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SUMMARY

Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available

chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has

prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of

parasitic helminths and pest arthropod species remains an attractive target for the discovery of novel endectocide targets.

Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited understanding of

the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into

these systems has the potential to facilitate target characterization and its offshoots (screen development and drug

identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to

metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle

function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-

like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide

signalling as a target system that could uncover novel endectocidal agents.

Key words: Arthropods, nematodes, platyhelminths, FMRFamide-like peptides, allatostatins.

INTRODUCTION

For the most part, the burden of parasitic helminth

control in animals and humans falls on anthelmintics.

Although the currently available portfolio of anthel-

mintics acts on a broad variety of protein targets,

most commonly these drugs serve to disrupt normal

motor function in the parasites they are used to treat,

often inducing spastic (e.g. levamisole) or flaccid (e.g.

piperazine) paralysis. Since the anthelmintics that

are in use today were discovered by empirical

screening, this largely independent process selected

motor function as a favoured target for helminth

control. Motor function encompasses many aspects

of parasite biology including the ability to move, feed

and reproduce and the successful coordination of

these activities is essential to the survival of all

helminth parasites.

Although nematodes, flatworms and insects

appear to be relatively simple metazoans, they all

have surprisingly complex neuromuscular systems

that enable the coordination of sophisticated beha-

viours that have contributed to the success of these

three phyla (Stretton et al. 1992; Geary et al. 1999;

Nässel, 2002; Halton & Maule, 2004). A critical

factor in the development of novel anti-parasite

drugs is the selection of an appropriate target system.

In this respect, the validity of the neuromuscular

system as a good drug target is not in question.

Parasitic helminths and ectoparasites are character-

ized by effective attachment organs (flatworms) and

sophisticated reproductive systems (flatworms, ne-

matodes and arthropods). In addition, the alimentary

tract in both animals is specialized and they have a

multitude of sensory receptors that modulate motor

activity. A key component of neuromuscular func-

tion is the intercellular signalling molecules that act

between nerves and between nerves and muscles to

enable coordinated behaviours. Classical transmitter

molecules and neuropeptides appear to be the

main players in the intercellular signalling circuits

of helminth and arthropod neuromuscular systems.

Interestingly, all of the anthelmintics that are

known to directly compromise normal motor func-

tion in helminth parasites do so by acting at ion

channels or the receptors of classical neuro-

transmitters (also, commonly ion channels), e.g.

levamisole acts at nicotinic acetylcholine receptors,

the avermectins act at glutamate-gated Clx channels,

piperazine acts at GABA-gated Clx channels and

praziquantel acts at Ca2+ channels.

As a backdrop to this review, it is worth examin-

ing the features of classical signalling pathways in

helminthswhich havemade them so receptive to drug

intervention: (1) Is it because classical transmitters

play the predominant role in neuromuscular co-

ordination? In all studies that have examined the dis-

tribution of classical transmitters and neuropeptides,
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neuropeptides appear to be at least as abundant and

widespread and are widely associated with the in-

nervations of muscular organs or tissues. (2) Is it

because classical transmitters often dramatically alter

neuromuscular activity? Classical transmitters often

induce gross changes in muscle activity or tone,

either via direct actions on muscle or via indirect

actions on associated nerves. Although many

neuropeptides are known to modulate the actions of

classical transmitters, some neuropeptides can also

directly and dramatically alter motor activity in

helminths and arthropods. (3) Is it because many

classical transmitters act to directly gate ion chan-

nels? The anthelmintics that interfere with motor

function act at ion channels. Although themajority of

neuropeptides act via G-protein-coupled receptors

to trigger cytosolic signalling cascades, some neuro-

peptides also act on ion channels to rapidly alter

muscle activity such that their potential as drug

targets would appear to be just as great (Purcell et al.

2002a, b). So it appears that many of the facets

of classical transmitters that may be responsible

for their utility as drug targets are also fulfilled by

neuropeptides.

One other attractive feature of neuropeptide sig-

nalling as a target for novel parasiticides is the fact

that similar or related neuropeptides play important

neuromodulatory roles in nematodes, arthropods

and flatworms (see Tables 1 and 2;Maule et al. 2002;

Mousley, Marks & Maule, 2004; Mousley et al.

2004). What are the implications of this fact? If

structurally related peptides can modulate muscle

activity in parasites and pests from distinct phyla,

then we can hypothesise that the receptors at which

these peptides act could offer potential as the targets

for drugs that act across a broad spectrum of species.

This ability to transcend the phyla boundaries of

endoparasites and ectoparasites is a highly sought

after commodity as it has the potential to provide a

drug that treats multiple parasites and pests simul-

taneously, thereby enhancing drug utility. The con-

trol of helminths and arthropods is of importance due

to their massive influence on the profitability of the

livestock industry and health status of humans and

domestic animals (Londershausen, 1996). Currently,

only the macrocyclic lactones (milbemycin/aver-

mectin) act as endectocides and they represent the

most successful (in terms of efficacy and spectrum of

activity) anthelmintics available today, and they

continue to dictate the standards for future novel

compounds (Geary, Conder & Bishop, 2004). This

review will examine neuropeptide signalling systems

across the target phyla in an attempt to evaluate the

potential of neuropeptide receptors as targets for the

next generation of endectocides. The importance of

work in this area is based on the fact that drug re-

sistance is widespread (Kaplan, 2004; Wolstenholme

et al. 2004) and, for the foreseeable future, the

treatment of parasites and pests will continue to rely

on chemotherapy.

NEUROPEPTIDES IN HELMINTHS

AND ARTHROPODS

A wide variety of biochemical, immunochemical and

molecular methods have resulted in enormous

progress in the identification of neuropeptides and

their receptors from species of the phyla Arthropoda,

Nematoda, and Platyhelminthes. Indeed, recent

years have witnessed an explosion in the number of

neuropeptides identified in a broad range of invert-

ebrate species, in particular the model organisms

Caenorhabditis elegans and Drosophila melanogaster

(Li et al. 1999; Nässel, 2002; Taghert & Veenstra,

2003; McVeigh et al. 2005).

Unfortunately, there is no consistent universal

naming scheme for either arthropod or helminth

neuropeptides. In arthropods the isolation of novel

regulatory peptides including FMRFamide-like

peptides (FLPs) and allatostatins has generally been

based on the biological activity of peptide fractions,

identified from a particular species using a bioassay

system, and structural characterization. Therefore,

in many cases, peptides have been functionally

Table 1. Native, intra- and inter-phyla activities of nematode FMRFamide-like peptides (FLPs) in

helminths and arthropods

Data are restricted to peptides for which inter-phyla activity is known. Nematode peptide effects on second messengers are
not shown, e.g. KHEYLRFamide is known to stimulate cAMP levels in A. suum (Reinitz et al. 2000; Thompson et al.
2003). Note that KHEYLRFamide has also been shown to potentiate ACh-induced depolarization of A. suum muscle
membranes by a mechanism that is thought to involve muscarinic receptors (Trailovic et al. 2005). Also, PF1 has been
shown to inhibit ACh-induced contractions in dorsal muscle strips of the chicken nematode, Ascaridia galli (Franks,
Walker &Holden-Dye, 2004). The physiology traces are inserted to show the qualitative effects of peptides on an individual
muscle preparation and are simply illustrative of response types – scale bars are omitted for clarity. In all cases, the presence
of peptide is indicated by the solid bar above the trace. References: [1] Maule et al. 1995a ; [2] Bowman et al. 1995; [3]
Holden-Dye et al. 1995; [4] Franks et al. 1994; [5] Marks &Maule, personal communication; [6] Bowman et al. 2002; [7]
Cowden & Stretton, 1993; [8] Thompson et al. 2003; [9] Maule et al. 1994b ; [10] Davis & Stretton, 1996; [11] Maule et al.
1995b ; [12] Holden-Dye, Brownlee & Walker, 1997; [13] Kubiak et al. 1996; [14] Moffett et al. 2001; [15] Fellowes et al.
2000; [16] Fellowes et al. 1998; [17] Brownlee & Walker, 1999; [18] Brownlee et al. 1995; [19] Marks et al. 1999b ; [20]
Rogers et al. 2001; [21] Reinitz et al. 2000; [22] Davis & Stretton, 2001; [23] Nelson, Rosoff & Li, 1998; [24] Li, Kim &
Nelson, 1999; [25] Waggoner et al. 2000; [26] Rogers et al. 2003; [27] Totten, Marks & Maule, personal communication;
[28]Marks et al. 1997b ; [29] Graham, Fairweather &McGeown, 1997; [30]Mousley, Halton, Geary, Thompson,Marks &
Maule, unpublished. Genus names: P, Procerodes ; F, Fasciola ; S, Schistocerca. a, amide.
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Table 1. For legend see opposite page

Native or Intra-Phyla Activity Inter-Phyla Activity 

Muscle Behaviour Nerve Muscle
Peptide Sequence 
Species of Origin 

A. suum 
body wall 

A. suum   
ovijector 

A. suum 
pharynx 

H. contortus 
body wall 

C. elegans 
pharynx 

A. suum C. elegans A. suum P. littoralis 
muscle 

F. hepatica 
body wall 

S. gregaria 
lateral oviduct 

AGAKFIRFa 
Caenorhabditis elegans  

ovRT414

transient 
contraction/paralysis 
(> 10 nM) 

Unknown Unknown Excitatory20

GAKFIRFa 
increases 
frequency of 
pharyngeal action 
potentials 
(> 100 nM)

Unknown Unknown Unknown Unknown Unknown 

SDPNFLRFa 
Panagrellus redivivus 
Caenorhabditis elegans 
Caenorhabditis vulgaris 
Globodera pallida 

 
bwRT11-6

slow nerve cord-
independent relaxation 

 
 

AGAKFIRFa (> 1 µM) 
SDPNFLRFa (> 1 nM) 

 
 

Inactive17 Unknown Inhibitory20

decreases 
frequency of 
pharyngeal action 
potentials 
(> 100 nM) 

Unknown flp-1
mutants23-25 

hyperactive,
uncoordinated,
sensory
dysfunction; egg-
laying

Unknown 

KHEYLRFa 
Panagrellus redivivus 
Caenorhabditis elegans
Haemonchus contortus 
Globodera pallida 
Ascaris suum 

bwRT47,8

biphasic activity
(transient
relaxation/sustained
contraction) (> 1 pM)

 

Inactive17 Inhibitory19

inhibits ACh-
induced
contractions
(> 1 µM)

[A] Decreases 
motility 21 

reduces waveforms;
decreases body
length
[B] Increases 
motility 22 

occasional
thrashing

Unknown Excitatory 22

DE2 neuron 
depolarization; no 
effect on DI neurons

KSAYMRFa 
Panagrellus redivivus 
Caenorhabditis elegans 
Haemonchus contortus 
Globodera pallida 
Ascaris suum 

Differential1, 9, 10

nerve cord-independent
contraction ventral muscle
(> 0.1 µM), relaxation
dorsal muscle (> 1 µM)

 

 
 
 
 
 
 
 

15, 16 

 
 
 

 
 
 

 

 

Inhibitory17, 18 

inhibition of serotonin-
induced pharyngeal 
pumping 
(EC50 = 188 nM) 

Excitatory19

enhances
spontaneous &
ACh-induced 
contractions  
(> 10 nM); Lawes 
isolates less 
sensitive 

 
 
 
 
 
 
 

Excitatory 20 

increases 
frequency of 
pharyngeal action 
potentials 
(> 100 nM) 

 

Abolishes
motility 21, 22 

anterior ventral
coiling; head tremor
activity

flp-6
mutants 23, 24   

no discernable 
phenotype

Inhibitory 22 

DI neuron 
depolarization;
weaker DE2 neuron 
hyper-polarization 

 
 
 
 
 
 
 
 
 
 
 

Excitatory 27

concentration-
dependent
contraction 

 
 
 
 
 
 

Excitatory28, 29 

increase in contraction 
frequency and 
amplitude

 
 
 

SDPNFLRFa (> 10 µM)
KHEYLRFa (> 1 µM)
KSAYMRFa (> 3 µM)

 
 
 

 
 

DVPGVLRFa 
Caenorhabditis elegans 

Unknown Unknown Unknown

Unknown

Unknown

Unknown Unknown Unknown Unknown Unknown

 
 
 
 
 
 
 
 
 
 
 

Inhibitory 30 

decrease in contraction
frequency and 
amplitude 

 
 
 

AGAKFIRFa (> 10 µM)
SDPNFLRFa (> 10 µM)
KHEYLRFa (> 1 µM)
KSAYMRFa (> 1 µM)
DVPGVLRFa (> 0.1 µM)

 

GLGPRPLRFa 
Caenorhabditis elegans 
Ascaris suum 

bwRT35

nerve cord-independent
sustained contraction 

DVPGVLRFa (> 0.01 µM)
GLGPRPLRFa (> 0.3 µM)

 

ovRT214

excitatory

GDVPGVLRFa (> 3 nM)
GLGPRPLRFa (> 1 µM) 

 

 

Unknown Unknown Decreases 
motility 21, 22 

anterior linear
posture; posterior
coils; head
searching reduced

flp-21  
mutants26

display mild
aggregation 
behaviour

Excitatory 22 

DE2 neuron 
depolarization;
weak DI neuron 
hyper-polarization 

Unknown Unknown Inhibitory30

decrease in baseline 
tension (> 0.01 µM)
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KPNFIRFa 
Panagrellus redivivus 

bwRT21, 11-13

Cl -dependent rapid-

relaxation (> 1 nM)

ovRT115

inhibitory (> 10 nM)
Inactive17 Inhibitory19 

similar effects on 
MH (susceptible) 
and Lawes 
(resistant) isolates 

Unknown Unknown Unknown Excitatory 27

concentration-
dependent
contraction 

Excitatory28, 29 

increase in contraction 
frequency and 
amplitude
(> 30 nM)

Excitatory30

increase in tonic and 
phasic contractions
(> 0.1 µM)

ovRT1
inhibitory

SDPNFLRFa (> 3 nM) 
KHEYLRFa (> 100 nM)
KSAYMRFa (> 10 nM)
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characterized long before their tissue localisation or

structure has been determined. Consequently,

arthropod peptides are commonly named after their

source and/or description of their activity. The

contrary is true for helminths as molecular char-

acterization nearly always precedes functional

characterization and therefore helminth peptides are

typically named chronologically upon discovery.

In general, commonality of amino acid structure

between the numerous identified invertebrate se-

quences has warranted their delegation into distinct

peptide families. It is estimated that some 38

arthropod neuropeptide families exist including the

FLPs and allatostatins (Nässel, 2002). In contrast,

only 4 neuropeptide groupings are recognized in

helminthsFLPs, neuropeptide-like proteins [NLPs],

insulin-related peptides and the neuropeptide F

family) (see Maule et al. 2002) ; it seems likely that

others await discovery. Of the neuropeptides ident-

ified in invertebrates, the FLPs are the best known,

the most diverse and commonly modulate motor

activity in arthropods and helminths, a feature that

has elevated their status to components of a signalling

system that has potential chemotherapeutic value.

Although in this context the FLPs are the most

conspicuous candidates, allatostatin-like peptides

have recently emerged as potential multi-phyla

neuropeptides that could have chemotherapeutic

potential.

FMRFAMIDE-LIKE PEPTIDES

The molluscan cardioexcitatory peptide FMRF-

amide, first isolated from the venus clam Macro-

callista nimbosa (Price & Greenberg, 1977), is now

considered to be the prototype of a pervasive family

of structurally-related peptides, the FLPs. These

peptides are classically characterized by a C-terminal

motif that most commonly comprises an aromatic

residue, a hydrophobic residue, and an Arg-Phe-

amide (see Maule et al. 2002). However, with

increasing member diversity, small peptides with

RFamide at the C-terminus and one of the other

two features, are widely viewed as FLPs.

FMRFamide-like peptides in the phylum Nematoda

FLP distribution in nematodes. The traditional ap-

plication of immunocytochemistry (ICC) interfaced

with confocal scanning laser microscopy (CSLM)

has not only improved our understanding of the

complexity of the nematode nervous system but also

fuelled the discovery of many structurally distinct

FLPs. A large number of immunocytochemical

screens of both parasitic and free-living nematodes

have apportioned up to 75% of the neurons as

FLPergic making them the most abundant neuro-

peptide family in nematodes (Schinkmann & Li,

1992; Cowden et al. 1993; Brownlee, Fairweather &

Johnston, 1994; Li et al. 1999). These studies have

revealed that FLPs occur in all known neuronal sub-

types including motor-, sensory- and inter-neurons

and it is clear that there is strong conservation of the

number and position of FLPergic neurons between

diverse nematode species. Of key importance here is

the fact that FLP-containing nerves innervate the

pharynx, ovijector and somatic muscle of nematodes,

all potential target tissues.

Commonly, the C-terminally directed antisera

employed in immunocytochemical studies have a

broad specificity and cannot reliably discriminate

between so many structurally related peptides. It is

unfortunate that the multiple antigenic peptide ap-

proach to the generation of N-terminally-directed

antibodies that has been successfully employed to

examine expression patterns of individual FLPs in

D. melanogaster (see Nichols, McCormick & Lim,

1997, 1999; Nichols, Lim & McCormick, 1999;

Nichols, 2003) has not, to date, been exploited in

nematodes. However, the deployment of reporter-flp

gene constructs and, more recently, in situ hybrid-

isation (ISH) methods to reveal flp expression has

added significant validity to localisation studies in

nematodes.

C. elegans flp gene expression data have been col-

lected by inserting green fluorescent protein (GFP)

or lacZ reporter constructs into promoter regions for

individual flp genes; cell specific expression patterns

for most of the C. elegans flp genes have now been

reported (Li, Kim & Nelson, 1999; Li et al. 1999;

Table 2. Native, intra- and inter-phyla activities of arthropod type-A allatostatins and FMRFamide-like

peptides (FLPs) in helminths and arthropods

Data are restricted to peptides for which inter-phyla activity is known. Only the most salient effects of arthropod FLPs and
type-A allatostatins are listed. The physiology traces are inserted to show the qualitative effects of peptides on an individual
muscle preparation and are simply illustrative of response types – scale bars are omitted for clarity. In all cases, the presence
of peptide is indicated by the solid bar above the trace. References: [1] Lange, Bendena & Tobe, 1995; [2] Aguilar et al.
2004; [3] Rankin et al. 1998; [4] Dircksen et al. 1999; [5] Duve, East & Thorpe, 1999; [6] Duve et al. 2000; [7] Vilaplana et
al. 1999; [8] Holman, Cook &Nachman, 1986; [9] Cook,Wagner & Pryor, 1993; [10] Predel, Rapus &Manfred, 2001; [11]
Cuthbert & Evans, 1989; [12] Robb, Packman & Evans, 1989; [13] Wood et al. 1992; [14] Peeff, Orchard & Lange, 1993;
[15] Lange & Orchard, 1998; [16] Fuse & Orchard, 1998; [17] Fuse et al. 1999; [18] Vilaplana, Castresana & Bellés, 2004;
[19] Orchard & Te Brugger, 2002; [20] Duve et al. 1993a ; [21] Schoofs et al. 1993; [22] Robb & Evans, 1994; [23] Clark &
Lange, 2002; [24] Lange, Orchard & Te Brugger, 1991; [25] Lange, Peeff & Orchard, 1994; [26] Peeff, Orchard & Lange,
1994; [27] Facciponte, Miksys & Lange, 1995; [28] Elia & Orchard, 1995; [29] Nachman et al. 1993; [30] Kingan et al.
1996; [31] Mousley et al. 2005; [32] Mousley et al. 2004; [33] Maule et al. 1996. Genus names: P, Procerodes ; A, Ascaris.
a, amide; *Y, sulphated tyrosyl.
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Kim&Li, 2004). Also, ISHhas been used to uncover

the expression patterns of 5 flp genes (homologous to

C. elegans flp-1, flp-6, flp-12, flp-14 and flp-18) in the

potato cyst nematode, Globodera pallida (Kimber

et al. 2002). This technique is highly specific and

can help avoid the specificity issues associated with

immunocytochemical and even reporter gene ex-

pression studies. These studies have revealed that

individual flp genes have restricted and often distinct

distribution patterns such that each individual

neuron expresses a small subset of flp genes. It was

shown that the expression patterns for selected flp

gene homologues were not conserved between

C. elegans and G. rostochiensis (Kimber et al. 2002).

We have now performed ISH methods for selected

flp genes in a range of parasitic nematodes and there

appear to be both similarities and differences in the

expression profiles of individual flp genes in the dif-

ferent nematode species. The implications of this are

currently unclear, but identical or highly similar

peptides could potentially have distinct functions in

different nematode species.

FLP identification in nematodes. A large number of

unique FLPs have been characterized by con-

ventional methods involving the collection and

extraction of neuron-rich nematode tissue followed

by step-wise chromatographic purification and

immunometric monitoring of reactive fractions. To

date some 42 FLPs have been biochemically char-

acterized from both free-living [C. elegans (14),

Panagrellus redivivus (5)] and parasitic [Ascaris suum

(20) Haemonchus contortus (3)] nematodes (Cowden,

Stretton & Davis, 1989; Geary et al. 1992; Rosoff,

Burglin & Li, 1992; Cowden & Stretton, 1993, 1995;

Rosoff et al. 1993; Maule et al. 1994a, b, 1995b ;

Keating et al. 1995; Davis & Stretton, 1996; Marks

et al. 1996b, 1997a, 1998, 1999a, b ; Edison,

Messinger & Stretton, 1997). The molecular ap-

proach to nematode FLP characterization, pioneered

by Rosoff et al. (1992) and significantly aided by the

completion of the C. elegans genome sequencing

project, has proved highly fruitful. Indeed, the

majority of structural information on nematode

FLPs has been gleaned from predictions of flp gene

products in C. elegans. Until recently, 23 C. elegans

flp genes were recognized to encode some 60 different

putative FLPs (Rosoff et al. 1992; Nelson et al. 1998;

Li, Kim & Nelson, 1999; Li et al. 1999; Kim & Li,

2004). Published works report six flp genes from

A. suum (Edison et al. 1997; McVeigh, Marks &

Maule, unpublished) and five from the potato cyst

nematode,G. pallida (Kimber et al. 2001). Recently,

we undertook examination of the Genbank nema-

tode expressed sequence tag (EST) database and

uncovered a substantial number of flp gene candi-

dates fromparasitic nematodes (McVeigh et al. 2005).

These studies uncovered eight novel flp-encoding

gene homologues in multiple species including

representatives of four of the five nematode clades;

some of these recently uncovered flp-encoding genes

have been confirmed through PCR-based cDNA

analyses (McVeigh, Mair, Leech, Miskelly, Marks

& Maule, unpublished data). These studies have

uncovered unprecedented diversity in nematode

neuropeptides with approximately 290 distinct

FLPs represented amongst the parasitic nematode

ESTs. However, even with the rapid identification

of putative FLPs through EST-based studies,

structural characterization still remains the only way

to unequivocally confirm the peptide products of

these genes and their associated post-translational

modifications.

If we peruse available data (biochemically isolated

sequences, characterized flp-encoding genes, and

putative flp-encoding ESTs) on nematode FLPs it is

clear that while some are unique to a particular

nematode species, inter-species conservation of FLP

sequences is commonplace. Interestingly, neuro-

peptide sequence similarities not only occur between

the FLPs of free-living nematodes (C. elegans,

P. redivivus), but also between those of free-living

and parasitic forms (A. suum and H. contortus).

It is tempting to speculate that those FLPs

that are most highly conserved across nematode

species (for example, KHEYLRFamide [AF2], and

KSAYMRFamide [PF3]) include those peptides

that have important associated physiology and,

therefore, may represent key players in targeted drug

discovery programmes. However, comparative

analysis of the FLP complement of nematode para-

sites will ultimately require the structural identifi-

cation of the expressed peptides in representatives of

all the target species.

FLP function in nematodes. The ability to exploit

the FLPergic system in nematodes is constrained not

only by a limited understanding of the structure of

endogenous targets (FLP receptors) but also by an

ignorance of the functional significance of individual

FLPs to worm biology. Indeed the recent surge in

FLP identification in nematodes has led to a large

disparity between the available structural and

associated functional information.

A. suum is commonly used in experiments

investigating neuromuscular function in nematode

parasites and, although not proven, it is broadly

perceived that physiology data determined using this

swine parasite could provide baseline information

applicable across the nematode phylum; this seems

especially so as there is such a high level of conser-

vation in FLP signatures in nematodes. Functional

investigations in A. suum have centred around

four tissue types: somatic body wall musculature,

neurons, the ovijector, and the pharynx (see Maule

et al. 2002 for review). In addition, several studies

have involved injecting FLPs into the A. suum

pseudocoelomic cavity and observing effects on
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whole worm locomotion (Reinitz et al. 2000; Davis &

Stretton, 2001). It should be noted that reports of

FLP activities in other parasitic nematodes are re-

stricted to the domestic fowl parasite, Ascaridia galli

(Trim et al. 1997, 1998; Franks, Walker & Holden-

Dye, 2004), and the sheep parasite H. contortus

(Marks et al. 1999b).

With respect to free-living nematodes, functional

investigations have been largely constrained by

worm size, limiting physiology studies on neuro-

peptide involvement in feeding and reproduction.

With respect to the former, Rogers et al. (2001) have

used electrophysiology to reveal FLP effects on

pharyngeal tissue in C. elegans. Several studies

have looked towards reverse genetics as a tool to

unravelling FLP function in C. elegans (see Nelson,

Rosoff & Li, 1998; Li et al. 1999) through over-

expression or inactivation of target genes. Although a

series of aberrant phenotypes were observed in flp-1

knockout C. elegans (Nelson, Rosoff & Li, 1998),

profound phenotypes have not been seen with many

other flp gene knockouts (Chris Li, personal com-

munication). Recently the involvement of FLPs in

other biological processes in free-living nematodes,

including the control of social feeding, egg-laying,

and male copulatory development and behaviour

have been reported (Waggoner et al. 2000; Rogers

et al. 2003; Lints et al. 2004; Geary &Kubiak, 2005).

Pooled data indicates that potent and diverse

myomodulation is a common outcome of FLP action

in nematodes and implicates roles for FLPs in con-

trol/modulation of locomotory behaviour, feeding,

and reproduction. The most significant findings of

the collated physiology data from A. suum are briefly

summarised below.

Somatic muscle physiology: Most of the accumu-

lated data on FLP activities in nematodes have been

obtained using A. suum somatic body wall muscle

strips. Numerous parasitic and free-living nema-

tode-derived FLPs with structurally distinct C-

terminal motifs have been shown to induce a diverse

array of both pre- and post-synaptic inhibitory (slow

and prolonged or fast and transient), excitatory

(sustained contraction), and biphasic (transient

relaxation/sustained contractility) activities such

that four body wall response types (RTs) have been

described and designated bwRT1-bwRT4. The ease

in preparation of dorsal, ventral and denervated

muscle strips has enabled further delineation of

FLP activities on somatic muscle; for example

KSAYMRFamide (PF3) displays a unique differ-

ential activity comprising nerve-cord dependent

excitatory effects on ventral and inhibitory effects on

dorsal muscle strip preparations (see Maule et al.

2002). It should also be noted that there is compelling

physiological evidence that some nematode FLPs

activate ligand-gated ion channels (Purcell et al.

2002a, b).

Neuronal physiology: The effects of 18 Ascaris

FLPs have been examined on A. suum motorneuron

activity (dorsal excitatory type 2 [DE2] and dorsal

inhibitor [DI]) ; approximately five major response

types are associated with endogenous FLPs on these

motorneurons (Davis & Stretton, 2001).

Ovijector physiology: Preliminary work initiated by

Fellowes et al. (1998, 2000) and augmented byMarks

et al. (1999a) and Moffett et al. (2001) demonstrated

that, in vitro, the A. suum ovijector displays a spon-

taneous rhythmical activity that can be significantly

modulated by some 31 nematode FLPs. The effects

displayed by the FLPs were diverse and could be

subdivided into five distinct response-types (ovRT1-

ovRT5), indicating FLP-receptor/signalling path-

way diversity in the ovijector.

Pharyngeal physiology: The influence of FLPs on

pharyngeal pumping behaviour has been monitored

using a pressure transducer system; serotonin-

induced pumping was found to be significantly

modulated by two nematode FLPs (Brownlee et al.

1995), however several nematode FLPs had no effect

on serotonin-induced pumping (Brownlee &Walker,

1999).

Behaviour: Comprehensive analyses have been

carried out on the effects of endogenousAscarisFLPs

and C. elegans flp gene-encoded peptides on loco-

motory behaviour of intact adult A. suum (Reinitz

et al. 2000; Davis & Stretton, 2001). In these studies,

FLPs were directly injected into the pseudocoelomic

cavity of large female worms. FLP effects were

categorized according to their modulation of general

locomotion (increased, decreased and abolished),

body posture, and head searching activities. A wide

variety of behavioural responses were noted.

Nematode FLP receptors. Nematode neuropeptide

activated G-protein-coupled receptors (GPCRs) are

reviewed elsewhere in this volume (see review by

Greenwood, Williams & Geary in this supplement).

Until recently, the involvement of seven-pass GPCRs

in FLP signalling in helminths has been based on an

expanding portfolio of indirect data gleaned from

worm physiology, heterologous expression and

reverse genetics (Nelson, Rosoff & Li, 1998; Reinitz

et al. 2000; Kubiak et al. 2003a, b, c ; Thompson et al.

2003). Although the first FLP receptor was char-

acterized in 1995 (a directly ligand-gated sodium

channel from the mollusc, Helix aspersa), it was an-

other 8 years before the first nematode FLP receptor

was discovered. This breakthrough was aided by the

completion of the C. elegans genome sequencing

project and preliminary identification of y54 can-

didate neuropeptide GPCRs (Bargmann, 1998).

The functional expression of some of these C.

elegans GPCRs was first reported in a patent release
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in 2003 (see Lowery et al. 2003; Greenwood,

Williams & Geary in this supplement). Follow-up

publications reported the deorphanization of two

C. elegans GPCRs as FLP receptors ; flp-21

(GLGPRPLRFamide) and flp-18 peptides (pos-

sessing C-terminal PGVLRFamide signatures)

were matched as ligands for the NPR-1 receptor

(Wormbase accession number C39E6.6; Kubiak

et al. 2003b ; Potter & Luo, 2003; Rogers et al. 2003),

previously implicated in the control of the social

feeding phenotype by de Bono & Bargmann (1998),

and the ‘wormpep’ appointed GPCR, C10C6.2, was

found to be activated by flp-15 peptides (possess a

GPLRFamide C-terminal signature) and was

renamed FLP-15R (Kubiak et al. 2003c). A third

C. elegans FLP receptor (C26F1.6), designated the

VRFamide receptor 1, has since been cloned and

functionally characterised; flp-7 and flp-11 peptides

have emerged as the most potent ligands (Mertens

et al. 2004) with SMVRFamide being identified as

the most active binding motif. The fourth receptor

to be ligand-matched had two splice variants

(T19F4.1a and T19F4.1b) that were activated pre-

ferentially by the FLP-2 peptides (SPREPIRFamide

and LRGEPIRFamide) with the active motif being

EPIRFamide (Mertens et al. 2005). Unlike the

apparent promiscuity of tissue responses to diverse

FLPs, these cloned receptors appear relatively

selective towards their activating ligand. These

expression studies serve to provide very useful pre-

liminary data on potential ligand-receptor pairs but

there are several caveats to the process of deorpha-

nization. As all of the possible activating ligands

have not been tested in any of these studies, it is

premature to assign receptor names that are based on

the most potent ligand tested. Also, it is not known

if the most potent ligands at each of the receptors act

as the in vivo ligands – receptor/ligand expression

studies could help support the physiology data.

FMRFamide-like peptides in the

phylum Platyhelminthes

Despite the wealth of data available on FLP structure

in nematodes and arthropods, complementary data

in flatworms has not been so forthcoming; indeed

only 4 flatworm FLPs have been structurally char-

acterized (see Maule et al. 2002). Although it is

apparent that flatworms do not possess the multitude

of FLPs common to nematodes and arthropods, the

problems associated with FLP identification in flat-

worms, including difficulties amassing sufficient

nerve-rich tissue and an absence of genomic sequence

data, have been significant impediments to this work.

As we move away from the classical methods of

peptide identification through extraction and purifi-

cation and towards an era of bioinformatics, it is only

a matter of time before more flatworm FLPs are

uncovered.

Flatworms do not lend themselves well to

physiological manipulation, but they have greatly

contributed to our current understanding of FLP

function in helminths. Although there are few

bioassays available for flatworm parasites, flatworm

FLP effects on neuromuscular function have been

examined using muscle strip preparations and dis-

persed muscle fibre assays.

FLP distribution in flatworms. Immunoreactivities

to authentic flatworm FLPs have been observed

throughout the central and peripheral nervous

systems of all the major flatworm taxa including the

turbellarians,monogeneans, trematodes and cestodes

where they appear widespread and abundant (see

Day &Maule, 1999; Halton, 2004; Halton &Maule,

2004). Most of the FLP-immunoreactivities in these

species dominate the central nervous system. In

the peripheral nervous system, immunostaining is

associated with the nerve plexuses that innervate

the somaticmusculature, the holdfast organs, and the

muscles that constitute the alimentary canal and re-

productive systems. Although immunocytochemical

screens are not reliable indicators of inherent

FLP diversity, and indeed the abundant FLP-

immunoreactivity observed in every flatworm

examined to date is not reflected in the numbers of

characterized peptides, they are regarded as an im-

portant starting-point to deciphering FLP function

in flatworms.

FLP identification in flatworms. Despite con-

centrated research efforts to characterize endogenous

flatworm FLPs, only 4 native FLPs have been bio-

chemically isolated and sequenced. Turbellarians

appear to express a limited set of FLPs sharing a

YIRFamide motif [GYIRFamide from the turbel-

larians Bdelloura candida, Girardia tigrina and

Procerodes littoralis, RYIRFamide from the land

planarian, Arthurdendyus triangulatus, and YIRF-

amide from B. candida] (Maule et al. 1994c ; John-

ston et al. 1995, 1996). In contrast, the only known

FLP from parasitic flatworms bears an unusual

C-terminal FFRFamide motif (GNFFRFamide

from the sheep tapeworm Moniezia expansa) (Maule

et al. 1993). No flatworm FLP-encoding gene has

been reported, although the near-completion of the

schistosome genome project and rise in flatworm

EST projects will likely uncover putative FLP genes

in the near future.

FLP function in flatworms. Whilst experimental

investigations of FLP function in parasitic nema-

todes have been largely restricted to A. suum, several

flatworm species (free-living [P. littoralis, B. candi-

da] and parasitic [Schistosoma mansoni, Diclidophora

merlangi, Grillotia erinaceus, Fasciola hepatica,

Echinostoma caproni, M. expansa and Mesocestoides

corti]) have been successfully exploited for
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elucidation of FLP function (Day et al. 1994; Marks

et al. 1996a, 1997b ; Graham, Fairweather &

McGeown, 1997; Moneypenny et al. 1997, 2001;

Day &Maule, 1999;Humphries et al. 2000;Hrčkova

et al. 2002). All of the flatworm FLPs isolated to date

induce myoexcitation when applied exogenously to

muscle strips and dispersed muscle fibres from free-

living and parasitic flatworms (see Day & Maule,

1999; Maule et al. 2002; McVeigh et al. in this

supplement). However, the flatworm FLPs display

potency variations in flatworm bioassays – the tur-

bellarian FLPs were more potent than the cestode

FLP in all the turbellarian and trematode bioassays

where their activity has been compared.

FLP receptors in flatworms. No flatworm FLP

receptors have been characterized to date. Available

evidence indicates that flatworm FLP receptors

operate via GPCRs to influence intracellular effector

proteins through heterotrimeric G-proteins (see

McVeigh et al. in this supplement). Indeed several

studies have endeavoured to characterize FLP-

signalling pathways; Graham, Fairweather &

McGeown (2000) have implicated a GPCR and a

signalling pathway involving phospholipase C and

protein kinase C (PKC) in FLP-induced excitation

of F. hepatica muscle strips. In addition, we found

that PKC and adenylate cyclase are involved in

contractions associated with FLP-induced myoex-

citation of P. littoralis dispersed muscle fibres

(Totten, Marks, Maule & Day, unpublished).

FMRFamide-like peptides in the phylum Arthropoda

Like the nematode FLPs, arthropod FLPs are

structurally diverse (>85 FLPs have been identified

in over 23 species of arthropod) and broadly

expressed. However, there appear to be no sequence

identities between known arthropod and helminth

FLPs. Unlike the nematode-derived FLPs, the

arthropod FLPs have been divided into distinct sub-

groups and, although there are some inconsistencies

between authors over the number of FLP sub-

groups and the rationale for these divisions, the

existence of three FLP sub-groups is the most

common train of thought. Indeed, arthropod FLPs

are generally delineated into three groups on the

basis of their differing C-terminal motifs (RFamide

is invariable) and their presence on three different

Drosophila precursor genes; (1) the myosuppressins

and extended FLRFamides, (2) the extended

FMRFamides, and (3) the sulfakinins. Data on FLP

complements of arthropods have been enhanced

by the application of modern mass spectroscopy

methods to elucidate the peptidomes of selected

species and tissues (Clynen et al. 2001; Verhaert et al.

2001; Baggerman et al. 2002, 2003, 2005; Schoofs &

Baggerman, 2003; Huybrechts, De Loof & Schoofs,

2004; Predel et al. 2004; Verleyen et al. 2004a, b ;

Reinhard & Gade, 2005). It should be noted that

some D. melanogaster genes encode RFamide

peptides that have also been identified in additional

insect species – the neuropeptide F (NPF)-like

peptides exist in short forms (also called the head

peptides) and long forms, and are encoded on sep-

arate genes (see Vanden Broeck, 2001). These have

also been identified in the cockroach, Periplaneta

americana (Veenstra & Lambrou, 1995), the horse-

shoe crab, Limulus polyphemus (Gaus et al. 1993) and

the Colorado potato beetle, Leptinotarsus decemli-

neata (Spittaels et al. 1996; Cerstiaens et al. 1999)

and will not be considered in this review. Also

noteworthy is the presence of additional RFamides

whose structures exclude their assignment into

one of the three sub-groups, e.g. the Aedes aegypti

head peptides (Matsumoto et al. 1989; Veenstra,

1999).

Elucidation of FLP functions in arthropods are

commonly based on visceral muscle bioassay

systems including those designed for recording gut

(foregut, midgut, and hindgut), oviduct and heart

myoactivities in numerous insect species and

contrasts markedly to the situation in nematodes

where the bulk of available physiology data has

been generated using a single parasitic nematode

species.

Although, like in the nematodes, in situ hybridis-

ation has been exploited to delineate the expression

of FLP-containing neurons in insects, the multiple

antigenic peptide approach to characterizing the

spatial and temporal distribution of structurally

similar FLPs has been more widely utilized.

Advantages over the in situ hybridisation technique

include the facility to map nerve processes as well as

cell bodies facilitating the construction of a complete

FLP-specific neuronal atlas.

FLP distribution, identification and function in

arthropods. The three sub-groups of FLPs in

arthropods are diverse in terms of their structures,

precursor organisations, distributions and activities.

Current understanding of arthropod FLPs has

recently been comprehensively reviewed (Orchard,

Lange & Bendena, 2001; Nässel, 2002) and therefore

only the most salient features of the three sub-groups

are outlined below.

The myosuppressins and the extended FLRF-

amides: In 1986 Holman, Cook &Nachman isolated

a peptide from the cockroach Leucophaea maderae

and named it leucomyosuppressin on the basis of its

ability to decrease hindgut contractions. Since then

four additional myosuppressins have been charac-

terized from five insect species (Schistocerca

gregaria [Robb, Packman & Evans, 1989], Locusta

migratoria [Schoofs et al. 1993; Peeff, Orchard

& Lange, 1994], Neobelliera bullata [Fonaghy et al.

1992a] D. melanogaster [Nichols, 1992a] and
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Manduca sexta [Kingan et al. 1990]) that conform

to the structural definition of this FLP sub-group;

all myosuppressins are decapeptides characterized

by XDVXHXFLRFamide where X is a variable

residue. To date, myosuppressin genes containing

a single predicted peptide sequence have been

identified in Diploptera punctata, Psuedaletia uni-

puncta and D. melanogaster (see Nässel, 2002).

Although all of the myosuppressins have been

shown to inhibit spontaneous contractions of several

muscle systems including foregut, midgut, hindgut,

oviduct, heart and skeletal muscles (seeOrchard et al.

2001 for review), deviations from the name-giving

function have been noted; indeed, the M. sexta

myosuppressin stimulates ileum contractions in the

sphingid moth, Agrius convolvuli (Fujisawa et al.

1993).

Additional extended FLRFamides have been

identified in a number of insects and crustaceans

although they do not share the structural or physio-

logical features that would warrant their ‘myo-

suppressin’ designation (Trimmer, Kobierski &

Kravitz, 1987; Krajniak, 1991; Mercier et al. 1993;

Lange, Peeff & Orchard, 1994; Kingan et al. 1996,

1997; Sithigorngul et al. 1998, 2001).

The extended FMRFamides: To date, extended

FMRFamides are restricted to dipterans. Evidence

for their existence arose from immunocytochemical

screens of the blowfly Calliphora vomitoria with

the subsequent biochemical characterization of 13

FMRFamides (and one MIRFamide), designated

calliFMRFamides (Lunquist & Nässel, 1990; Duve

et al. 1992). Genes encoding mulitple FMRFamides

have since been identified in Drosophila. melano-

gaster, D. virilus, C. vomitoria and Lucilia cuprina

(see Nässel, 2002). The blowfly genes encode 18

putative FLPs, eight of which have been biochemi-

cally isolated, and only five of which are homologous

between the two blowfly species (Thorpe et al.

1995). The prohormone of the D. melanogaster

FMRFamide gene encodes five peptides bearing the

C-terminal FMRFamide motif, four of which have

been isolated and sequenced or confirmed by tandem

mass spectrometry (Nambu et al. 1988; Schneider &

Taghert, 1988; Baggerman et al. 2002).

In Drosophila the expression patterns of three

FMRFamide-containing peptides have been map-

ped using the multiple antigenic peptide approach;

the use of double and triple staining procedures

showed the staining patterns to be unique within

the subset of universal FMRFamide staining (see

Nichols, Bendena & Tobe, 2002; Nichols, 2003).

Even though extended FMRFamides have not

been identified in non-dipteran insects they have

been shown to affect several physiological processes

including heart rate, gut motility and synaptic

activity in a wide range of insect species (seeOrchard,

et al. 2001).

The sulfakinins: The first sulphated invertebrate

peptides were isolated from the cockroach, L.

maderae and named sulfakinins after their myosti-

mulatory actions (Nachman et al. 1986a, b). Subse-

quently, related sulfakinins were identified either via

biochemical isolation or molecular characterization

of the encoding gene in several insect species in-

cluding P. americana (Veenstra, 1989), Locusta mig-

ratoria (Schoofs et al. 1990), C. vomitoria, L. cuprina

(Duve et al. 1995b),N. bullata (Fonaghy et al. 1992b),

D. melanogaster (Nichols et al. 1988; Nichols, 1992b ;

Baggerman et al. 2002) and Anopheles gambiae

(Duttlinger, Mispelon & Nichols, 2003).

Sulfakinins are characterized by the common

C-terminal structure, X(E,D)DYGHMRFamide,

where Y is most commonly sulphated, and all are

potent stimulators of cockroach hindgut contrac-

tions. Sulfakinins have also been characterized from

the black tiger shrimp, Penaeus monodon and the

white shrimp, Litopenaeus vannamei (Johnsen et al.

2000; Torfs et al. 2002).

FLP receptors in arthropods. Approximately 44

neuropeptide receptors (GPCRs) have been ident-

ified in the D. melanogaster genome (Hewes &

Taghert, 2001; Vanden Broeck, 2001) of which more

than 18 have been fully functionally characterized

(Meeusen et al. 2003; see below); four of these have

been identified as FLP receptors.

The first FLP receptor, Drm-FMRFa-R

(AC010561), was characterized in 2002 (Cazzamali

&Grimmelikhuijzen, 2002;Meeusen et al. 2002) and

a homologous gene has since been identified in

A. gambiae (Duttlinger et al. 2003) following the

completion of its genome sequence. A high degree of

structural conservation exists between these two

GPCRs, and comparable analogies can be applied

to their ligand activation profiles ; Drosophila

FMRFamides are the native ligands of both

FMRFamide receptors, however receptor activation

is also induced by myosuppressins and short NPFs,

showing some receptor promiscuity.

Two myosuppressin receptors, distinct to the

characterized FMRFamide receptors, have been

cloned and deorphanized from D. melanogaster

(AF544244 and AF545042; Egerod et al. 2003) ; one

has been characterized from A. gambiae (Scholler

et al. 2005). Both myosuppressin receptors are

specific for TDVDHVFLRFamide (a myosup-

pressin present in both D. melanogaster and A. gam-

biae) and are not activated by other insect FLPs.

In addition, two putative D. melanogaster sulfaki-

nin receptors have been identified based on their

homology to the mammalian CCK/gastrin receptor

family (Brody & Cravchik, 2000; Hewes & Taghert,

2001), one of which has been fully cloned and

assigned DSK-R1 (AX128640; Kubiak et al. 2002).

Similar receptors have been identified in A. gambiae

(Duttlinger et al. 2003).
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ALLATOSTATINS

Unlike the FLPs, the primary discovery of allatos-

tatins in insects was not based on their myoactivity

but on their inhibitory effects on the production of

juvenile hormone (a terpenoid important for devel-

opment and reproduction) by the corpora allata

(endocrine organs near the insect brain).

Allatostatins in the phylum Arthropoda

Allatostatins are loosely organized into a large group

of structurally diverse arthropod neuropeptides and

were recently sub-divided into three groups based on

their differing C-terminal structures: the type-A

allatostatins initially identified in cockroaches and

delineated by the C-terminal pentapeptide sequence,

(Y/F)XFG(L/I)amide (where X is variable) ; the

type-B allatostatins first identified in crickets and

characterized by the W2W9amide motif (Lorenz,

Kellner & Hoffmann, 1995a) ; and, the type-C

allatostatins, represented by the non-amidated

M. sexta/D. melanogaster peptide – pEVR(F/Y)RQ-

CYFNPISCF-OH (Kramer et al. 1991; Price et al.

2002).

Type A allatostatin identification in arthropods. The

type-A allatostatins [(Y/F)XFG(L/I)amides], gen-

erally referred to as members of the allatostatin

superfamily, were first identified in the brain of

D. punctata (Pratt et al. 1989, 1991; Woodhead et al.

1989, 1994) and have been the subject of several

comprehensive reviews (see Bendena, Donly &

Tobe, 1999; Nässel, 2002). Since their initial dis-

covery, both biochemical and molecular biology

techniques have been employed to identify a large

number of homologous peptides in numerous other

insect species including: the cockroaches, P. amer-

icana (Weaver et al. 1994; Ding et al. 1995),

D. punctata (Donly et al. 1993), Blattella germanica

(Bellés et al. 1994, 1999), Blatta orientalis, Blaberus

craniifer and Supella longipalpa (Bellés et al. 1999) ;

the locust, S. gregaria (Vanden Broeck et al. 1996;

Veelaert et al. 1996a, b) ; the cricket, Gryllus bima-

culatus (Lorenz, Kellner & Hoffmann, 1995b, 1999;

Meyerling-vos et al. 2001) ; the stick insect,

Carausius morosus (Lorenz et al. 2000) ; the silkworm,

Bombyx mori (Secher et al. 2001); the fall armyworm,

Spodoptera frugiperda (Abdel-latief,Meyering-vos &

Hoffmann, 2004) ; the blowflies, C. vomitoria and

L. cuprina (Duve et al. 1993b, 1994, 1995a, 1996;

East et al. 1996) ; the fruitfly, D. melanogaster (Lenz,

Williamson & Grimmelikhuijzen, 2000a) ; the mos-

quito, A. aegypti (Veenstra et al. 1997); the moths,

Cydia pomonella, Helicoverpa armigera (Davey et al.

1999; Duve et al. 1997a, c), Lacanobia oleracea

(Audsley &Weaver, 2003) andManduca sexta (Davis

et al. 1997); and the honeybee, Apis mellifera

(Rachinsky & Feldlaufer, 2000).

Allatostatins are not restricted to insects. Recently,

39 members of the (Y/F)XFG(L/I) family have been

isolated from the tiger prawn P. monodon (Duve et al.

2002) and a further 17 different type-A allatostatins

have been isolated from the green crab, Carcinus

maenas (Duve et al. 1997b). In addition, 3 members

were identified in the crayfish, Orconectes limosus

(Dircksen et al. 1999). Indeed, over 100 different

arthropod (Y/F)XFG(L/I)amides have been struc-

turally characterized and y60 additional, novel

sequences have been predicted from cDNA.

Type A allatostatin distribution in arthropods.

Traditional immunocytochemical studies have

revealed a widespread distribution of the (Y/F)

XFG(L/I)amides; they not only occur in the central

nervous system innervating the cells that project

to the corpora allata and the brain, but also in the

peripheral nervous system leading to visceral mus-

cles in many different insect species (see Hoffmann,

Meyering-vos & Lorenz, 1999 for review).

Type A allatostatin function in arthropods. The

allatostatin nomenclature was originally based on

the ability of the dipstatins (D. punctata allatostatins)

to inhibit the production of juvenile hormone.

However, this does not represent the primary role of

allatostatins in many arthropod species; indeed true

allatostatic function appears to be restricted to only

cockroaches and crickets (see Hoffmann et al. 1999).

What does seem to be a consistent function of alla-

tostatins is their muscle modulatory activity on a

variety of visceral organs; type-A allatostatins have

been shown to be potent myoinhibitors of foregut,

midgut, hindgut, oviduct and heart muscles in

numerous insect species and of skeletal muscles in

several crustaceans (for reviews see Bendena et al.

1999; Nässel, 2002).

Type A allatostatin receptors in arthropods.

Radioligand binding and photoaffinity-labelling

assays were initially used to identify putative allatos-

tatin receptors in brain, corpora allata and midgut of

the cockroach D. punctata (Cusson et al. 1991; Yu

et al. 1995; Bowser & Tobe, 2000). More recently,

mining of the Drosophila genome has revealed two

GPCRs, with sequence similarity to mammalian

galanin, opioid and somatostatin receptors, for which

members of the type-A allatostatin family (drostatin

1–4) are cognate ligands; these receptors were de-

signated Drosophila allatostatin receptor-1 (DAR-1;

AF163775) and -2 (DAR-2; AF253526) (Birgül et al.

1999; Lenz, Sondergaard & Grimmelikhuijzen,

2000; Lenz, Williamson & Grimmelikhuijzen,

2000b ; Larsen et al. 2001; Lenz et al. 2001).

Expression studies reveal distinct patterns in that

while DAR-1 is almost exclusively expressed in the

head, the expression of DAR-2 is principally re-

stricted to the gut. The significance of these findings
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is reflected in the typical bifunctional role assigned to

the type-A allatostatins; the (Y/F)XFG(L/I)amides

have two major functions, (1) inhibition of juvenile

hormone from the corpora allata (in cockroaches and

crickets) and (2) inhibition of visceral muscle

contractions. Similar receptors have been identified

in B. mori, P. americana and C. morosus (Auerswald

et al. 2001; Secher et al. 2001).

Type A allatostatins in the phyla Nematoda and

Platyhelminthes. Type A allatostatin-like immuno-

reactivity in the nervous system of non-arthropod

groups has been documented; initial immuno-

cytochemical screens have indicated the presence of

allatostatin-like peptides in the central and periph-

eral nervous systems of seven helminths represent-

ing the phyla Platyhelminthes and Nematoda

(Smart et al. 1994, 1995; Mousley et al. 2005).

Although related peptides have not been charac-

terized from these phyla, the completion of the

C. elegans genome sequencing project has led to the

identification of sequences that bear similarity with

the (Y/F)XFG(L/I)amide consensus (neuropeptide-

like protein genes [nlp-5 and nlp-6] encode six

putative peptides terminating in MGL/FG and one

terminating in FGFG) (Nathoo et al. 2001).

NEUROPEPTIDE SIGNALLING AND

ARTHROPOD CONTROL

Detailed discussion of research on insect peptide

signalling as a target for pest control is beyond the

remit of this review and is thoroughly investigated

elsewhere (see Gade & Goldsworthy, 2003).

However, there are several points to note from the

insect work that pertain to the potential of neuro-

peptide signalling as an endectocide target. Firstly,

several studies have reported the rational design of

agonists or antagonists of neuropeptide signalling

pathways in insects. Structure-activity studies on the

insect pheromone biosynthesis activating neuro-

peptide (PBAN; a 33 amino acid peptide with a

C-terminal RLamide), employing truncated pep-

tides and analogues that had one of the L-amino acids

replaced with D-phenylalanine, resulted in the dis-

covery of the antagonist, RYFdFPRLamide, that

inhibited sex pheromone production in the moth,

Helothis peltigera at 100 pmol (Zelster et al. 2000).

Peptide backbone cyclization has also been used to

design modulators of insect neuropeptide signalling

pathways and it is believed that this knowledge will

help reveal the conformations of active peptides and

thus form a basis for the design of non-peptide ago-

nists/antagonists (Altstein et al. 1999; Altstein, 2001,

2004). Secondly, benzethonium chloride (Bztc) has

been reported as a non-peptide agonist of myosup-

pressin signalling in insects with activities reported

on insect crop, gut, malpighian tubules, oviduct and

skeletal muscle tissues (Lange et al. 1995; Nachman

et al. 1996; Coast, 1998; Lange & Cheung, 1999;

Richer et al. 2000). These show that the rational

design of drugs that interfere with neuropeptide

signalling is possible and that non-peptide ligands for

neuropeptide receptors in invertebrates have been

discovered.

INTER - PHYLA ACTIVITIES OF NEUROPEPTIDES

With the neuropeptidergic system of parasites and

pests emerging as an attractive drug target, receptors

to both FLPs and allatostatins have potential as tar-

gets for anthelmintics and insecticides respectively.

Indeed, several authors have discussed how under-

standing neuropeptide structure and function is

fundamental to the discovery of novel, safe and

selective compounds to control pest insects (seeGade

& Goldsworthy, 2003).

With respect to helminths, researchers have been

absorbed in the expression and screening of target

neuropeptide receptors (see Greenwood, Williams &

Geary in this supplement) with little or no infor-

mation on their localization or functional relevance.

As yet, it is not known if these receptors are

expressed in therapeutically sensitive target tissues

whose normal functioning is crucial to worm

viability. Clearly, this approach is justified because of

the dearth of identified FLP receptors in helminths,

but their potential as drug targets would be aided

by knowledge on their biological function and

expression in relevant species.

In order to make rational decisions about the best

receptors (in terms of importance to the physiology

of the helminth/arthropod species and spectrum of

activity) to choose for mechanism-based screening,

basic research into the functional relevance of

neuropeptide receptors is imperative. Moreover,

analysis of the effectiveness of a range of neuro-

peptide ligands in the different parasite/pest groups

will help highlight those receptor subtypes which

offer the greatest opportunities for effective screen

development.

Inter-phyla neuropeptide activities are deemed

indicative of endectocide potential (Maule et al.

2002), and yet only recently has the subject of inter-

phyla activities between helminth and arthropod

neuropeptides been addressed. The bulk of FLP and

allatostatin functional data known today describes

the effects of these peptides in their native species

(or related species within the same phylum) (see

Maule et al. 2002; Nässel, 2002 for reviews; Tables 1

and 2). Indeed, only three preliminary studies have

examined such inter-phyla activities. In 1997, Marks

et al. (1997b) and Graham et al. reported the effects

of nematode FLPs (KNEFIRFamide, KHEYLR-

Famide, SDPNFLRFamide, SADPNFLRFamide,

KSAYMRFamide and KPNFIRFamide) on the

muscle activity of muscle strips from F. hepatica ;

all peptides examined induced potent excitatory
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responses. In addition, the effects of three arthropod

FLPs were assayed on the nematode somatic body

wall muscle where they were found to inhibit con-

tractility in a similar manner to the endogenous FLP,

SDPNFLRFamide (bwRT1; Maule et al. 1996).

Collectively, these initial observations suggested that

a common binding domain on the FLP receptor is

conserved across several invertebrate phyla

(Thompson, Klein & Geary, 1996) and highlighted a

gap in research that could aid the unearthing of

prospective endectocides. A summary of the data

pertaining to the inter-phyla actions of selected

neuropeptides in bioassays from the target phyla

(arthropods, nematodes, flatworms) is presented

below (see Tables 1 and 2).

Inter-phyla activities of arthropod neuropeptides

in helminths

The inter-phyla activities of 10 arthropod FLPs

[PDVDHVFLRFamide, pQDVDHVFLRFamide,

HVFLRFamide, VFLRFamide, TNRNFLRF-

amide, SDRNFLRFamide, GNSFLRFamide,

DPSFLRFamide, KPNQDFMRFamide and

EQFDDY(SO3H)GHMRFamide] have recently

been examined in three helminth bioassay systems;

A. suum somatic body wall muscle,A. suum ovijector

and P. littoralis dispersed muscle fibres (Mousley

et al. 2004).

We have found that both native and non-native (P.

redivivus, C. elegans) nematode FLPs induce diverse

and complex actions on the A. suum body wall and

ovijector muscle systems that can be delineated into

four (body wall muscle; bwRT1 [slow inhibitory],

bwRT2 [fast inhibitory], bwRT3 [excitatory],

bwRT4 [biphasic]) or five (ovijector; ovRT1 [in-

hibitory], ovRT2 [excitatory], ovRT3 [transient

contraction], ovRT4 [transient contraction/paral-

ysis], ovRT5 [relaxation/increased activity]) distinct

response types (see Maule et al. 2002). Most of the

arthropod peptides examined had inhibitory effects

on the ovijector that were consistent with ovRT1

(Mousley et al. 2004) ; two peptides (HVFLRFamide

and GNSFLRFamide) induced distinct ovRT4-like

responses. With the exception of perisulfakinin,

which was inactive, all but one (HVFLRFamide) of

the arthropod FLPs tested significantly modulated

the activity of the A. suum body wall muscle in a

bwRT1-like manner; HVFLRFamide induced a

bwRT4-like response.

Despite significant structural deviations from en-

dogenous flatworm FLPs, all of the arthropod FLPs

examined induced potent, concentration-dependent

contractions of P. littoralis muscle fibres. Previous

studies have indicated the presence of a single mus-

cle-based FLP receptor on P. littoralismuscles fibres

that favours a ligand with a tyrosine residue in pos-

ition 4 from the C-terminus. Indeed, Moneypenny

et al. (2001) reported the higher potency of the

YIRFamide containing FLPs as opposed to the

FFRFamide-possessing cestode FLP and hypothe-

sised that the lower potency of GNFFRFamide

reflected its non-specific interaction with the endo-

genous FLP receptor. Mousley et al. (2004) also

showed that FLPs deviating from the C-terminal

YIRFamide motifs (FLRFamide, FMRFamide and

HMRFamide) were less potent onP. littoralismuscle

fibres. While it is likely that the range of FLPs

bearing diverse C-termini examined in the studies by

Moneypenny et al. (2001) and Mousley et al. (2004)

interact with a single receptor to induce the observed

myoexcitation, the presence of more than one FLP

receptor cannot be ruled out.

Allatostatin activities were also recently examined

in helminths (Mousley et al. 2005). Indeed, the

inter-phyla activities of seven type-A allatostatins

[GGSLYSFGLamide, APSGAQRLYGFGLamide,

AGPYAFGLamide, AGPYSFGLamide, GDGR-

LYAFGLamide, DRLYSFGLamide and YSKF-

NFGLamide] were characterized on P. littoralis

dispersed muscle fibres, somatic body wall muscle

and ovijector of the parasitic pig nematode A. suum.

In this study, all seven members of the allatostatin

superfamily induced concentration-dependent con-

tractions of flatworm muscle fibres and pharma-

cological studies indicated that these peptides

interact with a receptor other than that which

mediates the FLP-induced contractions. Most of

arthropod allatostatins examined did not affect

the somatic body wall muscle or the ovijector of

A. suum ; two allatostatins (GDGRLYAFGLamide

and DRLYSFGLamide) exhibited low potency,

inhibitory effects on the A. suum ovijector that were

ovRT1-like.

The data presented in this study also describe the

interrelationships of allatostatin-immunoreactive

nerves and muscle systems in a selected flatworm

(P. littoralis) and roundworm (P. redivivus) and

compares these with native GYIRFamide- and

FMRFamide-immunoreactivies, respectively. Com-

parative analyses of the allatostatin-immuno-

reactivity and that of known helminth FLPs revealed

differences in the distribution of these peptide

families ; specific differences were noted within the

pharyngeal innervation of flatworms and in the

cephalic papillary neurons of nematodes. The data

indicate that allatostatins and FLPs play distinct

roles in helminths.

Inter-phyla activities of helminth neuropeptides

in an arthropod

It is clear that both nematode and flatworm FLP

receptors are capable of interacting with a wide range

of FLP motifs (Mousley et al. 2004), and that flat-

worms possess allatostatin-responsive muscle based

receptors that are distinct from endogenous FLP
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receptors (Mousley et al. 2005), but are arthropod

and helminth FLP receptors similar in terms of their

ligand recognition profiles?

Recently the effects of seven nematode FLPs

(SDPNFLRFamide [PF1], KSAYMRFamide

[PF3], KPNFIRFamide [PF4], KHEYLRFamide

[AF2], GLGPRPLRFamide [AF9], AGAKFIRF-

amide, and DVPGVLRFamide) and one flatworm

FLP (GYIRFamide) were examined on spontaneous

contractions of the lateral oviduct of the locust,

Schistocerca gregaria (Mousley et al. 2005).

The locust (L. migratoria) oviduct has previously

been shown to be modulated by native and non-

native arthropod FLPs in vitro (Lange, Orchard &

Te Brugger, 1991; Fonaghy et al. 1992a ; Peeff,

Orchard & Lange, 1993; Peeff et al. 1994; Lange

et al. 1994). Structure-activity and competitive bind-

ing studies of truncated forms of schistoFLRFamide

(PDVDHVFLRFamide) using the L. migratoria

oviduct bioassay have identified several key features

important for biological activity and receptor bind-

ing. Whilst HVFLRFamide is the minimum

sequence necessary for inhibition of biological ac-

tivity, VFLRFamide is the minimum sequence

required for receptor binding (Wang et al. 1995a).

Interestingly, VFLRFamide illustrates activity re-

versal, possessing minor stimulatory activity (Peeff

et al. 1994). Therefore, it was proposed that the His

residue, which does not contribute to binding, is a

critical amino acid for activation of the response to

receptor occupation.

Subsequently, a series of HVFLRFamide ana-

logues were examined to further determine the

importance of the His residue to the inhibitory

response. Each amino acid in positions 2–6 was

substituted with a structurally similar or dissimilar

amino acid. It was found that when His remained in

position 1 no activity reversal was observed; the

analogues were either inhibitory (with reduced

potency) or possessed no biological activity (Wang,

Orchard & Lange, 1995). However, when His was

replaced with Tyr, Leu, Ile or Val, an excitatory

response occurred (Wang et al. 1995b). Interestingly,

the His residue of position 6 from the C-terminus is

common to all members of the myosuppressin sub-

family of FLPs.

We have found that a range of nematode FLPs

significantly modulate contractile activity of the

lateral oviduct, but the platyhelminth-derived

GYIRFamide is inactive. The P. redivivus FLPs,

PF1 and PF3, the A. suum FLP, AF2 and the

putative C. elegans FLPs, AGAKFIRFamide and

DVPGVLRFamide induced qualitatively similar

inhibitory responses that were comparable to the

schistoFLRFamide-induced response. Interestingly

only one of the nematode FLPs possesses a His

residue in position 6 from the C-terminus, deemed

necessary by Peeff et al. (1993, 1994) for an

inhibitory response. There are at least two plausible

explanations for these findings. Either, contrary to

previous suggestions, the His residue of position 6 is

not critical for inhibition, or there is at least one other

inhibitory receptor on the locust oviduct. Peeff et al.

(1993, 1994) have proposed the presence of two FLP

receptors on the locust oviduct. One receptor with

strict ligand requirements for a C-terminal amide

and a specific N-terminal extension containing

HVFLRFamide, which leads to inhibition, and a

second recognising other extended FLRFamides and

leading to excitation. If this is the situation, then

the S. gregaria oviduct must possess at least one

additional inhibitory receptor capable of recognising

PF1, PF3, AF2, AGAKFIRFamide, and DVPGVL

RFamide.Aqualitatively distinct inhibitory response

was observed on addition of AF9 signifying that, if

variation in response type is indicative of distinct

receptor interaction, then the inhibitory receptor

profile on the locust oviduct is more complex than

previously thought.

To facilitate further delineation of possible

inhibitory receptors endogenous to the S. gregaria

oviduct, we examined the effects of three of the

inhibitory nematode FLPs (PF1, PF3 and AF9) on

proctolin-induced contractions. Proctolin, the first

insect neuropeptide to be structurally characterized

(Brown & Starrat, 1975), was isolated from the

american cockroach, P. americana, and named

according to its excitatory properties on the hindgut;

proctolin meaning ‘gut factor’. Proctolin is also a

potent stimulator of locust oviduct muscle inducing

an excitatory effect that can be divided into two

distinct components; an initial fast tonic contraction

followed by an increase in the frequency and ampli-

tude of phasic contractions. Previous studies

have highlighted the antagonistic effect of FLPs on

proctolin-induced contractions of the locust oviduct

(Lange et al. 1991; Peeff et al. 1993, 1994). Indeed,

schistoFLRFamide reduces both the tonic and

phasic component of the proctolin-induced con-

traction (Lange et al. 1991).

We found that the response of S. gregaria lateral

oviducts to proctolin (5 nM) comprised the charac-

teristic initial tonic contraction (tissue shortening)

followed by an increase in frequency and amplitude

of phasic contractions which could immediately be

reversed upon washout (see Fig. 1). Whilst PF3

(10 mM) had no effect on either constituent of the

proctolin-induced response, co-application of 10 mM
PF1 and proctolin (5 nM) abolished the tonic com-

ponent, and simultaneous treatment with proctolin

(5 nM) and AF9 (10 mM) reduced both the tonic and

phasic component of proctolin-induced excitation. In

all cases, subsequent addition of proctolin (5 nM) to

the same tissue in the absence of peptide induced a

characteristic proctolin response (see Fig. 1).

The P. redivivus FLP, KPNFIRFamide (PF4),

stimulated S. gregaria lateral oviduct contractions.

PF4 shares the common C-terminal tetrapeptide
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motif, FIRFamide, with a native L. migratoria ven-

tral nerve cord FLP, AFIRFamide, which is also

excitatory when assayed on locust (L. migratoria)

oviduct (Lange et al. 1994). Another FIRFamide,

AXXRNFIRFamide (X=unknown), has been iso-

lated biochemically from the locust ventral nerve

cord, although as its sequence is incomplete its

function remains unknown (Lange et al. 1994). The

significance of FIRFamide-possessing FLPs in-

ducing excitatory activities remains to be elucidated,

as there are several excitatory peptides that do not

conform to the C-terminal FIRFamide consensus.

Indeed, the non-native FLPs, FMRFamide, FMRF

(non-amidated), YGGFMRFamide, FLRFamide,

TNRNFLRFamide, the native locust FLPs,

GQERNFLRFamide, PDVDHVFLRF (non-

amidated) and the truncated derivative VFLRF-

amide were all excitatory on the locust (L. migratoria)

oviduct (Peeff et al. 1993). In addition, the nematode

FIRFamide-containing FLP, AGAKFIRFamide

induced an inhibitory response on the S. gregaria

oviduct.

Collectively these data indicate the presence of

multiple FLP receptors on the locust oviduct,

however the prospect that all of these structurally

related FLPs are interacting with a single receptor

associated with multiple G-proteins mediating

diverse downstream effects cannot be ruled out.

Indeed such a ligand-receptor reaction system in

locust oviduct has been proposed by Wang, Lange

& Orchard (1995) and Wang et al. (1995b), whereby

all peptides (inhibitory and excitatory) share a

single receptor by possessing homologous binding

sequences but are able to produce opposite muscle

responses due to different activation sites.

A comparison of the effects induced by the

nematode-derived FLPs on the S. gregaria oviduct

with their endogenous effects on female reproductive

function in A. suum reveal some similarities in pep-

tide action and some differences. For example, both

PF3 and PF1 inhibit contractility of S. gregaria

oviduct and A. suum ovijector; in contrast PF4-

induces opposite effects on nematode and arthropod

reproductive systems. These nuances between FLP

activities on helminth and arthropod muscles sys-

tems are interesting from an academic perspective

but what is of greater significance is that the same

FLPs are capable of modulating homologous organs

involved in reproductive function in nematodes and

arthropods, demonstrating at least a degree of FLP

receptor similarity.

It is interesting to note that the flatworm-derived

FLP, GYIRFamide, was inactive on the S. gregaria

lateral oviduct. Similarly, we have found that all four

flatworm FLPs (GYIRFamide, RYIRFamide, YIR-

Famide, GNFFRFamide) are inactive on A. suum

body wall muscle and ovijector. Although the basis of

these findings remains to be determined, it is likely

that ligand recognition features for nematode and

arthropod FLP receptors have more constraints than

those of flatworms. Again, this is reflected in the

diverse array of FLPs that have been identified in

nematodes and arthropods compared to the handful

of structures identified in flatworms. The conser-

vation in FLP receptors between nematodes and

arthropods is also reflected in their recent phylo-

genetic arrangement into an ecdysozoan clade en-

compassing all animals that shed a cuticle by ecdysis

(Aguinaldo et al. 1997).

WHAT HAVE THE INTER-PHYLA STUDIES SHOWN?

These studies have revealed that selected nematode

and arthropod FLPs and allatostatins modulate

motor function in each of the target phyla

(Nematoda, Platyhelminthes and Arthropoda), i.e.

individual peptides can activate multiple receptors in

multiple phyla (see Tables 1 and 2). Although type-A

allatostatins have distinct actions on arthropod and

flatworm muscle, their activity in nematodes is

restricted. Consistently the most active peptides in a

range of assays from each of the three phyla are the

FLPs. Selected FLPs have potent effects on sensory

and motor function in nematodes, neuromuscular

coordination in insects, and muscle activity in flat-

worms (see Tables 1 and 2). This is significant as it

emphasizes the validity of selected FLP receptors as

inter-phyla targets for novel, broad-spectrum

endectocides. Although FLPergic signalling remains

a prime candidate for targeted intervention, other

neuropeptide families have not yet been thoroughly

investigated for their inter-phyla activities and

exploitative potential.

CONCLUSIONS

Currently, there are no drugs marketed that are

known to interfere with parasite or pest neuropeptide

Proctolin 5 nM
Proctolin 5 nM

A

B

C

Proctolin 5 nM+ Peptide 10 µM

Fig. 1. The effects of [A] KSAYMRFamide (PF3),

[B] SDPNFLRFamide (PF1), and (C) GLGPRPLR

Famide (AF9) on proctolin (RYLPT)-induced

contractions of the Schistocerca gregaria lateral oviduct

(see text for details). Presence of peptide is indicated by

the horizontal bar above the trace. Scale; horizontal bar

represents 2 min, vertical bar represents 2 mg.
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signalling. Yet, we know that neuromuscular func-

tion, a recognized target for parasite and pest control,

is largely controlled by the activities of neuropeptides

that act on receptors based in their neuromuscular

systems. We have gathered evidence to show that

FLPs and type-A allatostatins encompass peptides

that act across the phylum barriers to modulate

muscle activity in roundworms, flatworms and

arthropods. Indeed, as structural, physiological and

expression data accumulate, FLP receptors are

emerging as strong drug target candidates because

ligands to these receptors influence such a large

number of vital processes across multiple phyla.

Significantly, these receptors are now being un-

covered in helminths and arthropods and provide

handles that facilitate the establishment of screening

programmes to identify non-peptide ligands for

these receptors (see Greenwood, Williams & Geary

in this supplement). We already know from pub-

lished work on insects that it is possible to design

drugs rationally that act at neuropeptide receptors

and that non-peptide compounds can act at selected

FLP receptors in insects. Taken together these

facts suggest there is much merit in attempting to

exploit FLP receptors for drug discovery. Time

will tell if this is a valid selection and if FLP re-

ceptors can be used to uncover a new generation of

endectocides.
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AUERSWALD, L., BIRGÜL, N., GADE, G., KREIENKAMP, H. J.

& RICHTER, D. (2001). Structural, functional, and

evolutionary characterization of novel members of the

allatostatin receptor family from insects.Biochemical and

Biophysical Research Communications 282, 904–909.

BAGGERMAN, G., BOONEN, K., VERLEYEN, P., DE LOOF, A.

& SCHOOFS, L. (2005). Peptidomic analysis of the larval

Drosophila melanogaster central nervous system by

two-dimensional capillary liquid chromatography

quadrupole time-of-flight mass spectrometry. Journal of

Mass Spectrometry 40, 250–260.

BAGGERMAN, G., CERSTIAENS, A., DE LOOF, A. & SCHOOFS, L.

(2002). Peptidomics of the larvalDrosophila melanogaster

central nervous system. Journal of Biological Chemistry

277, 40368–40374.

BAGGERMAN, G., CLYNEN, E., HUYBRECHTS, J., VERLEYEN, P.,

CLERENS, S., DE LOOF, A. & SCHOOFS, L. (2003). Peptide

profiling of a single Locusta migratoria corpus cardiacum

by nano-LC tandem mass spectrometry. Peptides 24,

1475–1485.

BARGMANN, C. I. (1998). Neurobiology of theCaenorhabditis

elegans genome. Science 282, 2028–2033.
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