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We investigate the steady motion of solid particles through successive jumps over a
horizontal, rigid, bumpy bed driven by the shearing of a viscous fluid in the absence
of turbulence, lubrication forces and collisions above the bed. We employ a discrete
element method for the particles coupled to a mean field continuum model for the fluid to
run quasi-two-dimensional simulations that we compare with the predictions of a simple
model which assumes that all the particles follow identical periodic trajectories determined
by the intensity of the shearing and compatible with previously suggested laws relating the
particle velocities before and after the impact with the bed. We solve the periodic model
both numerically and analytically, and identify the solutions that are linearly stable to small
perturbations. We show that the stable solutions of the periodic model are in qualitative
and quantitative agreement with the discrete simulations, as long as the number of moving
particles in the system is not too large. The discrete simulations further reveal that there are
two distinct families of particle trajectories, and that the simple periodic model is actually
a good representation of the more energetic particles, that spend most of their time in the
upper flow layers where they can gain momentum from the flow.

Key words: sediment transport, Stokesian dynamics

1. Introduction

Among all the possible modalities of transport of solid particles in a carrier fluid, saltation
(Andreotti 2004), that is successions of particle jumps over a bed that can be either rigid
or erodible, is generally accepted as the most common when dealing with windblown sand
and of crucial importance in determining the morphology of dunes (Sauermann, Kroy &
Herrmann 2001; Charru, Andreotti & Claudin 2013). Hence, most of the works on saltation
concern a grain-to-fluid density ratio of order 2 × 103 and take the fluid to be turbulent,
as in Aeolian transport on Earth (e.g. Bagnold 1941; Owen 1964; Iversen & Rasmussen
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1999; Creyssels et al. 2009; Durán, Claudin & Andreotti 2011; Kok et al. 2012; Ho et al.
2014; Valance et al. 2015).

Saltation of solid particles in a turbulent fluid at grain-to-fluid density ratio of order 2,
as in the aquatic environment on Earth (Fernandez Luque & Van Beek 1976; Abbott &
Francis 1977; van Rijn 1984; Niño & García 1998; Ancey et al. 2002), 40, as on Venus
(Iversen & White 1982; Greeley et al. 1984), 200, as on Saturn’s moon Titan (Burr et al.
2015), and 105, as on Mars (Iversen et al. 1976; Iversen & White 1982), have also been
experimentally investigated in water channels or wind tunnels.

Discrete numerical simulations of interacting solid particles subjected to forces
transmitted by the surrounding fluid (Tsuji, Kawaguchi & Tanaka 1993) are a powerful
tool to analyse the physics of sediment transport and have been largely applied in the
recent years to systematically investigate the influence of the particle size and the density
ratio on particle saltation in turbulent fluids (Durán, Andreotti & Claudin 2012; Pähtz et
al. 2015; Pähtz & Durán 2020; Ralaiarisoa et al. 2020).

These numerical tools solve Newton’s laws of motion for the individual particles, while
treating the fluid as a continuum for which Reynolds-averaged balance equations are
phrased. The discrete-continuum (DC) numerical simulations provide a large amount of
data, some of which would be unattainable in experiments. Also, the required closures
for modelling the particle–particle and particle–fluid interactions and the fluid internal
stresses are transparent and can be easily turned on or off. Thus, DC simulations are ideal
to, e.g. test how much essential physics is captured by mathematical models of saltation at
a higher level of abstraction.

Countless continuum descriptions of saltation exist (see the extensive reviews from
Durán et al. 2011; Kok et al. 2012; Valance et al. 2015; Pähtz et al. 2020). Among
those, we recently proposed a simple toy model that combines the classic idea (Bagnold
1941; Owen 1964; Sauermann et al. 2001) of assuming that all particles follow the
same trajectory, despite the severe criticism of Andreotti (2004), with a description of
the rebound of particles shot onto rigid or erodible beds drawn from experiments and
numerical simulations (Beladjine et al. 2007; Crassous, Beladjine & Valance 2007). If
applied to steady saltation, the resulting identical trajectories must be periodic. We solved
this periodic trajectory (PT) model both numerically and analytically and show qualitative
and quantitative agreement against experiments and DC simulations of steady saltation in
turbulent fluids (Jenkins & Valance 2014; Berzi, Jenkins & Valance 2016; Berzi, Valance
& Jenkins 2017).

Saltation of particle immersed in a viscous fluid in the absence of turbulence has
received much less attention (Charru & Mouilleron-Arnould 2002; Ouriemi, Aussillous
& Guazzelli 2009; Aussillous et al. 2013; Seizilles et al. 2014), although it is one of the
possible modes of transport of sand in oil pipes (Leporini et al. 2019), in which sand
depositions would lead to a significant loss of the pipe transport capacity (Dall’Acqua
et al. 2017). From the scientific point of view, focusing on saltation in the absence of
turbulence would also permit us to capture the essence of the physics of the particle
motion without the complexity and the somewhat arbitrariness that modelling turbulence
necessarily implies.

Here, we first formulate a PT model for the steady saltation of particles over a horizontal,
rigid rough bed driven by the shearing flow of a viscous non-turbulent fluid. In doing this,
for the sake of clarity, we neglect the role of lubrication forces in damping the collisions
of the particles with the bed and the possibility of particle–particle interactions above
the bed. The PT model reduces to a system of differential equations that we solve both
numerically and, with some further simplifying assumptions, analytically. Linear stability
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analysis permits us to prove that some of the solutions obtained for a given strength of
the shearing flow and number of particles in the system are actually unstable to small
perturbations.

We also perform two-dimensional (2-D) DC simulations of steady saltation over
horizontal rigid rough beds in which we keep constant the intensity of the shearing flow,
the particle–fluid density ratio and the particle size and vary the number of particles in
the domain. In the DC simulations, as in the PT model, we do not include lubrication
forces when the particles interact and turn off the possibility of collisions above the bed.
These assumptions permit us to clearly identify the strengths and the weaknesses of the
PT model. Ignoring mid-fluid collisions is justified as long as the particle concentration
is small. In the context of turbulent saltation over an erodible bed, the transition between
a collision-free saltation regime and a saltation regime modified by mid-fluid collisions
has been evidenced numerically and experimentally (Ralaiarisoa et al. 2020). The authors
showed that there exists a regime of Shields parameters where the sand transport can
be described in a relevant manner by a collision-free saltation model. However, at high
Shields number, mid-air collisions start to play a substantial role and the collision-free
saltation model breaks down. We believe that this picture persists in viscous saltation over
a rigid bed.

The paper is organized as follows: in § 2 we describe the PT model and the DC numerical
simulations; in § 3, we report detailed comparisons in terms of global and local quantities
between the numerical and analytical solutions of the PT model and the measurements in
the DC simulations; § 4 offers some concluding remarks and hints at future works on the
subject.

2. Flow configuration and methods

We focus on steady saltation of identical spheres (in three dimensions) or disks (in two
dimensions) of diameter d and mass density ρp over a horizontal bumpy rigid base driven
by the laminar shearing flow of a fluid of mass density ρf and molecular viscosity ηf in the
presence of gravity (g is the gravitational acceleration) and in the absence of turbulence.
We take x and y to be the horizontal and vertical directions (we neglect variation in the
spanwise direction); U is the horizontal component of the fluid velocity, while ξx and ξy
are the horizontal and vertical components of the particle velocity. We use superscripts
‘+’ and ‘−’ to refer to quantities relative to the ascending and descending portions of the
particle trajectory (figure 1).

We make all quantities dimensionless using d, ρp and the reduced gravity g(ρp −
ρf )/ρp, so that, e.g. the velocities are expressed in units of

√
gd(ρp − ρf )/ρp, the particle

fall velocity. Then, the inverse of the dimensionless fluid viscosity is the fall Stokes number
St = ρp

√
g(ρp − ρf )/ρpd3/2/ηf , a measure of the relative magnitude of the particle inertia

to the fluid viscous forces.
The intensity of the shearing fluid is quantified by the distant fluid shear stress far from

the base, that, in dimensionless terms, is the Shields parameter Sh (Jenkins & Hanes 1998).
The fluid exerts a linear drag on the single particle that we characterize through the drag
coefficient CD = 18/St. Finally, we fix the mass hold-up in the system, M, that is the
particle mass per unit basal area.

2.1. The PT model: differential equations and numerical solution
The system of differential equations governing the periodic particle trajectory and the
fluid velocity profile is almost identical to that derived for periodic saltation in turbulent
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Figure 1. Sketch of saltation over a rigid bumpy bed.

fluids (Jenkins & Valance 2014; Berzi et al. 2016) in which we distinguish two species
of particles, depending whether their motion is ascending or descending, and one fluid
carrier phase

ξ±
y

dξ±
x

dy
= CD

(
U − ξ±

x
) ; (2.1)

ξ±
y

dξ±
y

dy
= −1 − CDξ

±
y ; (2.2)

ξ±
y

dx±

dy
= ξ±

x ; (2.3)

(
1 − c+−c−) dU

dy
= St S; (2.4)

dm
dy

= c++c−; (2.5)

d
(

c+ξ+
y

)
dy

= 0. (2.6)

Note that, for numerical convenience, the Lagrangian (2.1)–(2.3) are phrased as functions
of y instead of time t. However, there is one-to-one correspondence between y and t in the
ascending and descending parts of the trajectory, respectively. Equations (2.1)–(2.2) are
the particle momentum balances in the horizontal and vertical directions. Equation (2.3)
governs the horizontal position of the particles, while (2.4) is the constitutive expression
for the fluid viscous shear stress S, different from what was assumed in turbulent
conditions (Jenkins & Valance 2014). Equation (2.5) determines the distribution of the
partial mass hold-up, m = ∫ y

0 dy(c+ + c−), with c+ (respectively c−) the particle volume
concentration of ascending particles (respectively descending particles). Finally, (2.6)
indicates that, in steady conditions, the mass flux of an ascending particle must be
independent of the vertical position.

The fluid shear stress is determined from the fluid horizontal momentum balance as

S = Sh − s, (2.7)
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where s is the particle shear stress:

s ≡ −
(

c+ξ+
y ξ

+
x +c−ξ−

y ξ
−
x

)
. (2.8)

The steady condition implies that the mass flux of ascending and descending particles
must balance

c+ξ+
y = − c−ξ−

y , (2.9)
and be constant along y. The concentration c at a given height is simply given by the sum
of c+ and c−.

The distribution of the twelve unknowns x+, x−, ξ+
x , ξ−

x , ξ+
y , ξ−

y , U, m, S, s, c+ and c−
is determined by solving the nine differential equations (2.1)–(2.6) with the three auxiliary
relations (2.7)–(2.9) and the nine boundary conditions x+(0) = 0, x−(0) = L, x+(H) =
x−(H), ξ+

x (H) = ξ−
x (H), ξ

+
y (H) = ξ−

y (H) = 0, U(0) = 0, m(0) = 0 and m(H) = M;
where H and L are the trajectory height and length, respectively. Note that the total
mass hold-up M represents the mass of particles per unit area of the bed and is a control
parameter of the system that has to be prescribed.

The determination of H and L requires two additional boundary conditions, relating the
velocities after and before the impact with the bumpy base (Oger et al. 2005; Beladjine et
al. 2007; Crassous et al. 2007)√

ξ+
x (0)2 + ξ+

y (0)2 = e
√
ξ−

x (0)2 + ξ−
y (0)2, (2.10)

and
ξ+

y (0) = −eyξ
−
y (0), (2.11)

where the coefficients of restitution depend solely on the impact angle θ , the angle
between the incident trajectory and the horizontal, in the absence of lubrication forces.
Their expressions (Beladjine et al. 2007; Pähtz et al. 2020) are e ≡ a − b sin θ and
ey ≡ ay/

√
sin θ − by. (We used the modified expression of ey proposed by Pähtz et al.

(2020) to get the correct asymptotic behaviour when θ vanishes.) Only three of the four
numerical coefficients a, b, ay and by are actually independent, for, when θ = 90◦, e must
equal ey and their values depend on the particle and base material properties and geometry.

The numerical solution of the PT model is obtained using the bvp4c function in Matlab:
the inputs of the model are the Stokes number, St, the Shields parameter, Sh, the mass
hold-up, M, and the numerical coefficients in the rebound laws (2.10) and (2.11). From the
numerical solution we then determine the horizontal mass flux per unit width of the bed
as Q = ∫ H

0 (c
+ξ+

x + c−ξ−
x ) dy.

2.2. The PT model: approximate analytical solution
We obtain an approximate analytical solution of the PT model by following an approach
similar to that employed for periodic saltation in a turbulent fluid (Berzi et al. 2016, 2017).

With respect to the numerical solution of the PT model, we make the further
assumptions that the fluid velocity profile is linear (this should be true only in the limit
of vanishing mass hold-up) and that the impact angle is small, so that θ ≈ sin θ ≈ tan θ .
The details of the derivation and the analytical formulas that describe the characteristics
of the PTs are reported in Appendix A.

For mathematical convenience only, we use the vertical rebound velocity, ξ+
y (0), rather

than the mass hold-up, M, as an input parameter. However, M can be treated as the
independent variable when plotting the results, given that there is a one-to-one relation
with the vertical rebound velocity (see (A25)).
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Normal spring stiffness kn (mg/d) 107

Normal restitution coefficient en 0.88
Normal damping coefficient γn (m

√
g/d) 181.8

Tangential damping coefficient γt (m
√

g/d) 181.8
Coulomb friction coefficient μ 0.5

Table 1. Parameters in the contact model in dimensionless form.

2.3. The DC simulations
We carry out two-phase numerical simulations based on a discrete element method for
the particle dynamics coupled to a continuum Stokes description of hydrodynamics, as
developed by Durán et al. (2012).

The particle motion is described by a Lagrangian approach according to which the
particle labelled p obeys the following dimensionless equations:

dξp

dt
= −ey +

∑
q

f p,q
c + f p

drag, (2.12)

I
dωp

dt
= 1

2

∑
q

np,q × f p,q
c , (2.13)

where ξp and ωp are the translational and angular velocity vectors of particle p,
respectively; ex and ey are the horizontal and vertical unit vectors, respectively; f p,q

c is the
dimensionless contact force between particles p and q; f p

drag = CD[(U − ξ
p
x )ex − ξ

p
y ey] is

the dimensionless drag force exerted by the fluid on the p-particle; I = 1/10 is the moment
of inertia of a sphere; and np,q is the unit vector along the contact direction.

The contact force fc has components normal, fc,n, and tangential, fc,t, to the plane
of contact. In the normal direction, the particles interact via a linear spring dashpot,
so that fc,n = (knδ + γnvn), where kn is the spring stiffness, δ the overlap between the
compliant spheres, γn the viscous damping coefficient and vn the normal component of
the relative translational particle velocities. The negative of the ratio between the normal
relative velocity before and after the collision is the coefficient of normal restitution en.
If the values of en and kn are prescribed, γn is deduced from the following relation: γn =
(π/6)

√
12kn/π/(1 + π2/ ln(en)2). The tangential force fc,t is described via a Coulomb

friction model regularized through a viscous damping: fc,t = −min(μfc,n, γtvt)sign(vt),
where μ is the Coulomb friction coefficient, vt the relative slip velocity at contact and γt
the tangential viscous damping coefficient. The values chosen for the parameters kn, γn, γt
and μ are reported in table 1.

The fluid motion is solved by an Eulerian description based on the Stokes equations. We
assume that the vertical component of the fluid velocity is zero, so that only the horizontal
momentum balance is required, and neglect the inertial terms

dS
dy

= Fx, (2.14)

where Fx = c〈∑p∈[y;y+dy] CD(U − ξ
p
x )〉/〈

∑
p∈[y;y+dy] 1〉, with 〈 · 〉 denoting ensemble

averaging, represents the x-component of the average volume force exerted on the fluid
by the particles whose centres are located in the horizontal slice between y and y + dy.
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The volume of these particles divided by the volume of the horizontal slice gives the local
concentration c.

The integration of (2.14) reads

S = Sh −
∫ ∞

y
Fx dy, (2.15)

where the infinite upper bound of the integral means that all moving grains located above
y must be accounted for. Once the distribution S( y) of the fluid shear stress is determined,
the distribution of the horizontal fluid velocity can then be obtained from the integration
of (2.4), with the no-slip boundary condition U = 0 at y = 0, as

U = St
∫ y

0
S dy. (2.16)

The simulated system is quasi-two-dimensional with a streamwise length equal to 5120
particle diameters and a transverse length equal to one diameter. We have checked that
a fourfold increase in the streamwise length of the domain has a negligible influence on
the outcomes. We use spherical particles with a polydispersity of ±10 % and adjust their
number in the system to obtain the desired value of mass hold-up M.

Periodic boundary conditions are employed in the streamwise direction. The domain is
not upper bounded, while the lower boundary is composed of a layer of immobile particles,
characterized by the same parameters as in table 1, in close contact (rigid, bumpy bed). As
mentioned, we suppress the possibility of particle–particle interactions above the bed, that
is, we take fc

p,q = 0 in (2.12) and (2.13), if neither of the two particles p and q belong to
the bed.

Operatively, at every time step, we integrate (2.12) and (2.13) for every particle in
the system and determine its new velocity (and therefore position). We then use this
information to update the profiles of fluid shear stress and horizontal velocity through
(2.15) and (2.16) and proceed with the next time step until we reach a steady state, that
is, when the horizontal mass flux averaged over a window of 100 time steps is stationary.
Initially, the fluid profile is taken to be linear and corresponds to the unperturbed profile
that one would have obtained in the absence of particles. The particles are initially placed
on a horizontal row located at a distance 2d from the particle rigid bed, with a constant
inter-particle distance equal to 2d and zero initial velocity. Despite the fact that the initial
positions of the particles are close to the bed, the rebounds with the rigid bumpy base
are able to make the particles reach large heights (see next section). We checked that the
final state is independent of the initial conditions as long as the number of particles in the
flow does not override the transport capacity of the flow. If the mass hold-up surpasses the
capacity of the flow, particles may deposit on the bed and we enter the so-called deposition
regime. In this regime, hysteretic effects may be observed: the final state may be extremely
sensitive to the initial conditions. This regime, although interesting, is beyond the scope
of the current article.

3. Results and comparisons

Given that the PT model requires the specification of the rebound laws, we first determine
the dependence of the coefficients of restitution e and ey on the impact angle θ for the
type of particles and the geometry of the rigid bumpy bed adopted in the DC simulations.
To do this, we perform discrete element simulations in the absence of interstitial fluid
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Figure 2. Coefficients of restitution characterizing the collision with the rigid bumpy bed as functions of the
impact angle.

(Oger et al. 2005) in which we shoot soft spheres towards the rigid bumpy bed described
in § 2.2 and measure the particle velocities before and after the impact. Changing the
angle between the incident sphere and the bed (several measurements are carried out for
every impact angle to obtain statistically robust averages) permits us to plot e and ey as
functions of θ (figure 2). The fit to the numerical data from the impact simulations gives
a = 0.86, b = 0.1, ay = 1.44 and by = 0.68. We also performed some simulations with
less dissipative particles and confirm that that would lead, as expected, to higher values of
e and ey for given θ .

Given that the contact model is not velocity dependent, we expect that the rebound
laws inferred from shooting a projectile onto a rigid bed in the absence of any fluid can
accurately describe the bed collision process of particles transported by a shearing viscous
fluid. The measurements of e and ey vs θ obtained from the impacts of the particles with
the bed in our DC simulations confirm, indeed, the validity of the rebound laws (figure 2).
The small differences between the impact and the saltation DC simulations are due to the
fact that the absence of shearing permits to achieve a better accuracy of the measured
velocity before and after the impact. It can be noticed that the range of impact angles in
the DC simulations is rather narrow with respect to that of the shooting simulations.

We now employ the obtained dependence of the rebound coefficients of restitution
on the impact angle to solve the PT model for St = 100, roughly corresponding to sand
particles in water on Earth, Sh = 0.05 (sufficiently larger than the transport threshold
for having a significant range of steady solutions) and various mass hold-ups (numerical
solution) or various vertical rebound velocities (analytical solution). The DC simulations
were carried out at the same values of the fall Stokes number and Shields parameter by
changing M.

Unlike the PT model, particles in the DC simulations are characterized by a statistical
distribution of trajectories. We first compare quantities averaged over all the trajectories in
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the DC simulations in a time interval of at least 2000 time steps after the steady state is
attained with the predictions of the PT model. Then, we describe the characteristics of the
statistical distribution of the trajectories, in view of future improvements of the PT model.

3.1. Averaged variables
Figure 3 depicts the horizontal mass flux as a function of the mass hold-up. We
immediately notice that the PT model predicts a non-monotonic relation between Q and
M, characterized by a maximum value for the mass hold-up below which solutions exist.
This maximum divides the Q–M curve into an upper and a lower branch. Interestingly, the
measurements in the DC simulations only appear to follow the upper branch. The lack of
measurements from the DC simulations near the lower branch hints at the possibility that
these solutions of the PT model are actually unstable. The maximum mass flux in the DC
simulations corresponds to a critical value of the mass hold-up above which particles start
to deposit over the rigid bed. This transition from saltation over rigid beds to saltation over
erodible beds is beyond the scope of the present work and cannot be captured by the PT
model, given the adopted boundary conditions.

The numerical and analytical solution of the PT model described in the previous section
permit us to formulate a relation between the rebound velocities at the beginning of two
consecutive particle jumps, say the nth and (n + 1)th jump. This relation formally reads
ξ+

n+1(0) = F (ξ+
n (0)). The fixed point of this 2-D map corresponds to the rebound velocity

of the PT. The stability of the PT can then be determined by computing the eigenvalues of
the Jacobian matrix of the 2-D map at the fixed point. The PT is stable if the absolute
values of the eigenvalues are smaller than one. More details about the linear stability
analysis and the Jacobian matrix obtained from the analytical solution of the PT model
are reported in Appendix B. The linear stability analysis confirms that the lower branch of
the Q–M curve of the PT model pertains to unstable PTs.

If we focus on the stable trajectories, we notice that, for small mass hold-ups, both the
PT model and the DC simulations show a linear relation between Q and M and are in a
good quantitative agreement. Using the analytical solution of the PT model, we obtain
that, for vanishing mass hold-up, Q ∝ St4Sh3/2M (see the details in Appendix C). This
scaling, checked against the DC simulations (Appendix C), points to the intuitive and
general observation that the horizontal mass flux at a given mass hold-up increases if
either the intensity of the shearing (the Shields number) increases or the fluid viscosity
(the inverse of the Stokes number) decreases: indeed, these are the quantities that govern
the capability of the particles to gain momentum from the fluid through the drag force. It
is interesting to notice that a linear relation between the horizontal mass flux and the mass
hold-up was obtained also in the case of PTs of sand particles saltating in the turbulent
atmosphere (Jenkins & Valance 2014), although in that case Q ∝ Sh1/2M.

As the mass hold-up increases, that is, as more particles are moving, the horizontal mass
flux in the DC simulations tends to saturate and the agreements between the numerical and
the analytical solution of the PT model and between the PT model and the DC simulations
deteriorate (figure 3). However, the qualitative trend is still well captured by the PT model.
The horizontal mass flux measured in DC simulations performed with less dissipative
particles (not shown here for brevity) is larger for a given mass hold-up, as expected.

Figure 4 confirms the quantitative agreement between the PT model and the DC
simulations at small values of M in terms of average impact angle θ and absolute value of
the impact velocity ξ−. Interestingly, at vanishing M, the stable branches of the curves
exhibit a minimum and a maximum for the impact angle and velocity, respectively.
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PT model – numerical solution (unstable)

DC simulations

PT model – analytical solution (stable)

PT model – analytical solution (unstable)
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10–1

101
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Figure 3. Horizontal mass flux Q as a function of the mass hold-up M measured in the DC simulations
(squares) and obtained from the numerical (circles) and analytical (lines) solution of the PT model, when
St = 100 and Sh = 0.05.

The PT model reproduces the qualitative behaviour of the simulations even if the amount
of saltating particles increases.

The average height and length of the trajectories in the DC simulations are roughly half
of what is predicted by the PT model at small mass hold-ups (figure 5) and decrease as
M increases; while the average particle concentration and the particle shear stress at the
bed are extremely well predicted (figure 6a,b) and linearly increase with M for small mass
hold-ups.

3.2. Vertical profiles
The PT model is very simple and permits the understanding of the physical mechanisms
in play and their relative importance in determining the average behaviour of the saltating
particles. In this regard, fair comparisons between the DC simulations and the predictions
of the PT model should be carried out only in terms of global quantities, such as Q and
M. Nonetheless, we have shown that the PT model has some capabilities of reproducing
also some local average quantities measured at the bed (figures 4 and 6). However, it
would be pretentious to expect quantitative agreement between the PT model and the DC
simulations in terms of distributions of local average quantities along y.

Figure 7 depicts the average vertical profiles of fluid and particle horizontal velocity
obtained from the DC simulations at four different values of the mass hold-up. As the
presence of particles in the system increases, the nonlinearity of the velocity profiles
becomes more pronounced. This explains why the quantitative agreement between the
DC simulations and the analytical solution of the PT model, which assumes a linear
distribution of U with y, deteriorates at large M. The numerical solution of the PT model
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Figure 4. Average (a) impact angle and (b) impact velocity as functions of the mass hold-up, when St = 100
and Sh = 0.05. Same legend as in figure 3.
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Figure 5. Average trajectory (a) height and (b) length as functions of the mass hold-up, when St = 100 and
Sh = 0.05. Same legend as in figure 3.
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Figure 6. Average particle (a) concentration and (b) shear stress at the bed as functions of the mass hold-up,
when St = 100 and Sh = 0.05. Same legend as in figure 3.

is in excellent agreement with the DC simulations in terms of fluid horizontal velocity
(figure 7a). Also, the particle slip velocity at the bed and the concavity of the profile of the
particle horizontal velocity are well predicted by the PT model, although the latter fails
in reproducing the linearity of ξx( y) at small M (figure 7b). We notice that the particle
slip velocity predicted by the PT model and measured in the DC simulations is roughly
independent of the mass hold-up, when the latter is small.

The requirement that, under steady conditions, the mass flux of ascending and
descending particles must be independent of y implies, in the framework of the PT model,
that the particle concentration must become infinite when the vertical particle velocity
vanishes, i.e. at the peak of the PT. This is clearly unphysical and, indeed, the predictions
of the PT model in terms of distribution of the average particle concentration along y fails
spectacularly when compared with the measurements in the DC simulations (figure 8a).
On the other hand, at least the qualitative behaviour of the average particle shear stress with
the vertical coordinate is well captured by the PT model, with even quantitative agreement
with the DC simulations for both the shear stress at the bed and the maximum value of the
shear stress above it (figure 8b).

3.3. Statistical distributions
Our DC simulations exhibit a variety of particle trajectories, thus allowing for a statistical
characterization of the saltating process.

Figure 9(a) shows the probability density function (PDF) for the impact and rebound
velocities determined using the data from the DC simulation performed at M = 1.2 ×
10−2. Interestingly, there are two peaks in the PDF of the impact velocity, indicating the
presence of two different families of saltating particles, one much more energetic than
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Figure 7. Measurements in the DC simulations (circles) and numerical solutions of the PT model (lines) for
(a) fluid and (b) particle average horizontal velocity profiles when St = 100 and Sh = 0.05 at: M = 1.9 × 10−4

(in blue); M = 1.6 × 10−3 (in orange); M = 1.2 × 10−2 (in yellow); M = 3.1 × 10−2 (in purple).
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Figure 8. Measurements in the DC simulations (circles) and numerical solutions of the PT model (lines) for
particle average (a) concentration and (b) shear stress profiles when St = 100 and Sh = 0.05 at: M = 1.9 ×
10−4 (in blue); M = 1.6 × 10−3 (in orange); M = 1.2 × 10−2 (in yellow); M = 3.1 × 10−2 (in purple).
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Figure 9. Probability density function of (a) impact and (b) rebound velocities from the DC simulations
when M = 1.2 × 10−2 for particles with trajectory height larger (blue bars) and smaller (yellow bars) than
15 diameters. Also shown are the means of the PDF (black lines) and the numerical solutions of the PT model
(red lines).

the other. We have checked that this is not a consequence of the regular geometry of
the rigid bed, given that we have obtained similar, bi-modal PDFs in DC simulations (not
shown here for brevity) carried out with bumpiness provided by a bottom layer of immobile
particles in close contact, but with a random size distribution.

Although the existence of different species of moving particles has been previously
proposed and confirmed in the case of Aeolian sand transport over erodible beds (Andreotti
2004; Durán et al. 2011; Pähtz, Kok & Herrmann 2012), it is the first time, to our
knowledge, that it has been observed in the case of particle saltation over rigid beds.
Figure 9(b) indicates that the bi-modal nature of the saltation persists in the rebound
velocity, after the impact with the rigid bed.

We identify the two families based upon the value of the horizontal particle velocity at
the peak of the trajectory. When the trajectory height is lower (higher) than 15 diameters,
in the case of M = 1.2 × 10−2, the particle horizontal velocity at the peak of the trajectory
is larger (lower) than the fluid horizontal velocity there. Thus, the horizontal drag force on
the less energetic particles mostly acts against the motion, so that the horizontal velocities
at the end of the trajectory are greatly reduced (see the yellow bars in figure 9(a,b). The
more energetic particles, on the other hand, experience a horizontal drag force that favours
the motion for a significant portion of their trajectory, thus accelerating before the impact
(see the two large peaks in the blue bars of figure 9a,b).

Figure 9(a,b) also indicates that the impact with the bed leads to a substantial mixing
of the members of the two families, that have roughly the same distributions of rebound
velocity. In figure 9(a), the low energy family (yellow bars) has experienced short and low
trajectories before the impact while the high energy family (blue bars) has experienced
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Figure 10. Probability density function of (a) impact and (b) rebound angles from the DC simulations when
M = 1.2 × 10−2 for particles with trajectory height larger (blue bars) and smaller (yellow bars) than 15
diameters. Also shown are the means of the PDF (black lines) and the numerical solutions of the PT model
(red lines).

long and high trajectories. After the impact, the low energy particles have a small rebound
velocity, while the high energy particles have a large one, as the restitution coefficient e
is close to 1. However, the rebound velocity is not the right indicator to tell whether the
particle will experience a low or high trajectory for the next jump. The relevant feature is
the vertical velocity after the rebound. As a matter of fact, the low energy particles which
have a large vertical rebound velocity will be promoted to the high energy family for the
next jump, gaining energy from the fluid. And, vice versa, the high energy particles with
a small vertical rebound velocity will enter the low energy family for the next jump. In
figure 9(b), representing the distribution of the norm of the rebound velocity, we have
indicated with yellow bars (respectively blue bars) the particles which will have for the
next jump a low (respectively high) trajectory. Those particles come both to the low and
high energy family determined from the previous jump. This means that the low and high
energy populations are re-mixed at each impact. This explains how steady conditions can
be maintained, despite the fact that the less energetic particles lose momentum to the fluid
during their jumps. The mixing of the two families due to the impact with the bed cannot
be captured through the rebound laws of figure 2 that only describe average outcomes.
All in all, the negligible contribution of the less energetic saltating particles to the total
transport explains why the simple PT model works.

As mentioned, there is a maximum impact velocity corresponding to the case of
vanishing mass hold-up, as shown in figure 4(b). Impact velocities and, therefore, rebound
velocities, larger than the maximum are not allowed, leading to the skewed distributions
of figure 9. Similarly, the asymmetry in the distribution of the impact angles (figure 10a)
is due to the minimum θ at vanishing M (figure 4a).
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Figure 11. Probability density function of trajectory (a) heights and (b) lengths from the DC simulations
when M = 1.2 × 10−2 for particles with trajectory height larger (blue bars) and smaller (yellow bars) than
15 diameters. Also shown are the means of the PDF (black lines) and the numerical solutions of the PT model
(red lines).

The intrinsic randomness of the position of the impact point on the surface of the
bumpy bed is what causes the large scatter (figure 10b) of the angles of rebound,
ψ = tan−1[ξ+

y (0)/ξ
+
x (0)], despite the fact that the impact angle θ is, instead, narrowly

distributed. The presence of two peaks corresponding to low and high energy saltating
particles is evident also in the PDFs of impact and rebound angles, once the particles are
distinguished according to the height of the trajectory (figure 10). It is interesting to notice
that, for low energy saltating particles, the impact and rebound angles corresponding to
the peaks in the distributions are roughly equal.

The distribution of the trajectory heights (figure 11a) confirms the presence of the less
energetic family of saltating particles. The less energetic species moves through small
hops whose height distribution peaks at approximately four diameters; unlike for the
impact velocity, however, the more energetic particles have a broader and rather uniform
distribution of the maximum distance from the bed that they can reach (say, between 50
and 150 diameters). The nonlinear relation between the impact velocity and the trajectory
height, made explicit in the analytical solution of the PT model (Appendix A), explains
why their distributions have different shapes. Once again, values of H larger than that at
vanishing M in figure 5(a) are not allowed.

The PDF of trajectory lengths for the less energetic particles (figure 11b) has one
clear peak at approximately 300 diameters. The distribution of trajectory lengths for
the more energetic particles, instead, peaks at approximately 2000 diameters and then
roughly linearly decreases as L increases. As expected, the maximum L at vanishing M
in figure 5(b) constrains the permitted values in the statistical distribution of trajectory
lengths.
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4. Conclusion

We have investigated the steady, saltating motion of identical particles over a horizontal,
rigid, bumpy bed driven by the shearing flow of a viscous fluid in the absence of
turbulence.

We have performed 2-D DC simulations in which the particles interact with the bumpy
bed via linear spring dashpots and with the carrier fluid, whose motion is determined
using a mean field approach, via viscous drag and buoyancy. In the DC simulations, we
have ignored lubrication forces, the possibility of collisions among the particles above the
bed, the fluid inertia in the fluid momentum balance and the fluid vertical velocity.

We have compared the results of the DC simulations against the predictions of a simple
model in which we assumed that all particles follow the same PTs selected by the intensity
of the shearing flow and through deterministic rebound laws relating velocities before
and after the impact with the bed. We have checked through discrete simulations that the
presence or absence of the shearing flow has no influence on the rebound laws.

We have solved the PT model both numerically and analytically, the latter with the
additional assumption that the horizontal fluid velocity profile is linearly distributed
with the distance from the rigid bed. We have shown that the PT model is capable
of qualitatively and quantitatively, at least for moderate values of the mass hold-up,
reproducing the measurements in the DC simulations in terms of particle mass flux, mean
trajectory height and length, impact and rebound velocity, concentration and shear stress
at the bed. At given intensity of the shearing flow, the PT model predicts non-monotonic
relations between the aforementioned quantities and the mass hold-up, in contrast with
the DC simulations. However, the simplicity of the PT model has allowed us to perform a
linear stability analysis and determine that the predictions of the PT model not seen in the
DC simulations were actually unstable to small perturbations.

The PT model also provides profiles of fluid and particle velocity and particle shear
stress that are in qualitative agreement with the DC simulations, even beyond what one
might reasonably expect from such a simple approach. As expected, the PT model fails
only in reproducing the concentration profile at a sufficient distance from the bed, given
that the concentration must become infinite at the top of the periodic trajectory to ensure
mass flux balance.

Indeed, and unlike what is assumed in the PT model, the DC simulations confirm that
there is a statistical distribution of particle trajectories. The PDFs of various quantities
associated with the particle trajectories are asymmetric, due to constraints that we have
identified as the characteristics of the trajectories in the limit of vanishing mass hold-up.
They also present two peaks, hinting at the presence of two families of trajectories
associated with less and more energetic saltating particles. The PT model actually
reproduces the behaviour of the more energetic particles, that are accelerated in the
horizontal direction by the fluid drag and obey the rebound laws, with an impact coefficient
of restitution less than one. The less energetic particles, instead, jump in a region of
the flow close to the bed where the drag force is either mainly against the motion or
equally favours and disfavours it. As a result, the ascending and descending parts of their
trajectories are more symmetric, and the impact coefficient of restitution is close to one.
The contribution of the less energetic particles to the transport is, however, small, thus
explaining the success of the PT model.

Incorporating a more realistic statistical distribution of the particle trajectories into the
PT model would improve its accuracy and will be the subject of future works. Further
steps will regard elucidating the roles played by lubrication forces and mid-fluid collisions
on particle saltation, as well as the statistical characterization of particle trajectories in
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turbulent shearing flows. Also, the determination of the critical mass hold-up at which
particles start to deposit is a important issue to be addressed in the near future given its
relation to the maximum transport capacity of the flow.

Finally, the PT model could, in principle, be extended to unsteady (non-uniform) flows
under the condition that the flow varies over a characteristic time (length) scale which is
much less than the mean time of flight (saltation length) of the saltating particles.
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Appendix A. Analytical solution of the PT model

Integrating the vertical momentum balance of the single particle for an observer at rest

dξy

dt
+ CDξy + 1 = 0, (A1)

with the boundary condition ξy = ξ+
x (0) when t = 0, gives

ξy = CDξ
+
y (0)+ 1 − exp(CDt)

CDexp(CDt)
. (A2)

Here, ξ+
y (0) is the vertical rebound velocity, that is, the vertical velocity after the impact

with the bed. It is mathematically convenient to parametrize the analytical solution of the
PT model in terms of this variable, rather than in terms of the mass hold-up, as this is the
case in the numerical solution of the PT model and the DC simulations.

The vertical position of the particle as a function of time is obtained by integrating (A2)
with the boundary condition y(0) = 0

y =
[
CDξ

+
y (0)+ 1

] [
1 − exp(−CDt)

] − CDt

C2
D

. (A3)

The time tM at which the particle reaches the peak in the trajectory is obtained from
(A2) with ξy = 0

tM =
ln

[
CDξ

+
y (0)+ 1

]
CD

. (A4)

We determine the trajectory height, H, from (A3) with t = tM (A4)

H =
CDξ

+
y (0)− ln

[
CDξ

+
y (0)+ 1

]
C2

D
. (A5)
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The time of flight during one jump can be determined by numerically by solving the
following implicit equation:

tf =
[
CDξ

+
y (0)+ 1

] [
1 − exp(−CDtf )

]
CD

, (A6)

obtained from (A3) with y = 0.
Then, the vertical impact velocity reads

ξ−
y (0) = ξ+

y (0)− tf , (A7)

from (A2), with t = tf (where tf is the total flight time), and (A6).
The vertical coefficient of restitution at the rebound can now be expressed as

ey = ξ+
y (0)

tf − ξ+
y (0)

, (A8)

from (2.11) and (A7). Then, the impact angle follows from the definition of ey as

θ = sin−1

[(
ay

ey + by

)2
]
. (A9)

If θ is small, then sin θ ≈ tan θ = −ξ−
y (0)/ξ

−
x (0) and the horizontal impact velocity

results in

ξ−
x (0) = −ξ−

y (0)
(

ey + by

ay

)2

. (A10)

The absolute value of the impact velocity is, therefore, with (A7) and (A10),

ξ−(0) =
[(

ey + by

ay

)4

+ 1

]1/2 [
tf − ξ+

y (0)
]
. (A11)

From the definition of the rebound coefficient of restitution e and (A9), we obtain

e = a − b
(

ay

ey + by

)2

, (A12)

so that the absolute value of the rebound velocity, ξ+(0) = eξ−(0), reads, with (A12)

ξ+(0) =
[

a − b
(

ay

ey + by

)2
][(

ey + by

ay

)4

+ 1

]1/2 [
tf − ξ+

y (0)
]
. (A13)

The horizontal rebound velocity can now be determined as

ξ+
x (0) =

[
ξ+(0)2 − ξ+

y (0)
2
]1/2

. (A14)

Equations (A2)–(A3) provide exact analytical solutions of the vertical motion in the
framework of the PT model. They allow us to derive explicit expressions for ξ−(0), ξ+(0),
ξ+

x and H as a function of the vertical rebound velocity ξ+
y (0) and the time flight tf , which

is itself a function of ξ+
y (0) (cf. (A6)).
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However, to proceed, we now must introduce the Lagrangian, horizontal momentum
balance of the single particle

dξx

dt
= CD (U − ξx) , (A15)

which can be solved analytically only if we assume a tractable form of the fluid velocity
profile U( y). In the case of periodic saltation in a turbulent fluid (Berzi et al. 2016), the
fluid velocity profile was taken to be uniform. Here, instead, we assume a linear velocity
profile of the form U( y) = U(H)y/H, that suits better the results of both the numerical
solution of the PT model and the DC simulations. With this and (A3), (A15) becomes

dξx

dt
= U (H)

H

[
CDξ

+
y (0)+ 1

] [
1 − exp(−CDt)

] − CDt

CD
− CDξx, (A16)

that can be integrated, with the boundary condition ξx = ξ+
x (0) when t = 0, to obtain

ξx = U (H)
H

CDξ
+
y (0)+ 1

C2
D

[
1 − CDt exp(−CDt)− exp(−CDt)

]
− U (H)

H
CDt − 1 + exp(−CDt)

C2
D

+ ξ+
x (0) exp(−CDt). (A17)

The horizontal fluid velocity at y = H can be determined from (A17), with ξx = ξ−
x (0)

when t = tf

U (H) = C2
DH

[
ξ−

x (0)− ξ+
x (0) exp(−CDtf )

][
CDξ

+
y (0)+ 1

] [
1 − CDtf exp(−CDtf )− exp(−CDtf )

] + 1 − exp(−CDtf )
.

(A18)
With this, (A17) provides the value of the horizontal particle velocity at every instant.

Equation (A17) can then be integrated to provide the particle position along the x-axis
at every time t

x = U (H)
H

CDξ
+
y (0)+ 1

C2
D

[
exp(−CDt)

(
2

CD
+ t

)
+ t − 2

CD

]

− U (H)
HC2

D

[
CD

2
t2 − t − exp(−CDt)

CD
+ 1

CD

]
− ξ+

x (0)
CD

[
exp(−CDt)− 1

]
. (A19)

Note that the solutions x(t) and y(t) are parametrized by a single parameter, that is ξ+
y (0).

Figure 12(a) shows y/H and x/L as functions of t/tf when ξ+
y (0) = 100. The shape of the

corresponding PT is reported in figure 12(b). All the quantities appearing in (A19), such
as H, U(H), ξ+

x (0) and tf , are functions of ξ+
y (0). So we have a family of solutions that

depends solely on the vertical rebound velocity.
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Figure 12. (a) Normalized vertical (solid line) and horizontal (dashed line) position of the particle as
functions of the normalized time and (b) shape of the PT when ξ+

y (0) = 100.

Substituting t = tf in (A19) gives the length of the periodic trajectory

L = U (H)
H

CDξ
+
y (0)+ 1

C2
D

[
exp(−CDtf )

(
2

CD
+ tf

)
+ tf − 2

CD

]

− U (H)
HC2

D

[
CD

2
t2f − tf − exp(−CDtf )

CD
+ 1

CD

]

− ξ+
x (0)
CD

[
exp(−CDtf )− 1

]
. (A20)

The assumption of a linear velocity profile for the fluid permits also the evaluation of
the fluid shear stress at the rigid bumpy bed as

S(0) = U (H)
St H

, (A21)

where we have assumed 1 − c(0) ≈ 1 (as shown later, the maximum value of the
concentration at the bed is of order 10−2). Figure 13(a) depicts the fluid shear stress at
the bed as a function of the vertical rebound velocity at different values of the Stokes
number. Notice that the fluid shear stress at the bed is characterized by a minimum, as
was also the case for particle saltation in a turbulent fluid (Berzi et al. 2016). This has
important physical implications, given that the Shields parameter Sh determines, through
(2.4), the particle shear stress at the bed as

s(0) = Sh − S(0). (A22)

Equation (A22) indicates that, for steady and fully developed saltation to exist, the fluid
shear stress at the bed must always be less than the Shields number. Hence, each minimum
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(a) (b)

S(0) Shc
St

St
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10–1
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0 10 20 30 40 50

ξ+
y(0)

Figure 13. (a) Fluid shear stress at the bed as a function of the vertical rebound velocity for different Stokes
numbers (20, 30, 40, 50, 60 and 100) according to the analytical solution of the PT model. (b) Critical Shields
number as a function of the Stokes number.

in the curves of figure 13(a) represents the critical Shields number, Shc, i.e. the minimum
value of Sh at which steady and fully developed saltation can be sustained. Figure 13(b)
shows the critical Shields number as a function of the Stokes number. From (2.8) and (2.9),
the concentration at the bed of the ascending particles is

c+(0) = s(0)
ξ+

y (0)
[
ξ−

x (0)− ξ+
x (0)

] . (A23)

With this, both the horizontal mass flux per unit width of the bed

Q =
∫ H

0
cξx dy =

∫ L

0
c+(0)ξ+

y (0)dx = c+(0)ξ+
y (0)L, (A24)

and the mass hold-up

M =
∫ H

0
c dy =

∫ H

0

(
c++c−)

dy =
∫ tM

0
c+ξ+

y dt +
∫ tf

tM
c−ξ−

y dt

= c+(0)ξ+
y (0)

∫ tf

0
dt = c+(0)ξ+

y (0)tf , (A25)

can, then, be evaluated. The mass hold-up M and the particle shear stress at the bed are
thus both dependent on the vertical rebound velocity and Shields number.

Summarizing the analytical resolution of the problem, the prescription of the vertical
rebound velocity ξ+

y (0) determines uniquely the particle trajectory, independently of the
Shields number Sh, while the particle shear stress at the bed and the mass hold-up depend
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both on Sh and ξ+
y (0). This means that a given solution of the particle trajectory can be

obtained for different sets of the two variables (Sh,M).

Appendix B. Linear stability of the PT model – analytical solution

We use the method of fixed point to determine the stability to small perturbations of the
analytical solution of the PT model. We focus on the trajectory followed by a particle
during the nth jump and determine the components of the rebound velocity at the
beginning of the (n + 1)th jump from the rebound laws (2.10) and (2.11) as

ξ+
x,n+1(0) =

⎧⎨
⎩
[

a + b
ξ−

y,n(0)

ξ−
x,n(0)

]2 [
ξ−

x,n(0)
2 + ξ−

y,n(0)
2
]

−
[

ay

(
−ξ−

x,n(0)ξ
−
y,n(0)

]1/2 + byξ
−
y,n(0)

)2
⎫⎬
⎭

1/2

,

ξ+
y,n+1(0) = ay

[
−ξ−

x,n(0)ξ
−
y,n(0)

]1/2 + byξ
−
y,n(0),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

where we take sin θ ≈ tan θ = −ξ−
y,n(0)/ξ

−
x,n(0) in the expressions of e and ey.

The components of the impact velocity at the end of the nth jump are determined from
the components of the rebound velocity at the beginning of the same jump with (A17),
with t = tf , and (A7) as

ξ−
x,n(0) = U (H)

H

CDξ
+
y,n(0)+ 1

C2
D

[
1 − CDtf exp(−CDtf )− exp(−CDtf )

]
−U (H)

H
CDtf − 1 + exp(−CDtf )

C2
D

+ ξ+
x,n(0) exp(−CDtf ),

ξ−
y,n(0) = ξ+

y,n(0)− tf .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

Here, tf and U(H)/H are, from (A6), (A21)–(A23) and (A25),

tf =
[
CDξ

+
y,n(0)+ 1

] [
1 − exp

(
CDtf

)]
CD

,

U (H)
H

= St
{

Sh − M
tf

[
ξ−

x,n(0)− ξ+
x,n(0)

]}
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B3)

We now introduce perturbations (indicated with a tilde) around the periodic solution,
and keep only the linear terms, so that, from (B1)–(B3)[

ξ̃+
x,n+1(0)
ξ̃+

y,n+1(0)

]
=

[
A11 A12
A21 A22

]
︸ ︷︷ ︸

A

[
ξ̃−

x,n(0)
ξ̃−

y,n(0)

]
=

[
A11 A12
A21 A22

]
︸ ︷︷ ︸

A

[
B11 B12
0 B22

]
︸ ︷︷ ︸

B

[
ξ̃+

x,n(0)
ξ̃+

y,n(0)

]
, (B4)
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where

A11 = 1
2

⎧⎨
⎩
[

a + b
ξ−

y (0)

ξ−
x (0)

]2 [
ξ−

x (0)
2 + ξ−

y (0)
2
]

−
[

ay

(
−ξ−

x (0)ξ
−
y (0)

)1/2 + byξ
−
y (0)

]2
⎫⎬
⎭

−1/2

×
⎧⎨
⎩−2b

ξ−
y (0)

ξ−
x (0)2

[
a + b

ξ−
y (0)

ξ−
x (0)

] [
ξ−

x (0)
2 + ξ−

y (0)
2
]

+ 2ξ−
x (0)

[
a + b

ξ−
y (0)

ξ−
x (0)

]2

+
[

ay

(
−ξ−

x (0)ξ
−
y (0)

)1/2 + byξ
−
y (0)

]
ay

(
−ξ−

x (0)ξ
−
y (0)

)−1/2
ξ−

y (0)

⎫⎬
⎭ ; (B5)

A12 = 1
2

⎧⎨
⎩
[

a + b
ξ−

y (0)

ξ−
x (0)

]2 [
ξ−

x (0)
2 + ξ−

y (0)
2
]

−
[

ay

(
−ξ−

x (0)ξ
−
y (0)

)1/2 + byξ
−
y (0)

]2
⎫⎬
⎭

−1/2

×
⎧⎨
⎩2b

1
ξ−

x (0)

[
a + b

ξ−
y (0)

ξ−
x (0)

] [
ξ−

x (0)
2 + ξ−

y (0)
2
]

+ 2ξ−
y (0)

[
a + b

ξ−
y (0)

ξ−
x (0)

]2

− 2
[

ay

(
−ξ−

x (0)ξ
−
y (0)

)1/2 + byξ
−
y (0)

]

×
[
−ay

2

(
−ξ−

x (0)ξ
−
y (0)

)−1/2
ξ−

x (0)+ by

]⎫⎬
⎭ ; (B6)

A21 = −ay

2

[
−ξ−

x (0)ξ
−
y (0)

]−1/2
ξ−

y (0); (B7)

A22 = −ay

2

[
−ξ−

x (0)ξ
−
y (0)

]−1/2
ξ−

x (0)+ by; (B8)
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B11 =
{

1 − St
M
tf

CDtf − 1 + exp(−CDtf )

C2
D

+ St
M
tf

CDξ
+
y (0)+ 1

C2
D

× [
1 − CDtf exp(−CDtf )− exp(−CDtf )

]}−1

×
{

exp(−CDtf )− St
M
tf

CDtf − 1 + exp(−CDtf )

C2
D

+ St
M
tf

CDξ
+
y (0)+ 1

C2
D

× [
1 − CDtf exp(−CDtf )− exp(−CDtf )

]}
(B9)

B12 =
{

1 − St
M
tf

CDtf − 1 + exp(−CDtf )

C2
D

+ St
M
tf

CDξ
+
y (0)+ 1

C2
D

× [
1 − CDtf exp(−CDtf )− exp(−CDtf )

]}−1

×
{

St [Sh − s(0)]
CDtf − 1 + exp(−CDtf )

CD

+ 1 − exp(−CDtf )

1 − [
CDξ

+
y (0)+ 1

]
exp(−CDtf )

×
[

St (Sh − s(0))
(

CDξ
+
y (0)+ 1

)
tf exp(−CDtf )

− St (Sh − s(0))
1 − exp(−CDtf )

CD

− CDξ
+
x (0) exp(−CDtf )+ St

s(0)
tf

CDξ
+
y (0)+ 1

C2
D

× (
1 − CDtf exp(−CDtf )− exp(−CDtf )

)
−St

s(0)
tf

CDtf − 1 + exp(−CDtf )

C2
D

]}
; (B10)

B22 = 1 − 1 − exp(−CDtf )

1 − [
CDξ

+
y (0)+ 1

]
exp(−CDtf )

. (B11)

The elements of the matrices A and B are evaluated using the analytical solution of
the PT described in § 2.1 (fixed point). The periodic solution is unstable if the maximum
eigenvalue of the product AB (the Jacobian matrix of the system) is larger than one.

Appendix C. PT model – derivation of the relationship between Q and M

In the case where the mass hold-up is small, it is possible to derive a approximate
expression of the mass flux Q as function of the mass hold-up M.
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According to (A24) and (A25), the ratio Q/M simply reads

Q
M

= L
tf
, (C1)

where L and tf are the trajectory length and time of flight, respectively.
In the following, we derive an approximate expression for L and tf . We set, for

convenience, β = CDξ
+
y (0). In the case where β is larger than 1, (A6) for the time of

flight simplifies and yields

tf ≈ 1 + β. (C2)

Equations (A2) and (A17) for the vertical and horizontal particle velocity, ξy and ξx
respectively, evaluated at t = tf , give, in the limit of large β,

ξ−
y (0) = − 1

CD
, (C3)

ξ−
x (0) = U(H)

C2
DH

. (C4)

As we are dealing with small mass hold-ups M, we assume that the presence of the
particles does not modify the fluid flow such that U(H)/H = StSh. Note that this implies
that the horizontal particle velocity at the bed linearly increases with the Shields number,
as previously observed in experiments carried out on a single particle moving over a rigid
bed in a viscous shearing flow (Charru et al. 2007).

Now, if we employ (A10), which relates the horizontal and vertical components of the
impact velocity together with (C4), we get a close equation for β which yields

β ≈ aySt
√

Sh/18 − by. (C5)

Note that we take CD = 18/St and ey ≈ β for β greater than unity (see (A8)). We recall that
ay and by are the coefficients which characterize the rebound law in the vertical direction.

Equation (A20) for the trajectory length L in the limit of large β simplifies to

L ≈ St Sh

2C3
D
(1 + β) (β − 1) . (C6)

Finally, combining (C1) with (C2), (C5) and (C6), we get

Q
M

≈ St3Sh
648

(
aySt

√
Sh/18 − by − 1

)
. (C7)

For β � 1, the relationship between Q and M further simplifies to

Q
M

≈ ay

648
√

18
St4Sh3/2. (C8)

Figure 14 depicts the horizontal mass flux as function of the mass hold-up obtained
from the numerical solution of the PT model (stable branch) and the DC simulations,
for different values of St and Sh. Also shown are the analytical predictions of (C7). As
predicted, Q increases with both Sh and St.
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Q

10–2

10–3

10–1

101

100

M
10–110–210–310–4

Figure 14. Horizontal mass flux Q vs mass hold-up M for various Shields and Stokes numbers: St = 100
and Sh = 0.075 (squares); St = 100 and Sh = 0.05 (circles); St = 60 and Sh = 0.05 (triangles). Open symbols
correspond to the stable branch of the numerical solutions of the PT model, while the filled symbols are the
measurements from the DC simulations. The dashed lines are the predictions of (C7), valid in the limit of small
mass hold-ups.
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