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Abstract

A famous problem in birational geometry is to determine when the birational auto-
morphism group of a Fano variety is finite. The Noether–Fano method has been the
main approach to this problem. The purpose of this paper is to give a new approach to
the problem by showing that in every positive characteristic, there are Fano varieties
of arbitrarily large index with finite (or even trivial) birational automorphism group.
To do this, we prove that these varieties admit ample and birationally equivariant line
bundles. Our result applies the differential forms that Kollár produces on p-cyclic covers
in characteristic p > 0.

Introduction

Recall that a Fano variety X is a variety with mild (at worst klt) singularities such that −KX is
ample. The index of X is the largest number r such that −KX ≡ rH for an ample Weil divisor H.
Iskovskikh and Manin [IM71] showed that the birational automorphism group, Bir(X), of a
smooth quartic threefold is finite, which implied that a smooth quartic threefold is not rational.
Given a rational map of Fano varieties, their approach relied on a detailed study of singularities of
divisors in the corresponding linear series. This approach is now referred to as the Noether–Fano
method (using ideas of Fano [Fan08, Fan15]). An immense amount of work has been devoted to
proving the birational rigidity, and thus finiteness, of Bir(X) for other Fano varieties of index
one. From the contributions of many authors (cf. [Che00, Cor95, dF13, dF16, dFEM03, Puk87,
Puk02]) we now know that in characteristic zero any smooth Fano hypersurface X ⊂ CP

n+1

of degree n + 1 is superrigid. As a consequence, these index-one Fano hypersurfaces have finite
birational automorphism groups. For index-two Fano varieties, Pukhlikov has a number of results
on finiteness of birational automorphisms [Puk10, Puk16, Puk20, Puk21]. These results classify
rationally connected fibrations of these varieties with base of dimension one. Little is known
about Bir(X) for higher index Fano varieties. Here we give the first examples of higher index
Fano varieties with finite birational automorphism groups.1
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Theorem A. For every characteristic p > 0 there are singular Fano varieties of arbitrarily large
index over a field of characteristic p with trivial birational automorphism groups.

In positive characteristic, Kollár [Kol95] observed that certain Fano varieties that are p-cyclic
covers in characteristic p carry global differential forms, and used these to deduce that a very
general hypersurface X ⊂ CP

n+1 of degree at least 2�(n + 3)/3� is not rational. These forms
have also been used to show that Fano hypersurfaces of high degree are far from being rational
in other ways. For example, Totaro [Tot16] used these forms to prove that hypersurfaces in a
slightly larger range are not even stably rational. Using unramified cohomology as an obstruction,
Schreieder [Sch19] improved these results and showed that a very general hypersurface of degree
d ≥ log2(n) + 2 is not stably rational. The arguments of Totaro and Schreieder both involve the
specialization property of decomposition of the diagonal, which was developed by Voisin [Voi13]
and expanded upon in work of Colliot-Thélène and Pirutka [CP16]. In other degree ranges, by
studying the positivity properties of these forms in more detail, the authors demonstrated that
the degrees of irrationality of complex Fano hypersurfaces can be arbitrarily large and, in a
different range, the degrees of possible rational endomorphisms on complex Fano hypersurfaces
must satisfy certain congruence conditions (see [CS20, CS21]).

We work with the p-cyclic covers that Kollár used:

ν : Y → X.

They have mild (terminal) isolated singularities and admit a straightforward resolution of
singularities:

σ : Z → Y.

An important step in proving Theorem A is the computation of the space of global (n − 1)-forms
on Z. In doing so, we show that the only global (n − 1)-forms are the forms that Kollár found.

Theorem B. Let k be an algebraically closed field of characteristic p > 0. Let n ≥ 3 (if p = 2,
then assume n is even). Let X ⊂ P

n+1
k be a smooth degree e hypersurface, fix an integer d > 0,

and let Y be a p-cyclic cover branched over a general section of OX(pd). There exists a resolution
of singularities Z of Y . Moreover, if

(p − 1)d ≤ n − e ≤ pd − 3,

then H0(Z,
∧n−1ΩZ) ∼= H0(X, ωX(pd)).

The first inequality implies that Y is Fano of index at least two. The second inequality implies
that ωX(pd) is very ample.

We introduce the notion of birational equivariance for line bundles, which arises naturally in
this setting. We show that the existence of a nontrivial birationally equivariant line bundle is a
strong condition. In particular, the global sections of a birationally equivariant line bundle L on
Y are naturally a representation of Bir(Y ). This allows us to show the following result.

Corollary C. In the setting of Theorem B, let ν : Y → X denote the p-cyclic cover. Then
ν∗(ωX(pd)) is an ample and birationally equivariant line bundle on Y , and there is an injection
Bir(Y ) ∼= Aut(Y ) ↪→ Aut(X).

For an alternative perspective on these results, in [Kol96, V.5.20] Kollár views the map
Y → X as a birational invariant of Y .

These theorems are proved in slightly greater generality and apply to other p-cyclic covers
with appropriate hypotheses. The results lead us to ask the following question:
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Question. Can finiteness of birational automorphisms of Fano varieties in characteristic p be
used to prove that complex Fano varieties have finitely many birational automorphisms?

Outline and conventions
We begin in § 1 by defining birational equivariance for line bundles L and giving some properties
and relevant examples. In § 2, we describe the resolutions of certain p-cyclic covers and check
that they have terminal singularities. Finally, in § 3 we prove Theorem B by computing the
(n − 1)-forms on the cyclic covers, which leads to a proof of Theorem A and Corollary C.

Throughout we work over an algebraically closed field k. A variety is an integral k-scheme
of finite type. We do not give the birational automorphism group any scheme structure.

1. Birationally equivariant line bundles

The goal of this section is to introduce the notion of a birationally equivariant line bundle, to give
some examples, to state some basic properties, and explain how they can be used to study the
birational automorphism group. We consider Bir(X) as an abstract group, without any scheme
structure.

Let k be an algebraically closed field, and let X be a normal projective algebraic variety over
k. By variety, we mean an integral scheme of finite type over k. Let

f : X ��� X

be a rational endomorphism. The map f is defined on some open set i : U ↪→ X such that X \ U
has codimension two in X. To start we define the pullback of a line bundle along f .

Definition 1.1. Let L be a line bundle on X. The pullback of L along f is defined by (1) first
pulling back to a line bundle f∗(L) ∈ Pic(U), and then (2) pushing forward i∗(f∗(L)) to get a
reflexive rank-one sheaf. This gives a group homomorphism:

f∗ : Pic(X) → Cl(X),

(where we identify the divisor class group with the group of reflexive rank-one sheaves with
reflexive tensor product).

Definition 1.2. We say that L is equipped with a birationally equivariant structure (or simply
L is birationally equivariant) if for every g ∈ Bir(X) there is a choice of an isomorphism

φg : g∗L → L
subject to the following compatibility condition: for all g1, g2 ∈ Bir(X), there is the following
commutative diagram.

Remark 1.3. It also makes sense to talk about G-birationally equivariant line bundles for any sub-
group G ≤ Bir(X) and any group homomorphism G → Bir(X), as well as birationally equivariant
vector bundles on X.

Example 1.4. For n ≥ 2, the Cremona involution τ : P
n ��� P

n is defined by

τ([x0 : · · · : xn]) = [1/x0 : · · · : 1/xn]

= [x1 · · ·xn : x0x2 · · ·xn : · · · : x0 · · ·xn−1].
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The pullback τ∗ : Pic(Pn) → Pic(Pn) is multiplication by n. However, τ◦2 = id ∈ Bir(Pn). Thus,
even if Pic(X) = Cl(X), the map

Bir(X) → Hom(Pic(X), Pic(X))

is only a map of sets: it does not always respect composition. This also shows that P
n does not

admit any nontrivial birationally equivariant line bundles when n ≥ 2.

Theorem 1.5 (Basic properties of birationally equivariant line bundles).

(i) If L1 and L2 are birationally equivariant line bundles on X, then so is L1 ⊗ L2.
(ii) Likewise, the inverse of a birationally equivariant line bundle is naturally birationally

equivariant. In particular,

PicBir(X)(X) := {line bundles with birational equivariant structure}
is a group under tensor product and the forgetful map

PicBir(X)(X) → Pic(X)

is a group homomorphism with kernel equal to the group of one-dimensional
k-representations of Bir(X) under tensor product.

(iii) Let μ : X̃ → X be a proper birational morphism. If L is a line bundle on X and μ∗L has
a birationally equivariant structure, then L is naturally birationally equivariant.

(iv) If L is a birationally equivariant line bundle on X and H0(X,L) �= 0, then there is a
representation ρ : Bir(X) → GL(H0(X,L)∨) such that the following diagram commutes.

(v) In the setting of property (iv), let X ′ ⊂ PGL(H0(L)∨) be the closure of the image of
X. For all g ∈ Bir(X), ρ(g) restricts to an automorphism of X ′, which induces a group
homomorphism:

Bir(X) → Aut(X ′),

and the kernel consists of g ∈ Bir(X) such that π ◦ g = π.
(vi) In the setting of property (iv), if there is a nonempty open set U ⊂ X such that π|U

is injective on the k-points of U (e.g. if π is birational or generically finite and purely
inseparable), then the homomorphism Bir(X) → Aut(X ′) is injective.

(vii) If X has an ample birationally equivariant line bundle, then Bir(X) ∼= Aut(X).

Proof. For property (i), to give the tensor product L1 ⊗ L2 a birationally equivariant structure,
one may assign

φg : g∗(L1 ⊗ L2) ∼= g∗L1 ⊗ g∗L2
(φ1)g⊗(φ2)g−−−−−−−−→ L1 ⊗ L2.

Note that the first isomorphism is canonical. The compatibility condition is easy to check.
In property (ii), if L is birationally equivariant with isomorphisms φg, then there are

isomorphisms
φ′

g = (φ∨
g )−1 : g∗(L∨) → L∨.

Compatibility is easy to check. It is clear that the map

PicBir(X)(X) → Pic(X)
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is a group homomorphism. The kernel is given by equivariant structures on the trivial line
bundle. These give rise to one-dimensional representations on H0(X,OX) which determine the
birationally equivariant bundle up to isomorphism.

To prove property (iii), let g ∈ Bir(X) let g̃ ∈ Bir(X̃) be the corresponding birational auto-
morphism. Assume that both g and g̃ are defined away from codimension two. Let U ⊂ X be an
open set so that (a) X \ U has codimension at least two in X, (b) π−1 is defined on U , (c) g is
defined on U , and (d) g̃ is defined on π−1(U). By assumption, there is an isomorphism

φg̃|μ−1(U) : (g̃∗μ∗L)|μ−1(U) → (μ∗L)|μ−1(U).

This gives an isomorphism

φg|U : g∗(L)|U → L|U

which uniquely extends to an isomorphism

φg : g∗(L) → L.

Lastly, compatibility follows as it can be checked on any nonempty open set (such as U).
For property (iv), the isomorphisms φg give rise to isomorphisms of global sections:

H0(X, L)
g∗−→ H0(X, g∗L)

φg−→ H0(X, L).

Let ρ(g)∨ denote the composition. The compatibility implies that the dual isomorphisms
satisfy

ρ(g1 · g2) = ρ(g1) · ρ(g2) ∈ GL(H0(X, L)∨).

Commutativity of the diagram follows from the fact that for a general x ∈ X, the map ρ(g)∨

gives an isomorphism between sections of H0(X,L) vanishing at x and those vanishing at g(x).
To prove property (v), it suffices to observe that the matrix ρ(g) preserves the closure of the

image π(X), which is clear from commutativity.
For property (iv), by the Nullstellensatz any birational automorphism g ∈ Bir(X) which is

equal to the identity on the k-points of some nonempty open subset U ⊂ X must be equal to
the identity on U . Therefore, g = id ∈ Bir(X).

Part (vii) is proved by taking a tensor power of L that is very ample and applying
property (vi). �

Now we shift our focus to giving examples of birationally equivariant line bundles.

Proposition 1.6. Let X be a smooth projective variety.

(i) If ωX is a globally generated line bundle, then it is birationally equivariant.
(ii) More generally, if the image of the evaluation map

H0(X,
∧iΩX) ⊗k OX → ∧iΩX

is a line bundle L ⊂ ∧iΩX (which is necessarily globally generated), then L is birationally
equivariant.

Proof. Part (ii) implies part (i), so we just prove part (ii). Let g ∈ Bir(X) and let ig : Ug ↪→ X
denote the inclusion of the open set on which g is defined (so the complement X \ Ug has
codimension ≥ 2).
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The derivative map ∧idg : g∗(
∧iΩX) → ∧iΩUg

pushes forward to an inclusion

ig∗(
∧idg) : ig∗g∗(

∧iΩX) → ∧iΩX .

This gives an injection on global sections:

H0(X, ig∗g∗(
∧iΩX)) ↪→ H0(X,

∧iΩX).

Now ig∗g∗(
∧iΩX) contains the line bundle g∗L (here we use smoothness of X to say that Weil

divisors are Cartier). Moreover, every global section of L pulls back to a global section of g∗L.
Thus, we have a commuting diagram of inclusions as follows.

As the spaces on the left and the right are of the same dimension and the maps are all inclusions,
it follows that every map is an isomorphism. Lastly, the commutative diagram of evaluation maps

shows that the image of g∗L in
∧iΩX contains L. It remains to show that the natural inclusion

L ↪→ φg(g∗L) ∼= g∗L is an isomorphism.
Suppose for contradiction that g∗L ∼= L(Δ) for some effective divisor Δ. As H0(X,L) and

H0(X, g∗L) have the same dimension it follows that the fixed component of the linear series
|g∗L| equals Δ. However, the sections in H0(X, g∗L) globally generate g∗L on Ug, which has a
complement of codimension at least two in X, so there is no fixed component. Therefore, φg

defines an isomorphism between g∗L and L.
To check equality of isomorphisms

φg2 ◦ g∗2(φg1) = φg1·g2 ,

it suffices to check on any nonempty open set (as global automorphisms of a line bundle on a
projective variety are constant). This reduces to the chain rule:∧idg2 ◦ g∗2(

∧idg1) =
∧id(g1 · g2)

on an open set where everything is defined. �

2. p-cyclic covers and their resolutions

The goal of this section is to define p-cyclic covers in characteristic p, present Kollár’s resolution
[Kol95, § 21], and check that they have terminal singularities (by further passing to a log resolu-
tion, and computing discrepancies). Throughout we work over an algebraically closed field k of
characteristic p > 0.
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First we define cyclic covers. Fix a k-scheme X together with a line bundle L on X. Let

L = SpecOX

(⊕
i≥0

L−i · yi

)

(respectively, L
⊗m) be the total space of the line bundle L (respectively, L⊗m). Let s ∈

H0(X,L⊗m) be a section, which corresponds to the following map.

There is also an mth power map, L
pm−−→ L

⊗m, which is a μm-quotient.

Definition 2.1. The m-cyclic cover branched over s is Y := p−1
m (s(X)) with the map ν : Y →

X. We say that the cyclic cover Y has branch divisor (s = 0) ⊂ X.

It follows that Y ∼= SpecOX

(⊕
i≥0 L−i · yi/(ym − s)

)
.

Let X be a smooth projective k-variety with a line bundle L and let s ∈ H0(X,L⊗p) be a
section. The p-cyclic cover Y branched along s is inseparable and typically singular. However, if
s is general then Kollár shows how to resolve these singularities. We say s has non-degenerate
critical points [Kol96, 17.3] if when we locally describe s as a function, any critical point of s has
a non-degenerate Hessian matrix (when the characteristic is two this forces the dimension to be
even, we leave out the odd-dimensional case here). In this case, any critical point of s gives rise
to an isolated hypersurface singularity on Y of the form

yp = f2(x1, . . . , xn) + f3,

where f2 and f3 are functions on X, f3 vanishes to order three, and f2(x1, . . . , xn) is a quadratic
polynomial with non-degenerate Hessian. Kollár shows that these isolated singularities can be
resolved by a sequence of blow-ups at points.

If p = 2 then Y is resolved after one blow-up of each singular point, and this is a log-resolution
(the exceptional divisor over each point is given by the quadric:

y2 − f2(x1, . . . , xn) = 0 ⊂ P
n,

which can be checked to be smooth).
If p > 2, then Kollár shows that a sequence of (p − 1)/2 blow-ups of isolated double points

resolves the singularities of Y . At the ith step, the new exceptional divisor over Y is a quadric
in the new exceptional divisor over L whose equation is given by

f2(x1, . . . , xn) = 0 ⊂ P
n,

where P
n has coordinates [x1 : · · · : xn : y]. This exceptional divisor is smooth away from the point

[0 : · · · : 0 : 1]. The only exceptional divisor it intersects is the one from the step before, and the
intersection is given by (y = 0) ∩ (f2 = 0) ⊂ P

n, which is smooth. Here the strict transform of Y
has the new local equation:

yp−2i = f2(x1, . . . , xn) + f3.

Thus, it is resolved after (p − 1)/2 steps. To give a log resolution, that is, to resolve the singularity
of the (p − 1)/2th exceptional divisor, we must blow-up one more time at the point [0 : · · · : 0 : 1].
The last exceptional divisor over Y is a smooth projective space P

n−1 with coordinates [x1 : · · · :
xn], and the intersection of the last two exceptional divisors is again the quadric f2(x1, . . . , xn) =
0 ⊂ P

n−1. This shows that the total exceptional divisor is simple normal crossing.
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Call this log-resolution Z. This gives a log resolution of Y which fits into the following
diagram.

Proposition 2.2. Let X be a smooth k-variety of dimension n ≥ 3 with a line bundle L. If

s ∈ H0(X,L⊗p)

is a section with non-degenerate critical points then the p-cyclic cover branched over s has
terminal singularities.

Proof. This can be checked locally at each singularity of the form

yp + f2(x1, . . . , xn) + f3.

First, when the characteristic of k is two (with n even), if σ : Z → Y is the resolution of
singularities and E is the unique exceptional divisor it suffices to compute the coefficient α of E
in the equation

KZ = σ∗(KY ) + αE = π∗(KL + Y )|Z + (n − 2)E.

If n ≥ 3, then α > 0.
When p is odd, let Ei ⊂ Z denote the strict transform of the exceptional divisor of the ith

blow-up of T . Let r = (p − 1)/2. Then it suffices to compute the coefficients αi of Ei:

KZ = σ∗(KY ) + α1E1 + · · · + αrEr + αr+1Er+1

= π∗(KL + Y )|Z + (n − 2)E1 + (2n − 4)E2 + · · · + (rn − 2r)Er + ((r + 1)n − p)Er+1.

This gives αi = i(n − 2) for 0 ≤ i ≤ r and αr+1 = (r + 1)n − p. These are all positive for
n ≥ 3. �

3. Computing the space of (n − 1)-forms

Again, assume k has characteristic p > 0. In this section we prove a slightly more general version
of Theorem B. Specifically we consider the following situation:

(i) X is a smooth projective k-variety of dimension n ≥ 3;
(ii) L is an effective line bundle on X with total space L;
(iii) s ∈ H0(X,L⊗p) is a global section with non-degenerate critical points;
(iv) ν : Y → X is the p-cyclic cover branched over s;
(v) and assume that −KY is ample (i.e. Y is Fano).

In Proposition 3.2, assuming that

H0(X, TX ⊗ ωX ⊗ Lp−1) = 0,

we show

H0(Y,
∧n−1ΩZ) = H0(X, ωX ⊗ Lp).

As a consequence, we show the line bundle μ∗(ωX ⊗ Lp)|Y is birationally equivariant on Y .
Theorems A and B and Corollary C follow from results in § 1.
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Let Z ⊂ L̃ be the log-resolution of the cyclic cover as in § 2. Following Kollár, consider the
relative cotangent sequence for L̃/X restricted to Z and the cotangent sequence for Z ⊂ L̃. This
gives rise to the following diagram.

Here, τ (respectively, B) is the torsion (respectively, torsion-free) part of Ω
L̃/X

|Z . To check that
there is a map ρ2 that makes the diagram commute, it suffices to check that I/I2 maps to 0 in
B which can be done generically as these are both torsion-free. Generically, this follows from the
fact that the y-derivative of the equation of the cyclic cover

yp − s(x1, . . . , xn) = 0

vanishes (as we are in characteristic p). Here Q is defined to be the kernel of ρ2.

Proposition 3.1. In the setting described previously:

(i) the natural map ∧n−1ΩZ
∼= Ω∨

Z ⊗ ωZ → Q∨ ⊗ ωZ

is surjective outside of codimension two;
(ii) the kernel is isomorphic to det(Q);
(iii) if H0(X, TX ⊗ ωX ⊗ Lp−1) = 0 then H0(Z,

∧n−1ΩZ) ∼= H0(Z, det(Q)).

Proof. For part (i), the map

Ω∨
Z ⊗ ωZ → Q∨ ⊗ ωZ

only fails to be surjective on the locus where B is not locally free (which has codimension at
least two as B is torsion-free). Letting A denote the kernel of the map above, we observe that
A reflexive as it is the kernel of a map of reflexive sheaves. A is therefore a line bundle as it is
rank one.

Now that we know the kernel is a line bundle, part (ii) can be verified outside codimension
two where the sequence

0 → A → Ω∨
Z ⊗ ωZ → Q∨ ⊗ ωZ (1)

becomes exact. Thus, we have

c1(A) + c1(Q∨ ⊗ ωZ) = c1(
∧n−1ΩZ),

which gives c1(A) = c1(Q), that is, A ∼= det Q.
It remains to check part (iii). By (1) and part (ii) it suffices to show that Q∨ ⊗ ωZ has no

global sections. There is an inclusion

Q∨ ⊗ ωZ ⊂ (μ̃∗TX)|Z ⊗ ωZ ,

so it suffices to show

H0(Z, (μ̃∗TX)|Z ⊗ ωZ) = 0.
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As Y has terminal singularities there is an exact sequence

0 → σ∗ωY → ωZ → OΔ(Δ) → 0

(where Δ is an effective exceptional divisor in Z). Pushing forward to Y shows ωY
∼= σ∗ωZ

(as they are isomorphic outside of points, torsion-free, and the first is a line bundle). By the
projection formula,

μ∗TX |Y ⊗ ωY → μ∗TX |Y ⊗ σ∗ωZ

is an isomorphism. Therefore, as push-forward preserves global sections it suffices to show that

H0(Y, μ∗TX |Y ⊗ ωY ) = 0.

Now ωY = ν∗(ωX ⊗ Lp−1). As Y is a p-cyclic cover,

ν∗(OY ) ∼=
p−1⊕
i=0

L−i.

Pushing forward ν∗(TX) ⊗ ωY gives

H0(Y, ν∗(TX) ⊗ ωY ) =
p−1⊕
i=0

H0(X, TX ⊗ ωX ⊗ Li).

This vanishes by the assumptions that H0(X, TX ⊗ ωX ⊗ Lp−1) = 0 (here we use that L is
effective to show the other summands vanish). �
Proposition 3.2. Assume:

(i) H0(X, TX ⊗ ωX ⊗ Lp−1) = 0;
(ii) ωX ⊗ Lp is globally generated; and
(iii) Y is Fano (or that H0(Y, ωY ) = 0).

Then

det(Q) ∼= μ̃∗(ωX ⊗ Lp)|Z(Δ)

for some effective divisor Δ that is exceptional for the birational map σ, and

H0(Z,
∧n−1ΩZ) ∼= H0(Z, det(Q)) ∼= H0(Z, μ̃∗(ωX ⊗ Lp)|Z) ∼= H0(X, ωX ⊗ Lp). (2)

Proof. By Kollár’s work ([Kol95, § 23]) there is an injection:

μ̃∗(ωX ⊗ Lp)|Z ↪→ ∧n−1ΩZ . (3)

The line bundle μ̃∗(ωX ⊗ Lp)|Z is globally generated, so it must land inside of det(Q). Hence,
det(Q) = μ̃∗(ωX ⊗ Lp)|Z(Δ) for some effective divisor Δ. On the other hand, away from the
exceptional divisors of σ, the vector bundle Q is the pull-back of a vector bundle on the com-
plement of the singular locus of Y with determinant ν∗(ωX ⊗ Lp). Thus, the line bundles are
isomorphic away from the exceptional divisors. Thus, Δ is exceptional for σ.

Pushing forward along σ gives a map on Y :

ν∗(ωX ⊗ Lp) → σ∗(det(Q)),

which is necessarily an isomorphism, as σ∗(det(Q)) is torsion-free and they are isomorphic away
from points. It follows that

H0(Z, det(Q)) ∼= H0(Z, μ̃∗(ωX ⊗ Lp)|Z) ∼= H0(Y, ν∗(ωX ⊗ Lp)).
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Lastly, we have

ν∗(ν∗(ωX ⊗ Lp)) ∼=
p−1⊕
i=0

(
ωX ⊗ Lp−i

)
. (4)

By the Fano assumption, H0(Y, ωY ) = 0. We also have ωY = ν∗(ωX ⊗ Lp−1). Thus,

ν∗(ωY ) =
p−1⊕
i=0

(
ωX ⊗ Lp−1−i

)
has no global sections. It follows that the only global sections on the right-hand side of (4) come
from ωX ⊗ Lp, giving:

H0(Y, ν∗(ωX ⊗ Lp)) ∼= H0(X, ωX ⊗ Lp),

which completes the proof. �
Proof of Theorem B. We check that in the setting of Theorem B, the assumptions of
Proposition 3.2 are satisfied. Let e be a positive integer such that

e + (p − 1)d ≤ n ≤ e + pd − 3.

Consider a hypersurface X ⊂ P
n+1
k of degree e and let L = OX(d) for some d ≥ 1. We claim that

H0
(
X, TX ⊗ ωX ⊗ Lp−1

)
= H0

(
X, TX(e + (p − 1)d − n − 2)

)
= 0.

The Euler sequence restricted to X

0 → OX(e + (p − 1)d − n − 2) → O⊕(n+2)
X (e + (p − 1)d − n − 1)

→ TPn+1(e + (p − 1)d − n − 2)|X → 0

can be used to show that TPn+1(e + (p − 1)d − n − 2)|X has no global sections. Thus, the above
vanishing follows from taking global sections for the inclusion of tangent bundles:

TX(e + (p − 1)d − n − 2) ↪→ TPn+1(e + (p − 1)d − n − 2)
∣∣
X

.

Next, observe that
ωX ⊗ Lp ∼= OX(e + pd − n − 2),

so the inequality e + pd − 3 ≥ n implies that ωX ⊗ Lp is globally generated.
Now for any point x ∈ X the restriction map H0(X,Lp) → Lp/m3

x is surjective as p ≥ 2 and
Lp = OX(pd) (this follows from the analogous result for P

n+1 by restricting sections). Therefore,
by [Kol96, V.5.7.1], a general section s ∈ H0(X,OX(pd)) has non-degenerate critical points.
Y is Fano as ωY = ν∗(OX(e + (p − 1)d − n − 2)). By Proposition 3.2, it follows that

H0(Z,
∧n−1ΩZ) ∼= H0(X, ωX(pd)). �

Proof of Corollary C. By § 2, Y admits a log resolution σ : Z → Y and by Theorem B there is
an injection

μ̃∗(ωX(pd))|Z ↪→ ∧n−1ΩZ . (5)

which induces the isomorphism on global sections in (2). In particular, the image of the evaluation
map

H0(Z,
∧n−1ΩZ) ⊗OZ → ∧n−1ΩZ

is precisely the line bundle
L := μ̃∗(ωX(pd))|Z ,
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so by Proposition 1.6(ii) it is birationally equivariant on Z. Theorem 1.5(iii) shows that
μ∗(ωX(pd))|Y is birationally equivariant on Y . The map ν is purely inseparable and the sections
of ν∗(ωX(pd)) define a map

Y → X ⊂ P(H0(Y, ν∗(ωX(pd)))∨).

Therefore, Theorem 1.5(vi) and (vii) imply that Bir(Y ) ∼= Aut(Y ) ↪→ Aut(X). �
We are now ready to give the following proof.

Proof of Theorem A. Let X be a general degree e ≥ 3 hypersurface over an algebraically closed
field of characteristic p > 0 and fix the line bundle L := OX(d). Assume (as in Corollary C) that
n ≥ 3 and

e + (p − 1)d ≤ n ≤ e + pd − 3.

Let Y be a cyclic cover branched over a general section of H0(X,OX(pd)). By Corollary C,

Bir(Y ) ↪→ Aut(X).

By the work of Matsumura and Monsky [MM63] (see [Poo05, Corollary 1.9] for a more modern
treatment), we may assume that Aut(X) = {1}. The index of such a Y is n + 2 − e − (p − 1)d.
For appropriate choices of e and n this can be made arbitrarily large. For example, p = 2,
e = 3, d = 3, and n = 6 give index-two examples. When p = 2, e = 3, d = 4, and n = 8, there are
index-three examples. �
Remark 3.3. Fixing a prime number p. There are examples of Fano varieties of dimension n,
index equal to i ≥ 2, and trivial birational automorphisms once

n ≥ p(i + 1).

Indeed, setting d = i + 1, there are always solutions to n + 3 − e = pd with e ≥ 3 once n satisfies
the above inequality. For such values of n, e, and d, the index is

n + 2 − e − (p − 1)d = pd − 1 − (p − 1)d = d − 1 = i.
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