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WEAK REFLECTION PRINCIPLE, SATURATION OF THE
NONSTATIONARY IDEAL ON �1 AND DIAMONDS

VÍCTOR TORRES-PÉREZ

Abstract. We prove that WRP and saturation of the ideal NS�1 together imply ♦{a ∈ [�]�1 :
cof

(
sup(a)) = �1}, for every cardinal � with cof(�) ≥ �2.

§1. Introduction. The reflection of stationary sets has been one of the most stud-
ied themes in modern Set Theory, as it shows up in basically all of its parts such as
the large-cardinal theory, forcing and combinatorial Set Theory, inner model theory
and determinacy.
We recall the especially fruitful study of reflection principles for stationary sub-
sets of sets of the form [κ]� . For example, one of the crucial observations of the
ground-breaking work of Foreman, Magidor and Shelah [3] is that the reflection of
stationary subsets of [κ]� reduces the class of posets that preserve stationary subsets
of �1 to the class of semi-proper posets. This result leads to the consistency of Mar-
tin’s Maximum, arguably the strongest forcing axiom for ℵ1 dense sets. Around the
same time, motivated also by some work of Baumgartner and Taylor, Todorčević
showed that the reflection of stationary subsets of [�2]� implies that the cardinality
of the continuum is bounded by ℵ2 [22], or written in modern notation, that

WRP(�2) −→ 2ℵ0 ≤ ℵ2.
Following some work of Veličković [26] and Foreman-Todorčević [4] that gener-
alize this to higher cardinals, Shelah has shown that reflection of stationary subsets
of arbitrary [κ]� implies that�ℵ0 = � for all regular cardinals � ≥ �2, or in short that

WRP −→ (∀� = cf(�) ≥ ℵ2) �ℵ0 = �.
So, in particular, WRP implies the Singular Cardinal Hypothesis [19].
In [3, Theorem 10], Foreman–Magidor–Shelah showed thatMM implies ��1 = �
for every regular cardinal � ≥ �2. However, it has been noted byWoodin in his well
known monograph [27] thatWRP, which is a consequence of MM, is not sufficient
for giving us this stronger conclusion �ℵ1 = � even for � = ℵ2.
In this paper we present some results appeared in [25]. We observe that the same
weak reflection principle for stationary sets,WRP, used by Shelah to obtain �ℵ0 = �,
will give us the stronger cardinal arithmetic �ℵ1 = � for all regular � ≥ �2 as long
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as we add to it the assumption that the ideal NS�1 of nonstationary subsets of �1
is saturated (see Section 4). This saturation, which is also a consequence of MM
([3, Theorem 12]), is in the sense that every family A of stationary subsets of �1
such thatA∩B is not stationary for everyA �= B inAmust have cardinality smaller
than ℵ2. In short,

WRP+ sat(NS�1 ) = ℵ2 −→ (∀� = cf(�) ≥ ℵ2) �ℵ1 = �.
The main result of these notes is involving a two-cardinal version of Jensen’s
Diamond, introduced by Jech. We show that this assumption will give us a stronger
result,

WRP+ sat(NS�1 ) = ℵ2 −→ (∀� = cf(�) ≥ ℵ2) ♦�2,�.
Moreover, supposing WRP and sat(NS) = �2, we get

♦�2 ,�
({a ∈ [�]�1 : cof (sup(a)) = �1}) .

We remark that by Matet (see Lemma 10.3 in [13]), if κ < � with � regular and
2<κ ≤ �ℵ0 , then ♦κ,� holds. So by Lemma 4.1, taking κ = �2, we have indeed
2<κ ≤ �ℵ0 for every regular � ≥ �2. See also [1]. So in these notes we give an
alternative direct proof to obtain ♦�2 ,�, but which is besides concentrated on the set
{a ∈ [�]�1 : cof(sup(a)) = �1}. Compare it also, for example, with Shelah’s result
in [20], where he showed that in particular, if 2�1 = �2, then ♦�2 (E�2� ) holds. Also
in [20], Claim 3.2, GCH does not imply ♦(E�2�1 ).
On the other hand, the referee pointed out that in the proof of [16], it is implicit
the following: Assume ♦(E�2� ), for every stationary set S ⊆ E�2� there is α ∈ E�2�1
such that S ∩ α is stationary, and Saturation of NS. Then ♦(E�2�1 ) holds.

§2. Notations, basic definitions and some of its properties. For a given set A and
a cardinal � such that |A| ≥ �, we will denote [A]� = {a ⊆ A : |a| = �},
[A]<� = {a ⊆ A : |a| < �}. For an ordinal �, let �↑<� be the set of increasing
sequences of � of cardinality < �.
Let �, � be two cardinals such that � ≥ � ≥ � with � uncountable and regular.
Definition 2.1. We say that a subset C ⊆ [�]<� is closed if for every � < � and
for every chain x0 ⊆ x1 ⊆ · · · ⊆ x� ⊆ · · · of elements of C with � < �, the union⋃
�<�

x� is also a member of C. C is unbounded if for every b ∈ [�]<�, there is a ∈ C
with a ⊇ b. A closed and unbounded set we will often call it just a club set. Observe
for example that [�]κ is a club in [�]<κ

+
for any infinite regular cardinal κ.

We call S ⊆ [�]<� stationary in [�]<� if for every club C ⊆ [�]<�, S ∩ C �= ∅.
We state a two cardinal version of Jensen’s diamond principle due to Jech [6] and
its equivalence with a (apparently) weaker form.
Let � > � ≥ � with � a regular cardinal.
Definition 2.2. Let S ⊆ [�]<�. Let 〈Aa〉a∈S be a sequence such thatAa ⊆ a for
all a ∈ [�]<�. Then 〈Aa〉a∈S is a ♦�,�(S)-sequence if for all A ⊆ �, the set

{a ∈ S : A ∩ a = Aa}
is stationary. So, the principle ♦�,�(S) states that there is a ♦�,�(S)-sequence. We
write ♦�,� when S = [�]<�.
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Definition 2.3. Let S ⊆ [�]<�. Let 〈Aa〉a∈S be a sequence such thatAa ⊆ P(a)
for all a ∈ [�]<�, and |Aa | < �.Then 〈Aa〉a∈S is a♦−

�,�(S)-sequence if for allA ⊆ �,
the set

{a ∈ S : A ∩ a ∈ Aa}
is stationary. So, the principle ♦−

�,�(S) states that there is a ♦
−
�,�(S)-sequence. We

write ♦−
�,� when S = [�]

<�.

It turns out, similarly to Jensen’s original diamond principle, that these two
versions are equivalent.

Lemma 2.4. Let � be an infinite regular cardinal. Then for every S ⊆ [�]�,
♦−
�+,�(S)↔ ♦�+,�(S).
Proof. We follow very closely the proof of Theorem 7.14 in Chapter II from
Kunen’s book ([11]). ♦�+,�(S) → ♦−

�+,�(S) is straightforward. So assume ♦
−
�+,�(S)

and we will conclude ♦�+,�(S).
Let 〈Aa〉a∈S be a ♦−

�+,�(S)-sequence. Since |Aa | ≤ �, let
Aa = {a� : � < �}.

We fix a bijection
f : �→ �× �.

Also for A ⊆ �× � and for every � < �, we define
proj�A = {α ∈ � : 〈�, α〉 ∈ A}.

It is enough to prove the following

Claim 2.5. There is � < � such that for every set X ⊆ � the set
{a ∈ S : X ∩ a = proj�f

[
a�
]}

is stationary.
In order to have Aa ⊆ a, remark that {a ∈ [�]� : f [a] ⊆ � × a} is a club. If we
define Aa = proj�f[a�] if f [a] ⊆ � × a, and Aa = ∅ otherwise, 〈Aa〉a∈S will be
our desired ♦�+,�(S)-sequence.
Before proving Claim 2.5, we will need next Subclaim, which is the place where
we actually make use of the ♦−

�+,�(S)-sequence.

Subclaim 2.6. For every X ⊆ �× �, the set
EX = {a ∈ S : there is � ∈ � such that X ∩ (�× a) = f [a�]}

is stationary in [�]�.
Proof of Subclaim 2.6. Let X ⊆ � × �. Since 〈Aa = {a� : � < �}〉a∈S is a

♦−
�+,�(S) sequence, the set

SX = {a ∈ S : ∃� < �(f−1[X ] ∩ a = a�)}
is stationary in [�]�. The setC = {a ∈ [�]� : f[a] ⊆ �×a} is a club, and so SX ∩C
is stationary. Since any set containing a stationary set is stationary, then it is enough
to show

SX ∩ C ⊆ EX .
Let a ∈ C and � < � be such that
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f−1[X ] ∩ a = a�. (1)

We have to show that
X ∩ (�× a) = f [a�] .

Let 〈	, 
〉 ∈ X ∩ (� × a). It is sufficient to see that f−1〈	, 
〉 ∈ a�. We are
assuming (1), so it is enough to verify that f−1[� × a] ⊆ a. But this is true, since
a ∈ C .
In order to prove the other inclusion, take 〈	, 
〉 ∈ f [a�] . So we need to prove
that 〈	, 
〉 ∈ X ∩ (� × a), i.e., we must check that 〈	, 
〉 ∈ X and 
 ∈ a. By our
supposition, we know that f−1〈	, 
〉 ∈ a� = f−1[X ] ∩ a, in particular 〈	, 
〉 ∈ X.
Again, since a ∈ C it follows that f[a] ⊆ �× a and 
 ∈ a. �
Now suppose Claim 2.5 does not hold. Then for every � < �, there exists X� ⊆ �
such that the set

{a ∈ S : X� ∩ a = proj�f
[
a�
]} (2)

is nonstationary.
We will try to get a contradiction with Subclaim 2.6 considering the set

⋃
	<�
({	}×

X	) ⊆ �× �.We remark that for a ∈ [�]� and � < �, if(⋃
	<�

{	} × X	
)

∩ (�× a) = f [a�] ,
then

α ∈ X� ∩ a ⇐⇒ 〈�, α〉 ∈ f [a�] ⇐⇒ α ∈ proj�f
[
a�
]
.

Therefore {a ∈ [�]� : (⋃	<�{	}×X	)∩ (�× a) = f [a�]} ⊆ {a ∈ [�]� : X� ∩ a =
proj�f

[
a�
]}, and so the set
G� = {a ∈ S :

( ⋃
	<�

{	} × X	
)

∩ (�× a) = f [a�]}
is also nonstationary as a subset of (2). The ideal of nonstationary sets of [�]� is
�-closed (Theorem 3.2 in [6]), so

⋃
�<�

G� = {a ∈ S : ∃� ∈ �
( ⋃
	<�

{	} × X	
)

∩ (�× a) = f [a�]}
is nonstationary, contradicting Subclaim 2.6. �
We state the Weak Reflection Principle (WRP):

Definition 2.7 (WRP). Let � ≥ ℵ2 be an arbitrary ordinal. We say thatWRP(�)
holds if for every stationary set S ⊆ [�]� , the set

{x ∈ [�]�1 : x ⊇ �1 and S ∩ [x]� is stationary in [x]�}
is stationary in [�]�1 . Then WRP states that WRP(�) holds for every � ≥ �2.
TheWeak Reflection Principle was introduced in [3]. We are using the equivalent
version provided by Feng and Jech ([2]). See also comments below Proposition 6.2,
page 119 in [8].
We will denote the ideal of nonstationary sets of �1 by NS�1 or even just by NS.
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Definition 2.8. NS is saturated if every collection W of stationary sets in �1
such that for every S and T inW , S ∩ T is nonstationary, has cardinality ≤ ℵ1.
In general, for an ideal I ⊆ P(A), we denote by sat(I ) theminimal cardinalκ such
that ifW is a an almost-disjoint family of subsets of A (i.e., for every X,Y ∈ W ,
if X �= Y then X ∩ Y ∈ I ), then |W | < κ. All along this paper we will suppose
sat(NS) = ℵ2.

§3. Saturation of NS�1 , WRP, and diamonds. In this section we prove our
principal theorem:
Theorem 3.1. The Weak Reflection Principle and the saturation of the ideal
NS�1 imply ♦�2,�

({a ∈ [�]�1 : cof (sup(a)) = �1}) for every cardinal � such that
cof(�) ≥ �2.
Proof. We shall also rely on the following result from Todorčević. He showed

♦�1 ,�2 holds without any further assumption over ZFC. Its proof is sketched in a
more general form in the Appendix for the convenience of the reader as it is written
in ([12]). See also [23], Lemma 43. This result has also been proved independently
by Shelah (see [21]). In addition, we show that we can obtain the extra condition
(b) here below.
Theorem 3.2 (Shelah, Todorčević (independently)). For every � with cof(�) ≥
�2, there exists a sequence 〈�a : a ∈ [�]�〉 such that:
(a) for everyW ⊆ �, {a ∈ [�]� : a ∩W = �a} is stationary,
(b) for every � < � of countable cofinality, {a ∈ [�]� : �a = ∅} is a club in [�]�.
We continue with the proof of Theorem 3.1.
From now on let 〈�a〉a∈[�]� be a fixed ♦�1 ,�-sequence with the properties of
Theorem 3.2. We also fix for each x ∈ [�]�1 a ⊆-continuous increasing chain
〈ax� 〉�<�1 of countable sets such that x =

⋃
�<�1

ax� .

Let Tx = 〈{ax� }�<�1 , <x〉 be the associated tree where the ordering is as follows:
ax� <x a

x
�′ iff � < �

′ and �ax
�′
∩ ax� = �ax� .

Take S ⊆ �1 with the property that
{ax� : � ∈ S}

is a chain in the tree order.
For each S with this property, let

F xS =
⋃
�∈S
�ax� .

Now, consider

Sx = {F xS : S is stationary in �1 and 〈ax� 〉�∈S is a <x-chain}.
Claim 3.3. F xS �= F xT implies that |S ∩ T | ≤ ℵ0, so in particular S ∩ T is
nonstationary.
Proof. We are going to prove it using the contrapositive: Suppose |S ∩ T | = ℵ1.
We will prove that F xS = F

x
T . So, we are going to show that F

x
S ⊆ F xT (the proof of

F xT ⊆ F xS is similar). It is enough to verify that for every � ∈ S, there is 	 ∈ T such
that �ax� ⊆ �ax	 . So, take � ∈ S. Since |S ∩ T | = ℵ1, there is 	 ∈ S ∩ T such that
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� > 	. Then, by definition of <x , �ax� = a
x
� ∩ �ax	 . In particular, �ax� ⊆ �ax	 , and we

are done. �
Corollary 3.4. Saturation ofNS�1 implies that |Sx | ≤ �1.
Proof. EverySx witnesses the existence of an antichain modulo the ideal NS�1 ,
and then apply NS�1 -saturation. �
Claim 3.5. 〈Sx〉x∈[�]�1 is a ♦�2,�-sequence.
Proof. LetW ⊆ �. We need to prove that :

GW = {x ∈ [�]�1 :W ∩ x ∈ Sx}
is stationary in [�]�1 .
Considering

EW = {a ∈ [�]� :W ∩ a = �a},
which is stationary (remember that 〈�a〉a∈[�]� is a ♦�1 ,�-sequence), we can apply
WRP(�). Then the set

E ′
W = {x ∈ [�]�1 : EW ∩ [x]� is stationary in [x]� and x ⊇ �1} (3)

is stationary in [�]�1 .

Subclaim 3.6. If x ∈ E ′
W , then the set S = {� ∈ �1 : ax� ∈ EW } is stationary

andW ∩ x ∈ Sx .

Proof. First: 〈ax� 〉�∈S is a <x-chain. Let �, �′ ∈ S such that � < �′.We need to
prove that �ax� = a

x
� ∩ �ax�′ . Since �, �′ ∈ S, we get:

�ax� = a
x
� ∩W

and
�ax
�′
= ax�′ ∩W.

Therefore

ax� ∩ �ax�′ = ax� ∩ (ax�′ ∩W ) = (ax� ∩ ax�′) ∩W = ax� ∩W.
Second: S is stationary in �1. Let C ⊆ �1 be a club. So, we would like to find
� ∈ C such that W ∩ ax� = �ax� . By our hypothesis, {a ∈ [x]� : W ∩ a = �a} is
stationary in [x]�. So, it is enough to show that 〈ax� 〉�∈C is a club in [x]�. Since
〈ax� 〉�∈�1 is already continuous, it is enough to prove that 〈ax� 〉�∈C is unbounded
[x]�. So, let b ∈ [x]�. Let b = {αn}n∈�. Then, for every n ∈ �, there is �n ∈ �1
such that αn ∈ ax�n . Since �1 is regular, then sup

n∈�
�n < �1. Then, since C is a club,

there is � ≥ sup
n∈�
�n such that � ∈ C . Therefore, b ⊆ ax� , and 〈ax� 〉�∈C is a club in

[x]�. So, there is � ∈ C such thatW ∩ ax� = �ax� .
Last:W ∩ x = ⋃

�∈S
�ax� . Two remarks:

Remark 1: Note that if a set A ⊆ �1 is unbounded in �1,
⋃
�∈A
ax� = x, since for

every ax� , there is �
′ ∈ A ∩ (�,�1). So, ax� ⊆ ax�′ , and x =

⋃
�∈A
ax� (it is clear that⋃

�∈A
ax� ⊆ x = ⋃

�∈�1
ax� ).
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Remark 2: Every stationary set in particular is unbounded, since for every � ∈ �1,
the interval (�,�1) is a club in �1.

So, coming back to our proof:

⋃
�∈S
�ax� =

⋃
�∈S

(
W ∩ ax�

)
=W ∩

⎛
⎝⋃
�∈S
ax�

⎞
⎠ =W ∩ x. �

�
We have then obtained ♦�2,�, but we can say something more. We make some
remarks about the stationary set E ′

W = {x ∈ [�]�1 : {a ∈ [x]� : W ∩ a = �a} is
stationary in [x]� and x ⊇ �1} described in (3).
We are going to show that there is a stationary set E ⊆ E ′

W ∩ {a ∈ [�]�1 :
cof (sup (a)) = �1} and so ♦{a ∈ [�]�1 : cof (sup (a)) = �1} holds.
Without loss of generality we can suppose W �= ∅, since we can assume that

∅ ∈ Sa for all a ∈ [�]�1 . Observe that the set D = {a ∈ [�]�1 : a ∩W �= ∅} is
a club.
Then the set E = E ′

W ∩ D is stationary. We claim that cof (sup (a)) = �1 for
every a ∈ E.
Suppose it is not the case and take x ∈ E such that if � = sup(x) then cof(�) = �.
Also, since � ∩W �= ∅, the set {a ∈ [�]� : a ∩W �= ∅} is a club in [�]� . Since
� ∈ E ′

W , there is a ∈ [�]� such that a ∩W = �a and a ∩W �= ∅, contradicting (b)
of Theorem 3.2. �
Therefore, we have the following Corollary, which was found, as mentioned in
the Introduction, by Shelah in [16].
Corollary 3.7. The Weak Reflection Principle and the saturation of the ideal
NS�1 imply ♦�2{� < �2 : cof � = �1} .
Actually, and thanks to the referee’s observations, we can get a stronger andmore
general result:
Theorem 3.8. Suppose that NS�1 is saturated and � is a cardinal greater than
or equal to �2 such thatWRP(�) holds. Then for any finite set of regular cardinals
r ⊆ {� : �2 ≤ � ≤ �}, ♦�2,�(Xr) holds, where Xr = {x : ∀� ∈ r(cof(sup(x ∩ �)) =
�1)}.
Proof. Fix a finite set of regular cardinals r ⊆ {� : �2 ≤ � ≤ �}. For � ∈ r, let

〈H�	 : 	 < �1〉 be a partition of E�� into ℵ1 disjoint stationary sets. Then by (the
proof of) Lemma 10.4 in [13], we may find a ♦�1,�(Kr)-sequence, whereKr consists
of all a such that sup(a ∩ �) ∈ H�sup(a∩�1) for all � ∈ r.
Let 〈�a〉a∈[�]� be a ♦�1,�(Kr)-sequence, and like in the proof of Theorem 3.1, use
it to define in the same way the sequence 〈Sx〉x∈[�]�1 .
LetW ⊆ �. It is only left to show that the set

GW = {x ∈ Xr :W ∩ x ∈ Sx}
is stationary in [�]�1 (the rest of the proof is similar to the one of Theorem 3.1).
Considering

EW = {a ∈ Kr :W ∩ a = �a},
which is stationary in [�]� , we can apply WRP(�). Then the set

E ′
W = {x ∈ [�]�1 : EW ∩ [x]� is stationary in [x]� and x ⊇ �1} (4)
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is stationary in [�]�1 . It is enough to show E ′
W ⊆ GW . Take x ∈ E ′

W . To show
W ∩ x ∈ Sx is similar as in the proof of Theorem 3.1.
Now suppose that �1 ⊆ x =

⋃
i<�1

xi and each xi is countable, and S = {i ∈ �1 :
xi ∈ Kr} is stationary. Then clearly for each i ∈ S, there is j ∈ S with i < j and
sup(xi ∩ �1) < sup(xj ∩ �1) (and therefore sup(xi ∩ �) < sup(xj ∩ �) for all � in
r). Hence x ∈ Xr . Note that x has the extra (not needed but remarkable) property
that for each � ∈ r, it contains a club subset of sup(x ∩ �). �

§4. Some last remarks on cardinal arithmetic. We remark some consequences of
WRP + sat(NS) = ℵ2 on cardinal arithmetic. We have the following Proposition:
Proposition 4.1. WRP and saturation ofNS�1 imply

��1 =
{
� if cof � > �1,
�+ if cof � ≤ �1.

Proof. By Conclusion 1.4(1)(a) of [19], WRP implies the Strong Hypothesis. By
Theorem 6.3(1) of [17], this yields that for every cardinals � > κ,

cof ([�]�1 ) =
{
� if cof � > �1,
�+ if cof � ≤ �1.

We cite without proof a Lemma by Jech and Prikry ([9, 10]), and also can be
found in [7] (Theorem 22.16):
Lemma 4.2. Let I be a 
-complete ideal on �1. If 2ℵ0 < ℵ�1 , then

2ℵ1 ≤ max{2ℵ0 , sat(I )}.
We cite also a result from Todorčević .
Theorem 4.3 (Todorčević). WRP(�2) implies 2ℵ0 ≤ ℵ2.
Proof. See, for example Theorem 37.18 in [7]. �
We know that 2ℵ1 = ℵ2ℵ1 . Then assuming WRP(�2) + sat(NS) = ℵ2 and using
previous Theorem and Lemma, we have

2ℵ1 = ℵℵ1
2 ≤ max{2ℵ0 ,ℵ2} = ℵ2.

Therefore
ℵℵ1
2 = ℵ2.

Since �κ = 2κ · cof ([�]κ) for every cardinal � > κ, we have:

cof ([�]�1 ) =
{
� if cof � > �1,
�+ if cof � ≤ �1. �

We thank the referee for the suggestions for this proof, which is a lot shorter than
our original one.

§5. Appendix.
Proof of Theorem 3.2. Let 〈C�〉�∈E�� be a club guessing sequence of � (see [18]);
i.e., for every � ∈ E��
(1) o.t.C� = �,
(2) supC� = �,
(3) for every club C ⊆ �, there is � ∈ E�� such that C� ⊆ C.
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We denote by C�(n) the n-th element of C�.
Consider x a countable subset of �.
We define the oscillation of x

oscx : � → 2
as follows: oscx(n) = 1 iff x ∩ [Csup x(n), Csup x(n + 1)) �= ∅.
For every real r ∈ 2�, we define its section in n, rn ∈ 2� as

rn(k) = r(2n(2k + 1)).

Remark 5.1. Given a countable collection of reals 〈rn〉n∈N and a fixed value
a0 ∈ {0, 1}, we can obtain a unique real r ∈ 2� whose sections are the respective
{rn}n∈� and r(0) = a0.
We recall that for every infinite cardinal κ, we have 2κ = (κ+)κ : On one hand
2 ≤ κ+ → 2κ ≤ (κ+)κ. On the other hand, by Cantor’s Theorem, 2κ ≥ κ+.
Therefore, (κ+)κ ≤ 2κ = (2κ)κ ≤ (κ+)κ.
Then we can fix a bijection

ϕ : 2� → [�1]� ∪ {∅}
such that the characteristic function of � is sent to ∅, i.e., for the constant function
�� : � → 2 such that ��(n) = 1 for all n ∈ �, we have ϕ(��) = ∅.
We define the function ∗ : 2� → [�1]� as

r∗ =
⋃
n∈�
ϕ(rn).

For x ∈ [�]� , let �x : x → o.t.(x) be the canonical bijection. So, let
�x = �−1x [osc

∗
x].

We are going to show that 〈�x〉x∈[�]� is a ♦�1,�-sequence as appeared in [12].
Let f : �<� → � be a function, and takeW ⊆ �. So, we have to find x ∈ [�]�
such that
(1) f[x<�] ⊆ x, and
(2) W ∩ x = �x .
Let �↑<� be the collection of finite strictly increasing sequences of ordinals smaller
than �. In �↑<� we define a partial order: for every s, t ∈ �↑� , we say that s < t if
s = t ∩ (max s + 1).
Definition 5.2. We call a tree T ⊆ �↑<� a Namba tree if for every node s ∈ T ,
the set

{α < � : s�α ∈ T}
is unbounded in �.

We shall need the following consequence of the standard Namba lemma (see
[4,12,14,15]). A proof can be found after Lemma 3.2 in [24].
Lemma 5.3. For every function f : �<� → �, there is a Namba tree T ⊆ �↑<�
such that, for every node s ∈ T , it exists:
• an ordinal �s > max(s), and
• xs ∈ [max(s)]�
such that
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(1) s < t implies �s < max t,
(2) s < t implies xs = xt ∩ sup({� + 1}�∈xs ),
(3) if b = 〈sn〉n∈� is a branch of T , then xb =

⋃
n∈�
xsn is closed under f and

xb ⊆
⋃
n∈�
[max sn, �sn ),

(4) the set {min(xs�α\�s) : α ∈ � ∧ s�α ∈ T} is unbounded in � for every s ∈ T.
So, for f, we take a Namba tree T as in previous Lemma.
In order to build an element x with the desired properties, we are going to build
a branch b along the tree T .
We proceed by induction in order to build step by step the branch b. At the same
time, we build also a real r by constructing its sections (see Remark 5.1), and such
that

oscx = r.

We declare
r(0) = 1.

Let s0 be a minimal element of T . In each step n, we will build sn and rn−1 (so, in
the case n = 0 we have not built yet any section).
Let 〈N�〉�∈� be an increasing sequence of elementary submodels of cardinality

ℵ1 of a certain 〈H�,∈, T, . . .〉, with � sufficiently large and such that N� ∩ � is an
ordinal for every � ∈ � (see, for example Remark 4.3.2 in [5]).
Observe that for every � ∈ � and for each s ∈ T ∩N� , using the properties of our
Namba tree and the elementarity of N� , we can have xs and �s such that

sup(xs ) < �s ≤ N� ∩ �. (5)

Note also that
C = {� < � : � = N� ∩ �}

is a club in �. Pick an ordinal � < � such that C� ⊆ C .
Suppose that rk is defined for every k < n and that we have already defined sn
for m ≤ n.
We are now going to build sn+1 and rn.
Let

rn = ϕ−1(�xsn [W ∩ xsn ]).
Remark that r(p) is already defined for p ≤ n.
We have three cases:

Case 1. r(n) = 1.
We are going to choose sn+1 in such a way that

xsn+1 ∩ [C�(n), C�(n + 1)) �= ∅.
By property 4 of Lemma 5.3, for C�(n) there is α ∈ � such that s�n α ∈ T
and min xs�n α\�sn ≥ C�(n).We have the risk that min xs�n α\�sn is not smaller than
C�(n + 1). In order to avoid this, we use the elementarity of NC� (n+1). Then, by
elementarity, there is sn+1 ∈ T ∩NC� (n+1) such that min(xsn+1\�sn ) ≥ C�(n). By (5),
sup(xsn+1) < NC� (n+1) ∩ � = C�(n + 1), since C� ⊆ C .
Case 2. r(n) = 0 and there exists m > n such that r(m) = 1, and for every

i ∈ [n,m), r(i) is defined and r(i) = 0.
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We are going to choose sn in a way that, for every i ∈ [n,m),

xsn+1 ∩ [C�(i), C�(i + 1)) = ∅
and

xsn+1 ∩ [C�(m), C�(m + 1)) �= ∅.
Again, this choice is possible by the cofinality condition 4 of Lemma 5.3, which
gives us the existence of an α ∈ �, such that the node s�n α ∈ T verifies

xs ∩ [C�(n), C�(m)) = ∅ and minxs�n α\�sn ≥ C�(m).
The elementarity of the structure NC� (n+1) gives us a similar s ∈ T ∩ NC� (n+1) but
also verifying, by (5) sup(xsn+1) < NC� (n+1) ∩ � = C�(n + 1), since C� ⊆ C .
Case 3. r(n) = 0, and there ism > n such that r(m) is not yet defined and r(i) = 0

for every i ∈ [n,m).
Since r(k) is defined for every k ≤ n, then, there is a natural number k ≤ n such
that r(k) = 1 and for every p ∈ (k, n], r(p) = 0.We can find by the elementarity of
NC� (k+1) a node sn+1 ∈ NC� (k+1) such that xsn+1 ⊆ C�(k + 1).
This construction finished, our real r is defined everywhere, and oscxb = r. Now
we can verify that �xb =W ∩ xb :
�xb = �

−1
xb

[
osc∗xb

]
definition of �xb ,

= �−1xb [r
∗] by construction of r,

= �−1xb

[⋃
n∈�
ϕ (rn)

]
definition of ∗,

= �−1xb

[⋃
n∈�
ϕ
(
ϕ−1 (�xsn [W ∩ xsn

]))]
construction of rn,

= �−1xb

[⋃
n∈�
�xsn

[
W ∩ xsn

]]
since ϕ is a bijection,

=
⋃
n∈�
W ∩ xsn by property (2) of Lemma 5.3,

=W ∩ xb.
We now prove (b).
Remark that since � is an ordinal of cofinality �, the set

E� = {a ∈ [�]� : osca = ��}
is a club in [�]�, where �� denotes the characteristic function of the set �, i.e., the
element r of 2� that is constantly equal to 1.

Claim 5.4. For every a ∈ E� , �a = ∅.
Proof. Take a ∈ E�. In particular, the sections of the oscillation are also the
characteristic function of�, i.e., for every n ∈ �, (osca)n = �� . Then, for every every
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n ∈ �, ϕ((osca)n) = ϕ(��) = ∅, which implies that osc∗a =
⋃
n∈�
ϕ((osca)n) = ∅.

Therefore �a = �−1a [osc
∗
a ] = ∅. �

�
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