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Foundations of Statistical Mechanics—
Two Approaches*

Stephen Leeds†

This paper is a discussion of David Albert’s approach to the foundations of classical
statistical menchanics. I point out a respect in which his account makes a stronger claim
about the statistical mechanical probabilities than is usually made, and I suggest what
might be motivation for this. I outline a less radical approach, which I attribute to
Boltzmann, and I give some reasons for thinking that this approach is all we need, and
also the most we are likely to get. The issue between the two accounts turns out to be
one about the explanatory role probabilities play in statistical mechanics.

1. David Albert’s Time and Chance (2000) is, by virtue of its clarity, con-
cision, and sheer verve, a valuable contribution to the philosophical lit-
erature on statistical mechanics. It presents an approach to the founda-
tions of statistical mechanics which is shared, at least tacitly, by many
other people; but pushes it further, I think, than anyone has before, at
least explicitly. I happen to be quite skeptical about whether the approach
can be made to work, but I shall be presenting relatively little by way of
argument against it. My goal is rather to point out an alternative approach
I find more appealing, and to identify what is at issue between the two.
The first section summarizes Albert’s account, the second introduces my
own, the third discusses what might be needed to show either account
correct. The entire discussion, like the relevant part of Time and Chance,
will be limited to classical statistical mechanics; I shall be pretending that
the universe is a deterministic classical dynamical system.

Let us begin with the official formulation of Albert’s reconstruction of
classical statistical mechanics. This consists of a dynamical postulate, a
hypothesis about the past, and a statistical postulate. The dynamical pos-
tulate is just F � ma. The Past Hypothesis is that “the world first came
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1. At one point Albert backs off from the very strong claim in the quotation—in fact,
on the very same page as the passage quoted above (it’s the passage about Mr. X, who
bases his predictions on the total macrostate of the world). For more evidence that
Albert’s considered commitment is to the stronger claim, see the discussion on pp. 65–
66, in conjunction with the claim, again on p. 96, that a virtue of the final version of
the Statistical Hypothesis that it ‘appears to get the story about spatulas just right.’

into being in . . . whatever particular low-entropy highly condensed big-
bang sort of macrocondition it is that the normal inferential procedures
of cosmology will eventually present to us . . . ”. The Statistical Hypothesis
is that the “right probability distribution to use for making inferences
about the past and the future is the one that’s uniform, on the standard
measure, over those regions of phase space which are compatible with
whatever other information—either in the form of laws or in the form of
contingent empirical facts—we happen to have” (Albert 2000, 96).

What does Albert mean when he speaks of the “right” distribution? He
doesn’t tell us explicitly, but surely the expectation is that use of the Sta-
tistical Hypothesis will turn out to be in some sense successful: indeed,
Albert’s reason for introducing the Big Bang hypothesis is precisely that
without it, use of the microcanonical distribution will not be successful—
it would presumably retrodict of a glass of ice-water that’s been sitting a
while in a warm room that it contained less ice an hour ago than it does
now. Notice also that, as the last example illustrates, Albert expects that
we will be able to use the ‘right’ distribution to make inferences—success-
ful ones, presumably—about the past. It is worth pointing out how far
Albert is willing to push such inferences: the microcanonical-distribution,
suitably conditionalized, can be used not merely to pre- and retro- dict
entropic rather than anti-entropic behavior; it also applies to common-
place situations in which the Second Law is not much of an issue. Thus,
he thinks it validates inferences about whether there will be tomorrow or
was yesterday a spatula in someone’s bathtub:

Suppose that I come upon an apartment about which I happen to
have no direct empirical knowledge whatsoever other than the details
of its architectural design and the fact that it contains a spatula. . . .
If the distribution I use is one that’s uniform over those regions of the
phase space which are compatible both with everything I have yet been
able to observe of its present situation and with its having initially
started out with a Big Bang, then (and only then) there is going to be
good reason to believe that (for example) spatulas typically get to be
where they are in apartments only by means of the intentional be-
haviors of human agents, and that what human agents typically in-
tend vis-à-vis spatulas is that they should be in kitchen drawers. (Al-
bert 2000, 95)1
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The idea that the microcanonical distribution, conditionalized on our
knowledge, will be successful in guiding inferences about spatulas and the
like is, I shall be soon be arguing, a claim which if true is not obviously
so; certainly it goes well beyond what we find in the average statistical
mechanics text. Nonetheless Albert has good reasons for advancing this
idea. There’s no single passage where these reasons are set out explicitly
and in detail, but I think that a careful reading of the entire book will
make it plausible that there is a line of argument which is at least com-
patible with Albert’s discussion, and which leads naturally to the sugges-
tion before us. The argument goes as follows:

Begin with the observation that in statistical mechanics we routinely
cite probabilities in giving explanations: we explain the melting of this
piece of ice on the grounds that it had a high probability of doing so.
Notice that these probabilities are not the kind we find in quantum me-
chanics, where a complete specification of the state of a system is consistent
with the existence of non-trivial probabilities governing its future behav-
ior. Here, the complete specification of the state of a system (an isolated
system, anyway) determines all its future behavior. The probabilities here
are, then, not dynamical probabilities, probabilities of becoming; one
might think of them as probabilities of being: an statistical mechanics
probability is typically the probability that a system, given as being in a
certain macrostate, is at the same time in a particular microstate which
realizes that macrostate (or is in a particular family of microrealizations
of that macrostate). So speaking of ‘the probability of our ice melting’ is
a little misleading: what is extremely probable is that a piece of ice is in
one of the microstates that guarantee deterministically that it will melt.

Now if one calculates probabilities by conditionalizing the microca-
nonical (henceforth mc) distribution over the macrostate of the system, it
will turn out extremely probable as well that our glass of ice-water is in
one of the microstates that can have come only from a glass of water with
much less ice in it an hour ago. (Since this observation is a probabilistic
updating of a famous objection of Loschmidt’s, I will call it by Losch-
midt’s term: the Umkehreinwand, or Reversibility Objection.) Now this
doesn’t mean that we can’t also explain why in fact there was much more
ice in the glass an hour ago: we can, by describing the state of the glass
two hours ago. We are not in the business of explaining past events on
the basis of their futures, and there is no reason we need to be. Nonethe-
less, the Umkehreinwand raises a problem for our explanation. That is
because when we cited the high microcanonical probability that the ice
was in a destined-to-melt state as the explanation of its melting, we were
committing ourselves to the claim that events with an high probability by
that measure were reasonable to expect, or the claim that such events
happened most of the time, or both of these. Nowadays most of us have
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2. A recent discussion that attempts to shed some light on what it might be for the
statistical mechanics probabilities to be physically real—and which might reflect some
of what Albert intends here—is Loewer 1996. Loewer there argues that David Lewis’
well-known treatment of chances can be carried over to the present non-dynamical
situation. For Lewis, what makes e.g., the QM chances physically real, and usable in
explanations, is that they are definable in a natural way, and conform closely to the
actual frequencies. Loewer suggests that there is no real difference in the case of the
statistical mechanics probabilities.

I do not find this entirely convincing. Surely a crucial part of our sense that the QM
probabilities are ‘physically real’ is tied up with our sense that we need them in order
to give the dynamics—more precisely, to give the probabilistic ‘dynamics’ whose role
may reasonably be said to correspond to, or inherit, the role of dynamics in the deter-
ministic case; of course the mc distribution plays no such role in the deterministic case.
(It might be replied that in the Bohm interpretation the QM probabilities aren’t needed
to give the dynamics, but it is not so clear that that advocates of that interpretation
think of them as ‘physically real’ either.) My own view is that there is no room for a
notion of ‘physically real’ probabilities except where they can be shown to have a con-
nection to the dynamics. So—to move a little off our topic of classical statistical me-
chanics—one way to show the mc distribution physically real would be to derive it from
the stochastic QM probabilities, or the GRW probabilities that may underlie these.
This would be a project rather far from what Albert has in mind: it would neither

to some degree loosened the connection between explanations and expec-
tations: we are willing to explain the occurrence of a low-probability event
by quoting the probabilities. But there is this much connection between
the probabilities we use in explanations and what we expect to happen:
we demand that the probability measure we use in explanations comes
close enough to the actual frequencies that it would be reasonable to use
it as a guide in inference. The Umkehreinwand shows that the microca-
nonical distribution fails to meet this demand: however close it comes to
the actual frequencies with which a piece of ice is in a destined-to-melt
state, it is stunningly far from the actual frequency with which ice cubes
are in has-recently-been-water states.

Why not respond to the difficulty by weakening the connection between
explanation and expectation even further than we already have? Why not
say that, given that the microcanonical distribution does come close to the
frequencies that are relevant to the events we want to explain, there is no
reason to demand that it match the actual frequencies of events that we
don’t use it to explain? Albert doesn’t really address this question directly;
my guess is that he would see this as giving up on the idea that we are
explaining the melting of ice by citing microcanonical probabilities. The
use of probabilities in explanation requires that these probabilities have
some sort of physical reality, or at least physical significance; a probability
distribution that doesn’t even remotely approach the actual frequencies
seems a poor candidate for such reality, or significance, however we un-
derstand these rather vague phrases.2 Notice however that this argument
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validate retrodictive inference nor would it need to require a special initial state of the
universe. I do not know how likely such a project is to succeed: in Quantum Statistics
one uses ensembles just as in classical statistical mechanics—no one thinks to derive
these from the measurement probabilities—but perhaps one can get more from the
GRW probabilities.

3. Albert speaks of the ‘uniform’ distribution, rather than ‘microcanonical’. ‘Uniform’
perhaps puts off for a while confronting the implications of the current view that the
universe has infinite mass and presumably infinite kinetic energy. I think that sooner
or later, both his approach and mine will require a finite universe, else it may well turn
out that the kinds of Big Bang states we want to say are probable, and those we want
to say are improbable, will both have infinite measure. We might do this by identifying
the ‘universe’ with e.g., the past light-cone of the finite part that interests us.

I use the term ‘mcc distribution’ ambiguously. In its primary sense it is the mc dis-
tribution conditionalized over a certain macrostate—the Big Bang macrostate. This
distribution, by updating, leads to a probability distribution at each time t for the
possible microstates of the universe at time t, and when the context is clear, I will often
refer to each of these as the mcc distribution as well.

Note that when I speak of macrostates, or macroscopic descriptions, I mean a de-
scription on some level of detail that allow us to say that entropy increases as ice melts
in water: that is, such that a glass of ice-water is not in the same macrostate as the same
glass with all the ice melted, even if the energy and mass of the two is the same.

makes no distinctions between prediction and retrodiction: the ‘right’
probability distribution should not only predict that ice will melt; it should
also retrodict that a piece of ice in a warm room probably arose from the
melting of a larger piece of ice. And in expecting that the ‘right’ distri-
bution will deal with spatulas and the like, Albert is merely following out
what is implicit in the account already. Any probability distribution will
have something to say not only about the probabilities of macrostates
conditional on earlier or later macrostates, but of macrostates conditional
on less precisely described macrostates—the probability of there being a
spatula in the bathtub given that there’s one in the apartment. And if these
are wrong by a mere 2 or 3 orders of magnitude, in contrast to the truly
amazing numbers in the icewater example, this should be a serious concern
to us as well. As with the Umkehreinwand, to say that the mc distribution
is the ‘right’ one to use, although it is very wrong about spatulas and
bathtubs, raises the suspicion that by ‘right’ we man only ‘successful if
used in certain ways,’ and then the less it sounds as if we are explaining
why the ice melted by quoting its high probability of doing so, as opposed
to merely using an algorithm for predicting that it will melt.

Albert gives a plausibility argument that if there is a probability distri-
bution that does well with retrodiction, spatulas, and the like, it might
well be the microcanonical distribution conditionalized on the initial Big
Bang state of the universe (henceforth I shall call this the mcc distribu-
tion)3. But do we have any reason to think that the mcc distribution, or
indeed any natural distribution, will do well with them? In the passage I
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4. I learned the nice word ‘profile’ from Albert’s book: the profile of a distribution is
the list of how many particles (and of what type) are in each 6-dimensional momentum-
position ‘box’. The single-particle density functions we deal with later are smoothed-
out profiles.

quoted above, Albert raises the problem that the mc distribution over the
phase space available to my apartment will assign a higher probability to
the spatula’s being in the bathtub than in the kitchen drawer. The mcc
distribution is supposed to help with this: the idea is that, once we’ve
conditionalized on the Big Bang, all the stories in which the spatula ma-
terializes in the bathtub out of thin air get eliminated, and ordinary stories
about human intentions come to the fore: since people typically intend to
keep spatulas in the kitchen drawer, this gets the higher probability. But
this does not really solve the problem. The mc distribution over the gross
thermodynamic features of Crystal Lake on a day in early October will
predict that the gallon of water I just fished out will be in equilibrium—
cool, but free of ice: the mc probability of there being any ice at all in the
pail is extremely small. In fact, I might have noticed that there is already
a fair amount of ice in the lake; I would be foolish to bet against ice in
the pail at anything like the mc odds. Will conditionalizing on my knowl-
edge give a more accurate answer? Suppose I know the contents of every
part of the lake except what’s in my pail; this doesn’t make any difference
at all to the calculation: the enormous majority of states consistent with
all this knowledge place no ice in my pail.

Our problem with Crystal Lake is an instance of a familiar problem
with uniform distributions: you cannot make a reasonable guess as to the
contents of an urn filled with (labeled) red and black balls by beginning
with a uniform distribution over all possible assignments of red and black,
and then conditionalizing over samples taken from the urn. A uniform
distribution over the various possible proportions of red and black balls
will do much better, but the mc distribution over the positions and mo-
menta of the molecules in Crystal Lake is of course uniform over the
assignments of position and momentum to each molecule, not over the
different position-momentum profiles.4 Of course we haven’t yet invoked
the fact that we are conditionalizing over the Big Bang. What we now see
is that if doing so leads to reasonable probabilities here, these cannot be
accessed simply by taking the mc distribution, conditionalized on current
information, and then using the Big Bang to eliminate all histories with
counterentropic behavior. Rather, the implications of the Big Bang must
be more extensive and subtler than that: somehow conditionalizing over
it must turn the mc distribution into something closer to the uniform
distribution over profiles without undermining the crucial ways in which
statistical mechanics requires a distribution that is uniform not over pro-
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files but over microstates (e.g., in assigning the largest measure to the
equilibrium distribution). Perhaps this really is the case, but we have noth-
ing whatever to go on by way of calculation or observation that would
lead us to believe it. Our only reason to believe that conditionalizing over
the Big Bang will lead to reasonable probabilities is that this demand seems
an essential part of what might seem itself an inevitable way of looking at
statistical mechanics. What we need now is to see whether there is another
way of looking at the explanatory structure of statistical mechanics that
doesn’t demand so much.

2. Here is Larry Sklar discussing ergodic theory—the point however is a
general one:

Ergodic theory considers the question: Why does the natural proba-
bility distribution [the microcanonical measure] work? The answer it
gives is the proven equality of phase-averages to infinite time averages.
But there is a much simpler answer. And it is correct. And it is the
full answer. And it is totally independent of any ergodic results. It
goes like this: How a gas behaves over time depends on (1) its micro-
scopic constitution; (2) the laws governing the interaction of its micro-
constituents; (3) the constraints placed upon it; (4) the initial conditions
characterizing the microstate of the gas at a given time. (Sklar 1973, 210)

Sklar is surely right; there is a sense of ‘explanation’ in which we already
have, at least in principle, an explanation of all the facts of thermodynam-
ics. When we feel—as we surely do—that we don’t yet have an explanation
for the facts of thermodynamics, we must be looking for some above and
beyond our ability in principle to derive them from initial conditions and
dynamics. But what is it we are looking for? I want to suggest that cor-
responding to each part of Sklar’s explanation, the dynamics and the ini-
tial conditions, there is something more we are looking for than the facts
that Sklar cites.

In the case of the dynamics, it seems to me there is not much contro-
versy about what we want—although not much agreement about how to
find it. As Sklar reminds us, there is a sense in which, given the initial
conditions of say our glass of ice in water, we understand the processes
by which it melts. But it is also true that merely being able (in principle)
to trace the microscopic history of one particular case of a system ap-
proaching equilibrium leaves us without a perspicuous grasp of what is
going on. We want a story that applies to all cases of approach to equi-
librium, and this means that we want to be able to abstract from the mass
of detail, and describe what it is about the initial state of the ice-water in
this case that it shares with other instances in which ice-water went to
equilibrium—or indeed, went to equilibrium at this particular rate. There

https://doi.org/10.1086/367873 Published online by Cambridge University Press

https://doi.org/10.1086/367873


    133

are different strategies or research programs that propose to tell the story
in different ways, and they differ greatly in the extent to which they prom-
ise to give us a sense of knowing what is going on when our ice melts.
Among the least satisfactory are the accounts that appeal to the ergodicity
of an isolated system: here, one claims that almost every (mc) initial state
of the ice water is destined to spend most of its future in an equilibrium
state. In such an account, the only characterization offered of the initial
states that do go to equilibrium, as opposed to those that do not, is that
the former is one of the many (mc) states that are destined to do so; the
account leaves us in the dark about what physical feature distinguishes
one class of states from the other. I think this is a defect; in any case, this
approach has other serious problems, most notably its failure to say any-
thing about the speed with which systems go to equilibrium. For this rea-
son my own bet would be on the kind of story that Boltzmann offered
early on, and which is still the one we tell if someone asks us to tell them
quickly why ice melts: that an appropriate randomness in the initial dis-
tribution of the particles favors the collisions that drive the system in the
direction of equilibrium. My guess is that only an account that talks about
collisions in some detail can account for the known relations between
frequency of collisions and rapidity of approach to equilibrium; and I
think it is clear that such an account would do better than the ergodic
account in telling us what physical feature distinguishes the initial states
that evolve to equilibrium. It may be of course that this approach did not
pan out: it might be that we could find no physically natural feature shared
by the states that evolve to equilibrium at the appropriate rate. This would
be disappointing, but I don’t think it would be an explanatory disaster. It
is a disaster to have no explanation whatever for a certain phenomenon,
but in this case, as Sklar says, we do have one: what we are looking for is
a certain level of perspicuity, and there is no guarantee that Nature will
provide us with that.

Turning now to initial conditions, there is much less agreement about
what sort of explanation we are looking for. Here the explanandum is the
fact that the semi-isolated systems so often are in states which have that
feature, whatever it is, that leads to an approach to equilibrium at the
appropriate rate for that kind of system (as we just saw, this feature may
amount to nothing more than being one of those states which will evolve
to equilibrium at the appropriate rate). I will suppose with Albert that the
first step in explaining this is to say something about the initial state of
the universe, and I will also suppose that describing this initial state as a
Big Bang low entropy state is not enough by itself to account for our
explanandum: there is no reason to believe that every Big Bang low en-
tropy state will lead to a world that obeys the Second Law. We need to
find some other feature F of the early universe which (perhaps together
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with the fact that that universe was a Big Bang low entropy universe)
guarantees that virtually all semi-isolated systems are destined to go to
equilibrium. As in a similar context above, we can hope that F is a phys-
ically natural feature, one we can describe perspicuously, but we cannot
be sure it will be.

Now what should we ask for by way of explaining why the early uni-
verse had F? If ‘early’ means the very moment of the Big Bang, then of
course it is out of the question to explain the presence of F in terms of
earlier conditions that led to it. If ‘early’ means some time shortly after
the Big Bang, then we might be able to do better—there might be an
illuminating account of how some feature distinct from F, present in the
still earlier universe, gave rise to the presence of F, analogous to the ac-
count in inflationary theories of how one form of low entropy at the time
of the Big Bang gives rise to a later low-entropy state in which the low
entropy takes a different form. But if F is some not particularly natural
feature of the distributions of particle positions and momenta, we can
easily imagine that no such story would be forthcoming: and in any case,
we will only be pushing the explanatory story back. Sooner or later, it
seems, we must come to the point where we say that the universe started
off in a particular kind of state, and surely there explanation comes to an
end. What can it matter, then, what we say about initial conditions? Why
not say that they were such as to lead to second-law behavior and leave
it at that?

The answer has to do with the plausibility of our account. If we ever
knew with utter certainty that any of our theories was the whole truth
about its subject matter, then whenever that theory presented us with what
it labels a brute fact—an unexplained explainer—then there would be
nothing left for us to look for, except perhaps to formulate the fact as
perspicuously as we could. But we never know with certainty that any of
our theories is true, still less the whole truth. Every one of our theories is
in competition, if not with known alternatives, then with alternatives not
yet formulated, and a big part of the competition consists in comparing
what the theories treat unexplained.

Among the things any theory will leave unexplained are those ultimate
unexplained explainers, its fundamental laws. And here there is general
agreement that it matters greatly to the plausibility of a theory just what
its laws are. There is also agreement that among the considerations we
bring to bear here are some which might be called ‘subjective’ in the sense
that one cannot infer them straightforwardly from a statement of our goals
in doing science. Even if it is in some sense built into the nature of the
scientific enterprise that we prefer simple laws to less simple ones, it is not
built in that we measure simplicity in the particular ways we do: our par-
ticular standards are our own—one can easily imagine them as having
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5. In fact, one important strategy for explaining why it is that the quantum statistics
hold, in terms of the Bohm theory—that of Dürr, Goldstein, and Zanghi (1992)—is a
very close relative to the approach taken here. Dürr et al. show that, for any initial
wave-function w for the entire universe, most actual distributions of particles will evolve
in such a way that the quantum statistics are obeyed. ‘Most’ here is according to the
standard |w|2 measure, which they single out as the most appropriate one in this context
solely on the grounds of its naturalness.

been different, and there is apparently no way to justify them except to
say that one needs some standards, and these are ours. The same point
holds even more strongly for all the other criteria we use which seem to
have little to do with simplicity: for example, our preference for local, or
for geometrical, laws in physics.

There are other things a theory may leave unexplained. Theories often
postulate initial conditions, and these are unexplained explainers too; here
too it matters to the plausibility of a theory, as compared with its com-
petitors, what kinds of initial conditions it postulates. Given a choice be-
tween a theory that counts the initial conditions of the actual world as
extremely unusual among the possible initial conditions allowed by the
laws of the theory, and one in which these are more or less typical, we find
the latter to that extent more plausible; the first theory will leave us with
the feeling that there is a question—why is the actual world like this?—
which we would like to see answered; the second theory allows us to dis-
miss the same question by saying ‘Well, why shouldn’t it be?’ As in the
case of laws, our evaluations rest largely on ‘subjective’ criteria—that is,
criteria which we find natural to use, but which are not the only criteria
we might have used. These surface when we give specific content to the
word ‘typical.’ An initial condition is typical if many initial conditions are
like it, and it is up to us to choose the respects of likeness we have in mind
and what we will count as ‘many’—the latter choice being particularly far
from a routine matter when the family of possible initial conditions forms
a continuum.

In the case of statistical mechanics, formulating the most plausible ver-
sion of the theory we can has something of the nature of a five-finger
exercise: classical physics is no longer in competition with any of the the-
ories we take seriously. To see problems about the plausibility of initial
conditions in a context where they matter to our choice among theories,
one might look instead at the Bohm theory, as compared with its com-
petitors.5 But even if classical statistical mechanics is no longer in com-
petition, we can still ask (hoping perhaps that the answer bears on current
problems) how best to formulate it—in particular, whether the theory has
a formulation in which our world is typical, according to some natural
standard of typicality. There is a limit on how far we can go here. We
have very good evidence that our world was once in a state of lower en-
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tropy, perhaps that it originated in a Big Bang; if classical statistical me-
chanics is to shed any light on the theories we take seriously, it seems
likely it will need to include these facts about the world; but in any rea-
sonable sense of ‘most,’ most of the worlds allowed by classical physics
(or even contemporary physics) as physically possible do not arise from
low entropy Big Bangs. We can still ask, however, that our world work
out to be typical among worlds that arose from a low entropy Big Bang—
that many such worlds be like our world. Given the features of the world
we are trying to account for, it seems reasonable to ask that the respect
in which many initial conditions turn out to be like those in our world
leads to histories in which classical statistical mechanics holds—in other
words, we want there to be many initial conditions with the feature I’ve
been calling F. As for many, my suggestion is that we should read this as:
‘many, according to some measure that we find reasonably natural’. And
here the mc distribution seems as natural as one could hope for: it is in
one clear sense a uniform distribution (and there is good reason to hope
that whatever features are very common by the mc distribution will also
be common according to the other distributions that we likewise see as
‘uniform’—indifferent, unprejudiced), and of course it is a distribution
that is natural in the sense of being invariant under canonical transfor-
mations.

The microcanonical measure thus has several quite distinct roles to play
in the explanatory structure of statistical mechanics. We will want to show
that the class of states with the crucial feature F is large according to the
microcanonical measure conditionalized on the initial macrostate. But
the role the microcanonical measure is playing here is quite different from
the role it plays in characterizing equilibrium, or in explaining the ap-
proach to equilibrium. From the present point of view is a mistake to
conflate the three: for example, to note, as so many discussions do, that
statistical mechanics makes heavy use of the microcanonical distribution,
call that a ‘probability’, and then go on to ask what kind of probability
this might be—subjectivist, frequency, etc. The use of the microcanonical
distribution in explaining the initial state of the world, to the extent it fits
into any of these headings, is subjectivist: we are showing that our world
is not an atypical one when we measure typicality according to a principle
of indifference—of what we find indifferent. The use of the mc distribution
in characterizing equilibrium is perfectly ‘objective’, but it is somewhat
misleading to call it a probability: it is a mathematically definable measure
on phase space, and there simply are no competing theories about what
it is, any more than there are frequentist or propensity accounts of Le-
besgue measure. Finally, when we say that initial states of thermodynamic
systems typically go to equilibrium, or follow ergodic paths, the mc dis-
tribution doesn’t enter at all: we are talking about a finite frequency. To
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6. Notice another way in which the explanatory structure of statistical mechanics in-
volves a ‘subjective’ element: in saying the state of the early universe belonged to a
particular family which is large on the mcc distribution—the set of states with feature
F—we are inevitably ruling out that it, or the state of the universe at any later time,
belongs to some other families which are also mc-large, or which are large on the mc
distribution when we conditionalize it on some other facts about the universe. If the
initial state has F, then the final state of the world, if there is one, does not belong to
the set of states whose time-reversed evolution obeys the second law; and this set of
states is presumably large when we conditionalize the mc distribution by the macro-
scopic description of the world’s final state. Likewise for most (mc) states of the world
consistent with its current macroscopic description. So in saying that the initial state of
the universe had F, we are ruling out many competing and in a sense symmetric claims
we might have made instead. A choice was inevitable here: our universe can’t of course
belong to every mc-large class. Do we choose to explain statistical mechanics in terms
of initial conditions because we prefer explanations in terms of initial conditions, or
because nothing else has any chance of working? Both, I think: our preference for
explanations that account for what happens at a later time in terms of what happened
earlier is largely a consequence of the fact that in this world those are the only successful
macroscopic explanations.

call this frequency a probability seems to be overstating things, since we
haven’t so much as defined an event space, any more than we do when we
say that most people in the US live near cities.

In this account, the reason this piece of ice melted is that it was in a
state of the kind that deterministically leads to melting—a kind which we
hope to characterize in a more transparent way. Given that it was a piece
of ice, why was it in such a state? There are answers at different levels (one
might tell the microscopic history of the ice-cube); at the level of expla-
nation we have been considering, the answer is: because the universe was
in a certain kind of initial state—again one which we would hope to char-
acterize in a more transparent way. Although probabilities have a role to
play in this story, namely in allowing a certain claim about the initial state
of the universe to be a plausible one, they have no direct role to play in
explaining why ice melts. For this reason, no difficulty arises from the fact
that the mc distribution, conditionalized on what we know of the ice,
retrodicts that it arose from a more melted state: we are not in the em-
barrassing position of using the mc distribution to give explanations in
one time direction, but refusing to be guided by its assignments in the
other direction.6

The fact that mc-most states of our ice water encode the history of
behavior that violates the second law is supposed to create two kinds of
trouble for statistical mechanics: it is supposed to undermine the kinds
of explanations that statistical mechanics can offer, and it is (though less
frequently) held to undermine our confidence in the past having been as
we believe it to be. With respect to explanation, there is one respect in
which the present account abandons some terrain in the face of the
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Umkehreinwand: we do not say, as so many writers on statistical me-
chanics have wanted to, that the high mc probability of melting explains
the melting. On the other hand, the high mc probability of melting will
still play a crucial role in the present account, as it should in any account
that is true to the spirit of statistical mechanics, for (I will say more about
this in the next section) it will figure in the reason that mcc-most initial
states of the universe usually produce ice which goes on to melt. I think
that, at least as far as explanation goes, the Umkehreinwand holds no
further terrors for us. Sometimes one hears the suggestion that the diffi-
culty raised by reversibility for our notion of explanation lies in the fact
that we need to explain why the ice before us came from an earlier larger
cube of ice, rather than from a glass of warm water, and that the revers-
ibility objection blocks the most natural way to do so—namely by showing
it is currently in a state which has a high probability of coming from water.
I agree that this sort of explanation is blocked, but I think all that is needed
to give a complete explanation here at the level we are seeking is to explain
why it is that an isolated glass of warm water virtually never freezes (rea-
son: the initial state of the universe had feature F), and then to point out
the initial conditions that led to this block of ice—presumably a somewhat
larger block of ice.

As for the epistemological problems that the Umkehreinwand is sup-
posed to raise, it is true that if we want to assign a probability to the piece
of ice before me having arisen by spontaneous freezing, the present ac-
count does not endorse doing so via conditionalization on the mcc distri-
bution. That is not to say it allows no inference at all. The reasoning is of
the same humble variety by which, given no special information about the
next student who shows up for office hours, I believe rather strongly that
her Social Security number will not be 327–89–6310: If this is a Bayesian
inference at all, it is the ordinary ‘non-objective’ kind where one picks as
uniform a prior as seems appropriate to the situation at hand. More plau-
sibly, it is a frequency-based direct inference: believing that water spon-
taneously freezes at most once or twice in the whole history of the universe,
and having no contrary statistics for any subclass containing this piece of
ice, I let those statistics guide me in assigning a probability to the case
before me. As for the weightier issues of skepticism about the entire past,
the Umkehreinwand will have force here only if one accepts three doubtful
propositions: a) that we have, or should retreat to, an evidence base—a
set of known propositions—which we should use as a basis for assigning
probabilities to every other proposition by using some ‘objectively based’
probability distribution, b) that this evidence base contains no proposi-
tions about the past, c) that the appropriate distribution to use is the mc
distribution. Albert ends up rejecting b) and c). As I see it, there is no
reason to accept a), so b) and c) become moot. One reason to reject a) is
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7. A for Albert; B because I believe the view is really Boltzmann’s. The best-known
statement of B is probably section 18 of Ehrenfest and Ehrenfest 1959. Contemporary
writers in this tradition include Lebowitz, and—to some extent—Lanford and Grad.
Grad’s relations to this tradition are particularly complex and interesting, but I don’t
have space to discuss him here. Among philosophers, Paul Horwich and Huw Price
take closely related positions—in each case with certain differences.

this: we already have all sorts of opinions which don’t count as knowl-
edge—they are not held with anything near to certainty—but which none-
theless embody much of what we have learned about the world; indeed,
much of what our species has learned, since undoubtedly some of these
opinions have been selected for through the history of the species. To
retreat to our ‘evidence base’ is to voluntarily surrender information with
little hope of getting it back, and why should we want to do that?

3. Our two accounts—let us call them accounts A and B7—however dif-
ferent in their motivations, are in one respect pretty much in the same
boat: they both rest on empirical and mathematical claims that no one has
yet shown to be true. They are, however, in slightly different parts of the
boat, in ways that are worth spelling out.

The biggest point of difference concerns how much is required of the
initial state of the universe. Both accounts require it to be quite a low-
entropy state, since both accounts try to support the idea that entropy has
always been on the increase. Will this be enough? Or will we need to place
stronger requirements on the macroscopic description of the initial state
before it turns out that the mc distribution, conditionalized over that de-
scription, does what we want it to do? Because account B requires less
than A, it has a better chance of doing without such extra requirements.
And, in fact, the strategy that has traditionally suggested itself as a natural
way to go about B is one which, if it is successful at all, seems likely to do
without such requirements. The idea is to begin by justifying a kinetic
equation—an analogue of the Boltzmann equation—for each kind of ther-
modynamic system. What one hopes to show is that for any macrostate
of a semi-isolated system, the enormous mc-majority of microscopic re-
alizations of that macrostate are destined to proceed towards equilibrium,
at least for the lengths of time we commonly observe, at a rate which is
predicted by some kinetic equation appropriate for that kind of system,
and that macrostate. Something like this is, it seems to me, what most
people expect to turn out to be true; progress on establishing it has been
so far disappointingly slow, but by no means negligible. In particular, in
the case of dilute monatomic gasses, there is Lanford’s proof (summa-
rized in Lanford 1983) that, in the Grad limit (as atomic diameter de-
creases and number of atomic increases, with constant nd2) almost every
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8. I don’t think Sklar’s degree of scepticism about the Lanford result in Sklar (1993) is
quite justified. Sklar claims that taking the Grad limit here is not just a useful approx-
imation: that the irreversibility the theorem claims to show (via claiming to show that
most systems obey the Boltzmann equation) in some sense exists only in the limit. I
suggest the theorem does indeed tell us something about systems of finite size, namely
that, given the initial number-density function f1 of a gas, normalized to apply to sys-
tems with arbitrary numbers of particles, and given a degree of approximation e, then
mc-most gasses whose number-density functions are very close to f1, and which have
sufficiently many and sufficiently small particles, will evolve to have number-density
functions within e of the Boltzmann time-development of f1. To be sure, we don’t know
how small the particles have to be, but it is noteworthy that computer simulations of
hard-sphere collisions by G. A. Bird and others have produced the required behavior
with numbers of molecules in the mere thousands.

(mc) initial microstate compatible with any given single-particle number-
density distribution will obey the Boltzmann equation, at least for a (very
brief ) while. There are unquestionably problems with the proof—in par-
ticular in connecting what it shows to be true in limiting the behavior of
real systems—but I think the consensus is that the overall project is worth
pursuing, and it does in fact continue to be pursued.8

Suppose that Lanford’s proof can be generalized to hold for other ther-
modynamic systems, and that the Grad limit (or whatever limit is appro-
priate—different limiting theorems use different ones) turns out to be ap-
proached quickly enough so that actual systems count as near enough; we
are still far from showing either that real systems obey a kinetic equation
for a reasonable length of time, or that mc-most initial states of the world
compatible with any given initial macrostate will lead to a world in which
kinetic equations are generally obeyed. The two problems are closely re-
lated, and would both be solved if we could show that the past history of
a system is in the appropriate sense irrelevant to its future behavior. The
idea was already clearly stated by the Ehrenfests in 1912 (Ehrenfest and
Ehrenfest 1959); here is a contemporary statement by Joel Lebowitz:

“ . . . for systems with realistic interactions the domain Cab [of all
states which at t2 represent a system with macrostate Mb which has
evolved from a system with macrostate Ma at t1] will be so convoluted
as to appear uniformly smeared out in CM b. [the set of all states which
at t2 represent a system with macrostate Mb, irrespective of previous
history] It is therefore reasonable that the future behavior of the sys-
tem, so far as macrostates go, will be unaffected by their past history.
It would of course be nice to be able to prove this in all cases; . . .
[although we can only in ‘very simple situations’ (the reference is to
Lanford, and to some results on gas particles moving among an array
of scatterers)] this should however be enough to convince a ‘reason-
able’ person.” (Lebowitz 1999, 349)
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9. The limitation is essential: we do not want to claim that the states which encode an
anti-2nd-law past history are as frequent in Cab as they are in Mb. There is no obvious
incompatibility with the underlying time-symmetric underlying dynamics; nonetheless, it
hardly needs saying that the claim is one that requires proof. It is here that, even given
the hoped-for Lanford results, there remain substantial difficulties. On the other hand,
the suggestion of one referee that there is a difficulty about parallel time-development of
branch systems seems to me unfounded: if most states of most systems follow the Boltz-
mann equation (as opposed to its time reversal) then they increase entropy in the forward
time direction.]

The same property—a close relative of the property called ‘mixing’,
though limited to a particular class of states9—would straightforwardly
allow us to claim that mc-most initial states lead to the kind of 2nd law
behavior we observe: if we use the initial mc distribution to assign prob-
abilities to the various macroscopic trajectories of the world through time,
then for any point p along any trajectory, the conditional probability of
continued Second Law behavior throughout the next short interval of time
(given the macroscopic history of the trajectory up to p) can be calculated
by calculating the probability that each component subsystem will exhibit
Second Law behavior; but, by the mixing property, these probabilities can
be calculated by conditionalizing the mc distribution over the macroscopic
description of the component subsystem—and this predicts Second Law
behavior. Of course, as Lebowitz mentions, actually proving the appro-
priate mixing property seems a very distant goal. I might mention that, as
one searches the literature for work bearing on this goal, it is difficult to
escape the impression that a certain amount of confusion has prevented
people from focusing on it clearly. In particular, a damaging role has been
played by the conviction that once one has shown that mc-most systems
will obey a kinetic equation, one has thereby shown that such behavior is
‘probable,’ and that nothing else is needed. Likewise, the Gibbsian idea
that statistical mechanics is entirely about the behavior of ensembles has
led people to overlook even the possibility that one might want to prove
a kinetic equation involving the single-particle number-density distribu-
tions (as opposed to the quite distinct marginal probability f1 of the en-
semble).

In Albert’s approach, the situation seems to me somewhat less hopeful
(you might think I should say: even more hopeless). Here the mcc distri-
bution needs to predict not merely the approach to equilibrium but much
else too. For this reason, it is harder to begin with something we know,
or more or less firmly believe, about ordinary thermodynamic systems and
try to build on that. We can with some plausibility think of the universe
at the beginning as just one more thermodynamic system, and assume that
what we know or believe about ordinary thermodynamic systems applies
to it as well. So I think it would be reasonable to guess, or hope, that just

https://doi.org/10.1086/367873 Published online by Cambridge University Press

https://doi.org/10.1086/367873


 142

10. More precisely, we are trying to retrodict certain features of the intermediate ma-
crostate from certain features of the later macrostate: the kind of retrodiction we are
interested in for the universe involves e.g. retrodicting the history of the Earth from its
current macrostate, and these are really features of the whole universe’s macrostate.

as we predict the future of this glass of ice-water by conditionalizing the
mc distribution over its macroscopic parameters, so we can use the mcc
distribution to predict the future of the universe as a whole. The sort of
retrodiction Albert is considering takes a different form: here, what we
want to do for the whole universe is, by conditionalizing the microcanon-
ical distribution on the initial macrostate I, to be able to retrodict, given
a later macrostate L, what an intermediate macrostate M had been.10 The
problem with getting any support for this from the behavior of small
systems is that the only analogous cases we observe for them are in a sense
trivial. For ordinary systems, there is, given I, only one L we ever see: the
one (call it L*) which has overwhelming probability according to the mc
distribution conditionalized over I. And likewise only one M we ever see,
again the M* predicted with overwhelming probability. The predicted
probability of M* on L* (the ratio of the two numbers p(M* & L*) and
p(L*), both near 1), is then automatically very close to 1, and of course
we do see both M* and L*. The probability of M*, given some L� other
than L*, is non-trivial and interesting, but it makes no sense to ask how
well this fits our experience, since we never experience L�. Now Albert’s
retrodictions—where the Big Bang plays the role of I and M and L are
features of the whole state of the world like that of containing a spatula
in a bathtub at a certain place—mostly involve probabilities which are
surely less than 1. Even the main case that interests him—that of retrod-
icting of a bit of ice in water that it was previously more frozen—involves
an L (there being a piece of ice here) and competing M’s whose probabil-
ities on the initial Big Bang microcanonical probability, or on this con-
ditioned on what we know of the history of the world, are not close to 1.
Our success in the trivial cases where the predicted probabilities are nearly
1 cannot lend much support to Albert’s quite non-trivial claim about ret-
rodiction, as against competing, more conservative (and equally simple)
hypotheses—e.g. the hypothesis that the uniform distribution over ma-
crostates correctly predicts the approach to equilibrium (and which says
nothing one way or the other about retrodiction.)

If we set our sights a little lower, and ask only to find a distribution
that lets us predict the macroscopic state of the world, given appropriate
macroscopic information, there is something we can get out of Large
Number theorems. Call a world mcc-well-calibrated if in it we can suc-
cessfully use the mcc distribution, conditionalized over the macroscopic
history up to any t, to predict the macroscopic state at t�Dt: specifically
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11. A referee has asked me to say something about what happens in accounts like mine
(or Albert’s) if we make things a little bit more realistic and suppose there is a stochastic
element in the world à la GRW. To keep things as classical as possible, suppose that
occasionally particles jump, according to some probabilistic law. Then there are really
two questions to ask: does the presence of jumps make all postulates about the initial
state unnecessary, since the jumps will knock our isolated systems into ‘good’ states
anyway? and, given the presence of jumps, can it help to put any requirement on the
initial state, since the jumps will erase all memory of it anyway?

At first glance, it might seem that one cannot answer ‘No’ to the first question and
‘Yes’ to the second: a Yes answer to the second requires that the feature F that drives
future ‘good’ behavior holds in a large measure of states—large enough so a random
jump will take us from F-states to F-states; and this may seem to entail that random
jumps from not-F-states will take us to F-states too, so that the answer to the first
question is also Yes. But the reasoning here is questionable. If a gas is not in a good
state—say it is destined in the next few seconds to display anti-Boltzmann behavior—
it is not plausible that the jump of a particle on Mars will knock it into one; even a

if the proportion of occasions on which those outcomes at t�Dt which
are predicted with probability r come to pass is, in the long run, 100r%
(for all r). It then turns out we can show that mcc-most initial states of
the world lead to mcc-well-calibrated worlds.

Perhaps one might improve this sort of result. Conditionalizing over
all of past history is crucial to the argument, but one might hope that a
version of a Markov principle applied: that conditionalizing over the pres-
ent macrostate would give the same results. Likewise, one would wish to
see a version of the argument that applied, not to the long run, but to
some humanly significant time frame. Suppose these problems could be
gotten around; what would we have? The result we’re discussing is quite
general—most D worlds are D-well-calibrated, for any distribution D-;
for this reason I cannot see getting out of it anything stronger than the
sort of conclusion I argued for earlier: that, the mcc distribution being a
pretty natural one, we should not regard it as needing explanation if the
actual macroscopic trajectory of the world were well-calibrated with respect
to it. This however is no argument that the world is mcc-well-calibrated.
For that, one needs some access to what the mcc probabilities in fact are,
and how things have turned out with respect to them. This leads us back,
it seems to me, to the only domain in which we have any real evidence:
ordinary statistical mechanics. The uniform distribution over the current
macroscopic state of a system gives the right probabilities for the approach
to equilibrium—so we believe and hope one day to prove; if this agrees
with the mcc distribution over the state of the system, or over everything
we know about the world, well and good; but I see here no argument that
that particular distribution is well-calibrated for inferences about the past,
about spatulas, or anything else outside the usual domain of statistical
mechanics.11
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jump of another particle in the very same gas, though it plausibly will knock the gas
into a path that will ultimately bring it to equilibrium, need not put the gas into an F
state: changing the position of one particle may not force the gas to follow the Boltz-
mann equation for the next few milliseconds. It need not even be the case that most
jumps will put the gas into an F-state: even if F-states are very frequent in every neigh-
borhood of every point, jumps are not random throughout neighborhoods: they move
only one particle, and so are confined to hyperplanes in which the states of all other
particles are held fixed. So it seems that one might hope to say that the jumps are minor
perturbations—that they don’t undermine F, but they don’t produce it either.
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