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and T U D O R W. J O H N S T O N2
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Abstract. This paper examines the possibility of propagating surface waves in cylin-
drical plasma–plasma structures enclosed by metal walls and submitted or not to
a static magnetic field. We consider the situation in which the inner plasma layer is
overdense while the other is underdense. It is shown that outside the electron cy-
clotron resonance (ECR) conditions, the outer plasma layer plays a role similar to
that of an ordinary dielectric layer, just modifying the wavenumber without dras-
tically changing the general characteristics of the wave. At ECR, a major change in
the wavenumber and attenuation coefficient is observed, a cutoff occurring on the
left side of ECR and a resonance on the right side, provided the outer plasma den-
sity is large enough. It is further found that in conditions where the outer plasma
layer thickness is very small, wave propagation still occurs, whatever the density
value in this region. This suggests that surface wave propagation is possible in
plasma–sheath–metal structures.

1. Introduction
Over the last three decades, the characteristics of electromagnetic surface waves
have been widely investigated under a variety of conditions, essentially because
of their interest for sustaining plasmas under wide experimental conditions and
configurations. Reviews reporting the generation of plasmas with electromagnetic
surface waves can be found in Zhelyazkov and Atanassov (1994) and Moisan et al.
(1999). Initially designated as space-charge waves, the existence of surface waves
was first predicted theoretically by Trivelpiece and Gould (1959) as electromagnetic
waves guided by the interface between a plasma and a dielectric layer. Surface
waves were subsequently shown to be an efficient means of sustaining reproducible
and quiescent plasmas of interest for many applications, in particular materials
processing. The concept of surface wave can be generalized to the case of plasmas
submitted to magnetic field (Pasquiers et al. 1989; Margot and Moisan 1991), in
which case the surface wave is generally known as the Trivelpiece–Gould mode
(Trivelpiece 1967).

In the absence or in the presence of a magnetic field, the plasmas sustained by
surface waves are characterized by their exceptional tunability in terms of plasma
parameters (pressure, vessel dimensions, wave frequency, etc.), which is well adapted
to a parametric investigation of the influence of these parameters on the plasma
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characteristics. In this respect, surface-wave plasmas are thus unique among the
class of plasmas generated by electromagnetic energy, and they have been used as
a means of characterizing high-frequency plasmas in general (Ferreira and Moisan
1988).

The most common configuration employed (and the oldest) is cylindrical ge-
ometry, but recent work performed by Japanese groups, in particular at Nagoya
University, has shown the possibility of using planar geometries (Sugai et al. 1998).
Industrial high-density reactors based on surface waves in planar configuration are
now commercialized and used, in particular, for nanometric etching of thin films.

In the most usual situations, the surface wave is excited at the gap of a wave
launcher (surfatron, Ro-box, etc.) especially designed for optimizing the conversion
of the electromagnetic energy into a surface wave (Moisan and Zakrzewski 1991).
This wave launcher is located at the outside of a dielectric vessel transparent to
high frequencies, i.e. exhibiting a low loss tangent (e.g. fused silica). In the context
of applications of surface-wave plasmas, it is, however, highly desirable to minimize
dielectric materials, which are expensive, fragile, and thus difficult to handle, and
to replace them by metal, such as stainless-steel. Another useful property of metals
is that, provided they are adequately chosen, they are more resistant to chemical
attack by reactive gases. For example, stainless steel is usually considered as rela-
tively inert with respect to chlorinated and fluorinated gases. Finally, a metallic
vessel is likely to screen the environment more efficiently from radiation problems.

Interest in surface-wave plasmas was until recently limited in the user com-
munity because it was believed that a metallic vessel could not support surface-
wave propagation. This belief is based on the fact that it was previously shown that
surface waves are unable to propagate in plasma–metal structures, simply because
it is impossible to satisfy the boundary conditions. However, recent experimental
work by Morita et al. (1998) has shown that surface waves are suspected to be
responsible for the generation of an unmagnetized metal-bound plasma discharge.
This is additionally supported by PIC–Monte Carlo calculations (Coopersberg and
Birdsall 1998). The reason why propagation is possible is related to the fact that
the plasma is actually never in direct contact with the metal wall but is separated
from it by at least a sheath, which acts as a thin dielectric layer. In other situations,
the plasma is formed by several plasma layers of different densities (hence different
permittivities), so that the actual configuration is more complicated that a simple
plasma–metal structure.

In the present paper, we address this question by examining the possibility
of propagating electromagnetic surface waves in cylindrical plasma–plasma–metal
structures where the inner plasma is overdense and the outer one underdense. Note
that when the outer plasma density becomes very low so that its permittivity
approaches unity, it can be considered as free space. In Sec. 2, we describe the
configuration under investigation and we solve the Maxwell equations with the ap-
propriate boundary conditions. The numerical results are further presented and
discussed in Sec. 3. Finally, we conclude in Sec. 4.

2. Resolution of the Maxwell equations for a cylindrical
plasma–plasma–metal system
The configuration under investigation is shown in Fig. 1 and corresponds to an
experimental setup designed for the etching of thin films. It has been described in
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Figure 1. Schematic drawing of the experimental arrangement.
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Figure 2. Plasma density profile in the stainless-steel chamber of the reactor shown in Fig. 1
for a magnetic field intensity of 300 G at a gas pressure of 1 mTorr and a wave frequency of
190 MHz.

detail elsewhere (see e.g. St-Onge et al. 1998; Delprat et al. 1999). It consists of two
abutting cylinders, one made of fused silica (14.6 cm inner diameter) and the other
one of stainless-steel (28 cm inner diameter). A 190 MHz surface wave is excited at
the launching gap of a Ro-box located around the dielectric vessel. The plasma is
created in the dielectric vessel and extends into the stainless-steel chamber. The
plasma can be confined by a magnetic field set of 12 coils connected in series and
that can be varied continuously from 0 to over 1 kG. The question addressed in this
paper concerns wave propagation in the stainless-steel chamber, in the presence or
not of the magnetic field.

Measurements of plasma density distribution in this reactor show that in the
absence of a magnetic field, the plasma tends to fill the whole stainless-steel reactor
in both the radial and the axial directions, provided the gas pressure is low enough
(typically below 10 mTorr). When a magnetic field of sufficient strength is applied,
the plasma tends to contract to a radius corresponding to that of the dielectric
tube, as illustrated in Fig. 2. In this case, it is thus reasonable to model the plasma
as consisting in two layers of radius a and b with different permittivities.

For simplicity, we consider here that the density is constant in each plasma layer.
As a consequence, the configuration will be assumed to be that of Fig. 3, consisting
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Figure 3. Configuration considered for calculations.

of two concentric cylindrical spatially homogeneous plasma columns of infinite axial
extent surrounded by a metal enclosure. We denote the inner plasma permittivity
by εin

p and the outer one by εout
p .

Both plasma layers are submitted to an electromagnetic field of angular fre-
quency ω large enough for ions to be immobile in the wave electric field. In the
presence of a static magnetic field in the z direction of a cylindrical coordinate
system, each plasma layer can be described in the cold-plasma approximation as a
dielectric of tensorial relative permittivity εp given by

εp =

 ε1 −ε2 0
ε2 ε1 0
0 0 ε3

 , (2.1)

where ε1, ε2 and ε3 are defined as

ε1 = 1− ξ2 1− iδ
(1− iδ)2 − τ 2 , (2.2a)

ε2 =
iτξ2

(1− iδ)2 − τ 2 , (2.2b)

ε3 = 1− ξ2

1− iδ , (2.2c)

with i =
√−1, where ξ2 = ω2

p/ω
2, δ = ν/ω and τ = ωc/ω. Here ωp, ωc, and

ν are respectively the angular plasma frequency, the angular electron cyclotron
frequency, and the effective electron–neutral collision frequency for momentum
transfer (Shkarofski et al. 1966).

Given εp, we search for solutions of the form exp(iωt− γz), where γ = α + iβ, α
and β being the axial components of the attenuation coefficient and wavenumber.
The Maxwell equations lead to the following two relations coupling the wave electric
and magnetic fields E and H (Allis et al. 1963):

∇2
⊥Ez + q1Ez = q2Hz, (2.3)

∇2
⊥Hz + q3Hz = q4Ez. (2.4)

Here ∇2
⊥ is the Laplacian in the transverse direction, and the constants q1, q2, q3

and q4 are defined as

q1 = (γ2 + β2
0ε1)

ε3
ε1
, (2.5)

q2 = iωµ0γ
ε2
ε1
, (2.6)
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q3 = (γ2 + β2
0ε1)

ε21 + ε22
ε1

, (2.7)

q4 = −iωε0γ ε2ε3
ε1

. (2.8)

Here β0 = 2π/λ0 = ω/c denotes the free-space wavenumber, where c is the speed of
light in free space. More details about the calculations required to obtain a solution
of (2.3) and (2.4) can be found, for example, in Margot and Moisan (1991). Briefly,
(2.3) and (2.4) can be rearranged to yield

∇4
⊥Ez + (q1 + q3)∇2

⊥Ez + (q1q3 − q2q4)Ez = 0, (2.9)

∇4
⊥Hz + (q1 + q3)∇2

⊥Ez + (q1q3 − q2q4)Hz = 0. (2.10)

Defining

(q1 + q3) = p2
1 + p2

2 (2.11)

and

(q1q3 − q2q4) = p2
1p

2
2, (2.12)

(2.9) becomes

(∇2
⊥ + p2

1)(∇2
⊥ + p2

2)Ez = 0, (2.13)

which yields two solutions:

(∇2
⊥ + p2

1)Ez1 = 0, (2.14)

(∇2
⊥ + p2

2)Ez2 = 0. (2.15)

In each medium, the axial component of the electric field generally consists of
the superposition of two elementary components: Ez1 and Ez2 (Margot and Moisan
1991). In a cylindrical coordinate system, (2.14) and (2.15) can be solved by the
method of separation of variables, leading to the solution

Ez = [B1Fm(p1r) +B2Fm(p2r)] exp(imφ− γz + iωt), (2.16)

where B1 and B2 are constants, the relative weight of which is determined by the
boundary conditions, and where m is an integer (the azimuthal wavenumber); Fm

is the superposition of two Bessel functions. For convenience, it is useful to choose
the Bessel function Jm and the Hankel function H

(1)
m because of their behavior at

r = 0 and r →∞, respectively. It can be readily verified that (as one might expect)
p1 and p2 are in fact the two distinct wavenumber components perpendicular to the
magnetic field given by solving the cold-plasma dispersion relation for the current
value of the plasma parameters, of ω and of the single wavenumber component
parallel to the magnetic field, γ. The expression for the magnetic fieldHz is obtained
by inserting (2.16) into (2.3):

Hz = [B1h1Fm(p1r) +B2h2Fm(p2r)] exp(imφ− γz + iωt), (2.17)

where hi = (q1−p2
i )/q2. The other electromagnetic field components can be deduced
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in a straightforward manner from the transformation matrix


Er
Eφ
Hr

Hφ

 =


A11 −A12 A31 A32

A12 A11 −A32 A31

A13 −A14 −A11 A12

A14 A13 −A12 −A11



− im
r
Ez

∇rEz
im

r
Hz

−∇rHz

 , (2.18)

where the elements Aij are defined as

A11 =
β2

0ε2γ

D
, (2.19)

A12 =
γ(β2

0ε1 + γ2)
D

, (2.20)

A13 = − iωε0[β2
0(ε21 + ε22) + ε1γ

2]
D

, (2.21)

A14 = −γ
2iωε0ε2
D

, (2.22)

A31 = − iωµ0(β2
0ε1 + γ2)
D

, (2.23)

A32 = − iωµ0β
2
0ε2

D
, (2.24)

with D = (γ2 + β2
0ε1)2 + β4

0ε
2
2. For the considered plasma–plasma configuration

and for the case of the azimuthally symmetric mode m = 0, expressions for the
electromagnetic field components in the three directions z, r and φ can be deduced
from (2.16)–(2.18):

Ekz = Bk1 J0(pk1r) +Bk2 J0(pk2r)

+Bk3H
(1)
0 (pk1r) +Bk4H

(1)
0 (pk2r), (2.25)

Hk
z = Bk1 l

k
1J0(pk1r) +Bk2 l

k
2J0(pk2r)

+Bk3 l
k
1H

(1)
0 (pk1r) +Bk4 l

k
2H

(1)
0 (pk2r), (2.26)

Ekφ = [Bk1 J1(pk1r) +Bk3H
(1)
1 (pk1r)](−Ak11p

k
1 +Ak31l

k
1 p
k
1 )

+[Bk2 J1(pk2r) +Bk4H
(1)
1 (pk2r)](−Ak11p

k
2 +Ak31l

k
2 p
k
2 ), (2.27)

Hk
φ = [Bk1 J1(pk1r) +Bk3H

(1)
1 (pk1r)](−Ak13p

k
1 −Ak11l

k
1 p
k
1 )

+[Bk2 J1(pk2r) +Bk4H
(1)
1 (pk2r)](−Ak13p

k
2 −Ak11l

k
2 p
k
2 ), (2.28)

Ekr = [Bk1 J1(pk1r) +Bk3H
(1)
1 (pk1r)](A

k
12p

k
1 +Ak32l

k
1 p
k
1 )

+[Bk2 J1(pk2r) +Bk4H
(1)
1 (pk2r)](A

k
12p

k
2 +Ak32l

k
2 p
k
2 ), (2.29)

Hk
r = [Bk1 J1(pk1r) +Bk3H

(1)
1 (pk1r)](A

k
14p

k
1 +Ak12l

k
1 p
k
1 )

+[Bk2 J1(pk2r) +Bk4H
(1)
1 (pk2r)](A

k
14p

k
2 +Ak12l

k
2 p
k
2 ), (2.30)

where k = in, out refers to either the inner or the outer plasma. The application
of boundary conditions implies that Bin

3 and Bin
4 are zero, since the solution must
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remain finite at r = 0. The tangential components of the electric field must also be
zero at the metal enclosure (r = b), since n̂ × E = 0 at the surface of a conductor.
The system thus reduces to only four constants with Bout

1 and Bout
2 , which can be

written in terms of Bout
3 and Bout

4 as

Bout
2 = D1B

out
3 +D2B

out
4 , (2.31)

Bout
2 = D3B

out
3 +D4B

out
4 , (2.32)

where the constants Dn are defined as

D1 =

H
(1)
0 (pout

1 b)
J0(pout

1 b)
− H

(1)
1 (pout

1 b)
J1(pout

1 b)
M out

2 J1(pout
2 b)

M out
1 J1(pout

1 b)
− J0(pout

2 b)
J0(pout

1 b)

, (2.33)

D2 =

H
(1)
0 (pout

2 b)
J0(pout

1 b)
− M out

2 H
(1)
1 (pout

2 b)
M out

1 J1(pout
1 b)

M out
2 J1(pout

2 b)
M out

1 J1(pout
1 b)

− J0(pout
2 b)

J0(pout
1 b)

, (2.34)

D3 = −J0(pout
2 b)

J0(pout
1 b)

D1 − H
(1)
0 (pout

1 b)
J0(pout

1 b)
, (2.35)

D4 = −J0(pout
2 b)

J0(pout
1 b)

D2 − H
(1)
0 (pout

2 b)
J0(pout

1 b)
. (2.36)

The constants Mk
j are given by

Mk
j = −Ak11p

k
j +Ak31l

k
j p
k
j . (2.37)

The application of boundary conditions at the inner–outer plasma interface
(r = a) implies that the tangential components of the electric and magnetic fields
are continuous, i.e. 

(Ein
z − Eout

z )r=a

(H in
z −Hout

z )r=a

(Ein
φ − Eout

φ )r=a

(H in
φ −Hout

φ )r=a

 = T


Bin

1

Bin
2

Bout
3

Bout
4

 , (2.38)

where the elements Tij of the matrix T are given by

T11 = J0(pin
1 a), (2.39)

T12 = J0(pin
2 a), (2.40)

T13 = −[D1J0(pout
1 a) +D3J0(pout

1 a) +H
(1)
0 (pout

1 a)], (2.41)

T14 = −[D2J0(pout
1 a) +D4J0(pout

1 a) +H
(1)
0 (pout

2 a)], (2.42)

T21 = lin1 J0(pin
1 a), (2.43)

T22 = lin2 J0(pin
2 a), (2.44)

T23 = −[lout
1 D1J0(pout

1 a) + lout
2 D3J0(pout

1 a) + lout
1 H

(1)
0 (pout

1 a)], (2.45)
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T24 = −[lout
1 D2J0(pout

1 a) + lout
2 D4J0(pout

1 a) + lout
2 H

(1)
0 (pout

2 a)], (2.46)

T31 = M in
1 J1(pin

1 a), (2.47)

T32 = M in
2 J1(pin

2 a), (2.48)

T33 = −[M out
1 D1J1(pout

1 a) +M out
2 D3J1(pout

1 a) +M out
1 H

(1)
1 (pout

1 a)], (2.49)

T34 = −[M out
1 D2J1(pout

1 a) +M out
2 D4J1(pout

1 a) +M out
2 H

(1)
1 (pout

2 a)], (2.50)

T41 = Qin
1 J1(pin

1 a), (2.51)

T42 = Qin
2 J1(pin

2 a), (2.52)

T43 = −[Qout
1 D1J1(pout

1 a) +Qout
2 D3J1(pout

1 a) +Qout
1 H

(1)
1 (pout

1 a)], (2.53)

T44 = −[Qout
1 D2J1(pout

1 a) +Qout
2 D4J1(pout

1 a) +Qout
2 H

(1)
1 (pout

2 a)], (2.54)

the constants Qkj being defined as

Qkj = −Ak13p
k
j −Ak11l

k
j p
k
j . (2.55)

In order to obtain a non-trivial solution for the electromagnetic field, the deter-
minant of the matrix T must be zero. For given conditions, this is verified only for
a discrete number of values of γ.

We have solved this determinental equation using a Müler method with deflation.
Since the calculation consist in solving a transcendental equation in the complex
plane, there are an infinite number of discrete roots. To ensure that only the so-
lutions corresponding to a surface wave are found (note that below the electron
cyclotron resonance (ECR), there is only one surface-wave solution), we start from
known surface wave solutions obtained in standard situations already studied.

It is customary when describing wave propagation in plasmas to present disper-
sion curves as Brillouin diagrams with ω/ωp as vertical axis. In such diagrams, ωp
is usually constant while ω varies. In the case of surface waves, however, it is usual
to present curves in which ω is kept constant while ωp varies, thus yielding a phase
diagram rather than a dispersion diagram. In the following, we will present results
obtained at a frequency of 190 MHz for varying inner and outer plasma densities.

3. Numerical results
3.1. Influence of plasma densities and magnetic field intensity on the wave
characteristics

Figures 4(a) and 4(b) show the phase and the attenuation coefficient as functions of
ω/ωin

p for different values of the outer plasma density in an unmagnetized weakly
collisional plasma (ν/ω = 10−3). Note that the case where ω/ωout

p = 100 approaches
the situation of a plasma surrounded by free space and a metal enclosure. It can
be seen from Fig. 4(a) that for decreasing ω/ωout

p , the wavenumber β decreases.
In addition, its relative variation with ω/ωin

p is less important, i.e. the structure
becomes less and less dispersive. One also notices that in the lower part of the
phase diagram, i.e. for small ω/ωin

p values, and for small ω/ωout
p , the wave becomes

fast (β < β0 where β0 = 3.98 m−1 for f = 190 MHz). As far as the attenuation
coefficient is concerned, Fig. 4(b) shows that for a given outer plasma density,
α increases with ω/ωin

p , as is always observed for a forward m = 0 surface wave.
Finally, for a constant inner plasma density, it can be seen that α increases with the
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Figure 4. Phase and attenuation diagrams for different outer plasma densities in a weakly
collisional (ν/ω = 10−3) and unmagnetized plasma.
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Figure 5. Phase diagrams for different outer plasma densities and for two values of the
magnetic field intensity: (a) ωc/ω = 0.5; (b) ωc/ω = 1.5.

outer plasma density. We expect that as the outer plasma tends toward its critical
value (ω/ωout

p = 1), β → 0 (this condition corresponds to a cutoff) and α→∞.
Figures 5(a) and 5(b) show the phase diagrams when a magnetic field is applied

to the system. Figure 5(a) corresponds to a value of ωc/ω = 0.5, i.e. below the ECR,
while Fig. 5(b) was obtained for ωc/ω = 1.5. As can be seen, below the ECR, the
axial wavenumber decreases with ω/ωout

p . In contrast, above the ECR, β increases
with the outer plasma density. These results clearly show that a change in the
wave behavior occurs on both sides of ECR. This behavior differs drastically from
that observed for the plasma–air or plasma–dielectric–air cases (Margot and Moisan
1997). In addition, the influence of the outer plasma density on the phase diagram
is less important above the ECR.

The results obtained in Figs 5(a) and 5(b) can be summarized by showing β as a
function of ωc/ω for a given inner plasma density and for different ω/ωout

p . This is
illustrated in Fig. 6, which confirms the fact that a drastic change in the wave char-
acteristics occurs at ωc/ω = 1 when the outer plasma density increases. However,
when the outer plasma density is decreasing to 0 (i.e ω/ωout

p →∞), the amplitude
of this change is less and less important, until no more discontinuity is observed
for ω/ωout

p = 1000, presumably because the corresponding plasma density is so low
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Figure 7. Axial attenuation coefficient α as a function of ω/ωc values. The results were
obtained for ω/ωinp = 0.1.

that the permittivity approaches that of free space. In addition, as the outer plasma
density tends toward its critical value, it can be seen that β → 0 when the ECR is
appproached from the left side, while β → ∞ when the ECR is approached from
the right side. When considering the wave attenuation characteristics represented
in Fig. 7, it can be seen that α shows a narrow peak at ωc/ω = 1, the amplitude of
this peak decreasing with the outer plasma density until no more peak is observed
for ω/ωout

p = 1000. From these results, we can reasonably believe that when the
outer plasma density approaches its critical value, a cutoff occurs on the left side
of ωc/ω = 1 while a resonance occurs on the right side.

When examining Figs 6 and 7, it is clear that the width of the resonance is
strongly influenced by the density of the outer plasma, thus suggesting that the
resonance phenomenon occurs in the outer region. This results from the fact that
in the outer medium, the dominant electric field component is radial. This fact is
well known when the outer plasma is free space (Moisan et al. 1982), and we have
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Figure 8. Radial intensity distribution of the axial component of the wave electric field for
different values of ω/ωout

p in (a) the unmagnetized case and (b) the magnetized (ωc/ω = 20)
plasma–plasma–metal case. The results have been obtained for ω/ωin

p = 0.1 and normalized
to 1 at r = 0. Note that in (a), all the curves corresponding to the different ω/ωout

p are
superimposed.

verified that this remains true when the outer region is filled with an underdense
plasma. On the contrary, in the inner plasma, the dominant electric field component
is axial, so that it cannot support any resonance.

3.2. Radial electromagnetic field distribution

When assuming a collisionless unmagnetized plasma–dielectric configuration (this
includes the plasma–air case), the surface wave is purely evanescent in the trans-
verse direction, i.e. in both the plasma and the dielectric layer (Margot and Moisan
1993). A consequence of this evanescence is that the electromagnetic field com-
ponents are maximum at the plasma–dielectric interface. Figure 8(a) shows the
radial profile of the axial component of the wave electric field for different outer
plasma densities in the unmagnetized plasma–plasma–metal case. As can be seen,
for all ω/ωout

p values, the radial distribution exhibits a peak at the plasma–plasma
interface, which means that the surface character of the wave is maintained. We
further note that the distribution is not affected by the outer plasma density value
in this case.

It was shown in Margot and Moisan (1991) that the radial distribution of the
axial electric field Ez(r) is considerably modified when an important magnetic field
is applied to a plasma–dielectric system. For them = 0 mode, the penetration depth
increases with ωc/ω. For the plasma–plasma–metal configuration, Fig. 8(b) shows
the influence of the outer plasma density on the radial distribution of the axial
electric field component when a strong magnetic field is applied, i.e. ωc/ω = 20.
It can be seen by comparison with Fig. 8(a) that, for a given ω/ωout

p = 100, the
penetration depth increases with the magnetic field intensity, since the value of
Ez(r)/Ez(0) at the plasma–plasma interface (i.e. r = 7.3 cm) decreases from 4.5
to 1.3 when ωc/ω varies from 0 to 20. In contrast with the unmagnetized plasma–
plasma–metal case shown in Fig. 8(a), Fig. 8(b) shows that the influence of the outer
plasma density is significant when a strong enough magnetic field is applied. When
ω/ωout

p decreases, the wave even loses its surface character and the axial component
of the electric field becomes maximum on the axis of the cylinder.
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Figure 9. Influence of the outer plasma thickness ∆R on the axial wavenumber β in an
unmagnetized plasma for ω/ωin

p = 0.1.

3.3. Influence of the outer plasma dimension

We consider in this subsection the influence on the wave characteristics of the outer
plasma thickness, defined as ∆R = b − a. Note that for the plasma–plasma–metal
configuration considered in this paper, the system can be seen as a waveguide filled
with plasma surrounded by a sheath, when the outer plasma density is very small
(ω/ωout

p > 100) and ∆R becomes comparable to a few Debye lengths. For any
value of ∆R, this situation corresponds to the case of a plasma–air metal configur-
ation, in which the solution to the determinental equation DetT = 0 are known
to be of two types (Boisse-Laporte 1993). The first type correponds to waveguide
modes disturbed by the presence of the plasma, while the second corresponds to the
surface-wave modes. In the following, we limit our investigation to the surface-wave
solutions.

Figure 9 shows the variation of the wavenumber β as a function of the thickness
∆R for different values of the outer plasma density and for a constant inner plasma
density. Note that the inner plasma radius is kept constant and equal to 7.3 cm. For
large values of both ω/ωout

p and ∆R, Fig. 9 shows that β tends toward a constant
value. In this range of ∆R, the presence of the metal boundary can be neglected,
so that the solution obtained corresponds to that of the plasma–air configuration
(Margot and Moisan 1991), represented by the dashed line.

In addition, it can be seen that as ∆R decreases, the value of β in this case
strongly increases. For example, as ∆R changes from 100 cm to 0.1 cm, β increases
by about a factor of 10. This is expected, since, as shown by Trivelpiece (1967),
surface waves do not exist for a traditionally homogeneous plasma surrounded by
metal, so β must tends to∞ when ∆R→ 0. Finally, we have shown in Sec. 3.1 that
β is decreasing with ω/ωout

p below the ECR for ∆R = 6.7 cm. Figure 9 shows that
this remains true for any value of ∆R.

4. Conclusions
In this paper, we have examined the possibility of propagating azimuthally sym-
metric surface waves in plasma–plasma–metal structures in which the outer plasma
is underdense. Outside the ECR conditions, the presence of the outer plasma plays
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a role similar to that of an ordinary dielectric layer, just modifying the wavenumber
value without drastically changing its general characteristics. We have also shown
that a resonance/cutoff behavior occurs on each side of the ECR as the outer plasma
density tends toward its critical value. This feature, which disappears as the outer-
plasma permittivity approaches that of free space, results from the fact that the
electric field is essentially radial in the outer plasma layer. In addition, we have seen
that the radial structure of the wave electromagnetic field is significantly affected
by the outer plasma density only in the strongly magnetized case. Finally, the influ-
ence of the outer-plasma thickness was also investigated. The surface-wave solutions
found for small outer-plasma thickness indicate that it is possible to propagate elec-
tromagnetic surface waves in waveguides filled with plasma, provided the latter is
separated from the metal structure by at least a plasma sheath.

Finally, since the results presented in this paper were inspired by an existing
experimental setup, the parameters used for calculations were intentionally chosen
as realistic. However, it remains to confirm the calculations through appropriate
experimental verification, which is not an obvious matter because of the compli-
cations related to phase and attenuation measurements within a plasma. On the
other hand, the results obtained with the two-step density profile approximation
considered in this paper are expected to differ slightly from those determined exper-
imentally, because the density profile is actually continuous. It is, however, difficult
to exactly predict the behavior of α and β under these circumstances, since for the
m = 0 mode and in the absence of a magnetic field, the radial inhomogeneity of
the plasma makes the attenuation coefficient and the wavenumber increase with
the degree of inhomogeneity. In contrast, in the presence of a magnetic field of suf-
ficient strength, α and β both decrease for an increasing degree of inhomogeneity.
Nevertheless, the two-step density profile approximation used in the present paper
should still provide a realistic estimation of the wave characteristics.
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