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A NOTE ON THE SCREAMING TOES GAME

SIMON TAVARÉ ,∗ Columbia University

Abstract

We investigate properties of random mappings whose core is composed of derangements
as opposed to permutations. Such mappings arise as the natural framework for studying
the Screaming Toes game described, for example, by Peter Cameron. This mapping dif-
fers from the classical case primarily in the behaviour of the small components, and a
number of explicit results are provided to illustrate these differences.
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1. Introduction

The following problem comes from Peter Cameron’s book, [4, p.154]:

n people stand in a circle. Each player looks down at someone else’s feet (i.e., not at
their own feet). At a given signal, everyone looks up from the feet to the eyes of the
person they were looking at. If two people make eye contact, they scream. What is the
probability qn, say, of at least one pair screaming?

The purpose of this note is to put this problem in its natural probabilistic setting, namely
that of a random mapping whose core is a derangement, for which many properties can be
calculated simply. We focus primarily on the small components, but comment on other limiting
regimes in the discussion.

We begin by describing the usual model for a random mapping. Let B1, B2, . . . , Bn be
independent and identically distributed random variables satisfying P(Bi = j) = 1/n, j ∈ [n],
where [n] = {1, 2, . . . , n}. The mapping f : [n] → [n] is given by f (i) = Bi. Components of the
mapping are formed by iteration: i and j are in the same component if some iterate of i equals
some iterate of j; each component is a directed cycle of rooted, labeled trees. An example with
n = 20, displayed in Fig. 1, is given in Table 1. Elements 12 and 4 are in the same component
because f (12) = 14 = f (f (f (4))).

1.1. The components of a random mapping

Denoting the number of components of size j by Cj(n), j = 1, 2, . . . , n, [10] showed that
the probability that a random mapping has aj components of size j is
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Screaming toes 119

FIGURE 1. A mapping graph on n = 20 vertices with no singleton cycles. This one has three components,
of sizes 5, 7, and 8. There are none elements in cycles, which have lengths 3, 4, and 2 respectively. Figure

produced by the R igraph package [5].

P(Cj(n) = aj, j = 1, . . . , n) = 1

⎧⎨⎩
n∑
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jaj = n

⎫⎬⎭ n!en
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λ
aj
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where

λj = e−j

j

j−1∑
i = 0

ji

i! = 1

j
P(Po(j) < j), (2)

Po(μ) denoting a Poisson random variable with mean μ. In particular, the probability that a
mapping of size n has a single component is

sn := P(Cn(n) = 1) = n!en

nn
λn.
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TABLE 1. Example mapping for n = 20 (see Fig. 1).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bi 2 14 7 1 7 19 17 11 10 13 2 14 9 8 19 10 6 16 6 19

It follows readily from (1) that

ECj(n) = n!
nn

(n − j)n−j

(n − j)! ejλj = sj

(
n

j

)(
j

n

)j (
1 − j

n

)n−j

, j = 1, 2, . . . , n. (3)

A probabilistic interpretation of (3) is given in [7]. Kolchin [11] established that
(C1(n), C2(n), . . . ) ⇒ (Z1, Z2, . . . ), where the Zi are independent Poisson random variables
with means EZi = λi. Many other properties of random mappings may be found, for example,
in [7].

1.2. The core of a random mapping

Here we record some properties of the core of a random mapping, the set of elements that
are in cycles. Results (4)–(6) are classical; see, for example, [3, p. 366]. The number Nn of
elements in the core has a distribution given by

P(Nn = r) = r

n

r−1∏
l=0

(
1 − l

n

)
= r

n

n[r]

nr
, r = 1, . . . , n, (4)

where n[j] = n(n − 1) · · · (n − j + 1). The mean of Nn is

ENn =
n−1∑
l=0

(n − 1)[l]

nl
,

and it follows directly from (4) that Nn/
√

n converges in distribution to a random variable
with density function xe−x2/2, x > 0. We write C∗

j (n) for the number of cycles of size j in
the core of a random mapping, and let C′

j(r) be the number of cycles of size j in a uniform
random permutation of r objects. The joint law of the L(C∗

j (n)) is given by L(C∗
j (n)) =∑n

r=1 P(Nn = r)L(C′
j(r)), since, conditional on Nn = r, the random mapping restricted to its

core is a uniformly distributed permutation on those r elements. It follows that

EC∗
j (n) = 1

j

n[j]

nj
, j = 1, . . . , n. (5)

For fixed j, EC∗
j (n) → 1/j and

(C∗
1(n), C∗

2(n), . . . ) ⇒ (Z∗
1 , Z∗

2 , . . . ), (6)

where the Z∗
j are independent Poisson random variables with mean EZ∗

j = 1/j.

2. The Screaming Toes random mapping

We turn now to the Screaming Toes setting. Label the players 1, 2, . . . , n, and suppose
player i looks at the feet of player Bi. Because players choose whose feet to look at randomly,
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subject to not looking at their own, we see that the Bi are independent, but no longer identically
distributed:

P(Bi = j) = 1/(n − 1), j ∈ [n] \ {i}. (7)

We form components by iteration, just as in the standard case; components now describe how
the players are looking at each other. The cycles in the core of the mapping indicate sets of
players, say i1, . . . , ir, for which i1 → i2 → · · · → ir → i1 (where → denotes ‘looks at the
feet of’), and the trees attached to any of the cyclic elements describe the sets of players who
look from one to another, and finally to someone in a cycle. Each component has a single
cycle, so that the number of components is the number of cycles in the core, and each cycle
must have length at least two. The core of the mapping can have no cycles of length 1, and
there are p(n) = (n − 1)n such mappings. Figure 1 provides an illustration.

We study the cycles in the core and the structure of the components of the Screaming
Toes mapping. We find the probability (18) that there are k screaming pairs (for k =
1, 2, . . . , �n/2	), identify the structure of the random mapping itself, and derive some basic
properties of the component sizes.

Note that the resulting combinatorial structure is not the same as a random mapping condi-
tioned on having no singleton components, because such a conditioned structure may still have
singleton cycles in its core; rather, the core of a Screaming Toes mapping is a derangement.
We denote by Dj(n) the number of components of size j, and D∗

j (n) the number of cycles of
length j in the core.

2.1. The distribution of the component sizes

We adopt the general approach from [2, Chapter 2]. A component of size i ≥ 2 has
j = 2, 3, . . . , i elements in its core. A straightforward modification of the counting argument
given in [3, Theorem 14.33 and Lemma 5.17] that leads to (2) then shows that the number of
components of size i is given by

m̃i :=
i∑

j = 2

(
i

j

)
(j − 1)! jii−j−1 = (i − 1)!

i∑
j=2

ii−j

(i − j)! .

It follows that, for i ≥ 2,

m̃i = (i − 1)! ei
i−2∑
l=0

e−iil

l! = (i − 1)! ei
P(Po(i) < i − 1).

The joint law of (D2(n), . . . , Dn(n)) is therefore given by

P(Dj(n) = aj, j = 2, . . . , n) = 1

⎧⎨⎩
n∑

j = 2

jaj = n

⎫⎬⎭ x−nn!
(n − 1)n

n∏
j = 2

(
m̃jxj

j!
)aj 1

aj! (8)

for any x > 0. Since the distribution in (8) is independent of x, we are free to choose it and we
make the choice x = e−1, which results in the structure being logarithmic in the terminology
of [2, p. 51]. We therefore define

λ̃j = m̃je−j

j! = 1

j
P(Po(j) < j − 1), j = 2, 3, . . . , (9)

which should be compared to (2). The probability that a mapping of size n has a single
component is
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s̃n = P(Dn(n) = 1) = enn!
(n − 1)n

λ̃n,

and s̃n ∼ e
√

π
2 n−1/2 ≈ 3.4069 n−1/2, n → ∞.

2.1.1. Moments The falling factorial moments of the component counts are readily calculated
from (8), to obtain

E(D[r2]
2 · · · D[rb]

b ) = λ̃
r2
2 · · · λ̃rb

b emn[m]
(n − m − 1)n−m

(n − 1)n
(10)

for r2, . . . , rb ≥ 0 satisfying m = 2r2 + · · · + brb ≤ n. It follows that, for j = 2, 3, . . . , n,

EDj(n) = λ̃j ej n[j]
(n − j − 1)n−j

(n − 1)n
= s̃j

(
n

j

)(
j − 1

n − 1

)j (
1 − j

n − 1

)n−j

, (11)

which also admits a simple probabilistic justification. A numerical example is given in
Table 3. The covariances may be found from (10): for i + j ≤ n,

EDi(n)Dj(n) = s̃ĩsj

(
n

i, j

)(
i − 1

n − 1

)i ( j − 1

n − 1

)j (
1 − i + j

n − 1

)n−i−j

,

the value being 0 when i + j > n. The expected value of the number of components K̃n =
D2(n) + · · · + Dn(n) is

EK̃n =
n∑

j = 2

λ̃j ej n[j]
(n − j − 1)n−j

(n − 1)n
. (12)

2.1.2. Limit distributions Following [2, p.48], the joint law of an assembly such as the
Screaming Toes mapping (D2(n), . . . , Dn(n)) may also be represented as that of (̃Z2, . . . , Z̃n)
conditional on

T1n := 2Z̃2 + 3Z̃3 + · · · + nZ̃n = n, (13)

where the Z̃i are independent Poisson random variables with EZ̃j = λ̃j, j ≥ 2, given in (9), and
it follows from [2, Chapter 3], or directly from (10), that the counts of small components have,
asymptotically, independent Poisson distributions with means EZ̃j given above.

3. The core of the Screaming Toes mapping

The core of our mapping is composed of derangements, permutations with no fixed points.
We use ′ to denote derangements, so that D′

j(n) is the number of cycles of length j in a random
uniform derangement of size n. We write

dn := n!
n∑

j = 0

( − 1)j

j!

to denote the number of derangements of n objects; the probability that a random permutation
is a derangement is P(C1(n) = 0) = dn/n!.

We record two results for future use:

ED′
j(n) = 1

j

n!
dn

dn−j

(n − j)! , j = 2, 3, . . . , n, (14)
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and, for a random permutation of r elements,

P(C1(r) = 0, C2(r) = k) =
(

1

2

)k 1

k!
�r/2	−k∑

l=0

( − 1)l
(

1

2

)l 1

l!
dr−2l−2k

(r − 2l − 2k)! . (15)

The result in (15) follows, for example, from [2, (1.9)], and the well-known (14) is derived in
the context of θ -biased random derangements (with θ = 1) in [6].

In the next section we look in more detail at the cycles in the core of the mapping. In
particular, we find in Theorem 1 the distribution of the number D∗

2(n) of 2-cycles in the core;
this provides the answer to our original problem, since qn = P(D∗

2(n) > 0).

3.1. The number of 2-cycles in the core

We begin with some properties of the number Nn of elements in the core of a standard

random mapping. If we define πk =∏k
l=0

(
1 − l

n

)
= (n − 1)[k]/nk, then nπk = (n − k)πk−1

for k = 1, 2, . . . , n − 1. Hence, πk−1 − πk = kπk−1/n, and it follows from (4) that, for j =
1, 2, . . . , n,

P(Nn ≥ j) =
n∑

k=j

kπk−1

n
=

n∑
k=j

(πk−1 − πk) = πj−1 − πn = πj−1. (16)

To find the distribution of the number D∗
2(n) we make use of the following result.

Lemma 1. For any n ≥ 2 and m = 1, 2, . . . , n,(
n

n − 1

)n n∑
r=m

r

n

n[r]

nr

dr−m

(r − m)! = n[m]

(n − 1)m
. (17)

Proof. We have
n∑

r=m

r

n

n[r]

nr

dr−m

(r − m)! =
n∑

r=m

r

n

n[r]

nr

r−m∑
j=0

( − 1)j

j!

=
n−m∑
j = 0

( − 1)j

j!
n∑

r=m+j

r

n

n[r]

nr

=
n−m∑
j = 0

( − 1)j

j! P(Nn ≥ m + j) from (4)

=
n−m∑
j = 0

( − 1)j

j!
n[m+j]

nm+j
from (16)

= n[m]

nm

n−m∑
j = 0

( − 1)j

j!
(n − m)!

(n − m − j)!
1

nj

= n[m]

nm

n−m∑
j = 0

(
n − m

n − m − j

)(
−1

n

)j

= n[m]

nm

(
1 − 1

n

)n−m

.
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It follows that the left-hand side of (17) is

(
n

n − 1

)n n[m]

nm

(
n − 1

n

)n−m

= n[m]

(n − 1)m
,

which establishes Lemma 1. �
Theorem 1. For k = 0, 1, . . . , �n/2	,

P(D∗
2(n) = k) =

(
1

2

)k 1

k!
�n/2	−k∑

l=0

( − 1)l
(

1

2

)l 1

l!
n[2l+2k]

(n − 1)2l+2k
. (18)

Proof. Let Ñn be the number of elements in the core of a Screaming Toes mapping. Its
distribution may be found by considering the number of elements Nn in the core of a standard
random mapping and conditioning on it having no fixed points in its core; the probability of
this event is (1 − 1/n)n. Since Ñn = r if Nn = r and the r elements are a derangement, we have

P(Ñn = r) = P(Nn = r)
dr

r!
/(n − 1

n

)n

=
(

n

n − 1

)n r

n

n[r]

nr

dr

r! , r = 2, 3, . . . , n. (19)

The law of the number of 2-cycles in the core is therefore given by

P(D∗
2(n) = k) =

n∑
r=2k

P(Ñn = r) × P(random derangement of size r has k 2-cycles).

Noting that P(random derangement of size r has k 2-cycles) = P(C2(r) = k | C1(r) = 0) and
using (15), we obtain, after some simplification,

P(D∗
2(n) = k) =

(
n

n − 1

)n 2−k

k!
n∑

r=2k

r

n

n[r]

nr

�r/2	−k∑
l=0

( − 1)l
(

1

2

)l 1

l!
dr−2l−2k

(r − 2l − 2k)!

= 2−k

k!
�n/2	−k∑

l=0

( − 1)l
(

1

2

)l 1

l!
(

n

n − 1

)n n∑
r=2l+2k

r

n

n[r]

nr

dr−2l−2k

(r − 2l − 2k)! .

The right-most sum on the last line reduces to n[2l+2k]/(n − 1)2l+2k by using the identity in
(17), completing the proof. �

A numerical example is given in Table 4.

3.1.1. Expected number of cycles of length j

It is well known that the expected number of cycles of length j in a standard random mapping
core is

EC∗
j (n) =

n∑
r=j

r

n

n[r]

nr

1

j
= 1

j
P(Nn ≥ j) = 1

j

n[j]

nj
, j = 1, . . . , n; (20)
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see (16) for the last step. For the Screaming Toes mapping, the expected number of cycles of
length j is, from (14) and (19),

ED∗
j (n) =

(
n

n − 1

)n n∑
r=j

r

n

n[r]

nr

dr

r!
1

j

r!
dr

dr−j

(r − j)!

=
(

n

n − 1

)n 1

j

n∑
r=j

r

n

n[r]

nr

dr−j

(r − j)!

= 1

j

n[j]

(n − 1)j
, (21)

the final equality coming from (17). Some numerical values are given in Table 5.

Remark 1. Since the number of components is equal to the number of cycles in the core, EK̃n

may also be computed from (21), to obtain

EK̃n =
n∑

j = 2

1

j

n[j]

(n − 1)j
, (22)

which should be compared to (12). The equivalence of (12) and (22) is illustrated for the case
of n = 10 in Tables 3 and 5.

3.2. Did anyone scream?

Cameron’s original problem was to show that the probability that someone screams is

qn :=
�n/2	∑
l=1

( − 1)l−1n[2l]

2ll!(n − 1)2l
, (23)

and to find the limiting behaviour of qn as n → ∞. We can identify qn because
P(someone screams) = 1 − P(D∗

2(n) = 0), so, from Lemma 3.1,

qn = P(D∗
2(n) > 0) =

�n/2	∑
l=0

( − 1)l−1
(

1

2

)l 1

l!
n[2l]

(n − 1)2l
,

recovering (23). Representative values of qn are given in Table 2.
Finally, a word about the limiting value of qn. From Theorem 1, D∗

2(n) converges in distri-
bution to a Poisson random variable with mean 1

2 . In particular, limn→∞ qn = 1 − P(Po
( 1

2

)=
0) = 1 − e−1/2 ≈ 0.3935.

4. Simulating the component counts

It is often useful to be able to simulate combinatorial objects, for example to study the distri-
butions of cycle lengths and component sizes for moderate values of n, where the asymptotics
might not be good, or when asking more detailed questions where explicit answers are hard to
come by. In our setting, there are (at least) two approaches to this.
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TABLE 2. The probability qn from (23) of at least one screaming pair for various values of n.

n qn n qn

5 0.5664 60 0.4039
10 0.4654 70 0.4023
15 0.4386 80 0.4012
20 0.4264 90 0.4003
30 0.4148 100 0.3996
40 0.4093 1000 0.3941
50 0.4060 10 000 0.3935

4.1 A rejection method

The first is useful for studying the component counting process (D2(n), . . . , Dn(n)), by
exploiting a modification of the simulation approach in [1, Section 4]. For any θ > 0, (8) gives
the distribution of (D2(n), . . . , Dn(n)) as

P(Dj(n) = aj, j = 2, . . . , n) ∝ 1

{
n∑

j = 2

jaj = n

}
n∏

j = 2

(
ωj

j

)aj 1

aj!

= 1

{
n∑

j = 2

jaj = n

}
n∏

j = 2

(ωj

θ

)aj
n∏

j = 2

(
θ

j

)aj 1

aj!

=
n∏

j = 2

(ωj

θ

)aj
1

{
n∑

j = 2

jaj = n

}
n∏

j = 2

(
θ

j

)aj 1

aj! ,

where ωj = j̃λj = P(Po(j) < j − 1) is given by (9). We note that ωj ≤ θ = 1
2 for j = 2, 3, . . .. The

last factorisation shows that if we simulate (a2, . . . , an) from the distribution

Pθ (a2, . . . , an) ∝ 1

{
n∑

j = 2

jaj = n

}
n∏

j = 2

(
θ

j

)aj 1

aj! (24)

and accept (a2, a3, . . . , an) with probability h(a2, . . . , an) =∏n
j = 2

(ωj
θ

)aj , then the accepted
values have the distribution of (D2(n), . . . , Dn(n)).

The method relies on efficient simulation from the distribution in (24), which gives the
probability of observing aj cycles of size j, j = 2, 3, . . . , n, under the Ewens sampling formula
[8] with parameter θ , conditional on observing no cycles of length 1. For more information on
this law in the context of θ -biased derangements, see [6].

We implement the algorithm in a slightly different way, by simulating (a1, . . . , an) from
the regular Ewens sampling formula with parameter θ = 1

2 , and accepting (a2, . . . , an) with
probability

h(a1, a2, . . . , an) = 1(a1 = 0)
n∏

j = 2

(ωj

θ

)aj
. (25)
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There are many ways to generate observations from the Ewens sampling formula with an
arbitrary parameter θ , for example by using the Chinese restaurant process or the Feller cou-
pling; we exploit the latter, and point the reader to the discussion in [1] about the relative
efficiency of these methods.

4.2. Estimating the acceptance probability

To compute the asymptotic acceptance probability, we note that

P(accept an observation) =E

(
1(C1(n) = 0)

n∏
j = 2

(2ωj)
Cj(n)

)
,

where (C1(n), . . . , Cn(n)) has the Ewens sampling formula with parameter θ = 1
2 . The Poisson

limit heuristic shows that this is asymptotically

e−1/2
∞∏

j = 2

E(2ωj)
Zj = e−1/2

∞∏
j = 2

exp

(
− 1

2j

(
1 − 2ωj

))

= e−1/2 exp

(
−

∞∑
j=2

1

j

(
1

2
− P(Po(j) < j − 1)

))
= 1

e

1√
2

, (26)

the last result following because the algorithm is effectively generating a standard random
mapping, and accepting that mapping if its core is a derangement; from (19), this asymp-
totically has probability 1

e . In 106 simulations of the case n = 10 the acceptance rate was
estimated to be 0.247, in reasonable agreement with the limiting value of approximately 0.260
from (26).

Remark 2. There is an appealing connection between the exponent in the right-hand term in
(26),

∞∑
j=2

1

j

(
1

2
− P(Po(j) < j − 1)

)
, (27)

and Spitzer’s theorem [12], which is described in detail in [9, Theorem 1, p. 612]. This may be
used to evaluate the corresponding value for a standard mapping,

∞∑
j=1

1

j

(
1

2
− P(Po(j) < j)

)
= 1

2
log 2,

as given for example in [1, (19)] and [7]. It follows that (27) is

1

2
log 2 −

(
1

2
− 1

e

)
+

∞∑
j = 2

1

j
P(Po(j) = j − 1) = 1

2
log 2 −

(
1

2
− 1

e

)
+ 1 − 1

e

= 1

2
(1 + log 2), (28)

the sum being the probability that a random variable having a Borel distribution with parameter
1 is at least 2. This provides the formal justification of (26).
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TABLE 3. Mean number of components of sizes 1(1)10 for n = 10 for the Screaming Toes mapping,
simulated values from 106 realisations using the method in Section 4.1, and the corresponding means for

a standard mapping.

EDj(10) ECj(10)
j Eq. (11) Simulation Eq. (3)

1 0.3874
2 0.0744 0.0745 0.2265
3 0.0771 0.0764 0.1680
4 0.0734 0.0734 0.1391
5 0.0699 0.0699 0.1235
6 0.0673 0.0676 0.1160
7 0.0654 0.0650 0.1150
8 0.0608 0.0607 0.1225
9 0.0000 0.0000 0.1489
10 0.7629 0.7633 0.3660

TABLE 4. Distribution of the number of screaming pairs, from (18), for n = 10. Simulated values from
106 realisations of the method in Section 4.3.

P(D∗
2(10) = k)

k Eq. (18) Simulation

0 0.5346 0.5352
1 0.3809 0.3800
2 0.0789 0.0791
3 0.0055 0.0056
4 0.0001 0.0001
5 0.0000 0.0000

4.3. Simulating component and core sizes

A rejection method can be used to study details of the cycle sizes in the core of a mapping,
by generating an observation r from the distribution of Ñn in (19), and then generating a random
derangement of size r. While we do not illustrate this approach here, see [6] for efficient
methods for generating θ -biased derangements.

The second approach simulates a random mapping with no singleton cycles in its core, as
determined by the random variables in (7), and processes the output using (for example) the R
igraph package [5] to compute the component and core sizes. This provides a computationally
cheap way to check the first approach, and provides a way to study aspects of the joint law of
component and cycle sizes.

4.4. Examples

Here we illustrate some of the explicit results obtained above, and their corresponding simu-
lated values, all in the setting of n = 10. Table 3 compares the mean number of components for
the Screaming Toes mapping with the corresponding values for the regular mapping. The mean
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TABLE 5. Mean number of cycles of sizes 1(1)10 in the core for n = 10 for the Screaming Toes mapping,
simulated values from 106 realisations of the method in Section 4.3, and the corresponding means for a

typical random mapping.

ED∗
j (10) EC∗

j (10)
j Eq. (21) Simulation Eq. (20)

1 1.0000
2 0.5555 0.5555 0.4500
3 0.3292 0.3292 0.2400
4 0.1923 0.1920 0.1260
5 0.1029 0.1024 0.0605
6 0.0472 0.0474 0.0252
7 0.0182 0.0181 0.0086
8 0.0054 0.0053 0.0023
9 0.0010 0.0010 0.0004
10 0.0001 0.0001 0.0000

TABLE 6. Probability distribution of the number of elements in the core for n = 10 for the Screaming
Toes mapping, simulated values from 106 realisations of the method in Section 4.3, and the corresponding

probabilities for a typical random mapping.

P(Ñ10 = r) P(N10 = r)
r Eq. (19) Simulation Eq. (4)

1 0.1000
2 0.2581 0.257 0.1800
3 0.2065 0.206 0.2160
4 0.2168 0.217 0.2016
5 0.1590 0.159 0.1512
6 0.0958 0.096 0.0907
7 0.0447 0.045 0.0423
8 0.0153 0.015 0.0145
9 0.0034 0.003 0.0033
10 0.0004 0.0003 0.0004

number of components is 1.251 for the Screaming Toes mapping, and 1.913 for the standard
mapping.

Table 4 illustrates the distribution of the number of screaming pairs, while Table 5 compares
the mean cycle counts for the Screaming Toes core, and the corresponding values for the stan-
dard core. The mean number of cycles is 1.251 for the Screaming Toes mapping, and 1.913
for the standard mapping, the former in agreement with the results in (12) and (22). Table 6
illustrates the distribution of the number of elements in the core.

As a final example, we estimate, from 106 realisations of the simulation method in Section
4.3, the probability that the Screaming Toes mapping with n = 10 has no repeated component
sizes to be 0.959, no repeated cycle sizes to be 0.898, and no repeated component or cycle
sizes to be 0.879.
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5. Discussion

This paper has focused on the small components and cycles of the Screaming Toes map-
ping because that is where the main differences from the standard case emerge. We noted
before (9) that the Screaming Toes mapping is logarithmic, in that the Poisson random vari-
ables in (13) satisfy iP(Zi = 1) → 1

2 and iEZi → 1
2 as i → ∞, this following from (9). As

a consequence (see [2, Chapter 6]), the largest component sizes, when scaled by n, have
asymptotically the Poisson–Dirichlet law with parameter θ = 1

2 , just as in a standard map-
ping. In a similar vein, the largest cycle lengths, when scaled by Ñn, have asymptotically
the Poisson–Dirichlet distribution with parameter θ = 1, once more just as for the standard
mapping core.
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