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SUMMARY
A new method for real-time obstacle avoidance and trajectory
planning of underactuated unmanned surface vessels is
presented. In this method, ordinary differential equations
(ODEs) are used to define transitional trajectories that
can avoid obstacles and reach a final desired target
trajectory using a robust tracking control law. The obstacles
are approximated and enclosed by elliptical shapes. A
transitional trajectory is then defined by a set of ordinary
differential equations whose solution is a stable elliptical
limit cycle defining the nearest obstacle on the vessel’s
path to the target. When no obstacle blocks the vessel’s
path to its target, the transitional trajectory is defined by
exponentially stable ODE whose solution is the target
trajectory. The planned trajectories are tracked by the
vessel through a sliding mode control law that is robust
to environmental disturbances and modeling uncertainties
and can be computed in real time. The method is illustrated
using a complex simulation example with a moving target
and multiple moving and rotating obstacles and a simpler
experimental example with stationary obstacles.

KEYWORDS: Autonomous surface vessels; Trajectory
planning; Obstacle avoidance; Navigation; Tracking control.

1. Introduction
Trajectory planning, obstacle avoidance, and position control
of underactuated vehicle systems have received increased
attention because of technological advances that make
fully autonomy a possibility. Unmanned surface vessels
(USVs) with two actuator inputs are a type of underactuated
vehicle, as they possess more degrees-of-freedom (DOF)
than actuator inputs. Consider the planer model of a USV as
shown in Fig. 1. The control inputs from the two propellers
can only provide a surge motion and planar rotation. The
difficulty arises from the fact that only one input (total
surge force) will appear in the two nonlinear differential
equations representing the planar tracking motion. Hence,
tracking a trajectory is only possible with the aid of the
yaw rotation. In general, tracking control is only possible
if the desired trajectory does not include all three position
variables simultaneously. Normally, the USV must track a
planar position and the heading angle is indirectly determined
to track the desired points. However, the non-holonomic
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nature of the equations arising from kinematics and dynamics
make the trajectory planning and tracking possible through
forward motion and heading angle adjustments.1–8

An autonomous USV can fulfill a variety of missions
and applications that are of increasing interest and an
integral part of autonomy is obstacle avoidance. The
USV obstacle avoidance algorithm is being developed
by accurately creating a world model based on various
sensors, such as vision, radar, and nautical charts. Using
this world model, the USV can avoid obstacles with the
use of a far-field deliberative obstacle avoidance component
and a near-field reactive obstacle avoidance component.
Specifically, the current focus is to create a robust obstacle
avoidance capability and then move on to more advanced
behaviors, such as autonomous recovery, in the case of
lost communication, target tracking and/or interception, and
collaborative operations.9

The literature on obstacle avoidance for mobile robots
is much richer because they are a more common platform
for research and application. They also typically operate at
lower speeds with fewer operating constraints. Much of the
earlier work in this field is focused on open-loop model
predictive control and trajectory optimization. Because
finding the desired trajectory and calculating the control
action is normally too time-consuming, these methods
are not recommended for real-time control, especially in
the presence of disturbances.10,11 There have also been
several methods focusing on multi-vehicle problems. Among
these are decentralized control approaches, where local
control laws are defined for each agent based on local
information12,13 and behavior-based methods simplify the
definition of control laws within the decentralized control
framework.14,15 Perhaps, the most promising approach to
obstacle avoidance is the potential field method, which
has been extensively utilized for mobile robots with
static and dynamic obstacles, implemented in real-time
experiments,16–20 and applied with robust controllers, such
as sliding mode control law.21 Many methods have been
introduced to avoid the undesirable effects of potential field
methods, such as local minima and unwanted repulsive
actions. However, some of these effects still persist.

Another more recent, rarely employed approach to
obstacle avoidance is the limit cycle-based method. Ellekilde
and Perram22 use limit cycles to generate trajectories for
robot manipulators while avoiding obstacles. They define
unstable limit cycles as objects of finite size and shape
as a way of modeling complex obstacles to be avoided.
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Fig. 1. Planar model of a surface vessel with two propellers.

Use of stable limit cycles as a navigation method has been
introduced for obstacle avoidance of mobile robots.23–25 The
approach only considers circular limit cycles for mobile
robots of the same size all in close proximity, as it’s applied
to a robot soccer game. Grech and Fabri integrated the limit
cycle navigation method with classical trajectory tracking
control scheme. A limitation of the approach in ref. [23]
is that the limit cycle equations are defined with constant
coefficients, which makes it only suitable for obstacle in
close proximity. This is because the exponentially convergent
nature of the limit cycle dynamics requires unreasonably
high velocities when the robot is far from the limit cycle.
Hence, impractical control demand may be required in these
cases. Further, these works only consider circular limit cycles
suitable for shapes with approximately the same length and
width.

A new ordinary differential equation (ODE)-based real-
time obstacle avoidance and trajectory planning method for
underactuated USV is presented in this work. The method
defines transitional trajectories using ODEs in terms of the
position feedback variables.26 At a given time, the obstacles
on a straight line path from the USV to its target are detected.
The USV then smoothly transitions to a trajectory that
approaches the nearest obstacle on its path. The trajectory is
defined as a set of two ODEs whose solution is a stable limit
cycle in the shape of an ellipse approximating and enclosing
the target obstacle. If the obstacle at any time moves away
or when the USV goes around the obstacle, the trajectory
is then switched to another limit cycle approximating the
next obstacle on the USV path. This process continues until
all obstacles are cleared and the USV smoothly converges
to a transitional target trajectory, which is defined by a set
of two exponentially convergent ODEs whose solution is
the target trajectory. All transitional trajectories are defined
with variable coefficients to yield practical trajectories that
can be tracked by a real USV. A sliding mode control law
developed for trajectory following the underactuated USV7

is integrated with the navigation method for robust tracking.
The stability of the moving and rotating elliptical limit cycles
is established by Lyapunov’s stability theorem.27 Simulation

and experimental examples are presented to demonstrate the
method’s capabilities.

The novelty of the proposed method is in its use of ODEs
for trajectory planning and general use of elliptical limit
cycles with variable coefficients for smooth and practical
trajectory transitions, application of a robust control law
to real-time obstacle avoidance for surface vessels, and
obstacle avoidance experimentation with surface vessels. The
advantages of this method include computational efficiency,
robustness, inclusion of moving and rotating obstacles, and
small data requirement specifying only current target position
and obstacles’ approximate size and position.

2. Trajectory Planning Strategy
The planar position tracking transitional trajectory may be
described by two ODEs as follows:

ẋi = fi(x1, x2, t), fi : Di → R2, i = 1, 2, (1)

where x1 and x2 are the state variables, Di is an open and
connected subset of R2, and fi is a locally Lipschitz map
from Di into R2. In this approach, the transitional trajectory
state variables x1 and x2 and the form of functions f1 and f2
are selected in order to reach a final target trajectory while
avoiding both static and dynamic obstacles. Two general
forms of the ODEs in Eq. (1) are defined in order to achieve
this goal. The first is for reaching the target trajectory and
the second for avoiding any obstacles on the USV path. The
former is denoted as the transitional target trajectory and the
later as the transitional limit cycle trajectory.

2.1. Transitional target trajectory
The planar position of a USV is defined by the global
variables x(t) and y(t), and its target position by xt (t) and
yt (t). The state variables x1(t) and x2(t) of Eq. (1) may be
defined as the relative target position:

x1 = x − xt , x2 = y − yt . (2)

Therefore, if the ODEs in Eq. (1) are defined such that they
have a stable solution, then

x1(t) & x2(t) → 0 : x(t) → xt (t) & y(t) → yt (t). (3)

An example of exponentially stable trajectory is the following
linear ODE system:

{
ẋ1 = −k1 x1 k1(t) > 0
ẋ2 = −k2 x2 k2(t) > 0,

t ≥ t0, (4)

where t0 is the starting time of the trajectory. The positive
parameters k1(t) and k2(t) are assumed to be the functions of
time in order to generate trajectories that are more desirable
and smooth. In general, they are selected as monotonically
increasing positive time functions starting from a small
value and defined based on the USV’s actuator limitations
and its distance to the target. These parameters can also
be effectively selected based on constrained optimization.28

Fifth-order polynomials are also good candidates for smooth
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and monotonic transition of these functions starting from
time t0 and ending at time t1. The following polynomial may
be used to compute ki(i = 1, 2) during the transition period
(t0 ≤ t ≤ t1):

ki = ki5�t5 + ki4�t4 + ki3�t3 + ki2�t2 + ki1�t + ki0,

(5)

where �t = t − t0 and the boundary conditions are selected
to smoothly increase ki from 1% to 100% of its final
value k̄i :

ki(t0) = k̄i/100, ki(t1) = k̄i ,

k̇i(t0) = k̇i(t1) = k̈i(t0) = k̈i(t1) = 0.
(6)

The six polynomial coefficients kij , j = 0, . . . , 5 are
derived using the six boundary conditions specified in Eq. (6).
Note that ki = k̄i for t > t1 and t1 is selected based on the
initial distance of the target from the vessel.

2.2. Transitional limit cycle trajectory
The obstacle avoidance strategy presented in this work
is based on approximating all obstacles as continuously
differentiable shapes that can be represented as the limit
cycle solution of the ODEs presented in Eq. (1). In this case,
the state variables of the transitional trajectory are defined as

x1 = x − xo,

x2 = y − yo,
(7)

where xo(t) and yo(t) denote the global position of the origin
of the limit cycle. The origin of the limit cycle is assumed
to be a function of time to allow for dynamic obstacles.
Consider a limit cycle of the form �(x1, x2, t), which may
also be an explicit function of time to account for obstacle
planar rotation. Thus, the transitional limit cycle trajectory
will have the following special form:

{
ẋ1 = h1(x1, x2, t) − k1x1�(x1, x2, t) k1(t) > 0,

ẋ2 = h2(x1, x2, t) − k2x2�(x1, x2, t) k2(t) > 0.
(8)

The functions h1(x1, x2, t) and h2(x1, x2, t) represent the
planar particle motion kinematics at the limit cycle, i.e.,
when �(x1, x2, t) = 0. The solution of Eq. (8) must guarantee
that a USV starting from any point outside the limit cycle
where �(x1, x2, t) > 0 will converge to the limit cycle without
crossing it. The positive parameters k1(t) and k2(t) are again
assumed to be the functions of time in order to generate more
desirable smooth trajectories using Eq. (5).

2.3. Elliptical limit cycles
The limit cycle geometry considered in this work is elliptical
because it can be used to closely approximate convex vessel
shapes. When two or more obstacles collide or are in close
contact to each other, they can be approximated as a single
obstacle and enclosed by a larger ellipse. Note that if an
object does not have a convex shape, it is still more efficient
to approximate it with an ellipse for the purpose of obstacle
avoidance except in cases where the target is hiding inside

the concave part of the object. In these cases, the limit cycle
may be defined as a cross section of ellipses approximating
the concave shape.

The limit cycle �(x1, x2, t) is defined by the general
equation of an ellipse with semi-major and semi-minor axes,
a and b, respectively, and origin at (xo(t), yo(t)):

� ≡
[

cos φx1 + sin φx2

a

]2

+
[−sin φx1 + cos φx2

b

]2

− 1 = 0, (9)

where x1(t) and x2(t) are defined in Eq. (7) and ϕ(t) is the
angle representing the orientation of the ellipse’s semi-major
axis relative to the global horizontal axis. This angle can be
time-dependent to represent rotating objects. The motion of
a particle with angular speed �(t) around an ellipse rotating
with angle φ(t) and a moving origin at (xo(t), yo(t)) may be
given as

{
x1 = a cos φ cos �t − b sin φ sin �t,

x2 = a sin φ cos �t + b cos φ sin �t.
(10)

The time derivative of Eq. (10) may be written as

{
ẋ1 =−(� + �̇t)(a cos φ sin �t +b sin φ cos �t) − x2φ̇,

ẋ2 = (� + �̇t)(−a sin φ sin �t + b cos φ cos �t) + x1φ̇,

(11)

where �̇ is the time derivative of �(t). Note that �(t) > 0 and
�(t) < 0 represent counterclockwise (CCW) and clockwise
(CW) rotation of the particle, respectively. In addition, �(t)
is assumed to be increasing monotonically in magnitude such
that � + �̇t �= 0. Again, a fifth-order polynomial is used to
transition �(t) from 1% to 100% of its final constant value
�̄ in the selected transition period of t0 ≤ t ≤ t1:

� = �5�t5 + �4�t4 + �3�t3 + �2�t2 + �1�t + �0,

(12)

where �t = t − t0 and the six polynomial coefficients,
�i , i = 0, . . . , 5, are derived based on the six boundary
conditions:

�(t0) = �̄/100, �(t1) = �̄,

�̇(t0) = �̇(t1) = �̈(t0) = �̈(t1) = 0.
(13)

Eliminating cos �t and sin �t from Eqs. (10) and (11), we
get

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = −x2φ̇ + � + �̇t

ab
(he11x1 − he12x2),

ẋ2 = +x1φ̇ + � + �̇t

ab
(he21x1 − he11x2),

(14)
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where

he11 = (a2 − b2) sin φ cos φ,

he12 = a2 cos2 φ + b2 sin2 φ,

he21 = b2 cos2 φ + a2 sin2 φ.

(15)

The functions h1(x1, x2, t) and h2(x1, x2, t) in Eq. (8) for
elliptical limit cycles are based on the dynamics represented
in Eq. (14) as
⎧⎪⎪⎨
⎪⎪⎩

h1(x1, x2, t) = −x2φ̇ + � + �̇t

ab
(he11x1 − he12x2),

h2(x1, x2, t) = +x1φ̇ + � + �̇t

ab
(he21x1 − he11x2).

(16)

2.4. The obstacle avoidance algorithm
Consider a USV trying to catch a dynamic target with
multiple dynamic obstacles in its vicinity. It is assumed
that the USV can achieve velocities larger than the target
at any point on the moving and rotating obstacles and that
the approximate size and location of all obstacles are known
to the USV through, for example, a vision-based detection
system. All obstacles are approximated as ellipses and the
information listed in Table I is assumed to be available at the
current time t. When obstacle i is determined to be in the path
of the USV, a transitional limit cycle trajectory of the form
in Eq. (8) is generated to determine the path around it:

{
ẋ1(i) = h1(x1(i), x2(i), t) − k1(i)x1(i)�(x1(i), x2(i), t),

ẋ2(i) = h2(x1(i), x2(i), t) − k2(i)x2(i)�(x1(i), x2(i), t),

(17)

Table I. Obstacle position, size, and orientation for i = 1 to n.

N Number of obstacles.

xo(i, t) Global x position from the center of obstacle i.
yo(i, t) Global y position of the center of obstacle i.
a(i) Semi-major axis of the ellipse enclosing obstacle i.
b(i) Semi-minor axis of the ellipse enclosing obstacle i.
ϕ(i, t) Orientation angle of the ellipse enclosing obstacle i.

where

x1(i) = x − xo(i), x2(i) = y − yo(i). (18)

To explain the algorithm, we borrow from the ideas presented
in ref. [23]. Consider a simple case where a USV is
commanded to catch a target moving at a constant speed
on a horizontal line with two static obstacles blocking its
path and a third one away from the path, as shown in Fig. 2.
The trajectory generation algorithm is described below and
graphically visualized in Fig. 2, where numbers 1 through 4
indicate four “frames” at different times during the tracking.

Step 1. All obstacles in the vicinity of the vessel and the
target, as well as of the target position are identified. The
obstacles are approximated and enclosed by ellipses (Eq. (9))
based on their size, orientation, and location.

Step 2. The obstacles on the vessel’s path to the target are
identified using the intersection points between the straight
line from the vessel to the target and the ellipses. The equation
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Fig. 2. Conceptual demonstration of the obstacle avoidance algorithm.
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of the straight line l(t) is given by

l(t) : yl = yt + y − yt

x − xt

(xl − xt ), (19)

where xl(t) and yl(t) are the two variables of the planar
straight line path. All obstacles, which do not have any
intersection with the straight line, are ignored now. In this
example, the straight line from the vessel to the target at the
initial position (step 1) intersects with obstacles 1 and 3 as
shown in Fig. 2.

Step 3. The obstacle closest to the vessel is identified
and a transitional limit cycle trajectory based on Eq. (8) is
generated. The sign of ω(t) is selected based on the shortest
path around the obstacle toward the target using the location
of the intersection points with respect to the center of the
ellipse and the velocity of the obstacle relative to the target.
For our example, obstacle 1 is selected with a positive ω(t)
for CCW rotation, as shown in the path from frame 1 to 2.

Step 4. The vessel tracks the selected transitional limit
cycle trajectory while repeating steps 2 and 3 until a new
obstacle is detected on its path to the target. For the example
shown in Fig. 2, obstacle 3 is detected at frame number 2.
The vessel targets a new transitional limit cycle trajectory
enclosing obstacle 3. The new path is displayed from frame
2 to 3. Note that obstacle 2 continues to be ignored, as the
straight line from the vessel to the target never intersects the
ellipsoid approximating its shape.

Step 5. When all obstacles are cleared, the trajectory
defined in Eq. (4) is used to catch the target. In this example,
the vessel detects the target at frame 3. The final path from
frame 3 to 4 is shown in Fig. 2, where the vessel catches the
target. Note that all these steps are repeated at every sample
time to account for dynamic obstacles. If any obstacle moves
to block the path of the vessel to its target, the trajectory
transitions back to the limit cycle enclosing that obstacle.

Remark 1. The intersections of the straight line from the
vessel to the target and the ellipses defining the obstacles
are derived by letting x = xl and y = yl in Eq. (7) and
substituting from Eqs. (7) and (19) into Eq. (9) for each
obstacle. The result is a quadratic equation in xl . If this
equation has real roots within the range defined by the USV
and the target, then the obstacle is blocking the vessel path.
If there are multiple intersections, then the one closest to the
vessel (min

√
(x − xl)2 + (y − yl)2) is used to define the new

transitional limit cycle.

Remark 2. When the USV moves from one limit cycle to
another, the continuity of its trajectory must be maintained.
Fifth-order polynomials presented in Eq. (5) can be used
to maintain trajectory continuity at position, velocity, and
acceleration levels. In general, we can redefine Eq. (1) for
the transition period as

ẋi = fi(x1, x2, t) + gi(t) for t0 ≤ t ≤ t1, i = 1, 2,

(20)

gi = gi5�t5 + gi4�t4 + gi3�t3 + gi2�t2 + gi1�t + gi0,

(21)

where �t = t − t0 and the boundary conditions are selected
to monotonically transition gi and its first and second time
derivatives to a zero value:

gi(t0) = ẋi(t0) − fi(t0), ġi(t0) = ẍi(t0) − ḟi(t0),

g̈i(t0) = ˙̈xi(t0) − f̈i(t0), gi(t1) = ġi(t1) = g̈i(t1) = 0.
(22)

2.5. Trajectory stability analysis
The stability of the transitional trajectories proposed in this
work is presented in this section.

Lemma 1. The trajectories defined by Eqs. (7)–(9) and (16)
asymptotically converge to stable elliptical limit cycles for
the set {x1, x2 ∈ �(x1, x2, t) > 0}.
Proof: Consider the following positive definite Lyapunov
candidate function in the set {x1, x2 ∈ �(x1, x2, t) > 0}

V (x1, x2) = a2b2

2
�(x1, x2, t) > 0. (23)

Taking the time derivative of Eq. (23) and substituting from
Eqs. (9), (14)–(16):

V̇ (x1, x2) = −k1�(x1, x2, t)
[
he21x

2
1 − he11 x1x2

]
− k2�(x1, x2, t)

[
(he12x

2
2 − he11 x1x2

]
.

To prove that the time derivative of the Lyapunov candidate
function is negative, let k1 = k2 = k(t) > 0:

V̇ (x1, x2) = −k�(x1, x2, t)
[
a2 (−sin φ x1 + cos φ x2)2

+ b2(cos φ x1 + sin φ x2)2
]

< 0, (24)

which demonstrates stability for �(x1, x2, t) > 0. Note that
V (x1, x2) = V̇ (x1, x2) = 0, when �(x1, x2, t) = 0. Also note
that k1 = k2 is not required for the special case of circular
limit cycles.

Lemma 2. The transitional target trajectory represented by
Eq. (4) is exponentially stable.

Proof: This is easily proven by selecting the following
Lyapunov candidate:

V (x1, x2) = 1

2

(
x2

1 + x2
2

)
> 0,

where, using Eq. (4), the time derivative is derived to be
negative definite:

V̇ (x1, x2) = −k1x
2
1 − k2x

2
2 < 0.

Further, when k1 and k2 reach their constant values after the
transition time (see Eq. (5)), solution for Eq. (4) becomes
exponentially convergent.

Remark 3. The limit cycle trajectories are asymptotically
stable. However, the vessel is only required to remain on
each trajectory for a finite amount of time. This is because
the vessel moves out of its current limit cycle trajectory as

https://doi.org/10.1017/S0263574710000585 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000585


696 ODE-based obstacle avoidance and trajectory design for USVs

soon as the obstacle is cleared, as explained and demonstrated
in the obstacle avoidance algorithm and the example given
in Fig. 2.

Remark 4. All trajectories starting from the inside of the limit
cycle with the exception of the origin will also converge to
the limit cycle. These cases, however, are not of interest for
obstacle avoidance problems considered in this work.

Theorem 1. The trajectory defined in the obstacle avoidance
algorithm asymptotically converges to its final target. Proof:

The USV follows transitional limit cycle trajectories as along
as obstacles block its straight line path to the target and the
limit cycle trajectories are asymptotically stable according to
Lemma 1. As only obstacles on the direct path to the target are
used and the USV is assumed to be faster than all obstacles
and the target, the distance to the target will decrease when
the vessel moves from one limit cycle to another according
to Remark 1. Moving from one transitional trajectory to the
next is achieved in finite time according to Remark 3. Hence,
the final transitional target trajectory is achieved in finite time
and this trajectory reaches the target exponentially according
to Lemma 2.

3. Controller Design
The difficulty in the USV control arises from the fact that
the state variables of the desired trajectory are not directly
controlled but are related to the controlled variables through
non-holonomic constraints. Further, the planar model of the
USV has three DOF. Hence, a USV with two propellers or
a propeller and a rudder is an underactuated system. The
body-fixed reference frame velocities are related to global
velocities of the USV model shown in Fig. 1 as follows:

ẋ = vx cos θ − vy sin θ,

ẏ = vx sin θ + vy cos θ,

θ̇ = ω,

(25)

where θ represents the vessel orientation, ẋ, ẏ, and θ̇ are
globally linear and angular velocities, vx and vy are its
forward and lateral velocities, and ω is the local angular
velocity.

The nonlinear differential equations of motion of the USV
in the body-fixed reference frame are as follows:

m11v̇x − m22vyω + d11v
α1
x = f,

m22v̇y + m11vxω + d22sgn(vy)|vy |α2 = 0,

m33ω̇ + mdvxvy + d33sgn(ω)|ω|α3 = T ,

(26)

where md = m22 − m11 and m22 �= m11. Note that only
forward motion dynamics are considered. The surge force
f and the yaw moment T are derived in terms of the two
propellers, f1 and f2 as f = f1 + f2 and T = (f2 − f1)B/2.
For details regarding the USV model derivation, the reader is
referred to ref. [1]. Details on the determination of the model
parameters can be found in refs. [7, 29].

The control law developed for this work is based on the
sliding mode approach30,31 where a set of two asymptotically
stable surfaces, S1 and S2, are defined as a function of

the body-fixed velocity tracking errors such that all system
trajectories converge to these surfaces in finite time and
slide along them until they reach the desired destination at
their intersection. The reaching conditions are established by
defining 1

2 (S2
1 + S2

2 ) as the Lyapunov function and ensuring
that for each surface i32

SiṠi ≤ −ηi |Si | , ηi > 0, i = 1, 2, (27)

where the value of the constant ηi (effort parameters)
determine how fast the trajectory will reach the surface i.

3.1. Surge control law
The first sliding surface is a first-order one and is defined in
terms of the vessel’s surge motion tracking error

S1 = ṽx + λ1

∫ t

0
ṽx(τ )dτ, (28)

where “∼” is used to denote the tracking errors, which is the
difference between the actual (vx) and desired (vxd):

ṽx = vx − vxd . (29)

The desired values are computed from the transitional
trajectories presented in Eqs. (1)–(22) and (25).

Taking the time derivative of the surface and using the
first relationship in Eq. (26), the surge control input can be
determined as

f = fx − kxsat(S1/ϕ1), (30a)

sat(S1/ϕ1) =
{

S1/ϕ1 if |S1| ≤ ϕ1

sgn(S1) if |S1| > ϕ1,
(30b)

where ϕ1 is the boundary layer thickness introduced to
eliminate chattering normally associated with sliding mode
control. The terms

fx ≡ fx(vx, vy, ω, vxd, v̇xd),

kx ≡ kx(vx, vy, ω, vxd, v̇xd)
(31)

are derived based on the nominal model and its uncertainty
bounds as presented in ref. [7]. Note that the wave and wind
forces may also be modeled1 with their uncertainties and
accounted for in Eq. (32).

3.2. Lateral motion control law
The second sliding surface is a second-order one and is
defined in terms of the vessel’s lateral motion tracking errors,

S2 = ˙̃vy + 2λ2ṽy + (λ2)2
∫ t

0
ṽy(τ )dτ, (32)

where

ṽy = vy − vyd, ˙̃vy = v̇y − v̇yd . (33)

Taking the time derivative of the lateral equation of motion
in Eq. (26) and substituting it into the time derivative of the
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Table II. The USV model parameters in SI units.

m11 = 1.956 m22 = 2.405 m33 = 0.043
d1 = 2.436 d2 = 12.992 d3 = 0.0564
α1 = 1.510 α2 = 1.747 α3 = 1.592

second surface yields the following yaw moment control:

T = fy − kysat(S2/ϕ2), (34)

where the saturation function with boundary layer thickness
ϕ2 is defined similar to Eq. (30b) and the terms

fy ≡ fy(vx, vy, ω, vxd, vyd, v̇xd, v̇yd, v̈yd, f ),

ky ≡ ky(vx, vy, ω, vxd, vyd, v̇xd, v̇yd , v̈yd, f )
(35)

are derived based on the nominal model and its uncertainty
bounds, as presented in ref. [7]. Note that all velocity and
acceleration data are assumed to be approximated using an
extend Kalman filter33 or backward difference method.

Remark 5. The control law only guarantees reaching the sets
|S1| ≤ ϕ1 and |S2| ≤ ϕ2, which is associated with a small
error depending on the boundary layer thicknesses.32

Remark 6. Tracking control of a vessel following the
transitional trajectories is very robust because x(t) and y(t)
positions are measured and used as feedback in the generation
of the trajectory. Hence, if a vessel is thrown off the trajectory
by an unexpected large disturbance, it will simply follow a
new transitional trajectory starting from its new state.

Remark 7. It is assumed that the vessel is capable of speeds
and maneuverings faster than all obstacles and its target.

4. Examples
Our experimental USV, which is .45-m long and weighs
1.614 kg, is used for the examples presented in this section.
The USV has two propellers, which are B = .07-m apart and
are rotated by DC motors. The model parameters identified
for the system are shown in Table II in SI units.29

4.1. Simulation example
We consider a simulation example, where the USV is
commanded to closely follow a moving target in a relatively
cluttered environment with moving and rotating obstacles.
The target starts at the same position and moves at a constant
velocity of .08 m/s up in case 1 and down in case 2. The
coordinates of the moving target in the first and second
scenarios are defined as

Case1 : xt (t) = 11, yt (t) = .08t + 10,

Case2 : xt (t) = 11, yt (t) = −.08t + 10.

The vessel position is initially at the origin heading 60◦
above the horizontal. There are four dynamic obstacles
crowding the environment and blocking its direct path to
the target. The four obstacles are assumed to be moving at
constant speed and rotating at a constant angular velocity.
The obstacle data are presented in Table III. A period of

Table III. Simulation example obstacle size, position, and
motion data.

Obstacle #1 Obstacle #2 Obstacle #3 Obstacle #4

xo 8 5 4 2
ẋo −0.008 0.02 −0.008 0.005
yo 8 4 8 3
ẏo 0.01 0.02 0.005 0.008
a 1.75 1.5 2 2
b 1 1 1.25 1
φo −π /6 −π /6 0 π /2
φ̇o −0.005 −0.005 0.008 −0.003

.2 s is selected for all interpolations required for smooth
transition from one trajectory to the next. The trajectory
parameters, k̄1 = k̄2 = .04 and �̄ = .05, are chosen for
all limit cycle trajectories, while k̄1 = k̄2 = .25 have been
selected for the transitional target trajectory. The sliding
mode control parameters are selected as η1 = η2 = 1,
and λ1 = λ2 = 2 for both cases. The saturation function
boundary layer thicknesses are selected to be ϕ1 = ϕ2 = .1 to
avoid chattering. The propeller forces are saturated at 2.2 N.

The simulations are run for 90 s in both scenarios and
partial frame-by-frame results are displayed in Figs. 3 and 4,
where the USV is able to catch the target while passing safely
through the field of moving obstacles. The frames shown
in the first case (Fig. 3) are for initial and final times and
the instances where the transitional trajectories changed are
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Fig. 3. Reaching and following a moving target through dynamic
obstacles during the first scenario.
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Fig. 4. Reaching and following a moving target through dynamic obstacles during the second scenario.

21.35 s, 39.35 s, and 57.24 s. The frames shown in the second
case (Fig. 4) are for initial and final times, the instances
where the transitional trajectories are changed at 17.20 s and
37.19 s, and an additional frame after 60 s, where the target
has already been reached.

The USV has no prior knowledge of the movements of
the target or obstacles in the two cases. Yet it takes two very
different paths even though the two cases are identical with
the exception of target heading. As new target and obstacle in-
formation is received, the algorithm is able to plan shorter and
more suitable transitional trajectories such that the first case
has four transitional trajectories and the second case has only
three. In the first case, the vessel is able to go through tight
spaces in-between the obstacle changing from CCW to CW
motion and vice versa. However, in the second case the vessel
ignores two of the obstacles and goes around the other two.

Figure 5 presents the distance of the USV to the target for
two scenarios. In each case, the distance is reduced quickly at
the beginning of each transitional trajectory until the USV is
close to or on the limit cycle. This is due to the exponentially
convergent nature of the transitional trajectories represented
by Eqs. (4) and (8). In the first case, the USV is able to catch
the target after about 80 s. In the second case it takes less
than 60 s because there is one less transitional trajectory and
a shorter path is planned. Similarly, the forward velocity in
both cases is very large at the beginning of each transition
accompanied by abrupt changes in lateral velocity, thereby
indicating an oscillatory motion, as shown in Figs. 6 and 7 for
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Fig. 5. The time history of the convergence of distance between the
USV and its target.

the two cases. Note that the vessel velocity and acceleration
are continuous despite the sharp changes, as shown in the
enlarged area of each figure. Abrupt changes in the velocities
and accelerations are the result of discontinuous left and
right motor control force (i.e., f1 and f2), as shown in
Fig. 8 for case 1. Note that the forces converge to their
steady state value to keep the velocity of the USV equal
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Fig. 6. The forward and lateral velocities of the USV in case 1.
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Fig. 7. The forward and lateral velocities of the USV in case 2.
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Fig. 8. The control forces of the two USV propellers in case 1.

Table IV. Experimental obstacle size and position data..

Obstacle #1 Obstacle #2 Obstacle #3

xo 0.554 2.30 2.70
yo 1.378 1.75 3.00
a 0.75 0.50 0.50
b 0.75 0.25 0.25
φo 0 π /3 0

to the target’s constant velocity when the target is reached.
The large control action arises because the sliding mode
control law does not directly control the heading angle, which
results in oscillations at the beginning of each trajectory, as
shown in Fig. 9 for case 1. It may be possible to reduce the
heading angle oscillations through careful selection of the
control parameters26 and smoother parameter transitions with
higher order polynomials to include higher order derivative
continuity. However, design of a new control formulation to
include heading angle oscillation reduction may be the best
option.

4.2. Experimental example
In this case, a simpler example with static obstacles is
considered due to our experimental setup size limitation. The
pool is 3.05-m wide, 4.88-m long, and 1.22-m deep. A color
camera is installed at approximately 3 m above the center of
the pool to capture the position and orientation of the USV,
obstacle position and size, and the target position. The pool is
calibrated using light-emitting diodes (LEDs) similar to the
procedure in ref. [7]. Different color LEDs are installed near
the two ends of the USV and the target and specific locations
on the obstacles. Hence, each image captured by the camera
can be filtered to determine the USV feedback data (x, y, θ),
target position (xt , yt ), and obstacle data (xo, yo, a, b, φo);
the feedback rate is about .06 s, which is used to estimate the
velocities.

The hull of the USV (obtained from a toy boat) has a
dark blue color and has the properties listed in Table I. The
two propellers are actuated by Micromo�R -1516 DC motors
connected to LEGO Mindstorms NXT controller with Blue
tooth communication. Its initial position and orientation is at
.984 m and .375 m and 80◦ above the horizontal, respectively.
There are three static obstacles, one larger and square-
shaped and two smaller and rectangular-shaped. The data
for the ellipses approximating the obstacles are presented
in Table IV. The target is identical to the USV with lighter
yellow color initially hiding behind the larger obstacle at
.56 m and 2.14 m. It stays at its position for 4.75 s and then
moves at a constant speed of .104 m/s heading 73.3◦ above
the horizontal.

A period of .5 s is selected for all interpolations required
for smooth transition from one trajectory to the next. The
trajectory parameters k̄1 = k̄2 = .04 and �̄ = .2 are chosen
for the limit cycle trajectories and k̄1 = k̄2 = .25 for the final
target trajectory. The sliding mode control parameters are
selected as η1 = η2 = .1, γ1 = γ2 = 1, and ϕ1 = ϕ2 = .01.
Using new experiments, we were able to estimate the
saturation limits for the surge control force (fmax = .59N)
and yaw control moment (Tmax = .042Nm).
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Fig. 9. The heading angle and angular velocity of the USV in case 1.

Fig. 10. Four snapshots of the experimental USV (dark blue)
catching a moving target (light yellow) in a field of three
obstacles.

Figure 10 shows four snapshots of the experiments starting
at 1 s after the start (frame 1), at 3 s when it starts going
around the limit cycle (frame 2), at 9 s after it changes
to the transitional target trajectory (frame 3), and at 18 s
when it reaches the target (frame 4). The blue (dark) boat
in the figure is the USV and the yellow (light) boat is the
target. The white flat square is the large obstacle, while the
two yellow flat rectangles are the smaller obstacles. In this
example, the USV follows only two transitional trajectories:

an elliptical limit cycle around the large obstacle and an
exponential one to the target. The two smaller obstacles are
ignored by the USV because they never cross its path to the
target.

The experiment was recreated in simulation to get an
insight into the validity of other simulation results that cannot
be tested in our limited experimental setup. Figure 11 shows
the time history of the USV distance to the target and the USV
heading angle obtained from both experiment and simulation.
The distance to target is reduced at a relatively steady rate
in simulation. It is reduced very slowly in the experiment
until the USV goes around the obstacle and then speeds up to
catch the target, thereby reducing the distance at a faster rate
during the transitional target trajectory. Heading angle plot
shows that the reason for slower rate of distance reduction
during the initial limit cycle trajectory is the inability of the
experimental USV to make a quick turn. Another difference is
that the USV heading angle has not settled in the experiment,
although it has settled in the simulation. The simulation,
however, shows more oscillation in the heading angle when
the USV changes from the limit cycle trajectory to the
transitional target trajectory. Figure 12 compares the path fol-
lowed by the vessel in the experiment with the one obtained
through simulation. Although the experiment is successful,
it is clear from Figs. 11 and 12 that there are significant
differences between simulation and the experiment because
of various calibration and modeling uncertainties.8 The surge
control force and yaw control moment calculated from the
experiment and simulation are similar but show clear differ-
ences, as shown in Fig. 13. Further, yaw moment vanishes in
simulation but is actively changing in the experiment. This
is due to the fact that the heading angle has not settled in the
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Fig. 12. Comparison of the vessel’s path in simulation and
experiments.

experiment, as explained above. Figure 14 shows the
experimental velocities obtained through finite difference
approximation of the position derivatives and kinematic
transformation in Eq. (25). The velocity profiles in these
figures show a very smooth transition except for small
amplitude high-frequency measurement noise, which should
be ignored.

5. Conclusions
A new method for obstacle avoidance and trajectory planning
of underactuated surface vessels combined with real-time
tracking control is developed. A procedure is introduced to
continuously detect obstacles, approximate them as ellipses,
and plan and track transitional trajectories around them until
the target is reached. The transitional trajectories are defined
using ODEs whose solutions are stable elliptical limit cycles
approximating the obstacles. The last transitional trajectory
that will take the vessel to its target is also generated using
exponentially stable ODEs. Time-dependent parameters are
used for the ODEs and transitions from one trajectory to the
next to ensure smooth and practical generation of trajectory.
The tracking control law guaranteeing convergence is based
on nonlinear sliding mode control, which has been shown
to be suitable for real-time implementation and robust
to disturbances and modeling uncertainties. Successful
simulation with dynamic obstacles and experiment with static
ones catching a dynamic target are presented. Future work
will include developing a 3D model, experimenting with
wind and wave disturbances, and improving the controller
design to include actuator saturation and for reduced heading
angle oscillation.
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