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In this paper, we consider the energy equality of the 3D Cauchy problem for the
magneto-hydrodynamics (MHD) equations. We show that if a very weak solution of
MHD equations belongs to L4(0, T ; L4(R3)), then it is actually in the Leray–Hopf
class and therefore must satisfy the energy equality in the time interval [0, T ].
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1. Introduction

This paper is concerned with energy equality of the weak solution to the standard
magneto-hydrodynamics (MHD) equations, for a velocity field u, a magnetic field
B and a pressure field p, as follows

∂tu+ (u · ∇)u− ν1Δu+ ∇P∗ = (B · ∇)B

∂tB + (u · ∇)B − ν2ΔB = (B · ∇)u

divu = divB = 0

⎫⎪⎬⎪⎭ in R
3 × [0, T ) (1.1)

for any T > 0 and the initial conditions

u(·, 0) = u0, B(·, 0) = B0 on R
3 (1.2)

where P∗ = p+ 1
2 |B|2 is the total pressure, and ν1, ν2 > 0 are coefficients of vis-

cosity and coefficient of magnetic resistivity, respectively. The MHD equations are
generally derived by coupling the Navier–Stokes equations for the velocity field of
a fluid to Maxwell’s equations governing the electric and magnetic fields (see, e.g.,
Duvaut–Lions [3]). Existence and uniqueness theory for MHD is closely related to
that of the fundamental models of fluid mechanics, the Navier–Stokes equations

∂tu+ (u · ∇)u− ν1Δu+ ∇p = 0

÷u = 0

}
in R

3 × [0, T ) (1.3)
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1566 B. Lai and Y. Yang

with the initial conditions

u(·, 0) = u0 on R
3, (1.4)

for which the global-in-time existence and uniqueness of smooth solutions is still a
famous open problem. Similar to the the Navier–Stokes equations, a global weak
solution (in the sense of definition 2.2) and local strong solution to (1.1) with the
initial boundary value condition were constructed by Duvaut and Lions [3]. Later,
these results were extended to the Cauchy problem (1.1) and (1.2) by Sermange
and Teman [11]. Here, their main tools are regularity theory of the Stokes operator
and the energy method.

It is well known that the concept of kinetic energy becomes particularly impor-
tant in existence and uniqueness theory of models of fluid mechanics, starting with
the fact that Leray [13] and Hopf [10] prove the existence of the weak solution to
the Navier–Stokes equations (1.3) and (1.4). Because the boundedness of kinetic
energy provides a primary a priori estimate, it allows us to construct a weak solu-
tion (called nowadays Leray–Hopf weak solutions when we are restricted under
Navier–Stokes equations), and such weak solutions satisfy energy inequality. The
energy inequality can be regarded as weak solutions lacking sufficient regularity,
actually, if weak solution has sufficient regularity, it can satisfy the equal sign in
the energy inequality, i.e., energy equality. The classical result in this direct go back
to the Lions [15], which shows that if u is a weak solution to the Navier–Stokes
equations (1.3) and (1.4) in addition to satisfying

u ∈ L4(0, T ;L4(R3)) (1.5)

then necessarily u obeys

‖u(t)‖2
2 + 2

∫ t

0

‖∇u(τ)‖2
2 dτ = ‖u0‖2

2, for t ∈ [0, T ]. (1.6)

Subsequently, Lions’s result was extended to the general case by Shinbrot [20],
precisely, they proved if

u ∈ Lr(0, T ;Ls(R3)) with
2
r

+
2
s

= 1 for s � 4, (1.7)

then (1.6) is still valid, where their argument relies on the regularity result of
Serrin [19], which sates that a Leray–Hopf weak solution u is regular, furnished the
following criterion holds

v ∈ Lr(0, T ;Ls(R3)) with
2
r

+
3
s

= 1 for s � 3. (1.8)

Recently, Galdi [6] improved Lion’s result by a mollifying procedure and a duality
argument. Precisely, he showed that if u ∈ Lloc, σ

2(R3 × (0, T )) is a very weak
solution (for details, please see definition 2.3), and satisfies (1.5), then necessarily
u obeys the energy equality (1.6). Later, Galdi’s result was extended to the general
case (1.7) by Berselli–Chiodaroli [1].

Turning to the standard 3D MHD equations, there is a large body of work on
various regularity criteria. For example, He-Xin[9] proved that if (u, B) is a weak
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solution of (1.1), and u satisfies (1.8), then (u, B) is smooth in R
3 × (0, T ], and of

course it satisfies the related energy equality:

‖u(t)‖2
2 + ‖B(t)‖2

2 + 2
∫ t

0

(‖∇u(τ)‖2
2 + ‖∇B(τ)‖2

2) dτ = ‖u0‖2
2 + ‖B0‖2

2 (1.9)

for all 0 < t � T . For more results in this field, please see [2, 8, 16, 17, 21]. However,
there is a little literature on energy conservation criteria for the standard MHD
equations, the only reference, to our knowledge, is [12] where the author proved if
the pair (u, B) is a weak solution of the MHD equations and (u, B) fulfills energy
conservation criteria (1.7), then the energy equality (1.9) holds.

In the present paper, we, inspired by the argument of Galdi [6], will extend
energy conservation criteria of Galdi to MHD equations, and prove that if (u, B) ∈
L4(0, T ;L4(R3)) is a very weak solution to (1.1), then it is actually in the
Leray–Hopf class. Thus the energy equality (1.9) holds. The main result of the
present paper is stated as

Theorem 1.1. Let u0, B0 ∈ L2
σ(R3), and the pair (u, B) ∈ L2

loc(R
3 × (0, T )) be

a very weak solution of (1.1) in the sense of definition 2.3. If u, B are in
L4(0, T ;L4(R3)), then the very weak solution pair (u, B) is, actually, in the
Leray–Hopf class. Thus it obeys the energy equality (1.9).

The rest paper of this paper is organized as follow. In § 2, we give some pre-
liminaries. Section 3 presents the detailed proof of our main results. Finally, the
energy conservation theorem of weak solution to the standard MHD equation (1.1)
is provided in appendix A.

2. Preliminaries

2.1. Functional spaces

Let T > 0 and let X be a Banach space. We shall consider Lp(0, T ;X), 1� p� ∞,
which is the space of functions from [0, T ] into X, which are Lp for the Lebesǵue
measure dt. This is a Banach space endowed with the norm(∫ T

0

‖u(t)‖p
X dt

) 1
p

if 1 � p <∞, esssup0�t�T ‖u(t)‖X, for p = ∞.

For simplicity, we write ‖ · ‖Lp(R3) = ‖ · ‖p when Ω = R
3. And the space W k,p(Ω)

is the usual Sobolev space, if u ∈W k,p(Ω) we define its norm by

‖u‖W k,p(Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝∑
|α|�k

∫
Ω

|Dαu|p dx

⎞⎠
1
p

if 1 � p <∞,

∑
|α|�k

ess sup
Ω

|Dαu| if p = ∞.
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As usual, we write W 1,2(Ω) = H1(Ω), W 1,2
0 (Ω) = H1

0 (Ω). Besides, we give the fol-
lowing spaces which are usually used when one investigates the mathematical theory
of Navier–Stokes equations:

C∞
0,σ(Ω) := {ϕ ∈ C∞

c (Ω); divϕ = 0};
Lq

σ(Ω) := the completion of C∞
0,σ(Ω) under the norm of Lq;

H1
0,σ(Ω) := the completion of C∞

0,σ(Ω) under the norm of W 1,2;

DT := {ϕ ∈ C∞
0 (R3 × [0, T )) : divϕ = 0}.

Finally, we define t-anisotropic Sobolev spaces

W 2,1
q,T := {u ∈ L1

loc(R
3 × (0, T )) : u ∈W 1,q(0, T ;Lq

σ(R3)) ∩ Lq(0, T ;W 2,q(R3))}.

Usually, one denotes by

A := −PΔD (2.1)

the Stokes operator in Ω, where

P : Lp(Ω) → Lp
σ(Ω) (1 < p <∞)

is the Helmholtz–Leray projection given by

(Pu)i = ui + ∂i(−Δ)−1∇ · u

when Ω = R
n, and ΔD is the Laplace operator under the Dirichlet boundary

condition. The domain of Stokes operator is D(A) = H1
0,σ(Ω) ∩W 2,2(Ω).

Next we give a basic theorem, which will be used in our proof.

Theorem 2.1 [18]. Let Ω be a smooth bounded domain in R
3. Then there exists a

family of functions N = {a1, a2, a3, · · · } such that

(i) N is an orthogonal basis in L2
σ(Ω);

(ii) aj ∈ D(A) ∩ C∞(Ω) are eigenfunctions of the Stokes operator, that is Aaj =
λjaj for all j ∈ N with

0 < λ1 � λ2 � λ3 � · · · � λj � · · · and λj → ∞;

(iii) N is an orthogonal basis in H1
0,σ(Ω).

2.2. The definition of weak solutions, the form B0 and the operator B

First, we present the notion of energy weak solution of (1.1).

Definition 2.2. The pair (u, B) ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) is

called as energy weak solution in R
3 × (0, T ) if
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(1) The pair (u, B) solves (1.1) in the distribution sense

∫ T

0

∫
R3

(u · ∂tϕ−∇u · ∇ϕ− u · ∇u · ϕ+B · ∇B · ϕ) dxdt

= −
∫

R3
u0 · ϕ(·, 0) dx∫ T

0

∫
R3

(B · ∂tφ−∇B · ∇φ− u · ∇B · φ+B · ∇u · φ) dxdt

= −
∫

R3
B0 · φ(·, 0) dx

(2.2)

for all ϕ, φ ∈ DT and u0, B0 ∈ L2
σ(R3).

(2) Such solution pair (u, B) satisfies the energy inequality

‖u(t)‖2
2 + ‖B(t)‖2

2 + 2
∫ t

0

(‖∇u(τ)‖2
2 + ‖∇B(τ)‖2

2) dτ � (‖u0‖2
2 + ‖B0‖2

2)

(2.3)
for all 0 < t < T .

In the present paper, the main goal is to consider the energy equality of very
weak solutions to (1.1). To this end, we give the definition of very weak solutions
of (1.1) as follows

Definition 2.3. We say that the pair (u, B) ∈ L2
loc,σ(R3 × (0, T )) is a very weak

solution of equation (1.1), if

∫ T

0

∫
R3

(u · ∂tϕ+ u · Δϕ+ u · ∇ϕ · u−B · ∇ϕ ·B) dxdt = −
∫

R3
u0 · ϕ(0) dx,∫ T

0

∫
R3

(B · ∂tφ+B · Δφ+ u · ∇φ ·B −B · ∇φ · u) dxdt = −
∫

R3
B0 · φ(0) dx

(2.4)
for some u0, B0 ∈ L2

σ(R3) and all ϕ, φ ∈ DT .

Remark 2.4. In fact, denote by Γ = (u, B), Γ1 = (B, u) and Ψ = (ϕ, φ), we can
rewrite (2.4) as

∫ T

0

∫
R3

Γ · ∂tΨ + Γ · ΔΨ + u · ∇Ψ · Γ −B · ∇Ψ · Γ1 dxdt = −
∫

R3
Γ0 · Ψ0 dx (2.5)

with Γ0 = (u0, B0), Ψ0 = (ϕ(x, 0), φ(x, 0)).
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In order to deal with nonlinear term conveniently, we introduce a trilinear form
B0. First, we define now a trilinear form on (H1

0 (Ω))3 by setting

b(u, v, w) =
3∑

i,j=1

∫
Ω

ui∂ivjwj dx =
∫

Ω

u · ∇v · w dx

whenever the integral makes sense. Actually, from Hölder inequality and embedding
theorem,∫

Ω

u · ∇v · w dx � ‖u‖L4(Ω)‖∇v‖L2(Ω)‖w‖L4(Ω) � ‖u‖H1
0 (Ω)‖v‖H1

0 (Ω)‖w‖H1
0 (Ω)

so b is a trilinear continuous form on (H1
0 (Ω))3. In particular, if u ∈ H1

0,σ(Ω), we
can easily get by a direct calculation

b(u, v, v) = 0, for all v ∈ H1
0 (Ω) (2.6)

and

b(u, v, w) = −b(u,w, v), for all v, w ∈ H1
0 (Ω). (2.7)

In order to write (2.5) as a simpler form, we define a trilinear form B0 on (H1
0,σ(Ω))3

as

B0(Φ1,Φ2,Φ3) = b(u, v, w) − b(U, V,w) + b(u, V,W ) − b(U, v,W )

for all Φ1, Φ2, Φ3 ∈ H1
0,σ(Ω). Here

Φ1 = (u,U), Φ2 = (v, V ), Φ3 = (w,W ).

Due to the continuous b, one derives that B0 is trilinearly continuous on (H1
0,σ(Ω))3.

This let us give a continuous bilinear operator B from H1
0,σ(Ω) ×H1

0,σ(Ω) into
(H1

0,σ(Ω))
′
as

〈B(Φ1,Φ2),Φ3〉 = B0(Φ1,Φ2,Φ3) for all Φi ∈ H1
0,σ(Ω). (2.8)

The definition of B0, along with (2.6) and (2.7), gives

B0(Φ1,Φ2,Φ2) = 0

B0(Φ1,Φ2,Φ3) = −B0(Φ1,Φ3,Φ2)

}
for all Φi ∈ H1

0,σ(Ω). (2.9)

This yields an alternative form of weak formulation (2.5) as follows, which will
be used in the proof of the lemma 3.1. Precisely, if we choose ϕ, φ ∈ C∞

0,σ(R3), one
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can rewrite (2.2) as

∂t(u, ϕ) + (∇u,∇ϕ) + b(u, u, ϕ) − b(B,B,ϕ) = 0,

∂t(B,φ) + (∇B,∇φ) + b(u,B, φ) − b(B, u, φ) = 0,

with (f, g) =
∫

R3 f · g dx, then this system can be equivalently rewritten as

∂t(Γ,Ψ) + (∇Γ,∇Ψ) + B0(Γ,Γ,Ψ) = 0. (2.10)

Using the operators A and B perviously defined, (2.10) is equivalent to the following
formula

∂tΓ +AΓ + B(Γ,Γ) = 0, (2.11)

i.e., (2.10) is a weak formulation of the problem (2.11).
Next we will introduce the standard mollifying techniques which will be used in

the proof of our main results. Let ε > 0 be a sufficiently small parameter, we define
space and space-time mollifiers of h with h ∈ L1

loc(R
3 × [0, T )), respectively, by

h(ε)(x, ·) =
∫

R3
kε(x− y)h(y, ·) dy, h(ε)(x, t) =

∫ T

0

jε(t− s)h(ε)(x, s) ds,

where

jε(τ) := ε−1j(τ/ε), kε(ξ) := η−1k(ξ/ε), (τ, ξ) ∈ R × R
3

with j ∈ C∞
0 (−ε, ε) and k ∈ C∞

0 (R3).
We conclude this section by introducing an essential lemma, which ensures that

the divergence of the approximate sequence is also zero when we approximate the
sequence to the initial condition of the divergence of zero.

Lemma 2.5. For any v ∈ H1(R3) ∩ L2
σ(R3), one can find an approximation

sequence vR ∈ H1
0 (BR) ∩ L2

σ(BR), where BR is the ball with the origin as the centre
and R as the radius, and

lim
R→∞

‖v − vR‖H1(R3) = 0.

Proof. Let ψ ∈ C1(R) be a cut-off function with ψ(ξ)=1 if |ξ|� 1, ψ(ξ) = 0 if |ξ|� 2
and set ψR(x) = ψ( |x|R ). From [5], we can get an unique solution wR ∈ H1

0 (BR,2R)
(where BR,2R = {x|R < |x| < 2R}) to the problem

∇ · wR = −v · ∇ψR

and wR satisfies

‖∇wR‖L2(BR,2R) � c‖v · ∇ψR‖L2(BR,2R) (2.12)

with the constant c independent of R. Moreover, since ∇ψR = O( 1
R ) uniformly in

x, using Poincaré inequality and (2.12), one can get

‖wR‖L2(BR,2R) � c1R‖∇wR‖L2(BR,2R) � c2‖v‖L2(BR,2R). (2.13)
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Then we set wR ≡ 0 in the complement of BR,2R and define

v = ψRv + wR

it is easy to check v ∈ H1
0,σ(B2R). Next, for any given ε � 0, we can acquire a

sequence v(ε) ∈ C∞
0,σ(Ω2R) due to the mollifying techniques such that

‖v − v(ε)‖H1
0 (B2R) < ε.

Therefore,

‖v − v(ε)‖2 � ‖v(ε) − v‖2 + ‖v − v‖2

< ε+ ‖(1 − ψR)v‖2 + ‖wR‖L2(BR,2R).

Because of (2.13) and the properties of ψR, when R is sufficiently large and ε is
sufficiently small, we can make the right side of this inequality as small as we please,
namely,

‖v − v(ε)‖2 → 0, as ε→ 0, R→ ∞.

Similarly, by (2.12) and the properties of ψR, when R sufficiently large and ε
sufficiently small, one can obtain

‖∇v −∇v(ε)‖2 � ‖∇v(ε) −∇v‖2 + ‖∇v −∇v‖2

< ε+ ‖(1 − ψR)∇v‖2 + ‖∇wR‖L2(BR,2R) + ‖∇ψRv‖2

→ 0.

So, we can choose vR = v(ε), which completes the proof of this lemma. �

3. Proof of theorem 1.1

To prove theorem 1.1, we first consider the following regularize problem related to
equation (1.1)

∂tw + α · ∇w − β · ∇E = Δw −∇p+ f1,
∂tE + α · ∇E − β · ∇w = ΔE + f2,

divw = divE = 0,

⎫⎬⎭ in R
3 × (0, T ),

w(·, 0) = w0, E(·, 0) = E0 x ∈ R
3,

(3.1)

where α, β ∈ C∞
0,σ([0, T ) × R

3), w0, E0 ∈ L2
σ(R3) and f1, f2 ∈ C∞

0 ((0, T ) × R
3)

with some T > 0. Note that using the same method as in remark 2.4, we can
rewrite equation (3.1) as

∂tΦ +AΦ + B(Θ,Φ) = f
divΦ = 0,

}
in R

3 × (0, T )

Φ(·, 0) = (w(·, 0), E(·, 0)) = Φ0 x ∈ R
3

(3.2)

where Φ = (w, E), f = (f1, f2), Θ = (α, β) and A is the Stokes operator defined
in (2.1).
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By a standard Galerkin technique, we can construct a energy weak solution of
(3.1). If Φ is a weak solution in a bounded domain Ω ⊂ R

3 guarantees that at each
time t > 0 the function Φ(t) is an element of the infinite-dimensional space L2

σ

spanned by the eigenfunctions of the Stokes operator. The Galerkin method allows
us to construct a weak solution Φ as the limit of approximate solutions Φn that
each time t > 0 belongs to the finite-dimensional space PnL

2
σ spanned by the first

n eigenfunctions,

PnL
2
σ := span{a1, a2, · · · , an} ai ∈ N .

Here N is the basis given in theorem 2.1 and by Pn we denote the projection
operator Pn : L2 → L2

σ defined by

PnΦ =
n∑

i=1

〈Φ, ai〉ai,where ai ∈ N . (3.3)

More precisely, we have the following technical lemma which plays a key role in
our proof of theorem 1.1.

Lemma 3.1. (i) If (w0, E0) ∈ L2
σ(R3), the Cauchy problem (3.1) exists a unique

solution pair (w, E) such that

(w,E) ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)), (3.4)

moreover

max
t∈[0,T ]

(‖w(t)‖2
2 + ‖E(t)‖2

2) +
∫ T

0

(‖∇w(t)‖2
2 + ‖∇E(t)‖2

2) dt

� ‖w0‖2
2 + ‖E0‖2

2 + c0

∫ T

0

(‖f1(t)‖2
6
5

+ ‖f2(t)‖2
6
5
) dt

(3.5)

with some positive constant c0.

(ii) (Improved regularity.) If (w0, E0) ∈ H1(R3) ∩ L2
σ(R3), then

w,E ∈W 2,1
2,T ⊂ C(0, T ;H1(R3)). (3.6)

In addition, if w0, E0 ≡ 0, we have also (w, E) ∈W 2,1
4/3,T ×W 2,1

4/3,T ×
L

4
3 (0, T ;L4/3(R3)).

Proof. (i) We will prove the related result by using the standard Galerkin technique.
Let BR ⊂ R

3 be the ball of radius R centred at the origin, we consider the following
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problem

∂tw + α · ∇w − β · ∇E = Δw −∇p+ f1

∂tE + α · ∇E − β · ∇w = ΔE + f2

divw = divE = 0

⎫⎪⎬⎪⎭ in BR × (0, T ) (3.7)

endowed with the initial-boundary value condition

w = E = 0, on ∂BR × (0, T );

w(·, 0) = w0R
, E(·, 0) = E0R

in BR

(3.8)

where w0R
, E0R

∈ L2
σ(BR) obey

lim
R→∞

‖w0 − w0R
‖2 = 0, lim

R→∞
‖E0 − E0R

‖2 = 0. (3.9)

Here the existence of w0R
, E0R

can be ensured by lemma 2.5. Similarly, (3.7) can
be equivalently written as

∂tΦ +AΦ + B(Θ,Φ) = f

div Φ = 0

}
in BR × (0, T ) (3.10)

with

Φ
∣∣
∂BR×(0,T )

= 0, and Φ(x, 0) = Φ0R
x ∈ BR.

According to (3.9) we also have

lim
R→∞

‖Φ0 − Φ0R
‖2 = 0. (3.11)

In the following, we will invoke the classical Galerkin method, coupled with ‘invad-
ing domains’ technique to explore the existence of solutions for (3.10) in the class
of (3.4).

Step 1. In this step, we will prove that the system (3.10) admits a solution at
least locally in time. To this end we consider the problem

∂tΦn +AΦn + PnB(Θn,Φn) = Pnf (3.12)

Φn(0) = PnΦ0R
(3.13)

for the form of functions Φn and Θn

Φn(x, t) =
n∑

k=1

cnk (t)ak(x), Θn(x, t) =
n∑

k=1

ĉnk (t)ak(x)

where ak(x) ∈ N is the basis of L2(BR). To determine Φn we need to find the
functions cnk (t). To get the desired result, we take the inner product of (3.12) in
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L2 with ak, k = 1, 2, · · ·n. Since (Pnv, ak) = (v, ak) for every v ∈ L2(R3) and 1 �
k � n, one derives

n∑
j=1

(
d
dt
cnj (t)aj , ak

)
+

n∑
j=1

(cnj (t)Aaj , ak) +
n∑

i,j=1

〈B(ĉni (t)ai, c
n
j (t)aj), ak〉 = (f, ak).

Using the fact that the ak are eigenfunctions of the Stokes operator and are
orthonormal in L2(BR) we therefore obtain a system of ODEs,

d
dt
cnk (t) + λkc

n
k (t) +

n∑
i,j=1

Dijk ĉ
n
i (t)cnj (t) = fk, k = 1, 2, · · · , n (3.14)

where

Dijk = 〈B(ai, aj), ak〉 = B0(ai, aj , ak), fk(t) = (f(·, t), ak)

and ĉni (t) = (Θn, ai) is the coefficients of Θn. To find initial conditions for cnk we
take the inner product of (3.13) with ak, which yields

cnk (0) = 〈Φ0R
, ak〉.

From the classical theory of ODEs, one immediately obtains (3.14) admits a unique
solution (cn1 , · · · , cnn) on some time interval [0, Tn), from which we obtain the
corresponding solution Φn of (3.12).

Step 2. We obtain uniform estimates on the solutions Φn and hence show that
Tn = T . We already know that Φn exists at least on some time interval [0, Tn). Let
s ∈ (0, Tn), we take the inner product of (3.12) with Φn(s) to get

(∂sΦn(s),Φn(s)) + (AΦn(s),Φn(s)) + 〈PnB(Θn(s),Φn(s)),Φn(s)〉 = (f,Φn(s)).

On the one hand,

(∂sΦn(s),Φn(s)) =
1
2

d
ds

‖Φn(s)‖2
L2(BR)

and

(AΦn(s),Φn(s)) = (−PΔΦn,Φn) = (−ΔΦn,PΦn) = (−ΔΦn,Φn)

= ‖∇Φn(s)‖2
L2(BR).

On the other hand, the nonlinear term vanishes due to the definition of operator
B and div Θn = 0, i.e.,

〈PnB(Θn,Φn),Φn〉 = 〈B(Θn,Φn), PnΦn〉
= 〈B(Θn,Φn),Φn〉 = B0(Θn,Φn,Φn) = 0.

Therefore for all s > 0 we have

1
2

d
ds

‖Φn(s)‖2
2 + ‖∇Φn(s)‖2

2 = (f,Φn(s)). (3.15)
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Now, integrating (3.15) from 0 to t, for all t ∈ [0, Tn), along with (3.11), Sobolev
inequality and Cauchy–Schwartz inequality, yields

‖Φn(t)‖2
L2(BR) +

∫ t

0

‖∇Φn(s)‖2
L2(BR) dτ � ‖Φ0‖2

2 + c0

∫ t

0

‖f(s)‖2
6
5

dτ � C (3.16)

with C independent of t and n. In particular, (3.16) shows that |cnk (t)| � C
1
2 for all

k = 1, · · · , n and t ∈ [0, Tn) which in turn, by a standard technique on ordinary
differential equations, implies that the cnk do not blow up at t = Tn and hence
Tn = T . In addition, from (3.16) we get

sup
t∈[0,T ]

‖Φn(t)‖2
L2(BR) � ‖Φ0‖2

2 + c0

∫ T

0

‖f(s)‖2
6
5

dτ

and hence ∫ T

0

‖∇Φn(s)‖2
L2(BR) dτ � ‖Φ0‖2

2 + c0

∫ T

0

‖f(s)‖2
6
5

dτ. (3.17)

Therefore we have shown that the approximate solution sequence Φn is bounded
uniformly in L∞(0, T ;L2(BR)) ∩ L2(0, T ;H1

0,σ(BR)).
Step 3. We establish the uniform bounds on ∂tΦn in L2(0, T ; (H1

0,σ(BR))
′
). For

any ϕ ∈ H1
0,σ(BR), we take the L2 inner product of the Galerkin equation (3.12)

with ϕ to obtain

(∂tΦn, ϕ) = −(AΦn, ϕ) − 〈PnB(Θn, wn), ϕ〉 + (f, ϕ)

= −(AΦn, ϕ) − 〈B(Θn,Φn), Pnϕ〉 + (f, ϕ).

To estimate the norm ‖∂tΦn‖(H1
0,σ(BR))′ , we need to estimate each term of the

right-hand side of the above equality. It is clear that

|(AΦn, ϕ)| = |(−PΔΦn, ϕ)| = |(−ΔΦn + ∇ϕ̃, ϕ)| = |(−ΔΦn, ϕ)|
= |(∇Φn,∇ϕ)| � ‖∇Φn‖L2(BR)‖ϕ‖H1

0 (BR)

for some smooth ϕ̃. On the other hand, by Hölder inequality and the Sobolev
embedding theorem

|〈B(Θn,Φn), Pnϕ〉| = |B0(Θn,Φn, Pnϕ)| � ‖Θn‖L3(BR)‖∇Φn‖L2(BR)‖Pnϕ‖L6(BR)

� c‖∇Φn‖L2(BR)‖Pnϕ‖H1
0,σ(BR)

� c‖∇Φn‖L2(BR)‖ϕ‖H1
0,σ(BR)

and

| 〈f, ϕ〉| � ‖f‖
L

6
5 (BR)

‖ϕ‖L6(BR) � c‖f‖
L

6
5 (BR)

‖ϕ‖H1
0,σ(BR).

Therefore,

‖∂tΦn‖(H1
0,σ(BR))′ � c(‖∇Φn‖L2(BR) + ‖f‖

L
6
5 (BR)

)
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with the constant c independent of n. From this, one immediately derives∫ T

0

‖∂tΦn‖2
(H1

0,σ(BR))′ ds � c

(∫ T

0

‖∇Φn(s)‖2
L2(BR) ds+

∫ T

0

‖f(s)‖2

L
6
5 (BR)

ds

)

� c

(
‖Φ0‖2

2 +
∫ T

0

‖f(s)‖2
6
5

ds

)

where in the last inequality we have used the inequality (3.16).
Step 4. We extract a convergent subsequence and pass to the limit in the equation.

From step 2, there exists an absolute constant C such that

‖Φn‖L∞(0,T ;L2(BR))∩L2(0,T ;H1
0,σ(BR)) � C; ‖∂tΦn‖L2(0,T ;(H1

0,σ(BR))′ ) � C.

Therefore, by Aubin–Lions Lemma [18, theorem 4.3] one can find a subsequence of
{Φn} ( we still denote by {Φn}) such that

Φn → ΦR, strongly in L2(0, T ;L2
σ(BR)) (3.18)

Φn → ΦR,weakly star in L∞(0, T ;L2
σ(BR))

∇Φn → ∇ΦR, weakly in L2(0, T ;L2(BR)) (3.19)

We now show that ΦR is a weak solution of equation (3.10). It is enough to check
that for any fixed ϕ ∈ DT we have

−
∫ T

0

(Φ, ∂tϕ) dt+
∫ T

0

(∇Φ,∇ϕ) dt +
∫ T

0

〈B(Θ,Φ), ϕ〉dt

= (Φ0R
, ϕ(0)) +

∫ T

0

(f, ϕ) dt.

(3.20)

If we take the dot product of (3.12) with ϕ, and integrate in space, then integrating
the second term by part yield, we get

(∂tΦn, ϕ) + (∇Φn,∇ϕ) + 〈B(Θn,Φn), ϕ〉 = (f, ϕ).

Integrating in [0, T ) and using integrating by parts in the first term we obtain that

−
∫ T

0

(Φn, ∂tϕ) dt+
∫ T

0

(∇Φn,∇ϕ) dt+
∫ T

0

(B(Θn,Φn), ϕ) dt

= (Φ0R
, ϕ(0)) +

∫ T

0

(f, ϕ) dt.

(3.21)

We pass to limit in (3.21), as n→ ∞. From the convergence (3.18) and (3.19) we
have ∫ T

0

(Φn, ∂tϕ) dt→
∫ T

0

(ΦR, ∂tϕ) dt
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and ∫ T

0

(∇Φn,∇ϕ) dt→
∫ T

0

(∇ΦR,∇ϕ) dt.

To prove that ∫ T

0

〈B(Θn,Φn), ϕ〉dt→
∫ T

0

〈B(Θ,ΦR), ϕ〉dt

we notice that

B(Θn,Φn) − B(Θ,ΦR) = B(Θn − Θ,Φn) + B(Θ,Φn − ΦR)

Hence we need to show that∫ T

0

〈B(Θn − Θ,Φn), ϕ〉dt→ 0

and ∫ T

0

〈B(Θ,Φn − ΦR), ϕ〉dt→ 0.

From the bound (3.17) it follows that

|
∫ T

0

〈B(Θn − Θ,Φn), ϕ〉dt| � C

∫ T

0

‖Θn − Θ‖4‖∇Φn‖2‖ϕ‖4 dt

� Cϕ

(∫ T

0

‖Θn − Θ‖2
4 dt

) 1
2
(∫ T

0

‖∇Φn‖2
2 dt

) 1
2

→ 0.

Moreover, from the weak convergence of gradients in (3.19) it follows that∫ T

0

〈∂j(Φn − ΦR)i,Θjϕi〉dt→ 0

as n→ ∞ for all 1 � i, j � 3, as Θjϕi ∈ L2. Hence∫ T

0

〈B(Θ,Φn − ΦR), ϕ〉dt→ 0.

Therefore we obtain (3.20).
Step 5. We prove that (3.1) exists at least one weak solution.
From steps 1–4, we can find a weak solution ΦR of the equations (3.10). We extend

the functions ΦR by zero outside BR and still denote such extended functions by
ΦR. Note that due to the zero boundary conditions these extended functions belong
to H1

0,σ(R3) for almost every time t. The sequence {ΦR} of weak solutions shares
many properties with the sequence of Galerkin approximations considered in the
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step 1–4. In particular, it follows from our method of construction that we have a
uniform bound

1
2
‖ΦR(t)‖2

2 +
∫ t

0

‖∇ΦR‖2
2 ds � C

with some constant independent of R. From the above bound we conclude that for
some subsequence of {ΦR} (which we relabel)

ΦR ⇀ Φweakly in L2(0, T ;W 1,2(R3))

for some Φ ∈ L2(0, T ;W 1,2(R3)). Furthermore, for all R > 1 the estimates on the
time derivative in step 3 shows

∫ T

0

‖∂tΦR‖2
(H1

σ(R3))′ ds � C

(
‖Φ0‖2

2 +
∫ T

0

‖f(s)‖2
6
5

ds

)

for some C > 0 independent of R. Since (H1
0,σ)

′
(BR) ⊂ (H1

0,σ)
′
(BM ) for all R � M

with

‖ · ‖(H1
0,σ)′ (BM ) � ‖ · ‖(H1

0,σ)′ (BR),

then we have for all R � M

‖∂tΦR‖L2(0,T ;(H1
0,σ)′ (BM ) + ‖ΦR‖L2(0,T ;H1

0 (BM )) � C.

Thus, by Aubin–Lions Lemma, for every M ∈ N we can find a subsequence of
{ΦR} which converges strongly in L2(0, T ;L2

σ(BM )). Using the standard diagonal
argument we can choose a subsequence of {ΦR}, still denoted by {ΦR}, such that

ΦR → Φstrongly in L2(0, T ;L2(BM ))

for every M = 1, 2, 3 · · · . It remains to show that the limit function Φ is a weak
solution of the equation (3.1). To do this, take any test function φ ∈ DT where the
support of φ is contained in BM × [0, T ) for a large enough M . Then for all R > M
we have

−
∫ T

0

(ΦR, ∂tφ) dt+
∫ T

0

(∇ΦR,∇φ) dt+
∫ T

0

〈B(Θ,ΦR), φ〉dt

= (Φ0R
, φ(0)) +

∫ T

0

(f, φ) dt

where we have used the fact that ΦR is a weak solution of the equation (3.7)
in BR × [0, T ) and φ ∈ DT (BR). We pass to the limit as R→ ∞ using the weak
convergence of ∇ΦR and strong convergence of ΦR in L2(0, T ;L2(BM )), and prove
that Φ is a weak solution of the equation (3.1) with the initial Φ0.
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(ii) To improve the regularity of the solution, multiplying both sides of (3.12) by
PΔΦn, and integrating by parts the resulting relations over BR, one derives

1
2

d
dt

‖∇Φn‖2
2 + ‖PΔΦn‖2

2 = (PnB(Θn,Φn),PΔΦn) − (f,PΔΦn)

� (‖Θ‖|L∞(0,T ;L∞(R3))‖∇Φn‖2 + ‖f‖2)‖PΔΦn‖2

� 1
2
(‖Θ‖|L∞(0,T ;L∞(R3))‖∇Φn‖2 + ‖f‖2)2 +

1
2
‖PΔΦn‖2

2

� ‖Θ‖|2L∞(0,T ;L∞(R3))‖∇Φn‖2
2 + ‖f‖2

2 +
1
2
‖PΔΦn‖2

2

i.e.,

d
dt

‖∇Φn‖2
2 + ‖PΔΦn‖2

2 � 2(‖Θ‖2
L∞(0,T ;L∞(R3))‖∇Φn‖2

2 + ‖f‖2
2), (3.22)

where we have used the fact Θ ∈ L∞(0, ∞, L∞(R3)). From this, one immediately
obtains

d
dt

‖∇Φn‖2
2 � 2‖Θ‖|2L∞(0,T ;L∞(R3))‖∇Φn‖2

2 + 2‖f‖2
2.

This, along with Gronwall’s inequality, yields for all t ∈ [0, T ]

‖∇Φn‖2
2 � Ce

T‖Θ(s)‖|2
L∞(0,T ;L∞(R3))

(
‖∇Φn(0)‖2

2 +
∫ t

0

‖f(s)‖2
2 ds

)
� C.

Here, we have used the fact that ‖∇Φn(0)‖2
2 < ‖Φ0R

‖H1(BR) <∞. Next, we
integrate both sides of (3.22) from 0 to t, to gain∫ t

0

‖PΔΦn‖2
2 dτ � C.

Similar as above, dot-multiplying both sides of (3.12) by ∂tΦn, one can gain

1
2

d
dt

‖∇Φn‖2
2 + ‖∂tΦn‖2

2 = −(PnB(Θn, wn), ∂tΦn) + (f, ∂tΦn)

� (‖Θ‖|L∞
t L∞

x
‖∇Φn‖2 + ‖f‖2)‖∂tΦn‖2.

(3.23)

Using Gronwall’s inequality again, we get∫ t

0

‖∂τΦn‖2
2 dτ � C.

This, together with (3.11), (3.16), and the well-known estimate

‖D2Φ‖2 � C(‖PΔΦ‖2 + ‖∇Φ‖2)

with a constant C independent of R (for details, please see [7]), implies∫ T

0

(‖∂τΦn(τ)‖2
2 + ‖Φn(τ)‖2

W 2,2) dτ � C, (3.24)
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where the constant C depends only on T , f , ‖Θ‖L∞
t L∞

x
, and ‖Φ0‖2 and is there-

fore independent of n. Therefore, (3.24) implies Φ ∈W 2,1
2,T , and from the classical

interpolation result in [14] we can get W 2,1
2,T ⊂ C([0, T ];H1(R3)).

Now, we consider the case Φ0 ≡ 0. By Hölder inequality, (3.16) and Θ ∈
L4(0, T ;L4(R3)), we have

‖B(Θ,Φ)‖L4/3(0,T ;L4/3(R3)) = sup
ϕ �=0

|B0(Θ,Φ, ϕ)|
‖ϕ‖L4(0,T ;L4(R3))

� c‖Θ‖L4(0,T ;L4(R3))‖∇Φ‖L2(0,T ;L2(R3))

� c1‖Θ‖L4(0,T ;L4(R3))‖f‖L2(0,T ;L2(R3))

which implies, in particular, that

B(Θ,Φ) ∈ L4/3(0, T ;L4/3(R3)).

Therefore, from classical results of [5, theorem VIII.4.1], the problem

∂tΦ = ΔΦ −∇χ+ F, div Φ = 0in R
3 × (0, T ),

Φ(x, 0) = 0, x ∈ R
3,

(3.25)

with F = B(Θ, Φ) + f , has at least one solution Φ such that

(Φ,∇χ) ∈W 2,1
4/3,T × L4/3(0, T ;L4/3(R3)).

However, by uniqueness of Stokes operator, see, for example, [5, lemma VIII.4.2],
we must have Φ ≡ Φ, which completes the proof of this lemma. �

We are now in a position to show theorem 1.1.

Proof of theorem 1.1. To obtain the desired result, we, in equations (3.2), first take

Θ(x, t) = (α, β) ≡ (u(ε), B(ε)) = Γ(ε)(x, t), f ≡ (f1, f2) ≡ 0

and

Φ0 = (u(ε)
0 , B

(ε)
0 ) = Γε

0

where u, B, u0, B0 are defined in Theorem 1.1. By lemma 3.1, equations (3.2)
admits a solution Φε = (wε, Eε) ∈W 2,1

2,T which fulfills for any pair (ϕ, φ) ∈ DT∫ T

0

∫
R3

(wε · ∂tϕ+ wε · Δϕ+ u(ε) · ∇ϕ · wε −B(ε) · ∇ϕ · Eε) dxdt

= −
∫

R3
u

(ε)
0 · ϕ(0) dx,∫ T

0

∫
R3

(Eε · ∂tφ+ Eε · Δφ+ u(ε) · ∇φ · Eε −B(ε) · ∇φ · wε) dxdt

= −
∫

R3
B

(ε)
0 · φ(0) dx.

(3.26)
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From (2.4) and (3.26) we infer that∫ T

0

(u− wε, ∂tϕ+ Δϕ) dt+
∫ T

0

u · ∇ϕ · u dt−
∫ T

0

B · ∇ϕ ·B dt

−
∫ T

0

u(ε) · ∇ϕ · wεdt+
∫ T

0

B(ε) · ∇ϕ · Eε dt

= (u(ε)
0 − u0, ϕ(0))∫ T

0

(B − Eε, ∂tφ+ Δφ) dt+
∫ T

0

u · ∇φ ·B dt−
∫ T

0

B · ∇φ · u dt

−
∫ T

0

u(ε) · ∇φ · Eε dt+
∫ T

0

B(ε) · ∇φ · wε dt

= (B(ε)
0 −B0, φ(0)).

Using the same method as in remark 2.4, for any Ψ = (ϕ, φ) ∈ DT , we can write
the above two equalities as∫ T

0

(Γ − Φε, ∂tΨ + ΔΨ + B(Γ(ε),Ψ)) dt = −
∫ T

0

(B(Γ − Γ(ε),Ψ),Γ) dt

− (Γ0 − Γ(ε)
0 ,Ψ(0)).

(3.27)

On the other hand, according to lemma 3.1, the duality equation

∂tΦ +AΦ + B(Θ,Φ) = fT

div Φ = 0,

}
in R

3 × (0,∞)

Φ(x, 0) = 0in R
3

with

Θ(x, t) = ΓT
(ε)(x, t) = −Γ(ε)(x, T − t), fT (x, t) = −f(x, T − t),

admits a solution Φε ∈W 2,1
4/3,T ∩W 2,1

2,T . Now let Λε(x, t) = Φε(T − t, x), then it
solves the final-value problem{

∂tΛ + ΔΛ + B(Γ(ε),Λ) = ∇Ξ − f, div Λ = 0 in R
3 × (0, T ),

Λ(x, T ) = 0, in R
3.

(3.28)

On the other hand, from the fact that DT is dense in Ẇ 1,2
q,T :={u∈W 1,2

q,T , u(·, T )=0},
for details please see [6, lemma A.1], we can take Ψ = Λε in (3.27) and use (3.28)1
to deduce∫ T

0

(Γ − Φε, f) dt = −
∫ T

0

(B(Γ − Γ(ε),Λε),Γ) dt− (Γ0 − Γ(ε)
0 ,Λε(0)). (3.29)

Here we have used the fact
∫ T

0
((Γ − Φε), ∇Ξε) dt = 0 due to div Γ = div Φε = 0.
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In what follows, we need to pass to the limit ε→ 0 in (3.29) to finish our proof.
Indeed, by (3.5),

‖Λε(0)‖2 � C

∫ T

0

‖f(t)‖2
6
5

dt

with some constant C independent of ε. From this, we immediately derive

lim
ε→0

|(Γ0 − Γ(ε)
0 ,Λε(0))| � lim

ε→0
‖Γ0 − Γ(ε)

0 ‖2‖Λε(0)‖2 → 0. (3.30)

Secondly,∣∣∣∣∣
∫ T

0

(B(Γ − Γ(ε),Λε),Γ) dt

∣∣∣∣∣
� ‖Γ − Γ(ε)‖L4(0,T ;L4(R3))‖∇Λε‖L2(0,T ;L2(R3))‖Γ‖L4(0,T ;L4(R3))

→ 0, as ε→ 0.

(3.31)

On the other hand, by (3.5), we can find a subsequence of {Φε}, still denoted by
{Φε}, such that as ε→ 0

Φε → Φ, weakly in L2(0, T ;W 1,2(R3))

for some Φ ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)). From this, we immediately

gain

lim
ε→0

∫ T

0

(Γ − Φε, f) dt =
∫ T

0

(Γ − Φ, f) dt (3.32)

for any f ∈ C∞
0 (R3 × (0, T )). Finally, from (3.29)–(3.32) we conclude that∫ T

0

(Γ − Φ, f) dt = 0

which in turn, by the arbitrariness of f , implies Γ = Φ. Therefore,

Γ ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)),

then by theorem A.2, Γ = (u, B) obeys the energy equality (1.9) in the time interval
[0, T ]. �

Appendix A. Energy equality of weak solutions of the MHD equations

In this part, we will give a proof of the energy equality of weak solution to the MHD
equations, for reader’s convenience. Before starting the proof, we give a technical
lemma as follows.
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Lemma A.1. Assume Φ be a weak solution of (1.1) with the initial value Φ0 ∈
L2(R3). Then Φ can be redefined on a set of zero Lebesgue measure in such a way
that Φ(·, t) ∈ L2(R3) for all t ∈ [0, T ) and satisfies the identity

(Φ(t),Ψ(t)) − (Φ0,Ψ(0)) =
∫ t

0

{(
Φ(τ),

∂Ψ(τ)
∂t

)

− (∇Φ(τ),∇Ψ(τ)) − 〈B(Φ(τ),Φ(τ)),Ψ(τ)〉
}

dτ

(A.1)
for all Ψ ∈ DT .

The proof of this lemma can be found in, such as, [4, 20].
Now we present the following theorem, which is about the energy equality of

weak solutions of the MHD equations. Although its proof is classical, we can not
find it in the literature. I will present its proof for reader’s convenience.

Theorem A.2. Let Φ0 = (u0, B0) ∈ L2
σ, and let Φ = (u, B) be a weak solution of

(1.1) and (1.2). In addition,

Φ ∈ Lr(0, T ;Ls(R3)) for any
2
r

+
2
s

= 1, s � 4 (A.2)

then Φ satisfies the energy equality

‖u(t)‖2
2 + ‖B(t)‖2

2 + 2
∫ t

0

(‖∇u(τ)‖2
2 + ‖∇B(τ)‖2

2) dτ = ‖u0‖2
2 + ‖B0‖2

2 (A.3)

for all t ∈ [0, T ].

Proof. Let Φi = (ui, Bi) ⊂ DT be a sequence such that

Φi → Φ, strongly in L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) ∩ Lr(0, T ;Ls(R3)).

Thus, we can choose Ψ(t) = (Φi)ε(t) in (A.1), where (·)ε is the standard time
mollifying operator, i.e. (Φi)ε(t) =

∫ T

0
jε(t− s)Φi(s)ds. Then, from lemma A.1 one

has

(Φ(t), (Φi)ε(t)) − (Φ0, (Φi)ε(0)) =
∫ t

0

{(
Φ(τ),

∂(Φi)ε(τ)
∂t

)
− (∇Φ(τ),∇(Φi)ε(τ))

− 〈B(Φ(τ),Φ(τ)), (Φi)ε(τ)〉
}

dτ,

i.e.,

(u, (ui)ε) − (u0, (ui)ε(0)) =
∫ t

0

{(
u,
∂(ui)ε

∂t

)
− (∇u,∇(ui)ε) − b(u, u, (ui)ε)

+b(B,B, (ui)ε)
}

dτ

(A.4)
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and

(B, (Bi)ε) − (B0, (Bi)ε(0)) =
∫ t

0

{(
B,

∂(Bi)ε

∂t

)
− (∇B,∇(Bi)ε)

− b(u,B, (Bi)ε) + b(B, u, (Bi)ε)

}
dτ.

(A.5)

Note that, (2.7), along with the Hölder inequality and the interpolation inequality,
shows that when i→ ∞∣∣∣∣∫ t

0

b(u, u, (ui)ε − uε) dτ
∣∣∣∣ = ∣∣∣∣∫ t

0

b(u, (ui)ε − uε, u) dτ
∣∣∣∣

�
∫ t

0

‖u‖s‖∇
(
(ui)ε − uε

)‖2‖u‖r dτ

�
∫ t

0

‖u‖s‖∇
(
(ui)ε − uε

)‖2‖u‖2− r
2

2 ‖u‖ r
2−1
s dτ

� C‖u‖ r
2
Lr(0,T ;Ls(R3))‖(ui)ε − uε‖L2(0,T ;W 1,2(R3)

→ 0,

where we have used the fact u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) ∩

Lr(0, T ;Ls(R3)). Similarly, we can also get when i→ ∞∣∣∣∣∫ t

0

b(B,B, (ui)ε − uε) dτ
∣∣∣∣+ ∣∣∣∣∫ t

0

b(u,B, (Bi)ε −Bε) dτ
∣∣∣∣→ 0

and | ∫ t

0
b(B, u, (Bi)ε −Bε) dτ | → 0. Therefore, let i tend to infinity in (A.4) and

(A.5), one has

(u, uε) − (u0, (u0)ε)

=
∫ t

0

{(
u,
∂uε

∂t

)
− (∇u,∇uε) − b(u, u, uε) + b(B,B, uε)

}
dτ,

(B,Bε) − (B0, (B0)ε)

=
∫ t

0

{(
B,

∂Bε

∂t

)
− (∇B,∇Bε) − b(u,B,Bε) + b(B, u,Bε)

}
dτ.

(A.6)

In what follows, we need to pass to the limit ε→ 0 in (A.6) to finish our proof. In
fact, from the fact jε is even in (−ε, ε) and the basic properties of mollifiers,∫ t

0

(
u,
∂uε

∂t

)
dτ =

∫ t

0

∫ t

0

djε(t− τ)
dt

(u(t), u(τ)) dtdτ

= −
∫ t

0

(
u,
∂uε

∂t

)
dτ = 0
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0

(
B,

∂Bε

∂t

)
dτ =

∫ t

0

∫ t

0

djε(t− τ)
dt

(B(t), B(τ)) dtdτ

= −
∫ t

0

(
B,

∂Bε

∂t

)
dτ = 0,

and

lim
ε→0

∫ t

0

(∇u,∇uε) dτ =
∫ t

0

(∇u,∇u)dτ,

lim
ε→0

∫ t

0

(∇B,∇Bε) dτ =
∫ t

0

(∇B,∇B) dτ.

Besides, the weak L2 continuity of weak solution, along with the fact
∫ ε

0
jεs)ds = 1

2 ,
implies

(u(t), uε(t)) =
∫ ε

0

jε(s)(u(t), u(t− s)) ds

=
∫ ε

0

jε(s)
(
(u(t), u(t)) + (u(t), u(t− s) − u(t))

)
ds

=
1
2
‖u(t)‖2

2 +O(ε) → 1
2
‖u(t)‖2

2 when ε→ 0.

Similarly, we also have when ε→ 0

(u0, (u0)ε) + (B0, (B0)ε) =
1
2
‖u0‖2

2 +
1
2
‖B0‖2

2,

(B(t), Bε(t)) → 1
2
‖B(t)‖2

2.

Now we turn to the nonlinear term in (A.6). Indeed, a simple calculation shows as
ε→ 0∣∣∣∣ ∫ t

0

b(u, u, uε − u)dτ
∣∣∣∣ � ∫ t

0

‖u‖s‖∇u‖2‖uε − u‖rdτ

�
∫ t

0

‖u‖s‖∇u‖2‖uε − u‖2− r
2

2 ‖uε − u‖ r
2−1
s dτ

� ‖u‖Lr(0,T ;Ls(R3))‖∇u‖L2(0,T ;L2(R3))

× ‖uε − u‖2− r
2

L∞(0,T ;L2(R3))

(∫ t

0

‖uε − u‖( r
2−1)s

s dτ
) 1

s

� ‖u‖Lr(0,T ;Ls(R3))‖∇u‖L2(0,T ;L2(R3))‖uε

− u‖2− r
2

L∞(0,T ;L2(R3))‖uε − u‖ r
2−1

Lr(0,T ;Ls(R3))

→ 0.

Here, we have used the fact

u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) ∩ Lr(0, T ;Ls(R3)).
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Similarly, as ε→ 0∣∣∣∣ ∫ t

0

b(B,B, uε − u) dτ
∣∣∣∣+ ∣∣∣∣ ∫ t

0

b(u,B,Bε −B) dτ
∣∣∣∣+ ∣∣∣∣ ∫ t

0

b(B, u,Bε −B) dτ
∣∣∣∣→ 0.

Thus, let ε→ 0 in (A.6), we deduce

‖u(t)‖2
2 − ‖u0‖2

2 = 2
∫ t

0

−‖∇u(τ)‖2
2 − b(u, u, u) + b(B,B, u) dτ

‖B(t)‖2
2 − ‖B0‖2

2 = 2
∫ t

0

−‖∇B(τ)‖2
2 − b(u,B,B) + b(B, u,B) dτ

(A.7)

This, along with the definition of B0, yields

‖u(t)‖2
2 + ‖B(t)‖2

2 + 2
∫ t

0

(‖∇u(τ)‖2
2 + ‖B(t)‖2

2)dτ

= −
∫ t

0

B0(Φ,Φ,Φ)dτ + ‖u0‖2
2 + ‖B0‖2

2.

Since Φ(·, t) = (u(·, t), B(·, t)) ∈ H1
σ(R3) for a.e t, we get by an approximation

technique ∫ t

0

B0(Φ(τ),Φ(τ),Φ(τ))dτ = 0.

From which the desired result is obtained. �
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