2m�K1�K2),

1
2

K2�K1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2m�K1�K2)2þ 4s 2

q� �
if 4s 2 � (3K1�K2� 2m)(K1þK2� 2m),

4s 2þ (K1þK2� 2m)2

8(K1�K2)
otherwise

(13)

It is possible to strengthen the bound slightly for the strangle using the additional
information that the stock price X is always nonnegative (see Lo [3]). However, for the
numerical example we consider next, this information is not useful in tightening the
bounds.

Numerical Example: We consider a single-asset example taken from Lo [3] with a
current stock price of S0 ¼ $40. Call and put options are trading on this stock with a

TABLE 1. Price and Bounds for the Strangle Option

s ¼ 0.2 s ¼ 0.8

K1 K2

Black–
Scholes Bound (13) Bound (12)

Black–
Scholes Bound (13) Bound (12)

30 30 10.0346 10.0958 10.0958 10.0457 10.9776 10.977
35 30 5.0404 5.1216 5.1313 5.2718 6.2566 6.3539
40 30 0.4658 0.5783 0.6089 1.7971 2.2488 2.7203
45 30 0.0000 0.0614 0.0920 0.3603 0.8538 1.3253
50 30 0.0000 0.0309 0.0614 0.0475 0.4960 0.9470

35 35 5.0404 5.1611 5.1611 5.4921 6.7245 6.7245
40 35 0.4658 0.5783 0.6387 2.0175 2.6295 3.0909
45 35 0.0000 0.0617 0.1218 0.5807 0.9919 1.6959
50 35 0.0000 0.0603 0.0912 0.2678 0.8421 1.3176

40 40 0.8854 1.1106 1.1106 3.5370 4.4515 4.4515
45 40 0.4196 0.5322 0.5937 2.1002 2.5844 3.0565
50 40 0.4196 0.5322 0.5631 1.7874 2.2027 2.6782

45 45 4.9481 5.0710 5.0710 5.6576 6.6557 6.6557
50 45 4.9481 5.0303 5.0404 5.3448 6.1773 6.2774
50 50 9.9423 10.0041 10.0041 10.0262 10.8933 10.8933
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FIGURE 4. Upper bound and difference with Black–Scholes (BS) price for strangle for
s ¼ 0.8.
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time to maturity of T ¼ 1/52 year (or 1 week). The annual risk-free interest rate is r ¼
6% with an annual compound standard deviation of s. We consider two cases: s ¼ 0.2
(small) and s ¼ 0.8 (large). Assuming a lognormal distribution for the asset price, the
mean and variance of the terminalstock price under the risk-neutral distribution (cf.
[3]) is given as

(m;s2) ¼ S0erT ; S2
0e2rT (es2T � 1)

� �
:

We compare the mean–variance bounds for the strangle price

e�rT E½max (K2 � X; 0;X � K1)

from (12) and (13) with the closed-form Black–Scholes price. The strike prices
K1and K2 are varied between 30 and 50 with K1 � K2. The results are provided in
Table 1 and Figure 4. From Table 1, it is clear that the improvement using the new
bound (13) is larger as the variance increases. For s ¼ 0.8, the best improvement
over bound (12) is obtained for a strangle with strike price K1 ¼ 45 and K2 ¼ 35.
In this case, the tight bound is 0.9919 with the three-point distribution:

X ¼
30 w.p. 0:0970
40 w.p. 0:8014
50 w.p. 0:1016:

8<
: (14)

Under this extremal distribution, the strangle is in the money at X ¼ 30 and 50,
whereas it is out of the money at X ¼ 40. On the contrary, using the simple extension
of Lo’s [3] bound in this case provides a weaker upper bound of 1.6959.
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