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On Moser’s regularization of the Kepler
system: Positive and negative energies
Sebastián Ferrer and Francisco Crespo

Abstract. We present a generalization of Moser’s theorem on the regularization of Keplerian systems
that include positive and negative energies. Our approach does not consider the geodesics of the
hyperboloid embedded in a Lorentz space for the unbounded orbits, as it is previously done in the
literature. Instead, we connect the Keplerian positive and negative energy orbits with the harmonic
oscillator with negative and positive frequencies. The connection is established through the canonical
extension of the stereographic projection, as it is done in Moser’s original paper. How we base our
study reveals that Kustaanheimo–Stiefel map KS and Moser regularizations are alternative ways of
showing the spatial Kepler system as a subdynamics of the 4D harmonic oscillator.

1 Introduction and main result

The spatial Kepler system describes the motion of a particle in a central potential and
has the following energy function:

Kμ =
1
2
∣y∣2 − μ

∣x∣ ,(1.1)

where μ is the positive gravitational constant and x, y ∈ T∗R3
0, with R

n
0 = Rn − {0}.

In this paper, we consider the Kepler system’s regularization, which has been done in
various forms by several authors. After reparametrization of the independent variable
and imposing several constraints, Moser [13, 15] and Kustaanheimo and Stiefel
[9, 10] linked the Keplerian flow at each energy level with well-known linear systems.
Each procedure has pros and cons; Moser’s technique is easily stated for arbitrary
dimension, but it is not suitable for positive energy in its original formulation. The
Kustaanheimo–Stiefel map (KS) regularization is not restricted to bounded orbits;
however, it works only for the spatial case. In this work, we focus on Moser’s
procedure.

The main result of this paper is the extension of the Moser theorem for the
case of unbounded Keplerian orbits. This is achieved by employing a canonical
stereographic-type transformation ST, the result of considering the stereographic
projection in the simplectic context, which will be detailed in Section 4. Furthermore,
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in our proof, the Keplerian orbits are embedded in the Hamiltonian flow given by

Hω =
1
2
(∣p∣2 + ω ∣q∣2) ,(1.2)

with q, p ∈ T∗R4
0 . The frequency ω is assumed to be an arbitrary real number, which

will allow to handle the unbounded orbits.

Theorem 1.1 (Extended Moser) The inverse stereographic projection ST
−1 connects

positive and negative Keplerian energy orbits on Kμ = k with the Hamiltonian flow
given by (1.2) on the manifold Hω = h, when properly constrained and reparametrized.
Moreover, we have that
(1) Bounded orbits are linked to the geodesic flow in TS3(r), with r = ∣q∣, which is

an invariant manifold of the flow associated to (1.2) in the energy level h = ωr2.
This connection yields a bijection between oriented great circles on S3(r) and
the hodographs of the bounded Keplerian orbits with energy k = −

√
ω/(2r2) and

ω > 0.
(2) The map ST

−1 connects the unbounded Keplerian orbits, with energy k = 1/(2h2)
and the Hamiltonian flow given by (1.2) with negative frequency ω < 0 and energy
Hω = h.

The above theorem is proved in Section 5; it includes unbounded Keplerian orbits
as a remarkable novelty. To the best of our knowledge, Belbruno [1] was the first one
to deal with the case of positive energies. He replaced Moser’s transformation and
established the Kepler motion equivalence with the geodesic flow on a two-sheeted
hyperboloid embedded in a Lorentz space (see also [16]). In their treatment, the
authors prioritize the Kepler system’s connection with the geodesic flow as Moser
does it. Later, Kummer [8] gave a geometric explanation of Moser’s procedure in
terms of the hidden special orthogonal (SO)(4) symmetry of the Kepler system and
showed that it is intimately related to the KS-regularized Kepler system. Precisely,
in [6, 8] the Kepler system is obtained due to the reduction of the action of a 1D
subgroup of SO(4), which in a more physical context is dubbed as a gauge group.
Section 2 provides a set of symplectic coordinates especially well suited for this
geometric setting. Moreover, we shall prove that time reparametrizations play a key
role in leading straightforwardly to the KS or Moser regularization. Our methodology
detaches from that of Belbruno since the connection with the geodesic flow is no
longer the priority, which will only be maintained for bounded motions. Instead,
our approach extends Moser’s procedure not by force to maintain the geodesic flow
but by fixing the stereographic-type map connecting the Kepler system and (1.2).
As a reward, this strategy allows straightforwardly handling the positive energy case
without introducing the mentioned elements and maintaining the same methodology
as in the negative energies.

The symplectic stereographic-type transformation ST defined in Section 4 plays
a key role in our approach. In configuration space, it is the same as the one given
by Moser in [15, Section 1.6]. However, there is a slight difference in the canonical
extension allowing us to consider the positive energy case. Precisely, while Moser in
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972 S. Ferrer and F. Crespo

[13, 15] was focused on the restriction to the tangent bundle of the sphere, we define
a canonical extension valid in an open set of T∗R4

0.
The use of the Hamiltonian (1.2) for the regularization process is one of the

possible choices. Indeed, in [15], Moser changed the Hamiltonian function employed
previously by himself in [13]. In this regard, how different Hamiltonians could be
chosen for regularization purposes is discussed in Section 3. The reason why we
employ (1.2) is justified in Section 2. Precisely, by using an angle-based chart, dubbed
as the Projective Euler variables, it is shown that one of the Hamiltonian flows used
by Moser for the Kepler regularization is already obtained as a subdynamic of the
harmonic oscillator. This fact suggests that the Hamiltonian function (1.2) is also
suitable for Moser’s regularization process. Moreover, with the aid of the Projective
Euler chart, in Section 2, we show that KS and Moser regularizations are alternative
ways of embedding the Keplerian flow in a 4-degrees of freedom (DOF) oscillator.
Each of these regularizations corresponds with a different reparametrization of the
Hamiltonian system (1.2). The relation between KS and Moser’s methods was first
detailed by Kummer in [8].

A shared disadvantage of KS and Moser’s treatments is that they manage each
energy level independently. In this respect, Ligon and Schaaf [11] provided an almost
global treatment considering all positive energies and all negative energies separately.
However, the process they gave asks for a considerable effort, and simplified versions
were provided in [3, 4]. Additionally, in a recent publication, van der Meer [17]
gives a full explanation of the relation between KS, Moser, and Ligon and Schaaf
regularizations in terms of constructive geometric reduction. Still, another drawback
of the Ligon and Schaaf regularization is pointed out in [4], where Cushman and
Duistermaat claimed that, given a certain function f in the negative energy manifold,
the composition with the Ligon-Schaaf map might not possess the required smooth-
ness for the application of the averaging method. To the best of our knowledge, this
question remains open.

Throughout this work, we will use several sets of variables. With a slight abuse
of notation, we shall use the same symbol to denote functions expressed in different
charts. The context will make clear which one we are referring to.

2 Projective Euler variables and the 4D oscillator

In [8], it is shown that the Moser regularization exposes the hidden SO(4) symmetry
of the Kepler system, and it is intimately related to the KS-regularized Kepler system.
Precisely, in [6, 8] the Kepler system is obtained due to the reduction of the action
of a 1D subgroup of SO(4), which in a more physical context is dubbed as a gauge
group. This section provides a set of symplectic coordinates especially well suited for
this geometric setting. Moreover, we shall prove that time reparametrizations play a
key role in this system, leading straightforwardly to the KS or Moser regularization.

The Projective Euler variables are based on Euler parameters and have been used
in several works (see, for example, [5, 6] and the references therein). This set of
variables has proved to be very useful to describe different dynamical aspects of the
4D oscillator. Notably, in [6], the Projective Euler variables establish the connection
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with the Kepler system and the spherical rotor straightforwardly. For the benefit of
the reader, we briefly recall here the Projective Euler chart, which is defined through
the transformation

PE ∶ (ρ, ϕ, θ , ψ, P, Φ, Θ, Ψ) → (q, p),

given by

q1 =
√ρ cα sβ , p1 =

2
√ρ

sβ (cα Pρ − sα Θ) + Φ +Ψ
√ρ cα

cβ ,

q2 =
√ρ sα sγ , p2 =

2
√ρ

cγ (sα Pρ + cα Θ) − Φ −Ψ
√ρ sα

sγ ,(2.1)

q3 =
√ρ sα sγ , p3 =

2
√ρ

sγ (sα Pρ + cα Θ) + Φ −Ψ
√ρ sα

cγ ,

q4 =
√ρ cα cβ , p4 =

2
√ρ

cβ (cα Pρ − sα Θ) − Φ +Ψ
√ρ cα

sβ ,

where we have introduced the following notation with the aim of getting compact
expressions cx = cos x and sx = sin x. Moreover, α = θ/2, β = (ϕ + ψ)/2, γ = (ϕ −
ψ)/2, and (ρ, ϕ, θ , ψ) ∈ Λ = R+ × (0, 2π) × (0, π) × (0, 2π). Excluding the manifolds
M1= {(q, Q)∣q1 =q4=0} and M2 = {(q, Q)∣q2 =q3=0}, the Hamiltonian (1.2) in the
new variables reads as follows:

Hω =
ω
2

ρ + 2ρP2 + 1
ρ
Z(θ , _, _, Θ, Φ, Ψ),(2.2)

where

Z = 2(Θ2 + Φ2 +Ψ2 − 2 ΦΨ cos θ
sin2 θ

) .(2.3)

In the above expression, the variables ϕ and ψ are cyclic, with Φ and Ψ as the
corresponding first integrals. In addition, the computation of the Poisson brackets
shows that the function Z is an integral for Hω . This function will play a key role
in what follows and defines a well-known Hamiltonian dubbed as the spherical
rotor, which is obtained by making equal all the principal moments of inertia of the
free rigid body system in Euler angles (see [12]). Mainly, the equations of motion
associated with Z describe the dynamics of a full symmetric rigid body, with uniform
distribution of mass and freely rotating without external interactions. That is to say,
the flow generated by Z, when restricted to a sphere of arbitrary radius, corresponds
to uniform rotations.

2.1 The role of time reparametrizations

Now, we explore two reparametrizations of the independent variable for the 4D
oscillator system. Each of them will reveal a particular 3D subdynamics of the original
system. The following theorem was first given in [6] .
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974 S. Ferrer and F. Crespo

Theorem 2.1 Considering the time reparametrization dτ = (4ρ)−1 ds on system
(1.2), and fixing the energy level Hω = h, the flow is described by the Hamiltonian
H̃ω = 1

4ρ (Hω − h) on the manifold H̃ω = 0, which in the Projective Euler chart is given
by

H̃ω = K̃μ +
Ψ2 − 2ΦΨ cos θ

2ρ2 sin2 θ
,(2.4)

where

K̃μ =
1
2
(P2 + Θ2

ρ2 +
Φ2

ρ2 sin2 θ
) − μ

ρ
,(2.5)

and μ = h/4.

Proof It is a straightforward computation using the Projective Euler chart (see [6,
Theorem 1]). ∎

Remark 2.2 Notice that by restricting to Φ = 0 or Ψ = 0, we are led to the 3D Kepler
system in spherical coordinates (see [7]). Indeed, the expressions for these momenta
in Cartesian coordinates are given by

Φ(q, p) = 1
2
(p1q4 − p4q1 − p2q3 + p3q2),

Ψ(q, p) = 1
2
(p1q4 − p4q1 + p2q3 − p3q2).(2.6)

Namely, each of them is one of the possible choices for the bilinear relation constraint
imposed for the KS transformation. Moreover, in [6], we also showed that the KS
map connects both systems in rectangular coordinates, just by inverting the spherical
coordinates transformation

S ∶ (ρ, ϕ, θ , R, Φ, Θ) → (x1 , x2 , x3 , y1 , y2 , y3),

x1 = ρ sθ cϕ , y1 = 1/2 ρ sθ [cϕ (Θs2θ + 2Pρs2
θ) − 2Φsϕ] ,(2.7)

x2 = ρ sθ sϕ , y2 = 1/2 ρ sθ [sϕ (Θs2θ + 2Pρs2
θ) + 2Φcϕ] ,

x3 = ρ cθ , y3 = Pcθ −Θsθ/ρ,

with (ρ, ϕ, θ) ∈ Λ4 = R+ × (0, 2π) × (0, π). In other words, the composition of the
previous transformations S ○ P4 ○PE−1

(q, p) → (ρ, ϕ, θ , ψ, P, Φ, Θ, Ψ) → (ρ, ϕ, θ , P, Φ, Θ) → (x1 , x2 , x3 , y1 , y2 , y3),

where P4 is the projection over (ρ, ϕ, θ , P, Φ, Θ), is given by

x1 = 2(q2q4 − q1q3), y1 = 1/2ρ (p4q2 + p2q4 − p1q3 − p3q1),
x2 = 2(q1q2 + q3q4), y2 = 1/2ρ (p2q1 + p1q2 + p4q3 + p3q4),(2.8)
x3 = q2

1 − q2
2 − q2

3 + q2
4 , y3 = 1/2ρ (p1q1 − p2q2 − p3q3 + p4q4),

https://doi.org/10.4153/S0008439520000983 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000983


Moser’s Regularization. Positive and Negative Energies 975

which is the KS map. This fact shows that the following diagram is commutative:

(2.9)
Ψ−1(0) ⊂ T∗R4

0 T∗Λ

T∗R3
0 T∗Λ4 ,

KS

PE−1

P4

S

where Ψ−1(0) = {(q, p) ∈ T∗R4
0 ∶ Ψ(q, p) = 0}.

Note that this operation is equivalent to reducing the S1 symmetry given by the
Hamiltonian action associated with Φ(q, p) or Ψ(q, p). A detailed treatment of this
process is given in [2, 6].

The following result explores an alternative time reparametrization. It shows a
connection between the 4D oscillator and another remarkable 3D physical system.
Namely, employing a suitable reparametrization, the oscillator may be separated into
two 1-DOF subsystems being one of them the spherical rotor.

Theorem 2.3 Let us consider the 4D harmonic oscillator expressed in the Projec-
tive Euler chart. Then, by fixing the energy level Hω = h and carrying out the time
reparametrization

dτ = ρ ds,(2.10)

the flow is described by the Hamiltonian ˜̃
Hω = ρ (Hω − h) on the manifold ˜̃

Hω = 0.
After this manipulation, the 4D harmonic oscillator becomes separable and includes the
dynamics of the spherical rotor.

Proof According to the Poincaré technique with dτ = ρ ds, we obtain the following
expression for ˜̃

Hω in the Projective Euler chart:
˜̃
Hω = ρ (Hω − h) =Kρ +Kθ ,(2.11)

where

Kρ =
ωρ2

2
+ 2ρ2P2 − h ρ, Kθ = 2(Θ2 + Φ2 +Ψ2 − 2 ΦΨ cos θ

sin2 θ
) .(2.12)

That is to say, K has been separated to two 1-DOF subsystems being the function
Kθ = Z, the Hamiltonian defining the system associated to the spherical rotor. ∎

The connection of the 4D oscillator and the spherical rotor may appear less
important than the previous one with the Kepler system. However, considering the
expression of Kθ in rectangular coordinates, the link with the Moser regularization
is established. Precisely, we have

Kθ(q, p) = Z = 1
2
(∣q∣2∣p∣2 − ⟨q, p⟩2) ,

Kρ(q, p) = 1
2
(ω∣q∣4 + ⟨q, p⟩2 − 2h∣q∣2) .(2.13)
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The Hamiltonian function Z is precisely the one considered by Moser and Zehnder
in [15] to regularize the Keplerian flow, which after constraining to ∣q∣ = 1 and ⟨q, p⟩ =
0, leads to the geodesic flow on the sphere S3. This fact suggests that the harmonic
oscillator may also lead to the Kepler system through the Moser procedure. The next
section investigates this issue.

Indeed, constraints ∣q∣ = 1 and ⟨q, p⟩ = 0 are equivalent to ρ = 1 and ρP = 0. More-
over, for the case ω = h = 1, and taking into account expression (2.12), the constrained
manifold obtained from imposing ρ = 1 and ρP = 0 is an invariant manifold of the
Hamiltonian system given by (2.11). This can be checked by noting that ρ and
ρP commute with Kθ , and considering the equations of motion associated to Kρ
given by

ρ̇ = 4ρ2P, Ṗ = ωρ + 4ρP2 − h = ρ + 4ρP2 − 1.

3 Alternative Moser regularizations

In this section, we investigate a broad family of Hamiltonian functions giving the
geodesic flow when restricted to TS3. Note that Moser used two different Hamiltoni-
ans to regularize the Keplerian flow. Indeed, in [13, 15], the Kepler system connection
was made through the Hamiltonian system defined by the following functions:

Z = 1
2
(∣q∣2∣p∣2 − ⟨q, p⟩2) , M = 1

2
(∣q∣2∣p∣2) .(3.1)

Of course, both systems define the same vector field on the tangent bundle of the
sphere TS3, the Hamiltonian version of the geodesic flow. That is to say, given a
Riemannian manifold (M , g), the geodesic flow on M may be given by the restriction
to the configuration space of any of the Hamiltonian flows on TM or T∗M defined,
respectively, by the Hamiltonian functions

H(x , y) = 1
2

gx(y), H̃(x , py) =
1
2

g̃x(py),

where g̃ is the inverse of the metric tensor. Considering M = R4, with the metric
tensor given by the usual Euclidean inner product, we have that the geodesic flow
is defined in the submanifold ∣q∣ = r and ⟨q, p⟩ = 0, together with the energy surface
H̃(q, p) = ∣p∣2 = p2. We are using the terminology of geodesic flow in a broad sense,
allowing the flow to traverse geodesics at constant arbitrary velocity, rather that
imposing p = 1.

The reparametrization and splitting of the 4-DOF harmonic oscillator given in
Theorem 2.3 suggest that the regularization procedure given by Moser in [13] may
also work for the oscillator. In this regard, we shall characterize a wide family of
Hamiltonians allowing the Kepler regularization through the Moser procedure.

Any Hamiltonian flow in T∗R4 containing the geodesic flow of S3(r) (at constant
velocity) must satisfy that the submanifold

Ωr , p = {(q, p) ∈ T∗R4
0 ∶ ∣q∣ = r, ∣p∣ = p, ⟨q, p⟩ = 0},(3.2)
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is invariant, where Ωr , p is a submanifold of TS3(r) containing the geodesics travelled
at constant rate p. Moreover, the functions ∣q∣2, ∣p∣2, and ⟨q, p⟩ span the following Lie
algebra.

Proposition 3.1 In T∗R4 ≡ TR4 ≡ R8 with the standard Poisson bracket {, }, the
set of functions G = {G1 = ∣q∣2/2, G2 = ∣p∣2/2, and G3 = ⟨q, p⟩} span a Lie algebra in
C∞(R8) isomorphic to sl(2,R). Therefore, G ≡ SL(2,R), where G denotes the group
generated by the flows of G i . Moreover, the function Z given in (3.1) is the generator of
the center of G.

Proof The computation of the Poisson bracket for G1, G2, and G3 yields {G1 , G2} =
G3, {G1 , G3} = 2G1, and {G2 , G3} = 2G2, that is, those functions span a Lie algebra
isomorphic to su(1, 1) ≅ sl(2,R) and G ≡ SL(2,R). Finally, just a direct computation
is needed to show that {Z, F} = 0 for any F in G , and consequently, Z is the generator
of the center of G. ∎

Proposition 3.1 shows the key role that the function Z plays. It is the Hamiltonian
function of the spheric rotor and the generator of the center of G. Thus, every
submanifold given by the combination of any of the constraints ∣q∣2 = k1, ∣p∣2 = k2,
or ⟨q, p⟩ = k3 is an invariant manifold for the Hamiltonian system associated to
Z. In this regard, it is no wonder that Moser chose it to define the geodesic flow
after the corresponding constraints are imposed. However, there are many functions
f (x , y, z), evaluated in x = ∣q∣2, y = ∣p∣2, and z = ⟨q, p⟩, which may also be suitable
for this purpose. To be precise, such a function must satisfy that when constrained to
Ωr , p , the following brackets vanish:

{F(q, p), ∣q∣2} = {F(q, p), ∣p∣2} = {F(q, p), ⟨q, p⟩} = 0, q, p ∈ Ωr , p ,

for some r and p, and F(q, p) = f (∣q∣2 , ∣p∣2 , ⟨q, p⟩). These conditions impose the
following relations involving partial derivatives:

∣q∣2 fx = ∣p∣2 fy , ∣p∣2 fz + 2⟨q, p⟩ fx = 0, ∣q∣2 fz + 2⟨q, p⟩ fy = 0.(3.3)

Note that any f in the center of G satisfies the above conditions. Nevertheless, there
are functions, not in the center of G, for which (3.3) holds. For instance, the harmonic
oscillator Hω , associated to f (x , y) = 1/2(y2 + ωx2) and ω > 0, is a possible choice.
Precisely, for r = p/

√
ω and ⟨q, p⟩ = 0, we have that

{Hω , ∣q∣2} = −2⟨q, p⟩ = 0, {Hω , ∣p∣2} = 2ω⟨q, p⟩ = 0,

and

{Hω , ⟨q, p⟩} = ω∣q∣2 − ∣p∣2 = ω r2 − p2 = 0.

Therefore, among all the submanifolds Ωr , p in T∗R4, the harmonic oscillator only
leaves invariant that one given by ∣q∣ = r = p/

√
ω, ∣p∣ = p and ⟨q, p⟩ = 0. According to

Theorem 2.3, the Hamiltonian vector fields generated by the functionsHω andZ agree
along this manifold. Furthermore, as it was showed by Moser in [15], the constrained
Hamiltonian Z leads to the geodesic flow, hence so does Hω .
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4 Symplectic stereographic-type transformation

This section is devoted to the transformation connecting the dynamics of the Kepler
and oscillator flows. We define our transformation based on Moser’s work, but it
is not the same as we are going to see. Our variation allows us to extend Moser’s
regularization to the positive energy case. In our view, the reason this work was
not finished in [13] is that Moser was not concerned about parabolic or hyperbolic
motions, as it is indicated in the title of the paper [13]. On the contrary, he was more
focused on small perturbations of bounded Keplerian orbits related to big questions
as the stability of the solar system [14].

First, we define the transformation in the configuration space. For this purpose,
we consider the following stereographic-type transformation, which was dubbed by
Moser in [15] as the “homogeneous” version of the stereographic mapping:

ΣΠ ∶ R4
0 − L0 �→ Δ ⊂ R4

0 , q→ x,

and defined as follows

x0 = ∣q∣, x j =
q j

∣q∣ − q0
,(4.1)

where L0 is the closed positive q0-axis and Δ is the open set of R4
0 defined by x0 > 0.

Notice that this map is related to the stereographic projection, but it is not the same.
Indeed, the following geometrical interpretation was given in [15, Section 1.6]. “For
x0 = 1, the transformation (4.1) is the stereographic projection, while for arbitrary x0, it
maps rays through the origin into vertical half lines on R

4
0 such that the heights x0 agree

with the distance on the ray.” Now, we carry out the canonical extension by considering
the corresponding generating function

W(x, p) = p0x0
∣x̃∣2 − 1
∣x̃∣2 + 1

+ 2x0

∣x̃∣2 + 1
(p1x1 + p2x2 + p3x3).

Thus, the canonical extension is given by

ST ∶ T∗(R4
0 − L0) �→ Δ ×R4 ⊂ T∗R4

0 , (q, p) → (x, y),

x0 = ∣q∣, x j =
q j

∣q∣ − q0
,

y0 =
⟨q, p⟩
∣q∣ , y i = (∣q∣ − q0)p i − (

⟨q, p⟩
∣q∣ − p0) q i .(4.2)

This transformation has been named symplectic stereographic-type transformation
due to the geometrical relation with the stereographic projection in configuration
space. Next, for the sake of completeness, we also provide the inverse transformation
of the stereographic-type map given above

ST
−1 ∶ Δ ×R4 ⊂ T∗R4

0 �→ T∗(R4
0 − L0), (x, y) → (q, p).
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The explicit expression of the inverse is obtained by considering the inverse of the
configuration space transformation given in (4.1). Then, by using the generating
function

W(q, y) = y0∣q∣ +
1

∣q∣ − q0
(y1q1 + y2q2 + y3q3),

we arrive to the inverse stereographic-type transformation

q0 = x0
∣x̃∣2 − 1
∣x̃∣2 + 1

, q j = x0
2x j

∣x̃∣2 + 1
,

p0 =
⟨x̃, ỹ⟩

x0
+ y0
∣x̃∣2 − 1
∣x̃∣2 + 1

, p j =
∣x̃∣2 + 1

2 x0
y j − ⟨x̃, ỹ⟩

x j

x0
+

2y0x j

∣x̃∣2 + 1
,(4.3)

where z = (z0 , z1 , z2 , z3), z̃ = (z1 , z2 , z3), and j = 1, 2, 3.
The direct stereographic-type transformation is the same as the one given by Moser

in [15, Section 1.6]. However, by comparison of (4.3) with the formulas (1.82) given
in [15], the reader may observe a slight difference in the inverse stereographic-type
transformation, allowing us to consider the positive energy case. Precisely, while
Moser in [13, 15] was focused on the restriction to the tangent bundle of the sphere,
we define a canonical extension between open sets in T∗R4

0.

5 Proof of Theorem 1.1

This section demonstrates Theorem 1.1 by introducing a suitable change of variables
and distinguishing the cases of positive and negative energies.

5.1 Differential system in stereographic variables

First, we consider the inverse symplectic stereographic-type transformation given
in (4.3). After applying this change of variables, we can replace the Hamiltonian
Hω(q, p) given in (1.2) by

Gω(x, y) = ωx2
0 + y2

0
2

+ 1
2x2

0

1
4
(∣x̃∣2 + 1)2 ∣ỹ∣2 .(5.1)

Previous to the regularization, we prepare the Hamiltonian system associated to
(5.1). For this purpose, we consider a function F(x̃, ỹ) satisfying

F2(x̃, ỹ) = 1
4
(∣x̃∣2 + 1)2 ∣ỹ∣2 .(5.2)

Of course, we have two options, which will be used for the cases of positive and
negative energies. Thus, Gω is given by

Gω(x, y) = ωx2
0 + y2

0
2

+ 1
2x2

0
F2 .(5.3)
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Moreover, the function F is an integral of the Hamiltonian Gω , which associated
equations of motion are given by

ẋ0(t) = y0(t), ẏ0(t) = −ωx0(t) +
1

x0(t)3 F
2 ,

˙̃x(t) = 1
x2

0(t)
FFỹ , ˙̃y(t) = − 1

x2
0(t)

FFx̃ .(5.4)

5.2 Part 1. Regularization of bounded orbits

For the regularization of the bounded orbits, we consider the case of ω > 0. Then, we
restrict the 4D oscillator to the invariant submanifold Ωr ⊂ T∗(R4

0 − L0) given by

Ωr = {(q, p) ∈ TS3(r) ⊂ T∗R4
0 ∶ ∣q∣ = r, ∣p∣ = p = r

√
ω, ⟨q, p⟩ = 0, q0 ≠ r}.(5.5)

We already proved that the flow of the harmonic oscillator and Z agree in Ωr , and
hence they both agree with the geodesic flow. Thus, we only need to prove that
the transformation (4.3) connects the negative energy orbits of the Kepler system
with Hω .

The invariant manifold Ωr corresponds in the xy-space to

Ω∗r = {(x, y) ∈ T∗R4
0 ∶ x0 = r, y0 = 0, (∣x̃∣2 + 1)2 ∣ỹ∣2 = 4r4ω},(5.6)

where r is a positive real constant. By imposing this restriction to the invariant
manifold Ω∗r , and taking into account that x0 = r and F = r2√ω, the equations of
motion (5.4) are given as follows:

ẋ0 =0, ẏ0 = 0,
˙̃x = F̃ỹ , ˙̃y = −F̃x̃ ,(5.7)

where F̃(x̃, ỹ) =
√

ω/2 (∣x̃∣2 + 1) ∣ỹ∣, and we are restricted to the energy manifold
F̃(x̃, ỹ) = ω r2.

Now, we perform another change of variables, and by abuse of notation, we use the
symbols (x, y) in the following way:

x̃ = r y, ỹ = − 1
r

x,(5.8)

which leads to the Hamiltonian

˜̃
F(x, y) =

√
ω

2
(r2∣y∣2 + 1) 1

r
∣x∣ − ω r2 .

However, the context makes clear what objects are we referring to in each case. Then,
after this symplectic change of variables, the introduction of a new independent
variable

dt = (
√

ω r ∣x∣)−1 dτ
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and the elimination of constant terms lead to the system given by the Hamiltonian
function

Fμ(x, y) = 1
2
∣y∣2 − μ

∣x∣ ,(5.9)

in the manifold Fμ = −1/(2r2), where μ =
√

ω r. That is to say, the Kepler system at
the level energy −

√
ω/(2r2) is connected with the 4D isotropic oscillator at the level

energy ω r2.

5.3 Part 2. Regularization of unbounded orbits

The regularization of the unbounded orbits is related to the case ω < 0 and positive
energy Hω = h > 0. The assumption of negative frequencies implies that Ω∗r is no
longer an invariant manifold. Moreover, we choose the integral function F in (5.2)
to be

F(x̃, ỹ) = − 1
2
(∣x̃∣2 + 1) ∣ỹ∣,(5.10)

with fixed value F = f < 0.
Equations of system (5.4) can be separated in two parts. Variables (x0 , y0) define a

1-DOF subsystem, and by using the Hamiltonian invarianceGω(x, y) = h, the variable
y0 is expressed as follows:

y2
0 = 2h + ∣ω∣x2

0 − f 2/x2
0 .

Therefore, the differential equation for ẋ0 is integrated by rewriting it as

ẋ0 = ±
√

2h + ∣ω∣x2
0 − f 2/x2

0 .(5.11)

Once the subsystem (x0(t), y0(t)) is solved, we introduce the following new
independent variable:

ds = f 2/x2
0(t) dt.

Then, subsystem (x̃, ỹ) becomes

˙̃x(t) =Fỹ , ˙̃y(t) = −Fx̃ .(5.12)

By restricting to the energy level F = f and introducing the following symplectic
change of coordinates

x̃ = h y, ỹ = − 1
h

x,(5.13)

we obtain that system (5.12) is given by the Hamiltonian

F̂(x, y) = − 1
2
(h2∣y∣2 + 1) ∣x∣/h − f .(5.14)

https://doi.org/10.4153/S0008439520000983 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000983


982 S. Ferrer and F. Crespo

Finally, we introduce a new independent variable τ,

ds = −(h ∣x∣)−1 dτ,

which leads to the system defined by the Hamiltonian function

Fμ(x, y) = 1
2
∣y∣2 − μ

∣x∣ ,(5.15)

in the manifold Fμ = 1/(2h2), where μ = − f /h > 0. That is to say, the Kepler system
at the positive energy level 1/(2h2) is connected with the system given by Hω at the
level energy h.
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