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Recently, Sherman et al. [14] analyzed an M/G/1 retrial queuing model in which
customers are forced to retry their service if interrupted by a server failure. Using
classical techniques, they provided a stability analysis, queue length distributions, key
performance parameters, and stochastic decomposition results.We analyze the system
under a static Bernoulli routing policy that routes a proportion of arriving customers
directly to the orbit when the server is busy or failed. In addition to providing the key
performance parameters, we show that this system exhibits a dual stability structure,
and we characterize the optimal Bernoulli routing policy that minimizes the total
expected holding costs per unit time.

1. INTRODUCTION

As a model for streaming multimedia applications, Sherman, et al. [14] recently ana-
lyzed an M/G/1 retrial queuing system with an unreliable server, infinite-capacity
retrial queue (or orbit), and an infinite-capacity primary queue. In that model, a cus-
tomer in service is forced to join the orbit if the server fails during his/her service
cycle. Customers sent to the orbit persistently and independently retry the server at
random intervals until their service is complete, but they can only regain access to the
server if it is up and idle at the time of a retrial attempt. Primary customer arrivals
who find the server busy or failed always join the first in–first out (FIFO) primary
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queue, whereas those who find the server up and idle are served to completion if
their service is not interrupted by a server failure. Using the method of supplementary
variables, they established the existence of dual stability conditions—one for the orbit
and one for the primary queue—and derived the probability generating functions of
the primary queue length and orbit size as well as the mean performance parame-
ters. They also demonstrated that the orbit size and system size exhibit a stochastic
decomposition property. Their model assumes that arriving customers join the primary
queue by default if the server is found busy or failed. However, in many engineering
applications, it is possible to mitigate congestion in the primary queue by statically or
dynamically routing some arriving customers directly to the orbit to retry their service
later. The primary aim of this extended note is to analyze the unreliable retrial model
of [14] when a controller uses a Bernoulli routing policy to control congestion in the
primary queue.

Our model here is motivated by a particular type of Internet protocol for streaming
media applications known as IP multicast, or simply multicast. Multicast provides a
way to deliver a single media stream to a group of users linked via a local area net-
work (LAN); for example, a training seminar being conducted at a particular location
can be streamed to groups of individuals on a LAN at a separate remote location. A
digitized camera feed uploads the live video to the Internet, and recipients participate
in the seminar (although not interactively) through the streamed video at individual
computer network terminals. To ensure wider dissemination of the seminar, it is often
desirable to save a complete copy of the streamed content on a hard disk at the remote
location for future playback. Because the seminar is live, there is a need to ensure
timely transmission of real-time packets, even at the expense of some packet losses.
Packets might be dropped by the network administrator to relieve congestion in the
primary packet transmission queue or they might be dropped if their transmission fails
due to packet corruption, hardware failures, software errors, or congestion in the local
network or the Internet itself. However, dropped packets can be retransmitted later
(when the transmission medium becomes free) so that the complete seminar can be
“patched-up” in the stored copy for future playback. Consequently, dropped packets
are not lost but are necessary to ensure a high-quality stored copy. The primary packet
transmission queue mimics a 1-persistent carrier-sense multiple-access (CSMA) sys-
tem. When the oldest packet in the primary queue detects that the transmission medium
is free, transmission begins immediately. If the communication medium fails during
transmission, the packet is sent to a retrial queue that is analogous to a nonpersistent
CSMA system. In a nonpersistent system, packets do not persist to wait for a free
transmission medium but retry the transmission medium at random intervals until it
is found up and idle. Therefore, those packets that are dropped—either upon arrival
by the network administrator or due to a server failure—are assigned a lower priority
than the real-time packets that enter the primary queue and are time-sensitive. The
latter type corresponds to the primary (or priority) customers. Because dropped or
interrupted packets can be retransmitted for inclusion in the stored copy, their trans-
mission time is no longer important. These packets correspond to the retrial customers
who enter the orbit and retry the server until it is found up and idle. The administrator
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seeks to determine the optimal (static) proportion of arriving packets to admit to the
primary queue with the objective of minimizing the total expected holding costs per
unit time in the primary queue and the orbit.

Although it is well known that dynamic routing policies are well suited for non-
stationary regimes and generally outperform static policies, dynamic routing requires
a great deal of information gathering, storage, updating, and exchange. By contrast,
static routing can be much faster, easier to implement, and require far less overhead.
Applications in computer/communications systems and service systems abound; for
example, Combeé and Boxma [7] considered the allocation of tasks to a finite num-
ber of distributed processors. In ATM networks, static routing algorithms are often
employed to balance the load across computer network links (cf. Casseti, Cigno, and
Mellia [4]). In service systems, Servi and Humair [12] optimized Bernoulli routing
probabilities at discrete time points to balance the load in large-scale call centers
by estimating arrival rates. In addition to their relatively low overhead requirements,
static policies can also be used to aid engineers in designing communications or com-
puter networks by providing performance bounds that can be easily computed and
evaluated.

Bernoulli routing of arriving customers to a finite group of ordinary (nonretrial),
homogeneous queuing systems has been studied extensively in the queuing literature
(cf. [5,10] and references therein). Under certain conditions, it can be shown that the
optimal Bernoulli routing policy is to assign an arriving customer to any one of a finite
number of available servers with equal probability. Relatively few researchers have
considered routing policies for arriving customers in retrial systems. Choi and Park [6]
analyzed a Bernoulli routing policy for a system that is similar to the model in [14]
except that it does not consider server failures. Atencia and Moreno [3] examined
Bernoulli routing in a model with general (as opposed to exponential) retrial times.
Their model permits only the retrial customer at the head of the line to retry the server
that is assumed to be reliable. Liang and Kulkarni [11] studied optimal dynamic
routing in a retrial system in which both retrial customers and primary arrivals are
routed either to the primary queue or to the orbit. They proved the existence of a
threshold-type policy that routes all customers to the primary queue up to a threshold
after which all arrivals are routed to the orbit. Their model, however, does not consider
unreliability of the server, which significantly complicates the analysis.

In this extended note, we revisit the queuing system analyzed in [14] and include
static Bernoulli routing of arriving customers who find the server busy or failed.
Specifically, a controller routes an arriving customer to the primary queue with (fixed)
probability q and to the orbit with complementary probability 1 − q, independently
of everything else, during busy or failed periods. Our main objective is to provide the
primary performance parameters of this system and to determine the optimal Bernoulli
routing policy that minimizes the total expected holding costs per unit time. Following
an analysis similar to the one in [14], we (1) provide the necessary and sufficient
overall stability condition, (2) derive the generating functions of the primary queue
length and the orbit size distributions, (3) provide the mean congestion performance
parameters, and (4) determine the optimal Bernoulli routing policy. It is shown that
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the stability condition of the overall system and the steady-state distribution of the
server’s status are insensitive to the Bernoulli routing parameter; however, the routing
parameter plays a crucial role in establishing the stability region of the primary queue.
Moreover, we provide sufficient conditions to ensure the existence of a unique, optimal
Bernoulli routing policy that minimizes the expected total cost per unit time of holding
customers in the primary queue and the orbit. The structure of the cost function is
characterized explicitly by the holding cost coefficients, the service time distribution,
and the arrival, failure, retrial, and repair rates.

The remainder of the article is organized as follows. Section 2 provides a complete
model description and defines the key generating functions. In Section 3 we state
the necessary and sufficient condition for overall system stability and provide the
generating functions of queue lengths when the server is idle, busy, or failed. We also
provide expressions for the mean queue lengths needed for the cost function. Section
4 shows how our model generalizes a few other M/G/1 retrial models in the literature.
Section 5 provides structural results for the cost function and characterizes the optimal
Bernoulli routing policy, and Section 6 provides a few illustrative examples.

2. MODEL DESCRIPTION

Primary customers arrive to the queuing system in accordance with a homogeneous
Poisson process with rate λ. A primary customer who finds the server idle (and not
under repair) seizes the server and is completed if no server failures occur during its
service cycle. Should the server fail during service, the interrupted customer joins a
retrial queue (or orbit) from which it persistently retries the server at random intervals
until access is regained. Customers who are interrupted must repeat their service cycle
(i.e., a preemptive repeat discipline is employed). In contrast to the model of [14],
the system uses a controller that diverts a proportion of arriving primary customers
directly to the retrial orbit when the server is busy or failed to manage the congestion
level of the primary queue. If a primary arrival finds the server busy or under repair,
the controller routes the customer to the primary queue with probability q (0 ≤ q ≤ 1)
and to the retrial orbit with complementary probability p = 1 − q, independently of
everything else (i.e., a Bernoulli routing policy is used). The uninterrupted service
times, {Sn : n ≥ 1}, are independent and identically distributed (i.i.d.) with absolutely
continuous cumulative distribution function (c.d.f.) B and probability density function
(p.d.f.) b. For s ≥ 0, let

b∗(s) =
∫ ∞

0
e−sxb(x) dx

denote the Laplace transform of b. We consider here both active and idle failures of
the server—that is, server failures occur according to a Poisson process with rate ξ

whenever the server is idle or busy; however, the server cannot fail when it is under
repair. The repair time is assumed to be exponentially distributed with mean 1/α. We
pause here to note that although it might be possible to analyze the model with general
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repair times (by adding a supplementary variable or by embedding a Markov chain at
appropriate epochs), we assume exponential repair times to maintain transparency of
the analysis and consistency with the model analyzed in [14]. Customers who enter
the retrial orbit (either by virtue of a server failure or by being routed to the orbit
by the controller) retry the server directly at exponentially distributed time intervals
with mean 1/θ . The interretrial times are i.i.d for each customer in the retrial group.
Moreover, retrial customers behave independently of one another, of customers in the
primary queue, and of external arrivals to the system. Finally, customers in the retrial
group can only gain access to the server if it is up and idle at the time of a retrial
attempt. The arrival, service, failure, repair, and retrial processes are assumed to be
mutually independent.

As in Sherman et al. [14], we analyze this model using classical techniques—
namely the method of supplementary variables and probability generating functions.
Adopting their notation, let Qt denote the number of customers in the primary queue at
time t, excluding any customer who might be in service and let Rt denote the number
of customers in the retrial group at time t. The random variable Ut is the occupation
status of the server given by

Ut =
{

1 if the server is occupied at time t

0 if the server is not occupied at time t,

and St describes the operational status of the server at time t defined by

St =
{

1 if the server is not failed at time t

0 if the server is failed at time t.

Let Xt denote the elapsed service time of the customer in service at time t so that the
continuous-time stochastic process, {(Qt , Ut , Rt , St , Xt) : t ≥ 0}, is a Markov process
describing the state of the system. Further, define Nt as the total number of customers
in the system at time t (i.e., in orbit, in the primary queue, and in service). Our primary
aim is to study the steady-state versions of Qt , Rt , and Nt , which we denote by Q, R,
and N , respectively. Using these quantities, we will establish conditions under which
a unique optimal Bernoulli routing parameter exists. However, before doing so, it is of
interest to examine the influence of Bernoulli routing on the stability condition, queue
length distributions, and performance parameters of the queuing system. To this end,
define for j ≥ 0, k ≥ 0, and x ≥ 0,

π0,0,j,1 = lim
t→∞ P(Qt = 0, Ut = 0, Rt = j, St = 1),

πk,0,j,0 = lim
t→∞ P(Qt = k, Ut = 0, Rt = j, St = 0),

πk,1,j,1(x) = lim
t→∞ P(Qt = k, Ut = 1, Rt = j, St = 1, Xt ≤ x),

the limiting probabilities that the server is idle, failed, or busy, respectively, when
there are j customers in the retrial group and k customers in the primary queue. Next,
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define the generating functions

φ0,0,1(z1) =
∞∑

j=0

zj
1π0,0,j,1, |z1| ≤ 1,

φk,0,0(z1) =
∞∑

j=0

zj
1πk,0,j,0, |z1| ≤ 1,

φk,1,1(x, z1) =
∞∑

j=0

zj
1πk,1,j,1(x), |z1| ≤ 1, x ≥ 0.

Here, φ0,0,1(z1) is the generating function of R when the server is idle, φk,0,0(z1) is
the generating function of R when the server is failed and k customers are awaiting
service in the primary queue, and φk,1,1(x, z1) is the generating function of R when the
server is busy, k customers are in the primary queue, and the elapsed service time of
the customer in service has not exceeded x. Further define respectively

ψ0,0(z1, z2) =
∞∑

k=0

zk
2φk,0,0(z1), |z1| ≤ 1, |z2| ≤ 1,

ψ1,1(x, z1, z2) =
∞∑

k=0

zk
2φk,1,1(x, z1), |z1| ≤ 1, |z2| ≤ 1,

to be the generating functions of φk,0,0(z1) and φk,1,1(x, z1) with respect to the primary
queue size. The joint generating function of the orbit and primary queue size when
the server is busy is given by

ψ1,1(z1, z2) =
∫ ∞

0
ψ1,1(x, z1, z2) dx.

The joint generating function of (R, Q) will be denoted by

G(z1, z2) ≡ E(zR
1 , zQ

2 ) =
∞∑

k=0

∞∑
j=0

P(R = j, Q = k) zj
1 zk

2, |z1| ≤ 1, |z2| ≤ 1,

and the generating function of the steady-state system size N is given by

H(z) ≡ E(zN ) =
∞∑

j=0

P(N = j) zj, |z| ≤ 1.

In Section 3 we provide the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and
ψ1,1(z1, z2) when a Bernoulli routing policy is used. The relevant performance
parameters are derived from these results.
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3. MAIN RESULTS

In this section we state the necessary and sufficient condition for stability of the overall
queuing system and also provide the generating functions of (R, Q) and N . Central to
the analysis is the notion of the fundamental server period introduced by Aissani and
Artalejo [1]. The fundamental server period is the time from which the server initiates
a new service cycle until the next time it commences a new service cycle. Let Nr and
Nq respectively denote the number of customers entering the orbit and primary queue
during a fundamental server period, and let a(i, j) = P(Nr = i, Nq = j), i, j ≥ 0. As
earlier, we let

Q(z1, z2) =
∞∑

i=0

∞∑
j=0

a(i, j)zi
1zj

2, |z1| ≤ 1, |z2| ≤ 1.

Following along the lines of the proof of Theorem 2.1 of [1], it can be verified that
the joint generating function of (Nr , Nq) is given by

Q(z1, z2) = B̂(z1, z2) + αz1ξ(1 − B̂(z1, z2))

(α + λ(1 − pz1 − qz2))(ξ + λ(1 − pz1 − qz2))
,

where B̂(z1, z2) ≡ b∗(ξ + λ(1 − pz1 − qz2)) and b∗(x) is the Laplace transform of
b evaluated at x. When q = 1 (p = 0), Q(z1, z2) reduces to the generating function
of (Nr , Nq) of [14]. Using standard methods, the expected number of arrivals to the
primary queue during a fundamental server period is given by

ρ1 = dQ(1, z2)

dz2

∣∣∣∣
z2=1

= λq(1 − b∗(ξ))(α + ξ)

αξ
.

In what follows, it will be shown that ρ1 plays an important role in determining the
stability condition of the primary queue. Moreover, it can be shown (see [14, Lemma
1]) that the equation

z2 − Q(z1, z2) = 0

has a unique solution—call it g(z1)—inside the region |z2| < 1 whenever |z1| < 1 or
|z1| ≤ 1 and ρ1 > 1. Whenever z1 = 1, g(1) is the smallest positive real zero with
g(1) < 1 if ρ1 > 1, and g(1) = 1 if ρ1 ≤ 1.

Next, we state the necessary and sufficient condition for stability of the overall
system (and the orbit) and simultaneously state the generating functions φ0,0,1(z1),
ψ0,0(z1, z2), and ψ1,1(z1, z2). These results generalize those reported in [9,14].
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Theorem 1: The queuing system is stable if and only if

ρ ≡ λ(1 − b∗(ξ))(α + ξ)

αb∗(ξ)ξ
< 1. (1)

When ρ < 1, the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2) are
given by

φ0,0,1(z1) = (1 − ρ)

(
α

α + ξ

)
exp

{
−1

θ

×
∫ 1

z1

λ(1 − g(u)) + ξ(1 − α/[α + λ(1 − pu − qg(u))])
g(u) − u

du

}
, (2)

ψ0,0(z1, z2) = ξ

0,0(z1, z2)


(z1, z2)
φ0,0,1(z1), (3)

and

ψ1,1(z1, z2) = λ

1,1(z1, z2)


(z1, z2)
φ0,0,1(z1), (4)

where


0,0(z1, z2) = (g(z1) − z1)[α + λ(1 − pz1 − qg(z1))][ξ + λ(1 − pz1 − qz2)]
× [z2 − B̂(z1, z2) − z1(1 − B̂(z1, z2))]
+ λz1(1 − B̂(z1, z2))(z2 − z1)(1 − pz1 − qg(z1))

× [α + ξ + λ(1 − pz1 − qg(z1))],

1,1(z1, z2) = (1 − B̂(z1, z2))(z2 − g(z1))

× [
(1 − z1){αξ + [α + λ(1 − pz1 − qz2)]

×[α + ξ + λ(1 − pz1 − qg(z1))]}
+λξ(1 − pz1 − qg(z1))(1 − pz1 − qz2)

]
,


(z1, z2) = (g(z1) − z1)[α + λ(1 − pz1 − qg(z1))]
×

[
(z2 − B̂(z1, z2))

[
α + λ(1 − pz1 − qz2)

]
× [

ξ + λ(1 − pz1 − qz2)
] − αξ(1 − B̂(z1, z2))z1

]
,

and for z1 ∈ [0, 1], g(z1) verifies

g(z1) = b∗(ξ + λ(1 − pz1 − qg(z1)))

+ αξz1[1 − b∗(ξ + λ(1 − pz1 − qg(z1)))]
[α + λ(1 − pz1 − qg(z1))][ξ + λ(1 − pz1 − qg(z1))] .
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Proof: We omit the proof for the sake of brevity. However, the result can be shown
by following the steps of the proof of Theorem 1 in [14]. Note that the generating
function B̂(z2) in [14] is replaced by B̂(z1, z2) above. �

If a Bernoulli routing scheme is not used (i.e., if q = 1), all arriving customers
who find the server busy or under repair will join the primary queue by default. In
such case, the generating functions (2)–(4) are the same as those reported in Theorem
1 of [14].

The system controller is faced with the task of deciding the appropriate proportion
of arriving customers to route to the retrial orbit when the server is busy or failed.
If this proportion is too small, the primary queue might become unstable. On the
other hand, if the proportion is too large, a significant number of customers will be
denied immediate access to the service system and asked to return later for service.
Our objective is to determine the Bernoulli routing policy that balances this trade-off
and minimizes the total expected holding costs per unit time. To this end, we next
characterize the primary performance parameters (viz. the mean queue lengths) using
the generating functions of (R, Q) and N .

Proposition 1: For ρ < 1, the generating function of (R, Q) is given by

G(z1, z2) = φ0,0,1(z1)

[
1 + ξ


0,0(z1, z2)


(z1, z2)
+ λ


1,1(z1, z2)


(z1, z2)

]
, (5)

and the generating function of N is given by

H(z) = φ0,0,1(z)
�1(z)

�2(z)
, (6)

where

�1(z) = [α + ξ + λ − λz]b∗(ξ + λ − λz) {αξ + λ(1 − z)[α + ξ + λ − λz]} ,

�2(z) = [α + λ − λz]{αξb∗(ξ + λ − λz) − λ(z − b∗(ξ + λ − λz))[α + ξ + λ − λz]},

and 
0,0(z1, z2), 
1,1(z1, z2), and 
(z1, z2) are defined in Theorem 1.

Proof: The generating function of (R, Q) is obtained by summing over the three
mutually exclusive and exhaustive server states, that is,

G(z1, z2) = φ0,0,1(z1) + ψ0,0(z1, z2) + ψ1,1(z1, z2),

where φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2) are given by (2), (3), and (4), respectively.
Similarly, the generating function H(z) is obtained directly by

H(z) = φ0,0,1(z) + ψ0,0(z, z) + z ψ1,1(z, z). �
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Remark: When q = 1, these results are the same as those reported in Corollary 1
of [14]. Alternatively, if we assume that the server is reliable (i.e., if we allow ξ ↓ 0),
then we obtain the joint generating function of Choi and Park [6]. Next, we obtain the
mean values of R, Q, and N in the following proposition.

Proposition 2: The steady-state mean orbit size, mean primary queue size, and mean
number in the system are respectively given by

E(R) = 1

1 − ρ

[
λξp + αρ(ξ + λp)

αθ

+ λ

ξ b∗(ξ)
·
(1 − ρ1/ρ)

{
ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))]

}
+αξ 2b∗(ξ)(1 − b∗(ξ))(1 − ρ1)

αξb∗(ξ)(α + ξ)(1 − ρ1)

⎤
⎥⎥⎥⎥⎦ , (7)

E(Q) = λq

1 − ρ1

[
ξ 2b∗(ξ) − (α + ξ)[(α + ξ)B̂′ − αρb∗(ξ)]

αξb∗(ξ)(α + ξ)

]
(8)

and

E(N) = 1

1 − ρ

[
λξp + αρ(ξ + λp)

αθ

+ λ

ξ b∗(ξ)

b∗(ξ)
{
ξ 3 + (1 − b∗(ξ))[αξ(α + 2ξ) + λ(α + ξ)2]}

−ξ(α + ξ)2B̂′

αξb∗(ξ)(α + ξ)

⎤
⎥⎥⎥⎦ , (9)

where B̂′ = λ
∫ ∞

0 xe−ξxb(x) dx.

Equations (7) and (9) show that ρ < 1 is necessary to ensure the stability of
the retrial orbit and the system, and by (8) we see that ρ1 < 1 is necessary for the
stability of the primary queue. Clearly, for any ξ ≥ 0, ρ1 ≤ ρ so that the stability of
R depends on ρ, not ρ1. Moreover, when ξ > 0 and q < 1, some interesting insights
about the stability of the primary queue and the orbit are revealed. Specifically, there
exists a set of model parameters for which the primary queue will remain stable even
if the orbit is not stable. The dynamics of the system dictate that retrial customers
become subordinate to primary customers because they can only regain access to
the server when it is found to be up and idle—that is, retrial customers experience
a smaller effective service rate than do primary customers; therefore, the orbit could
continue to grow while the primary queue remains stable. From a service quality
perspective, it is desirable to keep both average queue lengths small; however, under
certain conditions, the controller might choose to route arrivals only to the primary
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queue, or only to the orbit, during busy or down periods. Next, using the results of
Theorem 1, the steady-state distribution of the server’s status is obtained.

Proposition 3: For ρ < 1, the steady-state distribution of the server’s status is
given by

P(Idle) = lim
z1→1

φ0,0,1(z1) = (1 − ρ)

(
α

α + ξ

)
,

P(Failed) = lim
z1 → 1
z2 → 1

ψ0,0(z1, z2) = ξ

α + ξ
,

and

P(Busy) = lim
z1 → 1
z2 → 1

ψ1,1(z1, z2) = ρ

(
α

α + ξ

)
.

Remark: The steady-state distribution of the server’s status is intuitive; that is, the
probability that the server is busy is simply the traffic intensity ρ scaled by the long-
run proportion of time that the server is not under repair, α(α + ξ)−1. Similarly, the
steady-state probability that the server is idle is (1 − ρ) scaled by the proportion of
time the server is not under repair. Because our model allows for both active and idle
server failures, the long-run proportion of time the server is failed is intuitively given
by ξ(α + ξ)−1. It is noteworthy that the steady-state distribution of the server’s status
is insensitive to both the retrial rate θ and the Bernoulli routing parameter q.

Several other M/G/1-type retrial models can be analyzed as special cases of
ours, and we present a few of these in the next section. We characterize the optimal
Bernoulli routing parameter in Section 5.

4. SOME SPECIAL CASES

The previous section revealed the insensitivity of the stability condition and the dis-
tribution of the server’s status to the parameters θ and q. Interestingly, the stability
condition and server status distribution for the present model are identical to those
derived in [14]. However, the retrial rate and Bernoulli routing parameter have a pro-
found impact on the mean queue lengths. In this section we demonstrate that our
model can be used to analyze other M/G/1 retrial models. To this end, let S denote
an arbitrary (uninterrupted) service time with c.d.f. B, and for k ≥ 1, let

βk ≡ E(Sk) < ∞.
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Denote by ρ̂ the traffic intensity of the ordinary (nonretrial) M/G/1 queue with a
perfectly reliable server so that ρ̂ = λβ1, and suppose that ρ̂ < 1. Now, as ξ ↓ 0 in
(7)–(9), we obtain

E(R) = λ2p

1 − ρ̂

[
β1

θ
+ β2

2(1 − qρ̂)

]
, (10)

E(Q) = λ2qβ2

2(1 − qρ̂)
, (11)

and

E(N) = ρ̂ + λ2

1 − ρ̂

[
β1p

θ
+ β2

2

]
. (12)

Equations (10) and (11) are identical to Eq. (16) of Choi and Park [6], who studied a
similar retrial model with a primary queue, retrial orbit, and a reliable server. Now, if
we set q = 0 (p = 1) in (10)–(12), our model reduces to the standard M/G/1 retrial
queue (i.e., one that does not possess a primary queue) with a reliable server, and the
results are equivalent to those reported by Artalejo and Gómez-Corral [2] and Falin
and Templeton [8]. Specifically,

E(R) = λ2

1 − ρ̂

[
β1

θ
+ β2

2

]

and

E(N) = ρ̂ + λ2

1 − ρ̂

[
β1

θ
+ β2

2

]
.

Note that E(Q) = 0 here because all arriving customers who find the server busy
are routed to the retrial orbit (i.e., there is no primary queue to accommodate waiting
customers).

Next, consider our original model and allow q → 1. With q = 1, we obtain the
model analyzed by Sherman et al. [14] in which all arriving customers who find the
server busy or failed join the primary queue.Allowing q → 1 in (7)–(9) gives precisely
the results obtained for E(R), E(Q), and E(N) in [14]. Moreover, if the uninterrupted
service time distribution is exponential with parameter μ, we obtain the mean queue
lengths of the model described in [13].

In the next section we consider the problem of minimizing the total expected
cost per unit time of holding customers in the primary queue and the orbit under a
Bernoulli routing policy.

5. OPTIMAL BERNOULLI ROUTING POLICY

We now consider the problem of determining an optimal Bernoulli routing policy
for the retrial system with an unreliable server. The objective is to minimize the
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total expected holding costs per unit time. Under this criterion, we provide sufficient
conditions to ensure the existence of a unique routing parameter, q∗. Denote the
holding cost per customer per unit time in the primary queue by cQ (0 < cQ < ∞)
and let cR (0 < cR < ∞) be the holding cost per customer per unit time in the retrial
orbit. We consider only stable systems (i.e., those for which ρ < 1). Using (7) and
(8), our optimization problem is of the form

min ϑ(q) = cRE(R) + cQE(Q) (13a)

s.t. q ∈ [0, 1], (13b)

where it is understood that E(R) and E(Q) depend explicitly on q. The optimal solu-
tion (when it exists) will be denoted by q∗. We elucidate the structure of ϑ(q) and
characterize the optimal Bernoulli routing parameter in Proposition 4.

Proposition 4: Suppose that ρ < 1 and ξ > 0. Then, we have the following:

(i) The cost function ϑ(q) is monotone increasing on [0, 1] if

cQ

cR
− 1 >

ξ 2b∗(ξ)(α + ξ)(ξ + αρ)

θ(1 − ρ)
{
ξ 3b∗(ξ) − (α + ξ)2

[
ξ B̂′ − λ(1 − b∗(ξ))

]} . (14)

In this case, the optimal routing parameter is q∗ = 0.

(ii) The cost function ϑ(q) is monotone decreasing on [0, 1] if

cQ

cR
− 1 <

ξ 2b∗(ξ)(α + ξ)(ξ + αρ)(1 − b∗(ξ)ρ)2

θ(1 − ρ)
{
ξ 3b∗(ξ) − (α + ξ)2

[
ξ B̂′ − λ(1 − b∗(ξ))

]} . (15)

In this case, the optimal routing parameter is q∗ = 1.

(iii) The cost function ϑ(q) is strictly convex on [0, 1] if

ξ 2b∗(ξ)(α + ξ)(ξ + αρ)(1 − b∗(ξ)ρ)2

θ(1 − ρ)
{
ξ 3b∗(ξ) − (α + ξ)2

[
ξ B̂′ − λ(1 − b∗(ξ))

]}
≤ cQ

cR
− 1

≤ ξ 2b∗(ξ)(α + ξ)(ξ + αρ)

θ(1 − ρ)
{
ξ 3b∗(ξ) − (α + ξ)2

[
ξ B̂′ − λ(1 − b∗(ξ))

]} . (16)

In this case, q∗ uniquely solves ϑ ′(q) = 0 and is given by

q∗ =

⎡
⎢⎢⎢⎢⎣1 −

√√√√√(
cQ

cR
− 1

) θ(1 − ρ){ξ 3b∗(ξ) − (α + ξ)2

×[ξ B̂′ − λ(1 − b∗(ξ))]}
ξ 2b∗(ξ)(α + ξ)(ξ + αρ)

⎤
⎥⎥⎥⎥⎦ (b∗(ξ)ρ)−1. (17)
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Proof: Substituting E(R) and E(Q) from (7) and (8), respectively, and differentiating
ϑ(q) with respect to q, we obtain

ϑ ′(q) ≡ dϑ(q)

dq

= (cQ − cR)
λ

{
ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))]

}
αξ 2b∗(ξ)(α + ξ)(1 − qb∗(ξ)ρ)2

− cR
λ(ξ + αρ)

θα(1 − ρ)
.

(18)

The cost function ϑ(q) is (strictly) monotone increasing on [0, 1] if ϑ ′(q) > 0
for each q ∈ [0, 1], and in such a case, it attains its minimum at the boundary point 0.
Equation (18) shows that ϑ ′(q) > 0 if

(cQ − cR)
λ

{
ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))]

}
αξ 2b∗(ξ)(α + ξ)(1 − qb∗(ξ)ρ)2

> cR
λ(ξ + αρ)

θα(1 − ρ)

or, equivalently, if

cQ

cR
− 1 >

ξ 2b∗(ξ)(α + ξ)(ξ + αρ)

θ(1 − ρ)
{
ξ 3b∗(ξ) − (α + ξ)2

[
ξ B̂′ − λ(1 − b∗(ξ))

]} .

Similarly, ϑ(q) is (strictly) monotone decreasing on [0, 1] if ϑ ′(q) < 0 for each q ∈
[0, 1], and in this case, ϑ(q) attains its minimum at 1. By (18), this condition is met if

cQ

cR
− 1 <

ξ 2b∗(ξ)(α + ξ)(ξ + αρ)(1 − b∗(ξ)ρ)2

θ(1 − ρ)
{
ξ 3b∗(ξ) − (α + ξ)2

[
ξ B̂′ − λ(1 − b∗(ξ))

]} .

Finally, we prove that there is a region for which the strict convexity of ϑ(q) is ensured.
Differentiating (18) with respect to q yields

ϑ ′′(q) ≡ d2ϑ(q)

dq2
= (cQ − cR)

2λρ
{
ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))]

}
αξ 2(α + ξ)(1 − qb∗(ξ)ρ)3

.

(19)
The denominator of (19) is strictly positive for any q ∈ [0, 1] and ρ < 1 since 0 <

b∗(ξ) < 1 for any ξ > 0. We can conclude that the numerator is also strictly positive
since it was shown in the proof of Lemma 2 of [14] that λ(1 − b∗(ξ)) − ξ B̂′ ≥ 0 for
ξ ≥ 0. By rearranging the terms of (16), it is seen that cQ must exceed cR in this
region. Therefore, we conclude that when condition (16) is met, ϑ ′′(q) > 0 for each
q ∈ [0, 1] and, hence, ϑ(q) is strictly convex and has a unique stationary point q∗
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satisfying ϑ ′(q∗) = 0. By (18), this point is given by

q∗ =

⎡
⎢⎢⎣1 −

√√√√(
cQ

cR
− 1

) θ(1 − ρ)
{
ξ 3b∗(ξ) − (α + ξ)2

[
ξ B̂′ − λ(1 − b∗(ξ))

]}
ξ 2b∗(ξ)(α + ξ)(ξ + αρ)

⎤
⎥⎥⎦

× (b∗(ξ)ρ)−1. (20)

�

The advantage of Proposition 4 is that it allows us to determine the form of the
optimal solution by simply checking the value cQ/cR − 1. Section 6 illustrates and
highlights the main results through a few numerical examples.

6. NUMERICAL EXAMPLES

In this section, we illustrate the behavior of the cost function ϑ(q) in the three regimes
identified by Proposition 4. Additionally, we provide a comparison of the derived
mean performance parameters (viz. the mean queue lengths) with values obtained via
a discrete-event simulation model. For both illustrations we consider two absolutely
continuous service time distributions whose Laplace transforms (LTs) are well defined
(viz. the exponential and uniform distributions). To compute the mean queue lengths
and the cost function, we need expressions for b∗(ξ), the LT of the service time
distribution evaluated at ξ , and B̂′, which is given by

B̂′ = λ

∫ ∞

0
x exp(−ξx)b(x) dx.

Let S denote an arbitrary (uninterrupted) service time. When S is distributed
exponentially with rate μ, it is easy to show that

b∗(ξ) = μ

μ + ξ

and

B̂′ = λμ

(μ + ξ)2
.

When S is distributed uniformly on the interval (0, y), 0 < y < ∞, we obtain

b∗(ξ) = 1

yξ

[
1 − exp(−yξ)

]
and

B̂′ = λ

yξ 2

[
(1 − exp(−yξ)(1 + yξ)

]
.

Before comparing mean queue lengths with simulated results, we first illus-
trate the cost function ϑ(q). For both distributions we use the following parameters:
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16 N. P. Sherman and J. P. Kharoufeh

FIGURE 1. Sample monotone cost functions when service time is exponential. (a)
Exponential case (i): ϑ(q) is monotone increasing; (b) exponential case (ii): ϑ(q) is
monotone decreasing.

λ = 2.0, μ = 10.0, ξ = 1.0, α = 2.0, and θ = 2.0. In the case of exponential service
times, the traffic intensity is ρ ≈ 0.3100. Figure 1 depicts two cases when the cost
function ϑ(q) is monotone. In Figure 1a, the cost parameters are cQ = 8.0 and
cR = 2.0 so that cQ/cR − 1 = 3.0, and the cost function is monotone increasing on
[0, 1] as dictated by Proposition 4(i). For Figure 1b, we use cQ = 2.5 and cR = 1
so that cQ/cR − 1 = 1.50, and the cost function is monotone decreasing on [0, 1] in
accordance with Proposition 4(ii).

In case (i), the optimal Bernoulli routing parameter and corresponding minimum
cost are given by q∗ = 0.0 and ϑ(q∗) ≈ 4.12381, respectively. Using this set of param-
eter values and holding cost coefficients, it is optimal to divert all primary arrivals to
the orbit when the server is busy or failed. For case (ii), the optimal Bernoulli rout-
ing parameter and corresponding minimum cost are q∗ = 1.0 and ϑ(q∗) ≈ 1.71905,
respectively. In this case, it is optimal to admit all new arrivals to the primary queue
when the server is busy or failed, despite the fact that the holding cost in the primary
queue is more than double that of the retrial queue. This case illustrates the fact that the
primary queue can remain stable even as the retrial queue continues to grow and shows
that the relative magnitudes of the cost coefficients are not the only determinants of
the optimal Bernoulli routing policy.

Figure 2 depicts the cost function when cQ = 3, cR = 1, and cQ/cR − 1 = 2. As
expected, the cost function is strictly convex on [0, 1] in accordance with Propo-
sition 4(iii). The optimal Bernoulli routing parameter, computed by (17), and the
corresponding minimum cost are given by

q∗ ≈ 0.6450 and ϑ(q∗) ≈ 1.9319,

respectively. In this case, we see that there is a trade-off between the cost coefficients
and the growth of the queue lengths. In particular, it is optimal for the controller to
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FIGURE 2. Exponential case (iii): ϑ(q) is strictly convex.

divert roughly 35% of the arrival stream directly to the orbit, whereas nearly 65% are
admitted to the primary queue.

Next, we consider the case when the service time S is uniformly distributed on
(0, y), where we assume y = 4/μ; that is, the mean service time is twice that of the
exponential case with all other parameter being held equal. For this case, the traffic
intensity is ρ ≈ 0.63989. Similar graphs can be drawn for this case; however, the cost
coefficients need to be altered to conform to the conditions of Proposition 4.

Figure 3 depicts two cases when the cost function ϑ(q) is monotone. In Figure
3a, the cost parameters are cQ = 30 and cR = 2 so that cQ/cR − 1 = 14, and the cost

FIGURE 3. Sample monotone cost functions when service time is uniform. (a) Uni-
form case (i): ϑ(q) is monotone increasing; (b) uniform case (ii): ϑ(q) is monotone
decreasing.
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function is monotone increasing on [0, 1] as dictated by Proposition 4(i). For Figure 3b,
we use cQ = 2 and cR = 1 so that cQ/cR − 1 = 1, and the cost function is monotone
decreasing on [0, 1] in accordance with Proposition 4(ii). In case (i), we obtain q∗ = 0
and ϑ(q∗) ≈ 12.21908, whereas in case (ii), the optimal routing parameter is q∗ = 1
with a corresponding minimum cost of ϑ(q∗) ≈ 3.98708.

Finally, in Figure 4, we use cQ = 3 and cR = 1 so that cQ/cR − 1 = 2, and the
cost function is strictly convex on [0, 1] in accordance with Proposition 4(iii). The
optimal Bernoulli routing parameter and corresponding minimum cost are given by
q∗ ≈ 0.8400 and ϑ(q∗) ≈ 4.93731, respectively. Here again it is seen that the optimal
Bernoulli routing parameter that minimizes the total expected holding costs per unit
time is on the interior of the feasible region.

Next, we examine the mean queue lengths as a function of the overall traffic
intensity ρ. In the experiments that follow, we assumed μ = 3, α = 4, ξ = 0.1, θ = 5,
and q = 0.5, and we varied λ to obtain increasing values of ρ. Table 1 shows a
comparison of the computed mean queue lengths as compared to the same values
obtained via a discrete-event simulation model when the service time is exponential
with parameter μ = 3.

It is interesting to note in Table 1 that there is a dramatic increase in E(R) when
the traffic intensity increases to 0.9. However, we note that the increase in the mean
primary queue size E(Q) is more moderate. For the case of uniformly-distributed
service times, all of the parameter values remain the same with the exception of
the service time distribution, which is assumed to be U(0, 2/μ), where μ = 3 is the
parameter of the exponential case. Note that the mean service time is identical to that
of the exponential case. Table 2 summarizes the mean queue lengths and system size.
In this experiment, we also note that, as the overall traffic intensity increases, there is
a much more profound effect on E(R) than on the mean primary queue length, whose

FIGURE 4. Uniform case (iii): ϑ(q) is strictly convex.
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TABLE 1. Mean Queue Lengths with Exponential Service Times

E(R) E(Q) E(N)

ρ Analytical Simulated Analytical Simulated Analytical Simulated

0.1 0.015922 0.015890 0.005898 0.005920 0.119381 0.119470
0.3 0.140043 0.139810 0.052832 0.052670 0.485558 0.485170
0.5 0.542132 0.541680 0.161568 0.161440 1.191505 1.190800
0.7 1.874600 1.868800 0.359237 0.358610 2.916764 2.910300
0.9 10.207577 10.173000 0.691578 0.690730 11.777204 11.741000

TABLE 2. Mean Queue Lengths With Uniform Service Times

E(R) E(Q) E(N)

ρ Analytical Simulated Analytical Simulated Analytical Simulated

0.1 0.013951 0.013950 0.004270 0.004270 0.115781 0.115750
0.3 0.114872 0.114950 0.036583 0.036580 0.444137 0.444220
0.5 0.432099 0.432210 0.110704 0.110660 1.030608 1.030600
0.7 1.463517 1.463800 0.244981 0.244980 2.391425 2.391500
0.9 7.824286 7.830100 0.470328 0.470290 9.172663 9.178500

stability depends on ρ1; that is, although ρ is approaching the critical value of 1, the
value ρ1 is less than or equal to ρ. Therefore, the increase in traffic intensity from 0.7
to 0.9 results in only a moderate increase in the mean primary queue length. It is also
worth noting that the mean values for the exponential and uniform cases are similar.
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