
Journal of Dairy Research (2002) 69 521–531. # Proprietors of Journal of Dairy Research 2002

DOI: 10.1017}S0022029902005769 Printed in the United Kingdom

521

Addition of fish oil to diets for dairy cows. II. Effects on milk fat

and gene expression of mammary lipogenic enzymes

B CHARAF E. AHNADI"*, NAOMI BESWICK#, LOUIS DELBECCHI",
JOHN J. KENNELLY#  PIERRE LACASSE"†

"Agriculture and Agri-Food Canada, Dairy and Swine Research and Development
Centre, P.O. Box 90, Lennoxville, QC, Canada J1M 1Z3

#University of Alberta, Department of Agricultural, Food and Nutritional Science,
Edmonton, AB, Canada T6G 2P5

(Received 26 June 2001 and accepted for publication 24 January 2002)

S. Sixteen Holstein cows in mid-lactation were used to determine whether
alterations of mammary fatty acid metabolism are responsible for the milk fat
depression associated with consumption of fish oil. Cows were given a total mixed
ration with no added fish oil (control), unprotected fish oil (3±7% of dry matter), or
glutaraldehyde-protected microcapsules of fish oil (1±5% or 3±0% of dry matter) for
4 weeks. Milk samples were taken once a week and a mammary biopsy was taken
from a rear quarter at the end of the treatment period. Milk fat content was lower
in cows given unprotected fish oil (26±0 g}kg), 1±5% protected fish oil (24±6 g}kg) and
3% protected fish oil (20±4 g}kg) than in cows fed the control diet (36±0 g}kg). This
was mainly due to a decrease in the synthesis of short-chain fatty acids. Consumption
of protected fish oil decreased the abundance of lipogenic enzymes mRNA in the
mammary gland. Acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA
desaturase mRNAs for cows given 3% protected fish oil averaged only 30%, 25%
and 25% of control values, respectively. Dietary addition of unprotected fish oil
slightly decreased mRNA abundance of these enzymes but markedly reduced the
amount of lipoprotein lipase mRNA. Milk fat content was significantly correlated
with gene expression of acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-
CoA desaturase but not lipoprotein lipase. These results suggest that fish oil reduces
milk fat percentage by inhibiting gene expression of mammary lipogenic enzymes.

K : Milk composition, fish oil, lipogenic enzymes, gene expression.

Of the solids in milk, fat is by far the most responsive to dietary manipulation.
Indeed, diets high in concentrate or unsaturated fat, or containing forage of small
particle size, can cause substantial milk fat depression (MFD; Sutton, 1989). MFD
was long believed to result from a shortage of lipid precursors to the mammary gland.
Early studies on the effect of low-roughage diets on milk fat secretion established
that these diets decreased the ruminal concentration of acetate relative to propionate,
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and concluded that the fall in milk fat content was the result of a reduction in the
amount of acetate available for synthesis of fatty acids (Storry & Rook, 1965).
However, variable recoveries in fat content of cows fed low-roughage diets after
intraruminal or dietary addition of sodium acetate (Balch & Rowland, 1959)
indicated that simple shortage of acetate was an unlikely cause. It has also been
proposed that diets that result in increased propionate production induce insulin
release, which stimulates use of milk-fat precursors by adipose tissue at the expense
of the mammary gland (Van Soest, 1963). However, studies in which insulin
concentration was chronically elevated by insulin injection (Schmidt, 1966) or by
hyperinsulinaemic-euglycaemic clamp (McGuire et al. 1995; Griinari et al. 1997;
Le! onard & Block, 1997) do not offer convincing support to the glucogenic-insulin
theory of MFD.

Currently, the most widely accepted hypothesis for the cause of MFD involves
direct inhibition of milk fat synthesis in the mammary gland. Davis & Brown (1970)
hypothesized that an extrinsic factor produced in rumen fermentation, as a result of
feeding a milk-fat-depressing diet, alters body metabolism in such a manner that
milk fat synthesis is reduced. Pennington & Davis (1975) further speculated that the
extrinsic factor might be trans-octadecenoic acids (trans C18:1), arising from partial
hydrogenation of unsaturated fatty acids in the rumen. Recently, conjugated linoleic
acid (CLA), another intermediate in ruminal biohydrogenation of fatty acids, has
also been implicated in MFD (Bauman & Griinari, 2000). The mechanism by which
these factors might cause MFD has yet to be elucidated.

Most fish oils are very high in polyunsaturated fatty acids (PUFA) and are known
to induce severe MFD (Pennington & Davis, 1975; Chilliard & Doreau, 1997b).
Infusions of fish oil into the rumen or abomasum also decrease milk fat percentage
in lactating cows (Storry et al. 1974; Pennington & Davis, 1975; Chilliard & Doreau,
1997a). These data support a postruminal effect of PUFA on lipid metabolism. Thus,
MFD induced by fish oils may be attributed to a decreased uptake of plasma fatty
acids by the mammary gland or to a direct inhibition of one or more steps in the
synthesis of milk fat in the mammary gland, or both. Fish oil has been shown to
inhibit activity of hepatic lipogenic enzymes in rodents (Iritani et al. 1980; Herzberg
& Rogerson, 1988) but there is little information on the effect of fish oil on lipogenic
enzymes in the mammary gland of ruminants.

The objective was to determine the mechanism by which fish oil affects lipid
metabolism in the mammary gland in lactating cows. Two forms of fish oil were used,
glutaraldehyde-protected and unprotected fish oil, and their effects on lipogenic
enzyme expression determined.

  

Animals and diets

Sixteen Holstein cows (162³4±7 d in lactation) were given a total mixed ration
(TMR) based on grass silage, maize silage and rolled barley once a day at 11.00. Four
cows were allocated to each treatment according to their days in lactation and milk
yield. After a preliminary period of 1 week, rations were supplemented with nothing
(control), 3±7% of dry matter (DM) as unprotected fish oil (UFO; 74% lipids;
Vaculift, Newark, CA, USA) or 1±5% (L) or 3% (H) glutaraldehyde-protected fish oil
(PFO; 58% lipids; Ocean Nutrition Ltd, Bedford, NS, Canada) for 4 weeks. The
composition of the diet and the fatty acid profiles of the basal diet and experimental
supplements are presented in the companion paper (Lacasse et al. 2002).
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Table 1. Effects of dietary addition of fish oil on feed intake and milk production

(Values are least squares means³ for samples (n¯ 4) taken during the last week of the
experiment)

Control L-PFO H-PFO UFO 

DMI, kg}d 21±4 21±9 20±2 16±9 1±75
Milk, kg}d 27±5 33±9 30±3 22±2* 2±63
Fat, g}kg 36±0 24±6* 20±4** 26±0* 0±32
Fat, kg}d 0±98 0±83 0±63* 0±55* 0±10
Protein, g}kg 35±0 32±3 30±4* 32±6 0±12
Protein, kg}d 0±97 1±09 0±91 0±72 0±08

Values differ from those of the Control : *P! 0±05; **P! 0±01.

Sampling and analyses

Feed intake was measured daily. Feed samples were collected once a week and
analysed for DM, crude protein, neutral-detergent fibre, acid-detergent fibre,
minerals and ether extract. Milk production was recorded daily. Milk samples were
collected once a week (a.m. and p.m. milking) and were analysed for fat (Roese-
Gottlieb method, AOAC, 1990) and protein (nitrogen analysis based on the Dumas
method; LECO FP-428, Leco Corp., St-Joseph, MI, USA). A portion of each milk
sample was extracted, esterified, and analysed by gas chromatography to determine
fatty acid profiles (Lacasse et al. 2002). Blood samples were taken from the tail vein
at 0, 2, and 4 h after feeding on the last day of the experiment. Blood concentrations
of non-esterified fatty acids (NEFA; WACO Chemicals Co., Richmond, VA, USA),
total cholesterol and triglycerides (Sigma Chemical Co., St Louis, MO, USA) were
measured with commercial kits. Biopsy samples were taken at the end of the
experiment, from the mammary gland of all cows. Cows were lightly sedated
(Atravet, 75 mg i.m.), and biopsies were performed as described by Farr et al. (1996).
Tissue samples were stored in liquid nitrogen until assays were performed. The
procedure was undertaken with approval of the local animal care committee.

Isolation of RNA and Northern blot analyses

Total RNA from mammary gland tissues was extracted by the guanidinium
isothiocyanate, phenol}chloroform method (Chomczynski & Sacchi, 1987) using
Trizol reagent (Gibco BRL, Life Technologies, Rockville, MD, USA). Quantity and
quality of RNA were determined by absorbance at 260 and 280 nm. Twenty
micrograms of RNA in ethidium bromide (1 µg}ml) were loaded onto a 1%
agarose}6±6% formaldehyde gel. After electrophoresis, the gel was photographed
under u.v. light using high-speed Polaroid films. Then the samples were transferred
to a nylon membrane (Micron Separation Inc., Westborough, MA, USA). For each
blot, equal loading of lanes and integrity of RNA was confirmed by ethidium
bromide fluorescence of 18S and 28S ribosomal RNA. A 2±0-kb cDNA fragment of
ovine acetyl-CoA carboxylase (ACC; EC 6.4.1.2) cloned in pGEM7zf­ was obtained
from M. Barber and M. Travers (Hannah Research Institute, Ayr, Scotland, UK). A
2±5-kb cDNA fragment of rat fatty acid synthase (FAS; EC 2.3.1.85) was obtained
from S. Smith (Childrens Hospital Oakland Research Institute, Oakland, CA, USA).
A 2±4-kb cDNA fragment of human lipoprotein lipase (LPL; EC 3.1.1.34) cloned in
pUC19 was obtained from T. Clandinin (University of Alberta, Edmonton, AL,
Canada). A 2±6-kb cDNA fragment of rat stearoyl-CoA desaturase-1 (SCD; EC
1.14.99.5) cloned in the vector p91023-B was obtained from E. Moore (University
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College, Dublin, Ireland). A 0±3-kb fragment from the exon 7 of bovine β-casein gene
was PCR-amplified and used as a probe.

Probes were labelled with $#P using the Random Primer DNA Labelling System
(Gibco BRL, Life Technologies, Rockville, MD, USA). After prehybridization for 1 h
at 65 °C, membranes were hybridized for 16–18 h in hybridization solution (0±1%
Ficoll, 0±1% polyvinylpyrrolidone, 0±1% BSA, 0±5% SDS, 100 µg}ml salmon sperm
DNA, in 6¬ SSPE) containing the denatured labelled probe (5–10¬10' cpm).
Membranes were washed three times for 20 min at room temperature in 2¬ SSPE,
0±1% SDS, followed by a high stringency wash (0±1¬ SSC, 0±1% SDS for 15 min at
65 °C) when the background required it. Thereafter, the membranes were exposed to
Kodak X-OMAT AR films in a cassette with intensifying screens at ®70 °C.
Intensity of mRNA bands on blots was measured using an imaging densitometer
(BioRad Laboratories, Mississauga, ON, Canada).

To control for loading differences, densitometry was performed on Polaroid
photographs of ethidium bromide-stained gels. A ratio between the arbitrary units,
obtained by linear densitometry, of autoradiograms of exposed blots and those
obtained from the 28S RNA band in ethidium bromide-stained gels was used to
express the data and to perform statistical analyses.

Statistical analyses

Data were analysed by analysis of variance with the GLM procedure of SAS
(1985). For observations repeated in time, namely, milk production, milk
composition, DM intake (DMI) and blood metabolites, only analyses of data from the
last week of the experimental period are reported. Contrasts were used to compare
each fish oil treatment with the control. Pearson correlation coefficients were
obtained with the CORR procedure of SAS (1985).



Feed intake and BW

During the last week of the experimental period, DMI tended (P¯ 0±07; Table 1)
to be lower in cows given UFO than in those given the basal diet. DMI was not
affected by PFO (P" 0±25). Cows given UFO lost BW (P! 0±05), and average daily
gain (ADG) for the experimental period averaged 0±74, 0±69, 0±95 and 0±50³0±23 kg}d
for control, L-PFO, H-PFO, and UFO, respectively.

Milk production and composition

Cows produced less milk (P! 0±05) on the UFO treatment (Table 1). Milk fat
percentage and yield were depressed (P! 0±05) by consumption of PFO and UFO.
Milk protein percentage was depressed by the highest level of PFO (P! 0±05). As a
result of lower milk production, milk protein yield for cows given UFO tended to be
lower (P¯ 0±06) than the yield of control cows (Table 1).

Both supplements changed the fatty acid profile of milk fat (Table 2). The
proportion of short-chain fatty acids (!C14) was reduced by 15, 35, and 28% by L-
PFO, H-PFO, and UFO, respectively. Secretion of these fatty acids was significantly
reduced (P! 0±05) by both H-PFO and UFO supplements and averaged 120, 89, 50,
and 55³18 g}d during the last week of the experiment for control, L-PFO, H-PFO,
and UFO, respectively. Similarly, secretion of C18 fatty acids was reduced (P! 0±05)
by the highest level of PFO (32%) and by UFO (43%), owing to a reduction of total
fat secretion rather than a decreased proportion of these fatty acids.
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Table 2. Effects of dietary addition of protected (PFO) or unprotected (UFO) fish oil
on milk fatty acid composition (g}kg of total fatty acids)

(Values are least squares means for samples (n¯ 4) taken during the last week of the experiment)

Fatty acids Control L-PFO H-PFO UFO 

C4:0 21±5 23±2 15±8 20±2 2±8
C6:0 25±9 19±4 15±4* 17±5 3±1
C8:0 10±4 8±9 6±2 7±0 1±4
C10:0 27±7 22±2 16±8* 18±2 3±2
C12:0 35±2 28±6 23±8* 24±0* 2±9
C14:0 110 104 96 93 6±1
C16:0 311 285 314 316 9±3
C16:1 16±5 17±3 38±0* 38±8* 6±2
C18:0 74±7 73±2 51±4* 32±5*** 6±3
trans C18:1 17 33 78** 84** 13±5
cis-9 C18:1 176 182 141 125* 12±3
C18:2 19±4 23±6 28±6 36±7** 3±2
CLA† 5±2 9±5 12±6* 15±9** 1±8
C18:3 2±9 3±9 3±6 3±7 0±4
C20:5 0±3 1±0* 2±1*** 3±0*** 0±2
C22:6 1±13 1±56 1±34 1±28 0±3

† trans 9, cis 11 isomer of C18:2.
Values differ from those of the Control : *P! 0±05; **P! 0±01; ***P! 0±001.

Table 3. Effects of dietary addition of fish oil on concentrations of blood metabolites

(Values are least squares means for samples (n¯ 4) taken during the last week of the experiment)

Metabolites Control L-PFO H-PFO UFO 

Cholesterol, m 4±18 4±37 5±27 4±18 0±45
Triglycerides, m 0±101 0±132 0±124 0±111 0±013
NEFA, mEq}l 123±4 132±9 140±8 179±0*** 8±2
Glucose, m 3±63 3±57 3±76 3±61 0±08

Value differs from that of the Control : ***P! 0±001.

Blood metabolites

UFO increased (P! 0±001) concentrations of NEFA in blood serum (Table 3).
Concentrations of triglycerides, cholesterol, and glucose were not affected (P" 0±10)
by fish oil supplements.

Mammary gene expression

H-PFO decreased (P! 0±001) mRNA abundance of lipogenic enzymes ACC (Fig.
1), FAS (Fig. 2a) and SCD (Fig. 2b) in the mammary gland. In the H-PFO group,
ACC, FAS, and SCD mRNAs averaged only 30%, 25%, and 25% of control values,
respectively. However, PFO had no effect on LPL gene expression (Fig. 2c). UFO
decreased slightly mRNA abundance of ACC (P! 0±05), FAS (P! 0±01), and SCD
(P! 0±10) but markedly reduced the amount of LPL mRNA (P! 0±001). Gene
expression of β-casein was reduced by both fish oil supplements (Fig. 2d). Milk fat
content was significantly correlated with gene expression of ACC (r¯ 0±72, P! 0±002;
Fig. 3), FAS (r¯ 0±60; P! 0±05), and SCD (r¯ 0±68; P! 0±01) but not LPL.
Correlations between expression of ACC, FAS, and SCD ranged from r¯ 0±54 to
r¯ 0±86. Gene expression of LPL was negatively correlated with serum NEFA
(r ¯®0±72; P! 0±01). Expression of β-casein gene was correlated with milk protein
content (r¯ 0±78; P! 0±001) and gene expression of ACC (r¯ 0±84; P! 0±001), FAS
(r¯ 0±68; P! 0±05), and SCD (r¯ 0±82; P! 0±001) but not LPL.
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Fig. 1. Effects of dietary addition of protected (PFO) or unprotected (UFO) fish oil on mammary
acetyl-CoA carboxylase (ACC) gene expression. (a) Northern blot of ACC; (b) ribosomal 28S RNA
of the same gel ; (c) ACC mRNA levels corrected for 28S. Lanes 1–4, control ; lanes 5–7 and 16,
H-PFO; lanes 8–11, L-PFO; lanes 12–15, UFO. Values are means³ for n¯ 4. Differences from
control diet : *P! 0±05, **P! 0±01, ***P! 0±001.



In our study, adding fish oil to the diet of lactating cows caused severe MFD, in
agreement with other studies (Brumby et al. 1972; Wonsil et al. 1994; Chilliard &
Doreau, 1997b). Secretion of short-chain fatty acids was reduced by up to 60% (H-
PFO) indicating strong inhibition of de novo synthesis of fatty acids. This was also
reported by others when fish oil was added to the diet (Chilliard et al. 1997) or infused
into the rumen (Chilliard & Doreau, 1997a). We observed a significant reduction in
yield of C18 fatty acids. Again, similar reductions have been observed in most fish oil
studies (Brumby et al. 1972; Storry et al. 1974; Chilliard et al. 1997). These fatty acids
are obtained from the circulation, not synthesized by the mammary gland, but
Storry et al. (1969) suggested that the decrease in mammary uptake of fatty acids is
due to an inhibition of LPL by C20 and C22 fatty acids. We found a reduction in LPL
gene expression only in cows given UFO. Furthermore, correlation of LPL expression
with yield of C18 fatty acids was weak (r¯ 0±43, P¯ 0±12). Blood triglyceride
concentration was not affected by treatment, but blood fatty acid profile was
modified (Lacasse et al. 2002). Except for trans C18:1 the proportion of all C18 fatty
acids in blood plasma was reduced. Therefore, part of the effect of fish oil on C18
uptake may simply be due to changes in substrate availability.
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Fig. 2. Effects of dietary addition of protected (PFO) or unprotected (UFO) fish oil on mammary (a)
fatty acid synthase (FAS); (b) stearoyl-CoA desaturase (SCD); (c) lipoprotein lipase (LPL); (d ) β-
casein gene expression. Values are means³ for n¯ 4. Differences from control diet : *P! 0±05,
**P! 0±01, ***P! 0±001.

Whether fish oil has direct or indirect effects on mammary gland metabolism is
not clear. The presence of PUFA is essential for fish oil to induce MFD since
hydrogenated fish oil has no effect on milk fat (Brumby et al. 1972). Studies in
rodents show C20:5 and C22:6 to be strong inhibitors of lipid synthesis (Raclot &
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Fig. 3. Relationship between mRNA levels of acetyl-CoA carboxylase (ACC) and milk fat content
for the 16 animals in the experiment.

Oudart, 1999). Intravascular (Storry et al. 1969) and post-ruminal (Pennington &
Davis, 1975; Chilliard & Doreau, 1997a) infusions of fish oil induced mild MFD.
However, much stronger inhibitions were seen when fish oil was infused into the
rumen (Pennington & Davis, 1975; Chilliard & Doreau, 1997a). Dietary addition of
fish oil increased milk fat content of trans C18:1. Pennington & Davis (1975)
proposed that trans C18:1, arising from partial hydrogenation of unsaturated fatty
acids in the rumen, directly inhibits lipid synthesis in the mammary gland. Wonsil
et al. (1994) reported that dietary and ruminally derived trans C18:1 were associated
with reductions of milk fat content. Abomasal infusion of a fat mixture containing
43% trans C18:1 and 21% cis C18:1 induced MFD while an infusion of a fat mixture
containing no trans C18:1 and 65% of cis C18:1 did not (Gaynor et al. 1994). Griinari
et al. (1998) summarized data from 17 studies and found a relationship (r¯ 0±54)
between change in milk fat percentage and change in trans C18:1 content in milk fat.
Chilliard et al. (1999) reported that fish oil caused a sharp increase in milk fat content
of both trans C18:1 and CLA. The latter is particularly interesting because its effect
on milk fat content is spectacular. Indeed, abomasal infusion of CLA for as short as
12 h reduced milk fat percentage by 25% (Loor & Herbein, 1998). Similarly,
Chouinard et al. (1999) reduced milk fat content by 50% by infusing into the
abomasum a mixture of four CLA isomers for 5 d. Recently, Baumgard et al. (2000)
have shown that as little as 10 g}d of trans-10, cis-12 CLA is enough to cause severe
MFD. We observed an increase in the concentration of cis-9, trans-11 CLA in milk of
cows given fish oil. Although we were not able to detect the presence of other CLA
isomers, it is possible that part of the effect of fish oil on mammary gland metabolism
is through trans C18:1 or CLA.

SCD is an important enzyme that catalyses ∆9 desaturation of C16:0 and C18:
0 to C16:1 and C18:1 in various organs, including the ruminant mammary gland.
Mahfouz et al. (1980) demonstrated that SCD can produce cis-9, trans-11 C18:2
(a major isomer of CLA) from trans-11 C18:1 in microsomal preparations from rat
liver. Chilliard et al. (2000) noted a linear relationship between contents of trans C18:
1 and CLA in milk. Abomasal infusion of a mixture of trans C18:1 fatty acids induced
a gradual increase in milk concentrations of CLA (Griinari et al. 2000). Furthermore,
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inhibition of SCD by sterculic acid reduced CLA content in milk fat by 45%.
Therefore, it is possible that the fat-depressing effect of trans C18:1 is mediated by
CLA.

Several mechanisms have been proposed to explain how specific fatty acids might
affect mammary lipogenesis. Davis & Brown (1970) first speculated that trans fatty
acids in blood triglycerides might be less acceptable substrates for LPL. However, no
differences in metabolism of cis- and trans-9 C18:1 were observed when they were
infused intravenously into lactating goats (Bickerstaffe et al. 1972). Gaynor et al.
(1994) suggested that the nearly straight-chain configuration of trans C18:1 might
impair mammary SCD activity or esterification to glycerol. In the present
experiment, mammary biopsies revealed that gene expression of several lipogenic
enzymes was strongly inhibited by fish oil. Contents of ACC, SCD and FAS mRNA,
but not of LPL mRNA, were correlated with milk fat content. Accordingly, Piperova
et al. (2000) observed a reduction in ACC mRNA abundance and activity in
mammary tissue of cows given a diet that induced MFD. In rodents, there is well-
documented suppression of hepatic de novo fatty acid biosynthesis by PUFA (Clarke
& Jump, 1996). Such suppression of enzymic activities does not represent a fatty
acid-mediated impairment of enzyme catalytic efficiency but rather reflects a
decrease in hepatic enzyme content by a suppression of lipogenic enzyme synthesis
(Toussant et al. 1981). Subsequently, Clarke et al. (1990) demonstrated that this
effect is due to an inhibition of gene transcription. Recently, it has been reported that
a CLA isomer (trans-10, cis-12) that causes MFD, also inhibits SCD expression in rat
liver (Choi et al. 2000) and in 3T3-L1 adipocytes (Park et al. 2000). We also observed
an inhibition of SCD gene expression in the mammary gland of cows when milk fat
was depressed by infusion of a mixture of CLA isomers (Simard et al. 2001).

Expression of LPL was reduced only in cows given UFO. These cows were in
negative energy balance resulting from severe depression of feed intake. Underfeeding
has been shown to depress LPL activity and expression in adipose tissue (Bonnet et
al. 1998) and mammary gland (Jensen et al. 1994). Accordingly, there was a negative
correlation between blood NEFA and LPL expression.

Milk protein content was reduced by feeding fish oil, as also reported by Chilliard
et al. (1997a) and Cant et al. (1997). The correlation between β-casein gene expression
and milk protein content suggests that this effect, at least in part, was due to an
inhibition of gene expression of milk proteins.

Coordinated inhibition of the expression of several genes involved in milk
synthesis suggests that these genes may share a common regulatory mechanism.
Clarke et al. (1990) found that PUFA-regulation of gene transcription occurs within
a matter of minutes. Such a time frame is too short to be explained by changes in
membrane composition, altered hormone release, or altered hormone signalling
(Clarke, 2000). However, a ligand-mediated event, such as fatty acid binding to a
transcription factor, is compatible with a rapid response. Sterol-regulatory element-
binding protein-1 (SREBP-1) is a membrane-anchored precursor protein which,
upon proteolysis, releases a peptide that induces gene expression of lipogenic
enzymes (Shimomura et al. 1998). Transgenic mice over-expressing this protein show
several-fold increases in hepatic synthesis of fatty acid (Shimomura et al. 1998). Xu
et al. (1999) reported that ingestion of safflower oil or fish oil, but not saturated or
monounsaturated fat, reduced the stability of SREBP-1 mRNA and the membrane
content of SREBP-1. Whether SREBP-1 plays a role in bovine mammary gland is
not known.

Our observations suggest that dietary fish oil can affect milk fat synthesis by
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regulating the expression of several genes involved in lipid synthesis and that these
genes may share a common regulatory mechanism.
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