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abstract

Data from insurance portfolios and pension schemes lend themselves particularly well to the
application of survival models. In addition to the traditional actuarial risk-rating factors of age,
gender and policy size, we find that using geodemographic models based on postcode provides a
major boost in explaining risk variation. Geodemographic models can be better than models
based on pension size in explaining socio-economic variation, but a model using both is usually
better still. Models acknowledging heterogeneity tend to fit better than models which do not.
Finally, bootstrapping techniques can be used to test the financial applicability of a model, while
weighting the model fit can be used to address concentration risk.
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". Introduction

1.1 Actuaries have been long used to weighting their calculations by
policy size to take account of socio-economic differentials amongst
policyholders. So-called ‘amounts-based’ measures routinely produce lower
mortality rates than their lives-based equivalents, due to the tendency for
wealthier policyholders to live longer. This paper describes three different
approaches to allow for socio-economic differentials within the structure of
a statistical model. These three approaches can even be combined to
provide a robust model of socio-economic differentials for financial
applications.

1.2 Cox (1972) introduced the application of survival models to life table
problems. The proportional hazards model introduced the idea of a force of
mortality which is a constant proportion of the baseline hazard for some
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reference population. Such models use data at the level of the individual,
rather than modelling counts of events for grouped data. The original Cox
model assumed a constant proportion, so that changes in mortality
differentials with age could not be modelled, nor did it estimate the baseline
hazard. The original Cox model was primarily useful for testing hypotheses
(e.g.: “Does Group A have different risk from Group B?’’), but it has been
extended for actuarial use in a number of ways since.

1.3 At its core, the simplest model of constant hazard assumes that the
lifetime of an individual is distributed exponentially. This does not allow for
age-related increases. Using a transformation of the exponential distribution
of future lifetime produces more usable models for actuaries. For example,
Aitken et al. (1989) show that the extreme value distribution arises from
taking the natural logarithm of a power transformation of an exponential
variable. This equates to a Gompertz mortality hazard (see Appendix 4), and
can be fitted simply using a package like R.

1.4 However, survival models based on transformations of the
exponential distribution have two major drawbacks. The first is that the
power transformation has to be applied equally to all lives, which is the
same thing as saying that all lives have to have the same age-related
change in mortality. This is not the case for males and females, nor is it
typically true for different socio-economic groups or most other risk
factors. Indeed, Strehler & Mildvan (1960) showed that the stronger the
initial mortality differential between two populations, the faster those
differentials would narrow with age. This so-called compensation law of
mortality means that a model with multiple rating factors needs different
rates of ageing.

1.5 The second drawback of the transformation approach, at least as
implemented in standard software like R, is that it needs to assume
observations from birth in order to fit into a linear model-fitting algorithm.
Data used by actuaries, whether in life insurance or in pension work, are
almost always left-truncated, i.e. the lives in question only become known
to the actuary many years after birth, when the individual first enters
observation under a contract.

1.6 Here we will use an extension of these models which allows
mortality differentials to change with age, and also permits the handling
of left-truncated data. We will work with the log-likelihood function
directly, thus liberating ourselves from the constraint of needing a linear
model-fitting algorithm, and opening up a wider choice of patterns for
mortality.
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Æ. Data, Validation and Preparation

“These budget numbers are [...] for the fiscal year that ended February the thirtieth.’’
United States President George W. Bush, 11 October 2006

2.1 The data used in this paper comprise 777,111 distinct lives in a
combined portfolio of life office pensioners and members of defined benefit
pension schemes. The life office pensioners are mainly purchasers of pension
annuities arising from money purchase pension arrangements, and are in the
slight majority. There were 118,494 deaths observed in the combined
portfolio, and several million life years of exposure from the late 1990s to
mid-2007.

2.2 Data preparation is an essential part of any model building process,
and no model is valid unless the data are reliable. There are four stages of
data preparation described here: (1) data extraction; (2) data validation;
(3) deduplication; and (4) profiling.

2.3 We prefer direct extraction from the administration or payments
system. This is easy for companies to arrange, as it is usually a
straightforward database query. Data which have been pre-processed for an
actuarial valuation system are rarely suitable, as this tends to hide valuable
data features for statistical modelling. We take direct extracts of data items
without any kind of calculation being performed, such as exposed to risk or
age rounding. In addition to being easier for the client to extract a date of
birth instead of calculating an age, this also avoids mistakes in interpretation,
such as ‘age next’ v. ‘age last’ or ‘age nearest’. Perhaps, best of all, this
approach also does not tie us into a particular methodology, as it would if we
asked for particular calculations for age or exposed to risk. Furthermore,
the direct data contain more information; in the case of date of birth, this
not only gives age, but also cohort and even season of birth.

2.4 Experience data from life insurers and pension funds are essentially
a longitudinal study: at the start the exact date of policy commencement is
known, as are the date of birth, the gender, the pension size and other
features. The insurer or pension fund then makes regular payments
throughout time, keeping the address and other details reasonably up to date.
Finally, the insurer receives timely notification of death, either from the
bank, when the account is frozen for probate, or else when reported by a
surviving relative or partner. Such detailed, well-maintained data is therefore
ideal for survival models. We find that data quality is best typically where
some kind of regular payment is made, either paid as a pension or collected
from policyholders in the form of a premium. We generally find that data
quality is poor in other circumstances, e.g. pensions in deferment. Spouse
mortality data are usually only reliable once a spouse’s pension has
commenced payment after the death of the main life.

2.5 The above comments about regular maintenance aside, nevertheless,
it is essential to check the validity of the basic data. Basic sense checks are
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always advisable, since even the best administration system has the
occasional pieces of nonsensical data. Dates need to be first checked for basic
validity: no 30 February or 31 June, for example. The relationships of dates
also need to be checked; for example, date of birth � commencement date �
date of death. Where a commencement date is not available, the date of the
first pension payment (or first premium collection) makes a good substitute.
Other obvious checks apply: that there is a gender code, for example; and
that the pension paid is positive.

2.6 Further data inspection is also essential, since poor data can often
pass basic validity checks. A common example is 1 January 1901 � it is a
perfectly valid date of birth to have, but if several hundred lives in a portfolio
have it, it is more likely to be a false date of birth, entered during a
migration to a new computer system. The examination of the most frequently
occurring data items is also instructive. For example, an excessively
common date of death might indicate mass processing due to a certification
exercise, suggesting that the date is that of processing, not of death itself.

2.7 In this paper we will use mortality experience data from pensions in
payment from United Kingdom insurers and defined benefit pension
schemes. A feature of such data is the presence of duplicate records in the
data set. By ‘duplicate’ we mean that the same person has more than one
policy or benefit record. For life company annuities, it is common for people
to have two or more annuities, and this is particularly common for
wealthier policyholders. Multiple annuities can arise for customer-driven
reasons, such as phased retirement, or for structural ones, such as different
parts of the pension having different escalation rates and having to be
managed separately. Pension schemes have similar duplication issues,
although usually not to quite the same extent as annuity portfolios. A
pensioner can have multiple records in the same scheme, due to multiple
periods of service, for example. Another possibility is having both a main
pension (because the member worked for the employer) and a spouse’s
pension (because their deceased spouse worked for the same employer).

2.8 Duplicates are a major problem for statistical models, due to the
requirement for assumed independence between deaths. If we do not remove
duplicate records, then, at the very least, the standard errors on the
parameter estimates will be incorrect. We thus need to turn the set of benefit
records into a set of independent lives. One might hope that this could be
done by means of a unique client identifier or National Insurance number. In
practice, however, National Insurance numbers are not always routinely
entered onto the administration system, or else dummy values are entered.
Furthermore, servicing staff often find it easier simply to re-key a person
onto a system than to try to link a second benefit to the original client record.
The major drawback of this is that the same person will then have two or
more different client records, making the system client identifier an imperfect
means of deduplication. To deduplicate the benefit records, therefore,
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requires a unique key which can be created from the ordinary data. A good
first start is a combination of date of birth, gender, surname and postcode.

2.9 To complicate things, however, re-keyed clients will often have
subtle changes in name format or even mis-spellings. One way to handle
variant spellings of surnames is to use the metaphone encoding system
(Phillips, 1990). We have used an extension called double metaphone
encoding, which can also handle non-Anglo-Saxon surnames. A further
requirement is to strip out punctuations, such as apostrophes and hyphens
intelligently. Examples of this sort of approach are shown in Table 1.

2.10 We can make our deduplication key stronger still by including the
first initial of the first forename. We do not usually use the full forename
field, since this is not rigorously entered: some records have the forename;
some have the forename and any middle names; some just have the first
initial of the forename. It is also necessary to recognise and strip out any
titles which have been included in the forename field. Table 2 shows examples
of how this system will match a variety of records with differently
formatted forename fields.

Table 1. Examples of matching surname fields using double metaphone
(Phillips, 1990)

Record Surname Initial Comment

1 Richie G
2 Ritchie G Metaphone match on surname in record

3 Mohammed A
4 Muhammed A Metaphone match on surname in record 3
5 Mohammad A Metaphone match on surname in record 3
6 Mahamad A Metaphone match on surname in record 3
7 Muammad A Metaphone match on surname in record 3

8 O’HARE M
9 OHARE M Metaphone match on surname in record 8

10 DE-SANTIS J
11 Desantis J Metaphone match on surname in record 10
12 D’Santis J Metaphone match on surname in record 10

Table 2. Examples of matching forename fields; the following five records
are all identified as the same person according to the forename matching

algorithm

Surname Forename(s) Comment

Richards Stephen First initial only used
Richards Stephen J. First initial only used
Richards S. First initial used
Richards Mr S. Title skipped, first initial used
Richards Rev Stephen J. Title skipped, first initial only used
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2.11 Deduplication must be done intelligently to build up the most
complete profile of the life being modelled. This means adding benefit
amounts together, and picking a valid postcode from the two or more fields
on offer. As with the validation stage, it is useful to tabulate the most
frequently occurring data items. For example, in one portfolio we have seen
(not included here) that the most common surname turned out to be
SPOUSE, which immediately alerted us to the fact that spouse records had
been mistakenly included in the extract. The calculation of the largest
numbers of duplicates eliminated can also be useful; in one portfolio which
we have seen, the repeated use of dummy data in the administration system
was quickly identified, due to very high duplicate merging.

�. Geodemographic Profiling

3.1 Actuaries in the U.K. are increasingly making use of so-called
geodemographic models of mortality, primarily driven by postcode. The
market for bulk annuities has long been driven by postcode for rating the
socio-economic group, and now products marketed directly to individual
consumers are priced using the postcode (Legal and General, 2007).

3.2 Postcodes were introduced to the U.K. by the state-owned Royal
Mail for the purpose of automating the sorting of mail. U.K. postcodes are
alphanumeric, and have covered the entire country since 1974. The full list is
available electronically from the Royal Mail as the ‘Postcode Address File’
(PAF), and U.K. postcodes are copyrighted. Postcodes have been widely
adopted beyond their original mail-sorting purpose, including consumer
profiling for marketing, and premium calculations for general insurance and
bulk annuity pricing.

3.3 There are around 1.8m postcodes in the U.K., covering around 27m
postcode addresses, of which around 1.6m postcodes are residential. A
postcode can cover a whole street, part of a street, or even a single building.
Around 200,000 postcodes are for commercial addresses only, and some are
non-geographic (such as mailbox addresses). In practice, an average of
around 15 residential households are covered by a single postcode, providing
a high degree of granularity in determining where a person lives, just from
their postcode alone. In most cases a combination of a house number and a
postcode is enough to deliver a letter to the correct address.

3.4 Postcodes in the U.K. usually take the form of one of the following
patterns: A9 9AA, A99 9AA, A9A 9AA, AA9 9AA, AA99 9AA or AA9A
9AA, where A signifies a letter and 9 a digit. Unfortunately there is no check
digit, so there is no way of knowing if a conformant postcode is actually
valid, short of looking up a database of current valid postcodes. The first one
or two characters are called the postcode area, of which there are 124 in the
U.K. This corresponds to a geographic region, and thus can be used to
determine the broad location of the address. This can be used for modelling
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regional variations in mortality, although, in practice, we usually find that
there is little or no regional variation after allowing for socio-economic
factors. The first half of the postcode is known as the postal district, and it is
a common mistake to think that this contains all the usable data for
postcode profiling. It does not. With an average coverage of 8,800 households,
the postal district is much less homogeneous than the full postcode, and is far
less useful for modelling mortality differentials as a result.

3.5 A number of commercial profilers will map U.K. postcodes onto a
smaller number of socio-demographic profiles, as listed in Table 3. Each
system has descriptive names and profiles for each category; for example, the
postcode EH4 2AB is Mosaic type 02 (‘Cultural Leadership’). These socio-
demographic profiles were developed primarily for direct marketing
purposes, but, as we shall see, they are particularly effective at predicting
mortality differentials. When dealing with real data, postcodes are sometimes
missing or fragmented (which we will assign to type 98), or else valid, but
for a commercial address (which we will assign to type 99). Thus, when using
the Mosaic system, we will have 63 type codes (61+2), whereas we will have
59 type codes using the Acorn system (57+2) and 47 (45+2) with FSS. The
Royal Mail typically recodes or reassigns postcodes continuously, so that any
geodemographic profiling needs to be updated annually (as do any models
based on these profiles).

3.6 Similar postcode-driven systems apply in other countries, including
the United States of America (zip code), Canada (postal code) and the
Netherlands (postal code). As in the U.K., these countries use hierarchical
systems, so a given postcode can be used to give both regional and socio-
economic information. Similar modelling techniques can be applied to other
countries, but the full address is usually required for socio-demographic
modelling, not just the postcode. For example, the German Postleitzahl
89079 tells you that the policyholder is in the area of Donaustetten in Baden-
Wu« rttemberg, but this covers hundreds of households, and cannot, on its
own, be used for socio-economic profiling. The analogy would be just using
the ‘EH4 2’ part of the full postcode ‘EH4 2AB’; the former is called the
postcode sector, and covers hundreds of households. This would be of limited
use for socio-demographic profiling, although postcode sectors form the
basis of the simpler Carstairs scores (McLoone, 2000) for assessing
deprivation, and they work best when the sector is relatively homogeneous.

Table 3. Some geodemographic profilers in the U.K.

Name Provider Type codes Sample type code and description for EH4 2AB

Acorn CACI 57 13 ‘Prosperous Professionals’
CAMEO Eurodirect 57 5B ‘Young & Older Single Mortgagees’
FSS Experian 45 E13 ‘Fully committed funds’
Mosaic Experian 61 A02 ‘Cultural Leadership’
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ª. Limitations and Pitfalls of Geodemographic Profiling

4.1 It is important to note some pitfalls in using geodemographic
profiles. A particular issue is where a block of business has missing postcodes
for a particular reason. One example is where pensions are paid to a trustee
for onward forwarding to the pensioner, and so the insurer holds no
addresses for the pensioners. This gives us the situation where a specific and
distinct class of business is not profiled for a systematic reason, rather than
having profiles missing at random. In this case, people with missing postcodes
could have markedly higher mortality because a missing postcode was simply
a marker for bulk annuity pension scheme business instead of true individual
money purchase annuities. Another example is a life office where annuitants
were given the head office address upon death. The vast majority of deaths,
thus, had a non-residential postcode, and therefore ended up in category 99,
which (unsurprisingly!) proved to be a category of very high mortality. There
may also be a connection with lower mortality, as foreign and overseas
addresses will not be profiled, and so end up coded 98. If wealthier
annuitants are disproportionately likely to live overseas, or if death reporting
is less prompt than in the U.K., then code 98 will be predictive of low
mortality. Commercial services are available which can reformat address
databases to the PAF format, which corrects and updates postcodes, as well
as filling in missing ones where the address is recognised. Such address
‘cleaning’ is, inexpensive and is a cost-effective way of boosting the power of
a geodemograhic model of mortality.

4.2 One way to detect these sorts of data problems is to calculate the
Cramer’s V statistic for all categorical variables. Cramer (1999) defines a
statistic measuring the strength of association or dependency between two
categorical variables. It takes the value zero for no association, and the value
100 where two variables are perfectly associated and knowledge of one
variable completely specifies the other. We include the death status as a
categorical variable as well, which helps to identify the sort of situation
described in {4.1.

4.3 Table 4 shows the results of all two-way associations between the
categorical variables for the life office data set. The Cramer’s V statistic is
symmetric, so only the values in the upper right of the matrix are shown. The
diagonal is not shown, as all the values are 100 (a variable is always
perfectly associated with itself). In a clean data set such as this one, the
strongest association should usually be between the year of birth and the
death status (people with earlier years of birth should be more likely to be
dead). If the association between the death status and the type were larger,
this would be evidence of one of the systematic issues in {4.1. Interestingly,
we can see a relatively weak association between a pension size band and a
geodemographic type (9.7), which is, perhaps, surprising, as we might expect
them both to be proxies for the socio-economic group. In general, we find
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that a model with age, gender and geodemographic type can fit better than
one driven by age, gender and pension size. However, for the sort of reasons
outlined in {4.1, a model which incorporates both geodemographic type and
pension size will usually be better than using either variable on its own.

4.4 It is instructive to examine why geodemographic profiles might be
more powerful predictors of pensioner mortality than pension size. In each
case, the variable in question is merely acting as a proxy for the true
underlying drivers of mortality differentials: smoking, diet, drinking and
other health behaviours (or absence of them). In the presence of information
on smoker status in a model, for example, we would expect a much reduced
impact of proxies for socio-economic group, such as pension size or
geodemographic type. When the geodemographic profiles result in a better
fitting model than one based on pension size, this simply tells us that they are
a better proxy for the underlying differentials. Indeed, we tend to find that
the importance of pension size reduces as new risk factors are added to a
model. For example, the addition of a factor for birth cohort will often
further reduce the role of the pension size, since earlier birth cohorts tend to
have smaller pensions than later generations. This reducing role of pension
size is echoed by Richards & Jones (2004), who rated pension size as only the
fifth most important rating factor in a model of annuitant mortality.

�. Methodology

5.1 Following Macdonald (1996a, 1996b, 1996c) we will be modelling
using the instantaneous mortality hazard, known to actuaries as the force of
mortality, as this makes better use of the data than q-type rates. To illustrate
this, consider two groups, each consisting of four lives alive at the start of
the year. During the course of the year one life dies in each group, making
the estimated mortality rate q̂A ¼ q̂B ¼

1
4 in both cases. If the death in group A

Table 4. Cramer’s V statistic for life office pensioner data set (all ages)

Gender Region code Size band Status Type

Birth year 21.6 3.1 11.4 54.4 4.0
Gender 4.8 16.1 12.4 5.6
Region code 5.9 6.4 20.6
Size band 17.4 9.7
Status 10.4

Source: Own calculations using life-office annuitant data

The status variable takes the value 1 for a death, zero otherwise. The type variable is Experian’s
Postcode Mosaic Type (61 levels, plus two further levels for commercial addresses and unrecognised
postcodes). The region code is the U.K. region extracted from the postcode (124 levels). The
relatively high association between type and region codes comes from the group of unrecognised
postcodes, which are assigned a dummy type code of 98 and a dummy region code of XX.
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occurs at the end of January, the estimated force of mortality is m̂A ¼
1
3 1
12
¼ 12

37.
If the death in group B occurs at the start of December, the estimated force
of mortality is m̂B ¼

1
31112
¼ 12

47. As this simple example shows, working with the
force of mortality means that we can use all the information available, and will
usually result in a better model. In contrast, working with q-type rates throws
away the information on the time of death, and is, therefore, less sophisticated.

5.2 In this paper we will not model the mortality of groups, however,
since we have detailed information on each individual life. As we will see
later, this gives us far greater power in modelling mortality than can be done
using a GLM for Poisson counts. Therefore, we need to define some simple
results at the level of the individual. We start with the hazard rate at age x, mx,
which is given by:

mx ¼ lim
h!0þ

1
h

Pr death before age xþ h j alive at age xð Þ: ð1Þ

5.3 The probability of surviving from age x to age xþ t, tpx, is given by:

tpx ¼ e�HxðtÞ ð2Þ

where HxðtÞ is the integrated hazard function:

HxðtÞ ¼

Z t

0
mxþsds: ð3Þ

5.4 For each life i of n lives, we have: (1) an entry age xi; (2) a time
observed ti; and (3) an indicator variable, di, for the state of the life at age
xi þ ti. The variable di takes the value zero on survival and one on the event
of interest. This event can be death (as in this paper) or any other decrement
of interest, such as critical illness claim, lapse or surrender. The likelihood
function L , is therefore given by:

L /
Yn

i¼1
ti
pxi

mdi
xiþti

ð4Þ

and taking the natural logarithm of L gives us the log-likelihood function ‘:

‘ ¼
Xn

i¼1

�Hxi
ðtiÞ þ

Xn

i¼1

di log mxiþti
: ð5Þ

5.5 Thus, when applying survival models to individual data, it simply
suffices to specify the structure of the hazard rate mx, and subsequently to
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derive HxðtÞ. When fitting any model, we choose the parameter values to
maximise the log-likelihood function in equation (5). We have used Longevitas
for all the models in this paper, which uses derivatives-based methods for
speed and reliability in maximising log-likelihoods.

5.6 Many implementations of survival models at the individual level
deal with age-varying mortality through a variable transformation. This
demands that the lives be observed from the outset, i.e. from birth if
chronological age is to be used directly. In contrast, people tend to start life
insurance contracts or pension benefits when they are well into adult life. The
lifetimes observed are called left-truncated, since the observation starts at
age xi and we have no data on deaths and exposure prior to this age. Equally,
when an extract of mortality data is taken, not all lives will be dead at the
extract date. Such data are called right-censored, since all that can be said of
the mortality process is that it will occur at some time after ti years.
Survival models based on transforming the exponential distribution can
handle right censorship easily enough, but left-truncation usually poses a
problem. However, by dealing directly with the log-likelihood in equation (5),
we can automatically handle left-truncation.

�. Mortality Laws

6.1 A major advantage of fitting a statistical model is that smoothness
is built in, and that there is no need to graduate the resulting fitted rates
separately. This is known as graduation by mathematical formula. One

Figure 1. Diagram of survival-model setup

The time observed ti, is shown in grey, while deaths are marked with a cross �. Since people do
not usually enter into life insurance contracts at birth, observations are left-truncated, i.e. lives
start being observed at age xi > 0. The upper case is an example of right-censored data, as death
happens after the end of the observation period.

Applying Survival Models to Pensioner Mortality Data 267

https://doi.org/10.1017/S1357321700001720 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700001720


approach to defining mx is to use penalised splines, which can be done in
one or more dimensions, as described in Currie et al. (2004). This is a flexible
means of capturing different shapes of mortality patterns. However, in this
paper we will assume that mortality follows some sort of law, which has the
benefit of requiring fewer parameters.

6.2 Some of the models in Table 5 are related to the Cox model. For
example, the Gompertz model can be expressed as a proportion of a
baseline hazard, albeit possibly as a time or an age-varying proportion. The
Makeham model, however, cannot be expressed in terms of a baseline
hazard, due to the non-multiplicative eE term. The models in Table 5 are
mainly non-linear in their nature, although this has not led to any real
difficulties in fitting them. Here we have used derivatives-based methods for
optimising the log-likelihood, with an explicit formulaic calculation of the
information matrix for inversion to calculate the covariance matrix. For
converting into mortality rates qx, for use in actuarial systems, we use the
exact formula:

qx ¼ 1� e�Hxð1Þ: ð6Þ

6.3 Note that the naming convention in Table 5 is different from what
might be seen elsewhere. For example, the model identified above as
Makeham-Beard was proposed by Perks (1932). We have opted: (1) to use
the term Makeham wherever the constant eE appears; (2) to name the simple

Table 5. Some mortality laws and their corresponding integrated hazard
functions HxðtÞ

Mortality law mx HxðtÞ

Constant hazard ea tea

Gompertz (1825) eaþbx ðebt
� 1Þ
b

eaþbx

Makeham (1859) eE þ eaþbx teE þ
ðebt
� 1Þ
b

eaþbx

Perks (1932)
eaþbx

1þ eaþbx

1
b

log
1þ eaþbðxþtÞ

1þ eaþbx

� �

Beard (1959)
eaþbx

1þ eaþrþbx

e�r

b
log

1þ eaþrþbðxþtÞ

1þ eaþrþbx

� �

Makeham-Perks (1932)
eE þ eaþbx

1þ eaþbx
teE þ

ð1� eEÞ

b
log

1þ eaþbðxþtÞ

1þ eaþbx

� �

Makeham-Beard (1932)
eE þ eaþbx

1þ eaþrþbx
teE þ

ðe�r � eEÞ

b
log

1þ eaþrþbðxþtÞ

1þ eaþrþbx

� �
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logistic form
e�

1þ e�
after Perks; and (3) to use the term ‘Beard’ wherever the

logistic form has a so-called heterogeneity parameter r, whose role and
derivation will be explained next.

6.4 One way to re-write the Gompertz law is zebx, where z ¼ ea. If the
members of the population are heterogeneous, then a so-called frailty model
has each individual i with their own personal value of zi. If the zi are
assumed to be drawn from a gamma distribution and fixed throughout life,
then the population hazard rate is that of the Beard model, even when the
hazard of each individual is Gompertz. Similarly, heterogeneous individual
Makeham mortality results in a population hazard rate follow the Makeham-
Beard law. These frailty-type arguments were first advanced by Beard
(1959).

6.5 These results mean that the shape of the mortality law at the
population level need not be the same as the mortality law acting on each
individual. This phenomenon could be turned around and used as a test for
the presence of unexplained heterogeneity; if individual mortality is assumed
to follow the Gompertz law, for example, yet the Beard model fits the overall
data set better, then one could conclude that there is further unexplained
variation not covered by the model fitted. As a model is developed, the
significance of the Beard parameter r, could be used as a guide as to whether
there are further risk factors to be found. Note that this is not a given;
there are other structures which can lead to the Beard law, of which a
gamma-distributed frailty is just one. For example, Vaupel & Yashin (1985)
give a number of detailed examples where heterogeneity can cause
unexpected observed effects.

6.6 Appendices 1 and 2 give proofs of the Beard-type laws arising from
heterogeneity in a for both the Gompertz and Makeham laws. Appendix 3
shows how the Makeham-Beard law arises from a cascade process, where the
force of mortality is related to the number of accumulated defects in an
organism. Appendix 4 shows that a Gompertz force of mortality is equivalent
to assuming that the future lifetime is a random variable from the extreme-
value distribution, while a future lifetime from the logistic distribution
equates to a special case of the Beard law.

�. Modelling Mortality Differentials

7.1 One of the key goals for actuaries in assessing risk is to group
people into pools of similar risk. We are using here a model for the mortality
of each individual, and we do this by assuming that each life i has its own
specific parameters which describe its own combination of risks. In the
context of a Gompertz law for mortality, this means ai and bi for life i instead
of a group value of a and b. Thus:
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ai ¼ abaseline þ
Xm

j¼1

zijaj

bi ¼ bbaseline þ
Xm

j¼1

zijbj

ð7Þ

where there are m components (factors) to the overall risk, each aj and bj is
a parameter for a particular risk (aj) and its interaction with age (bj), and zij is
a binary indicator variable taking the value one when life i has risk factor j
and the value zero otherwise. Note that we have assumed an age interaction
for each main effect in the model purely for simplicity. For example, in a
model with risk factors for both gender and smoker status:

ai ¼ abaseline þ zi;maleamale þ zi;smokerasmoker

bi ¼ bbaseline þ zi;malebmale þ zi;smokerbsmoker :
ð8Þ

7.2 Note that the model is structured so as to measure differences from
a baseline profile. In the model specified in equation (8), the baseline is a
female non-smoker, while the model parameters measure male mortality as a
departure from the female baseline, and smoker mortality is measured as
a departure from the non-smoker baseline. The zi;male are zero-one indicator
variables for whether life i is male, and the zi;smoker are similar zero-one
indicators for whether a life is a smoker. The advantage of this structure is
that there is no minimum group size required, which means that there is no
minimum number of lives required and no upper limit to the number of risk
factors which can be investigated with this approach. This is particularly
useful for portfolios which are, by their very nature, small, but where there
are rich data available on each individual life. This approach also provides
substantial benefits where the data set is rich in individual details, but the
number of events is relatively small. A good example would be in term-
assurance portfolios, where this approach could be useful for a reinsurer
trying to make commercial pricing decisions.

7.3 However, many potentially useful rating factors are not easy to use
directly. For example, there are 124 postcode regions in the U.K., so fitting
this directly in a model would require 123 parameters (one is absorbed into
the baseline). Similarly, the Mosaic type has 63 levels, so using this directly
as a socio-economic factor would require 62 parameters. In each case, we
would have an unwieldy and over-parameterised model.

7.4 One solution is to group complex factors into simpler meta-factors,
say to divide the postcode regions among three broad regional groupings, or
to put the 63 Mosaic types into four or five lifestyle groups. There is a variety
of ways of assigning these groups, but the one which we will use in this
paper is to find the optimal assignment by fitting hundreds (if not thousands)
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of alternative models, and choosing the best-fitting one. This has the
advantage of removing any human subjectivity from the groupings. The
means whereby we assess the goodness of fit is the Akaike Information
Criterion (AIC) (Akaike, 1987), which is defined as:

AIC ¼ �2‘þ 2n ð9Þ

where n is the number of parameters used in fitting the model. A lower
value of the AIC indicates a better-fitting model, as minimising the AIC is
equivalent to maximising the log-likelihood function for a given number of
parameters. This does carry the risk of some sub-groups finding themselves in
the ‘wrong’ final group by random variation. If there is additional knowledge
of which sub-groups belong together (or should be kept apart), then such
constraints can be added to the search algorithm for minimising the AIC.

7.5 This approach can be used both for categorical factors � such as
region, socio-economic group, product type, etc. � and for ordinal factors,
such as pension size and year of birth. By splitting the pensioners into a large
number of equal-sized bands, the same process of minimising the AIC will
give us the optimum break-points for pension-size categories. We impose an
additional restriction on such ordinal factors, namely that the resulting
groups must be contiguous ranges. Thus, for a categorical factor like Mosaic,
if type codes 50 and 52 are in the same group, then type code 51 is free to
be in a different group. In contrast, for an ordinal factor like year of birth, if
the years 1920 and 1922 are in the same group, then 1921 must be as well.
Treating a factor as categorical will always give at least as good a fit as
treating it as ordinal, but it is important to respect the additional structure of
ordinal variables.

�. Modelling Considerations

8.1 The first consideration is the date from which to start the modelling.
Where deaths data have been archived, for example, modelling should start
at that date and not before. For example, if a pension had a commencement
date in 1980, but all deaths were archived from the administration system in
2000, then modelling must start at the later date to avoid under-estimating
mortality. Equally, one has to be careful about the choice of end date for
modelling due to the tendency for delays in death reporting. For example, if
an extract of data was taken in June 2007, one might want only to model
mortality as far as end-2006, to ensure that late-reported deaths were not a
material issue.

8.2 Before fitting a model, it is necessary to consider the nature of the
data. For example, we find that the mortality of pensioners below age 60
does not exhibit the simple and straightforward patterns of mortality above
age 60 � see Figure 2. For this reason we typically truncate exposure (and
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exclude deaths) prior to age 60 when modelling pensioner mortality. We also
find that mortality data are often unreliable above ages 95 to 100 � see again
Figure 2 � so, typically, we truncate exposure (and exclude deaths) after age
95 for this data set. We also often find that some lives are suspiciously long-
lived, such as when numerous pensioners are apparently older than age 105.
We remove such cases from the exposure calculation entirely, since their
apparent high age is often an artefact of the way in which records have been
entered or stored on the administration system. An example would be an
orphan’s or guaranteed pension which had been set up on the payment system
with a date of birth of 01/01/01, simply in order to fill a required field. If
such cases are not excluded, mortality at older ages will be under stated.

æ. Model Results

9.1 We decided to model mortality from 2000 onwards in order to be
confident about the quality of recent data, and we stopped modelling at the

Source: Own calculations using mortality experience of a portfolio of life-office pensioners

Figure 2. Force of mortality for pensioners between ages 30 and 110

Here are the observed crude forces of mortality (�), together with fitted values from the P-
spline regression. Only the mortality between ages 60 and 95 shows regular behaviour suitable
for a mortality law, with evidence of data-quality problems above age 95.
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end of 2006, as this was felt to be the latest date not materially impacted by
delays in death reporting. We start by fitting a model with age and intercept
only, i.e. there is no attempt to model sub-categories of risk. As a practical
aside, we must remember that it is the difference in the AIC which is
important, not the absolute value; a difference of two (say) in the AIC counts
as statistically significant.

9.2 Table 6 shows the results for fitting a simple model with age only.
One of the first features of interest is that adding a parameter does not
always improve the model fit; the Makeham model has a higher AIC than the
Gompertz model. Thus, just by comparing these two models there seems
little support for a material Makeham constant component to mortality. The
exception lies with the Makeham-Beard model, which has a better AIC
compared to the Beard model. Since the only difference between the two lies
in the Makeham parameter, this might suggest that a constant component to
mortality can best be identified in the presence of the heterogeneity
parameter r.

Source: Own calculations using mortality experience of a portfolio of life-office pensioners

Figure 3. Distribution of lives and exposure

The discontinuities at ages 60 and 65 mark the two most common ages at retirement. The
exposure line is always less than the number of lives; the exposure is the time lived (or waiting
time) during the year of age, and is therefore lower, due to the fractional years of life lost due to
death or from entering the observation after a birthday.
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9.3 Another interesting feature is how much better the logistic forms �
Perks, Beard, Makeham-Perks and Makeham-Beard � compare to the
others. The Perks law is a simple twist on the Gompertz law, and both
involve only two parameters, yet the Perks model has an AIC which is 124
lower, a significant improvement merely from restructuring the same number
of parameters into a different functional form.

9.4 The final feature of note in Table 6 is that the Beard model has an
AIC 182 lower than the Gompertz model, from which it is derived using a
frailty approach (see {6.4 and Appendix 1). Similarly, the Makeham-Beard
model has an AIC 185 lower than the Makeham model from which it can be
derived using the same approach (see {6.4 and Appendix 2). If we accept
the interpretation of the Beard r parameter as an indicator of unexplained
variation, this suggests that there is significant unexplained heterogeneity
present. Of course, we know what one of these sources is � gender � since
we have deliberately excluded it from the model.

9.5 Figure 4 shows the fitted force of mortality and the crude observed
forces of mortality for two of the models in Table 6. The crude rates show a
near-linear increase in log(mortality) � i.e. an exponential increase in mortality
� over a wide age range, followed by a decelerating rate of increase in
mortality. This deceleration is a feature of many populations, and is referred
to as late-life deceleration by Gavrilov & Gavrilova (2001). Models which
reproduce this feature � Perks, Beard, Makeham-Perks and Makeham-
Beard � tend to fit better than models which do not. Note that neither of the
illustrated models in Figure 4 would be regarded as ‘good’� the Gompertz
model has long runs of over fitting and under fitting, while the Makeham-
Beard model shows evidence of a consistent bias towards under-stating the
force of mortality. However, the deviations between the observed rates and
the fitted curves are smaller for the Makeham-Beard model, which is what
gives it the lower AIC value in Table 6. We can now turn to a more realistic
model incorporating different values of a and b, according to gender.

Table 6. Initial model with age only

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 386742 0 2
Makeham 386744 2 3
Perks 386618 �124 2
Beard 386560 �182 3
Makeham-Perks 386620 �122 3
Makeham-Beard 386559 �183 4

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006.
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9.6 As expected, Table 7 shows that adding gender to the model has
made a very large improvement; the AIC has dropped by between 1799 and
1918, depending on the model. Table 7 also shows many of the same features
as Table 6. The one most of interest to us is that the Beard model has an
AIC 63 lower than the Gompertz model, from which it is derived using a

Source: Models fitted in Table 6

Figure 4. Comparison of Gompertz and Makeham-Beard models for
age only

Exposure and deaths above age 95 have been excluded, as evidence in Figure 2 suggested that
such data were unreliable. Delays in death reporting are felt to be minimal, since the modelling
was done up to end-December 2006, at least six months before the extract of data was taken.

Table 7. Model with age and gender, i.e. Age*Gender

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 384824 0 4
Makeham 384826 2 5
Perks 384765 �59 4
Beard 384761 �63 5
Makeham-Perks 384762 �62 5
Makeham-Beard 384728 �96 6

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006

Note that the AICs can be compared directly with those in Table 6.
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frailty approach. Similarly, the Makeham-Beard model has an AIC 96
lower than the Gompertz model (or 98 lower than Makeham model, from
which it can be derived using the same frailty approach which links the
Gompertz and Beard models). The gap between the frailty models and their
antecedents has shrunk between Tables 6 and 7, reflecting the fact that
including gender in the model has substantially reduced the unexplained
heterogeneity. If we accept the interpretation of the Beard r parameter as an
indicator of unexplained variation, the fact that there are still significant
gaps between the two suggests that there is still significant unexplained
heterogeneity present.

9.7 According to Richards & Jones (2004), one major source of further
heterogeneity is likely to be socio-economic group, which we can investigate
using the traditional actuarial proxy of pension size. We split the population
into 50 equal-sized groups of pensioners, and look for the optimal
breakpoints, giving us three size bands. There are 1,176 unique combinations
of assigning 50 groups to three size bands, while both preserving the ordinal
structure of the original variable and having at least one group in each band.
The optimal breakpoints are determined by minimising the AIC.

9.8 The results of using a three-level grouping, based on pension size,
are shown in Table 8. In all cases, using pension size has made a very
material improvement in the model fit, as evidenced by drops in the AIC of
between 1242 and 1262, depending on the model used. Again, we see that the
Makeham model fits less well than the Gompertz, and that the logistic
models are generally better than the others. As before, the Makeham-Beard
model has performed best, with an AIC 76 units lower than the Gompertz
model. If we accept the role of the Beard parameter r, the gap between the
Gompertz and Beard AICs (as well as the gap between the Makeham and
Makeham-Beard AICs) suggests that there is still significant unexplained

Table 8. Model with age, gender and pension size-band, i.e.
Age*(Genderþ SizeBand)

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 383562 0 8
Makeham 383564 2 9
Perks 383515 �47 8
Beard 383513 �49 9
Makeham-Perks 383510 �52 9
Makeham-Beard 383486 �76 10

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006

The SizeBand variable is derived from 50 bands of equal numbers of annuitants, optimised into
a three-level ordinal factor. Note that the AICs can be compared directly with those in Tables 6
and 7.
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variation. However, the fact that the gap in AIC due to the Beard
parameter has narrowed from 63 to 49 suggests that at least some of this
heterogeneity has been accounted for. While the optimisations were free to
set different break-points for each mortality law for the pension size-bands,
in each case the optimum was achieved by setting the first break-point
between the 14th and 15th fiftieths and by setting the second between the
41st and 42nd. This means that the first group consists of the 28% pensioners
with the smallest pensions, the second group with the next 54% and the
third group with the 18% of pensioners with the largest pensions.

9.9 The alternative to using pension size is to profile the population
according to geodemographic type. This we do using Experian’s postcode
Mosaic profiles (we could also use CACI’s Acorn system, Eurodirect’s
CAMEO code, or Experian’s alternative FSS classification). We then
optimise the assignment of the geodemographic types to three lifestyle
groups. The optimisation is determined as before by minimising the AIC, but
here the types are treated as categorical, i.e. a type code is free to belong to
a different lifestyle group than its immediately adjacent neighbours.

9.10 The results of using a geodemographic type based on postcode are
shown in Table 9. Comparing the figures with the equivalents in Table 8 we
can see that models based on geodemographic type can have lower AICs than
models based on pension size, depending on the choice of mortality law.

9.11 Another interesting feature of Table 9 is that the Makeham-Beard
model is still the best-fitting. Both of the laws with the Beard frailty
parameter, r, fit are better than their precursor models. If we accept the
interpretation of the Beard parameter as an indicator of further unexplained
variation, this would suggest that, despite the large improvement, there is still
some remaining unexplained heterogeneity amongst the pensioners.

9.12 One concern about relying on geodemographic codes might be
some kind of systematic data error which gives the illusion of predictive

Table 9. Model with age, gender and lifestyle group derived from postcode
via Mosaic type, i.e. Age*(GenderþLifestyle)

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 383537 0 8
Makeham 383539 2 9
Perks 383518 �19 8
Beard 383520 �17 9
Makeham-Perks 383513 �24 9
Makeham-Beard 383509 �28 10

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006

The Lifestyle variable is derived from optimising a mapping of the Postcode Mosaic Type.
Note that the AICs can be compared directly with those in Tables 6, 7 and 8.
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power. For example, we have encountered life offices where address data
are deleted upon death. In this case, the geodemographic profile would be 98
(unknown) and this code would only be ‘predictive’ of death, merely
because of the treatment of addresses on death. We have also encountered
life offices where the pensioner’s address is changed to be that of the head
office. In this case, the geodemographic profile would be 99 (non-residential
postcode), and, again, this code would only be ‘predictive’, due to the link to
death processing. For this data set, however, we see from Table 4 that the
association between death status and geodemographic type (10.2) is actually
much less than the association between death status and pension size (17.4).
This suggests that this particular data set does not suffer from any obvious
corrupting linkage between postcode and death processing, so that the
geodemographic type is a genuinely powerful predictor of mortality.

9.13 The primary purpose of both the geodemographic type and the
pension size lies in acting as a proxy for socio-economic differentials.
However, while we have shown that both the geodemographic type and the
pension size can do this, the Cramer V statistic in Table 4 suggests relatively
little linkage between type code and pension size, so we might expect some
benefit from using both variables in the model. In this data set, 10.5% of
pensioners do not have a geodemographic type, i.e. those of type 98 and 99,
and for them the pension size is the only available proxy for socio-economic
status. We would therefore expect the predictive power of pension size to be
linked to the number of lives without geodemographic profiles. Furthermore,
one can imagine that two people of identical geodemographic type will have
different standards of living if one has several times the pension income of
the other. The converse is also true; two people with equal pension sizes
might be distinguished by their postcode-identified lifestyle. Other reasons
why pension size is useful, in addition to the postcode, might be where a
wealthier person chooses to live in a less salubrious postcode � perhaps due
to family or other ties � or has multiple addresses, and has registered the
policy to an address which is not representative of their overall lifestyle. In
such cases, pension size will reveal additional insights into a pensioner’s
lifestyle which a postcode cannot achieve on its own. Thus, we might expect a
model using both postcode and pension size to perform better, because each
can compensate for the other’s failings.

9.14 In Table 10 the gap between the AICs of the Gompertz and Beard
models has shrunk further, from 17 to 14. Using the interpretation of the
Beard r parameter as a marker for unexplained heterogeneity, this suggests
that a model using both the geodemographic type and the pension size is
better at explaining heterogeneity than either variable on its own. This is
reflected in the large falls in the AIC between Tables 9 and 10. Comparing
just the results for the Makeham-Beard model, using pension size on its own
improved the AIC by 1242 (¼ 384728� 383486), whereas using postcode-
driven lifestyle groups improved the AIC by 1219 (¼ 384728� 383509).
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However, using both factors together improved the AIC by 2152 (¼ 384728�
382576). This improvement is far larger than would be expected from pension
size acting as a proxy for the unprofiled cases, so there seems to be a
genuine pension-size effect independent of the geodemographic type. Part of
this may be the cohort effect (Richards et al., 2005), since older and long-
retired people will tend to have smaller pensions.

9.15 Table 11 shows the impact of the pension size and the lifestyle
group on the life expectancy and the annuity value. These figures are
calculated on as close a basis as possible to the equivalent tables in Richards

Table 10. Model with age, gender, lifestyle and pension size, i.e.
Age*(Genderþ SizeBandþLifestyle)

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 382597 0 12
Makeham 382599 2 13
Perks 382583 �14 12
Beard 382583 �14 13
Makeham-Perks 382575 �22 13
Makeham-Beard 382576 �21 14

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006

The Lifestyle variable is derived from optimising a mapping of the Postcode Mosaic Type. The
SizeBand variable is derived from 50 bands of equal numbers of annuitants, optimised into a
three-level ordinal factor. Both Lifestyle and SizeBand variables are re-optimised in the presence
of each other, to check that the original mappings still hold true in this more complicated
model. Note that the AICs can be compared directly with those in Tables 6, 7, 8 and 9.

Table 11. Impact of pension size and lifestyle

Gender
Pension
size Lifestyle e65 �a5%

65 �a2:5%
65

Change in

�a5%
65

Change in

�a2:5%
65

Female Highest Upper 22.88 13.26 17.05 n/a n/a
Male Highest Upper 20.23 12.23 15.43 �7.8% �9.5%
Male Highest Lower 18.56 11.50 14.34 �6.0% �7.1%
Male Middle Lower 17.06 10.83 13.36 �5.8% �6.8%
Male Lowest Lower 15.62 10.12 12.37 �6.6% �7.4%

Overall �23.7% �27.4%

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006

Annuity reserves and life expectancies at age 65 are calculated assuming a continuous payment
of 1 p.a., continuous interest at 5% p.a. or 2.5% p.a., and mortality according to the Makeham-
Beard model and parameters from Table 10. Although three levels were fitted for lifestyle, only
the upper and lower types are shown here; 88.0% of the other level had missing postcodes, so this
cannot be said to be a true lifestyle classification. Note that these calculations have no
allowance for future improvements.
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& Jones (2004), to facilitate comparison. The overall change of 23.7% in
Table 11 is less than the 33.6% in Richards & Jones (2004), as the latter used
a larger number of levels for lifestyle. This enabled the identification of a
greater range of lifestyle sub-groups, which results in a greater range of life
expectancies. To put the values in Table 11 into perspective, the equivalent
complete life expectancy using the PCA00 table is 18.4 years for males and
20.9 years for females, and a typical pricing margin for an annuity at the time
of writing is around 4% to 5% of the best-estimate liability. Since these
mortality differentials can change the annuity factor by more than the
pricing margin, accurate modelling of mortality is very important to the
profitability of an annuity provider.

"�. Checking the Model Fit

10.1 It is not enough to select a model by targetting the smallest AIC.
One must also check the residuals for evidence of non-random patterns, or
for residuals too large to be plausibly normally distributed. Following
McCullagh & Nelder (1989), we use deviance residuals, and Figure 5 shows
that there are, perhaps, too many residuals around �2 for comfort. There are
also possible cyclic patterns with age, which may be caused by the cohort
effect � see Richards (2008). A strong pattern by calendar time is also
evident, suggesting falling mortality rates over the seven-year period. Finally,
the pattern by duration suggests initial selection in the first few years after
the pension commences. We can extend the model to cope with all three:
cohort effects, time trend and initial selection.

10.2 The cohort effect is a tendency for mortality to be lower for later
years of birth, as documented recently by Willets (2004). This is a broadly
continuous trend, as shown by Richards et al. (2006). We can get a quick
solution in the model by treating the year of birth as an ordinal factor,
however, and using the AIC to optimise the breakpoints for three (say) broad
cohorts. Although this does not acknowledge the continuous nature of the
cohort effect, it will suffice, for our purposes here, to detect the broad pattern.

10.3 We can fit a parameter for the time trend by extending the models,
as follows for the Gompertz law:

mx;y ¼ eaþbxþdy ð10Þ

where y is the calendar time as a real variable, so that we can track the time
trend continuously over the period. In practice, we need to keep the variables
well scaled for the fitting procedure, so we actually work with y0 ¼ y� 2000.
Note that the time trend observed in Figure 5 is likely to be partly composed
of the cohort effect, and partly of a genuine calendar year effect, as
mortality improves due to medical treatments and public-health initiatives.
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However, if we fit a model with a combined cohort factor and a time-trend
parameter, then we should be able, broadly, to separate the two. Such a
model is essentially an Age-Period-Cohort (APC) model, a variant of which
was used in Richards et al. (2007) to explore time trends separately from
cohorts in population data.

10.4 Finally, Figure 5 suggests that we consider a select period of at
least three years, and possibly longer. This is likely to be an ordinary
temporary initial selection, but made stronger still by the advent of the
enhanced-annuity market; the portfolio here is of standard, non-underwritten
annuities, and so will contain the presumably healthier lives who did not
qualify for enhanced annuities. We can allow for this in the model by
adjusting each individual’s value for a for the time in years since retirement.
For simplicity, we will assume that the selection effect is constant within a
select period. As before, we will fit two-way interactions between the age and
the factors for gender, lifestyle and pension size, although we will not fit
any other second or higher-order interactions.

Source: Makeham-Beard model from Table 10 with an AIC of 382576

Figure 5. Deviance residuals plotted against: (1) age; (2) calendar time;
and (3) duration since pension commencement

The deviance residuals are calculated assuming a Poisson distribution for the number of deaths
within each age range (x! xþ 1), time period (y! yþ 1), or duration. The Poisson parameter
is the sum of the integrated hazard functions over each sub-range over all individuals who have
an exposure in the sub-range.
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10.5 As Table 12 shows, there is a significant time trend, with an AIC
difference of 216 between a model containing a time trend and a model
without it (¼ 382576� 382360). There is also a significant selection effect,
with an AIC difference of 79 between a model containing a select period and
a model without it (¼ 382360� 382281). There is a cohort effect, but it does
not appear to be quite as strong as the time-trend and selection effects; the
drop in the AIC due to a three-band cohort is 27 units (¼ 382281� 382254).

10.6 One question about the conclusion about the relative strength of
the time trend, cohort effect and selection is whether the order of fitting
makes a difference. This would change the ascribed drop in the AICs, but the
conclusion of order is unaffected. Table 13 shows the Z values for the fitted

Table 12. Comparison of Makeham-Beard models

Model AIC
AIC relative
to Age model Parameters

Age 386559 0 4
Age*Gender 384728 �1831 6
Age*(Genderþ SizeBand) 383486 �3073 10
Age*(GenderþLifestyle) 383509 �3050 10
Age*(Genderþ SizeBandþLifestyle) 382576 �3983 14
Age*(Genderþ SizeBandþLifestyle)þTime 382360 �4199 15
Age*(Genderþ SizeBandþLifestyle)þTimeþ
SelectPeriod

382281 �4278 18

Age*(Genderþ SizeBandþLifestyle)þTimeþ
SelectPeriodþCohort

382254 �4305 20

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006

SelectPeriod is a three-year select period. Note that the AICs can be compared directly with
those in Tables 6, 7, 8, 9 and 10.

Table 13. Selected parameters from
Age*(Genderþ SizeBandþLifestyle)þTimeþ SelectPeriodþCohort model

Parameter name Estimate Std. error Z value P level

Cohort pre-1914 (baseline) 0 n/a n/a n/a
Cohort 1914^1929 0.0986196 0.0226 4.36 0
Cohort 1929 onwards 0.0360475 0.0342 1.05 0.2925

Select period 0^1 years (baseline) 0 n/a n/a n/a
Select period 1^2 years 0.0872149 0.0488 1.79 0.0736
Select period 2^3 years 0.135504 0.0479 2.83 0.0047
Ultimate: 3 years and over 0.279667 0.0396 7.06 0

Time �0.0352319 0.0026 �13.4 0

Source: Own calculations using the mortality experience of life office pensioners aged between
60 and 95 between 2000 and 2006

SelectPeriod is a three-year select period. Parameters are from the final model in Table 12.
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parameters, and it appears that the time trend is strongest (Z value of �13.4),
followed by the selection effect (Z value of 4.36 comparing the initial
selection against the ultimate rates), then finally the cohort effect (Z value of
5.53, comparing the 1914 to 1929 generation with the pre-1914 one).

"". Concentration Risk

11.1 A major issue in financial work is concentration risk, namely the
tendency for a given proportion of the portfolio membership to have a much
larger proportion of benefits (and therefore liabilities). A statistical model is

Source: Final Makeham-Beard model from Table 12 with AIC of 382254

Figure 6. Deviance residuals plotted against: (1) age; (2) calendar time;
and (3) duration since pension commencement

There is a substantial improvement in the AIC of 322 over the model in Figure 5, but some
concerns remain over the non-random patterns of deviance residuals. This could be resolved by
making further refinements to the model, or by looking further at the quality of the underlying
data. One feature of survival models is that they expose any flaws in the data set mercilessly; this
can be frustrating initially, but it leads eventually to better data and better modelling. As
demonstrated in Table 11, the financial impact of mortality differentials is too important to gloss
over unusual patterns (or, much worse, to not use survival models, and to never know that
those patterns were there in the first place).
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democratic, in that each life has equal weight, whereas both annuity portfolios
and pension schemes are very unequal. There are a number of ways in which this
concentration of financial risk can be illustrated. One way is to calculate the
Gini coefficient, which is used widely in social statistics to measure income
inequality. The Gini coefficient takes the value of 0% when everyone has the
same income (equality), and 100% when one individual has everything (perfect
inequality). The Gini coefficient for the U.K. as a whole was 36.8% in 2005,
according to the CIAWorld Factbook, and we find that most pension schemes
and annuity portfolios are generally much more unequal than society as a
whole. Another way is to sort the membership by pension size, and to
calculate the proportion of pension benefits paid to each decile (say), or to
calculate what proportion of the membership receives half of all the benefits.

11.2 Table 14 shows that the top decile of membership has around half
of all annual pensions paid. We, therefore, have a group whose financial
significance is five times what their headcount would suggest. Equally, the
bottom decile of membership has just 1

2% of all pensions paid, so their
financial significance is 20 times less than what their numbers would suggest.
The inequalities would seem even larger if we measured the proportion of
liability for each of the membership deciles, in life office portfolios, for
example, where benefit type can be chosen at retirement, wealthier people
tend to choose larger average escalation rates and are more likely to buy a
surviving spouse’s pension. Both of these choices depress the initial pension,
and so a concentration by reserves is likely to be at least as pronounced as a
concentration by pension size.

Table 14. Concentration of pension benefits by membership decile

Membership Percentage of portfolio pension:
decile (1) Life office (2) Pension schemes

1 54.3% 46.3%
2 15.2% 17.8%
3 9.4% 11.4%
4 6.6% 8.0%
5 4.9% 5.8%
6 3.6% 4.1%
7 2.7% 2.9%
8 1.8% 2.0%
9 1.1% 1.2%

10 0.4% 0.5%

Total 100.00% 100.0%

Gini coefficient 66.03% 60.9%

Source: Own calculations using data for life office pensioners aged between 60 and 95 between
2000 and 2006, and pension scheme members aged between 65 and 100 between 2000 and 2006

Half of all pensions are paid to 7.8% of policyholders in the life office data, and 11.7% in the
pension scheme data.
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11.3 The central issue with this level of concentration risk is that the
parameters in a statistical model are primarily driven by the part of the
population which accounts for the least part of the financial risk. This might
not be a problem if the fitted model is sufficiently rich and the data set is
sufficiently large or homogeneous. In practice, however, there is usually a
sub-group of very financially significant lives, whose mortality is likely to be
over-stated due to their relatively small size in the portfolio. A deliberately
extreme version of this problem is shown in Figure 7, where an overly simple
model, based just on age and gender, has been fitted and is used to predict
the mortality for a series of bootstrapped observations from a large portfolio.
For sampling with replacement, we choose 50,000 lives, and calculate the
ratio of the actual mortality outcome compared to the model’s prediction, i.e.
a classic ‘actual over expected’ analysis. Unsurprisingly, the lives-based model

Source: Sampling with replacement from the 2006 mortality experience of a portfolio of several
hundred thousand life office pensioners, with expected mortality according to a Makeham-Beard
model for age and gender only; the frequencies are scaled so that the area under each curve is
one, i.e. the curves show the empirical density function of the ratio of actual to expected
mortality

Figure 7. Frequency plot of ratio of actual v. expected mortality for
10,000 bootstrapped portfolios of 50,000 lives (lives-weighted fit)

The model is accurate on a lives basis, but clearly overstates mortality weighted by pension
size. The additional volatility of amounts-weighted mortality is also clear from the wider
horizontal spread.
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is, on average, a good predictor of the actual outcome, as the ratio is
distributed around one, although there is a lot of variability in a single year’s
experience for even a portfolio of 50,000 lives. However, as every actuarial
student knows, mortality weighted by amounts is a more useful indicator of
financial significance, and mortality weighted by pension size is much lighter
than this lives-based model predicts � around 15% lighter on average, but
with even more variation in a single year.

11.4 The traditional actuarial approach to mortality analysis is to
weight each death or life in the exposed to risk by its pension size, and this,
too, can be accommodated within a survival model framework. Equation (5)
gives the general formula for the log-likelihood function under a survival
model for a single decrement (death), and the contribution of a single life i is
given by:

Source: Sampling with replacement from the 2006 mortality experience of a portfolio of several
hundred thousand life office pensioners, with expected mortality according to a Makeham-Beard
model for age and gender only; the frequencies are scaled so that the area under each curve
is one, i.e. the curves show the empirical density function of the ratio of actual to expected
mortality

Figure 8. Frequency plot of ratio of actual v. expected mortality for
10,000 bootstrapped portfolios of 50,000 lives (amounts-weighted fit)

The basis of calculation is the same as in Figure 7, but the contribution to the log-likelihood is
weighted by pension size. The model is now accurate on an amounts basis on average, albeit with
quite high variability. The model now understates mortality on a lives basis.
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‘i ¼ �Hxi
ðtiÞ þ di log mxiþti

: ð11Þ

11.5 Implicit in equation (11) is that each life has equal weight. One
means of taking financial significance into account is to weight each life’s
contribution to the log-likelihood. This is an ad hoc adjustment to a well-
established statistical methodology, but it can be justified if a small number
of lives have disproportionate financial significance. If each life has weight
wi, the individual contribution to the weighted log-likelihood ‘w

i is then:

‘w
i ¼ �wiHxi

ðtiÞ þ widi log mxiþti
ð12Þ

where wi could be the reserve, the pension size, or some function of the

Source: Sampling with replacement from the 2006 mortality experience of a portfolio of several
hundred thousand life office pensioners, with expected mortality according to a Makeham-Beard
model for age and gender only; the frequencies are scaled so that the area under each curve
is one, i.e. the curves show the empirical density function of the ratio of actual to expected
mortality

Figure 9. Frequency plot of ratio of actual v. expected mortality for
10,000 bootstrapped portfolios of 50,000 lives (reserve-weighted fit)

The basis of calculation is the same as in Figure 7, but the contribution to the log-likelihood is
weighted by the estimated reserve, calculated using 5.5% interest and the PCA00 mortality table.
The model is now accurate on an reserve basis on average, albeit with quite high variability. As
with the amounts-weighted model, mortality is understated on a lives basis.
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pension size, such as the logarithm or the square root. The wi are scaled so
that

P
i wi ¼ n, which means that the weighted log-likelihood can still be

compared broadly to the unweighted one. Figure 8 shows how weighting the
likelihood in this manner can transform even the simplest model into one
which can take better account of the financial significance in mortality
modelling. However, it is potentially dangerous to rely on amounts weighting
for overly simplistic models, since mortality differentials change with age. It
is better to include as many statistically significant risk factors as can be
found in a lives-based model, say by reference to the AIC, and thus account
for the incidence and the timing of such differentials. If found necessary from
a bootstrapping check, the final fitted values for financial purposes can be
obtained by a refit with some kind of weighting.

11.6 Not all schemes can have their mortality predicted by a model
parameterised using the experience from another portfolio, however. Defined
benefit pension schemes often contain individuals concentrated in a particular
industry or occupation. If that occupation is particularly hazardous, then a
model derived from general pensioner mortality � whether using postcode
or pension size � will under-state that scheme’s mortality. Such schemes can
either have their mortality modelled on a stand-alone basis, or else in a
meta-model of multiple schemes, where membership of a particular scheme is
treated as an additional risk factor.

"Æ. Conclusions

12.1 Life insurance and pension scheme data are a form of longitudinal
study, and, therefore, lend themselves particularly well to the application of
survival models. The assumption of a suitable law for the force of mortality
removes the need to graduate or to smooth the rates separately.

12.2 Geodemographic models of mortality can fit better than ones based
purely on pension size, but a model which combines both will fit better than
using either one in isolation. The use of geodemographic profiles in a
statistical model also enables the discovery of data issues which remain
hidden from the traditional comparisons of actual mortality against a
standard table. The mortality differentials identified by such models are
highly significant financially, and their impact can easily exceed the pricing
margin on annuity business at the time of writing.

12.3 Simple process models show how a system, composed of non-
ageing elements, can, nevertheless, show age-related increases in mortality.
These models also yield a slowing down in the rate of increase at advanced
ages, known as late-life mortality deceleration. This deceleration is observed
in human populations, and can be shown to arise from heterogeneity
amongst lives. Mortality laws which incorporate an explicit heterogeneity, or
frailty parameter, fit better than those which do not.
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12.4 The use of bootstrapping can determine if there might be further
financially important variations not accounted for in a mortality model,
while the use of weights in model fitting can help to limit any mis-statement
of financial risk.
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APPENDIX 1

DERIVATION OF THE BEARD MODEL

A1.1 Suppose that an individual has a Gompertz hazard, i.e. mz
x ¼ zebx,

where z ¼ ea. Suppose, further, that z is drawn from a gamma distribution at
birth, i.e. the density function for z, f ðzÞ, is:

f ðzÞ ¼
baza�1

GðaÞ
e�zb ð13Þ

where GðÞ is the gamma function and a > 0 and b > 0 are the gamma
parameters.

A1.2 In general, the hazard rate of the population at age x is as follows:

mx ¼

Z 1
0

f ðzÞxp
z
0m

z
xdz

Z 1
0

f ðzÞxp
z
0dz

: ð14Þ

A1.3 Taking equations (2) and (13), together with the appropriate
integrated hazard from Table 5, equation (14) becomes:

mx ¼ ebx

Z 1
0

zðaþ1Þ�1 exp �z bþ
ðebx � 1Þ

b

� �� �
dz

Z 1
0

za�1 exp �z bþ
ðebx � 1Þ

b

� �� �
dz

¼
abebx

ðbb� 1Þ þ ebx

¼
ea
0
þbx

1þ ea
0
þr0þbx

ð15Þ

where r0 ¼ � logðabÞ and a0 ¼ log
ab

bb� 1

� �
.
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APPENDIX 2

DERIVATION OF THE MAKEHAM-BEARD MODEL

Following Horiuchi & Coale (1990), suppose that an individual has a
Makeham hazard, i.e. mz

x ¼ eE þ zebx, where z is drawn from a gamma
distribution at birth, as in Appendix 1. Taking equations (2) and (13),
together with the appropriate integrated hazard from Table 5, equation (14)
becomes:

mx ¼

Z 1
0

eE þ zebx
� �

za�1 exp �xeEð Þ exp �z bþ
ðebx � 1Þ

b

� �� �
dz

Z 1
0

za�1 exp �xeEð Þ exp �z bþ
ðebx � 1Þ

b

� �� �
dz

¼
eE bb� 1ð Þ þ abþ eEð Þebx

ðbb� 1Þ þ ebx

¼
eE þ ea

0
þbx

1þ ea
0
þr0þbx

ð16Þ

where r0 ¼ � log abþ eEð Þ and a0 ¼ log
abþ eE

bb� 1

� �
. Horiuchi & Coale (1990)

further showed that the frailty z remains gamma-distributed for all ages.
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APPENDIX 3

MORTALITY AS A CASCADE PROCESS

A3.1 The following builds on results from Izsak & Gavrilov (1995). Let
n denote the integer number of defects of an individual, n � 0. Denote by tn
the state of an individual having n defects, and let sn be the number of
individuals in a population with n defects. In a small interval of time t, an
individual can either die or accumulate another defect. The force of mortality
for an individual in state tn is m0 þ nm, where m0 > 0 is the constant
background rate of mortality and m > 0 is a constant. The instantaneous
transition rate for tn ! tnþ1 is l0 þ nl, where l0 and l are both greater than
zero. The instantaneous transition rate is, therefore, a linearly increasing
function of the number of existing defects, which makes this a cascade
process. These assumptions lead to the linear differential equation:

s0nðxÞ ¼
�
l0 þ ðn� 1Þl

	
sn�1ðxÞ �

�
l0 þ m0 þ nðmþ lÞ

	
snðxÞ: ð17Þ

A3.2 Solving the initial value s0ð0Þ ¼ s0; snð0Þ ¼ 0, we get the snðxÞ
functions. The number of individuals living at age x is:

X1
n¼0

snðxÞ ¼
mþ l

mþ le�ðmþlÞx

� �l0
l

e�ðm0þl0Þx ð18Þ

and so the force of mortality at age x, mðxÞ, is given by:

mðxÞ ¼ m0 þ
ml0 1� e�ðmþlÞx

� �
mþ le�ðmþlÞx

: ð19Þ

A3.3 At this point Izsak & Gavrilov (1995) note that this approximates to
a Makeham law over a wide age range, with a decelerating increase in the
force of mortality at advanced ages, and an ultimate value of l0 þ m0 for very
advanced ages. In fact no approximations are necessary, as equation (19)
can be re-written as:

mðxÞ ¼
m0 �

ml0
l


 �
þ
m
l ðm0 þ l0Þe

ðmþlÞx

1þ m
l eðmþlÞx

: ð20Þ

A3.4 If we assume that m0 >
ml0
l , then we can set E ¼ log m0 �

ml0
l


 �
,

b ¼ mþ l, a ¼ log mþ logðm0 þ l0Þ � log l, and r ¼ � logðm0 þ l0Þ. Equation
(20) can then be re-written as:
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mðxÞ ¼
eE þ eaþbx

1þ eaþrþbx
: ð21Þ

A3.5 Thus, our cascade process for mortality has resulted in a
Makeham-Beard force of mortality. This fits neatly with the frailty
derivation of the same mortality law, since, at each age x, there are
individuals with varying numbers of defects, and thus heterogeneity in the
population at a given age. Iszak & Gavrilov (1995) pointed out that letting
x!1 in equation (19) yielded a limit to the force of mortality of m0 þ l0,
and therefore an upper limit to the mortality rate qx, which was less than 1.

A3.6 Gavrilov & Gavrilova (2001) developed the idea of an initial
virtual age, i.e. a life can start out with a non-zero number of defects. This
sort of approach explains why the actuarial practice of rating ages up or
down, according to a standard table, works well. If the main difference
between two populations is their average initial damage or initial virtual age,
then the mortality of one population will be expressed concisely in terms of
an age rating against the other.
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APPENDIX 4

MORTALITY LAWS AND FUTURE LIFETIME AS A RANDOM
VARIABLE

A4.1 A model for the force of mortality is equivalent to assuming that
the future lifetime is a continuous random variable Tx, say. The probability
density function of T0, the lifetime from birth, is given by:

f ðtÞ ¼ tp0mt t > 0: ð22Þ

According to Aitken et al. (1989) the extreme-value distribution for T0 has
probability density:

f ðtÞ ¼
1
s

exp
t� y
s
� exp

t� y
s

� �� �
ð23Þ

and hazard function:

mt ¼
1
s

exp
t� y
s

� �
: ð24Þ

A4.2 Setting a ¼ � log s�
y
s
and b ¼

1
s
, equation (24) can be re-written as:

mt ¼ eaþbt ð25Þ

which we recognise as the Gompertz force of mortality. Equally, assuming a
Gompertz force of mortality throughout life is the same as assuming that the
total future lifetime is a random variable drawn from the extreme value
distribution.

A4.3 Aitken et al. (1989) also give the probability density for the
logistic distribution for T0 as:

f ðtÞ ¼

1
s

exp
t� y
s

� �

1þ exp
t� y
s

� �� �2 ð26Þ

which has hazard function:
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mt ¼

1
s

exp
t� y
s

� �

1þ exp
t� y
s

� � : ð27Þ

A4.4 Setting a ¼ � log s�
y
s
, b ¼

1
s
and r ¼ log s, equation (27) can be

re-written as:

mt ¼
eaþbt

1þ eaþrþbt
ð28Þ

which we recognise as the Beard force of mortality.
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APPENDIX 5

MORTALITY LAWS AND RELIABILITY THEORY

A5.1 We begin with some results for order statistics. If a random
variable X has probability density function f and distribution function F,
we can define two new random variables for the maximum and minimum
of a set of n independent, identically distributed random variables
fX1;X2; . . . ;Xng:

Xmax ¼ maxfX1;X2; . . . ;Xng

Xmin ¼ minfX1;X2; . . . ;Xng:
ð29Þ

A5.2 Larson (1982) gives the probability density and distribution
functions for Xmax and Xmin as follows:

fmaxðtÞ ¼ n½FðtÞ�
n�1

f ðtÞ

fminðtÞ ¼ n½1� FðtÞ�
n�1

f ðtÞ

FmaxðtÞ ¼ ½FðtÞ�
n

FminðtÞ ¼ 1� ½1� FðtÞ�
n

ð30Þ

from which we can derive the hazard function mðtÞ, as follows:

mðtÞ ¼
f ðtÞ

1� FðtÞ
: ð31Þ

A5.3 The remainder of this appendix draws heavily from Gavrilov &
Gavrilova (2001). We assume that an element has a constant hazard rate of
failure l, and so the hazard function melement

t is given by:

melement
t ¼ l l > 0; t > 0: ð32Þ

The time to failure of an element, therefore, has an exponential distribution,
with a probability density function f element

t and a cumulative distribution
function Felement

t :

f element
t ¼ le�lt

Felement
t ¼ 1� e�lt:

ð33Þ

A5.4 A block is composed of n elements working in parallel, so that the
failure of all elements is required for the block to stop working. The time to
failure of a block is therefore the maximum of the failure times of the n
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elements. Using equations (30) and (31), the hazard for a block with n
working elements is then:

mblock;n
t ¼

lne�lt 1� e�lt
� �n�1

1� 1� e�lt
� �n n � 1: ð34Þ

A5.5 Finally, a system is composed of m blocks operating serially, i.e.
the failure of any one of the blocks results in the failure of the system (death).
The time to failure of a system is, therefore, the minimum of the failure
times of the m blocks. We add a further detail, namely the probability p that
any given element is actually working at outset. The resulting hazard for the
system as a whole is now given by:

msystem;m
t ¼ mnpcle�npe�lt

Xn

i¼1

ðnpÞ
i�1

ði� 1Þ!
:
ð1� e�ltÞ

i�1

1� ð1� e�ltÞ
i

� � 0 < p � 1;m � 1; c > 0:

ð35Þ

Figure 10. Diagram illustrating hazard functions for elements and blocks

An element has constant hazard, but the hazard functions of blocks exhibit a period of
exponential growth in hazard (mortality), followed by a period of deceleration of the rate of
increase. Using only the simplest of elements with non-ageing mortality, we have created blocks
which exhibit both age-related increase mortality and the later deceleration of those age-related
increases.
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A5.6 The normalising constant c allows for the fact that, if p < 1, there
is a non-zero probability that all elements of at least one block are non-
functioning at outset, and thus that the system is ‘stillborn’. We do not need
to know the precise value of c, as it is a constant applied across all times (or
ages), and so does not change the basic shape of the force of mortality. In
example calculations in this section we set c ¼ 1 for simplicity � further
details of the derivation of c and the above formulae can be found in
Gavrilov & Gavrilova (2001).

A5.7 An illustration of this system structure is given in Figure 11. The
interesting thing about this system is that ageing � i.e. increasing mortality
with age or time � has arisen from a simple combination of elements which,
themselves, do not have age-related mortality. Furthermore, this same
structure which gives rise to ageing also gives rise to a decelerating rate of
increase at advanced ages. Gavrilov & Gavrilova (2001) describe how this
type of structure applies to many biological organisms, i.e. self-assembled
systems made from small elements with extensive redundancy, compensating
for some initially non-functioning elements.

Figure 11. Diagram illustrating a system with redundancy

The system is composed of three blocks linked serially (A, B and C), where the failure of any
one of the blocks will result in failure of the system as a whole (death). Each block is composed
of four elements which work in parallel, i.e. in order for a block to fail all elements must fail.
Failed elements are marked with a cross (�). Despite three failed elements, Block A is still
functioning, as it has one working element left. Block C has failed completely, because all of its
elements have failed, and the failure of this block results in the death of the whole system.
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Figure 12. Demonstration of force of mortality under a reliability model

The reliability model has arbitrary specimen parameters l ¼ 0:01, n ¼ 22, m ¼ 5850, and
p ¼ 0:999, while the Gompertz ‘equivalent’ was obtained by a straight line extrapolation of the
log mortality between ages 50 and 70. The force of mortality under PCA00Base has also been
plotted to show the same underlying pattern as the reliability model, namely a near-linear
increase over a large part of the age range, with mortality deceleration at higher ages. The
parameters for the reliability model were chosen to match PCA00Base at ages 60 and 100, and
some more experimentation is required to get a better match between ages 60 and 80.
Nevertheless, it is clear that reliability theory is a plausible basis, both for the phenomenon of
ageing and late-life mortality deceleration.
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APPENDIX 6

MORTALITY LAWS AND RUIN THEORY

A6.1 We explore here the idea of a life subject to a damage process
following a compound Poisson distribution. This is a continuous-time
alternative to the reliability-theory approach adopted by Iszak & Gavrilov
(1995). An organism has x > 0 functioning elements, but is subject to
random damage at rate l. When an event occurs, the extent of the damage is
drawn from an exponential distribution with parameter m. The organism has
a repair rate of r � 0, which it can use to repair existing damage up to the
original level of x. This situation is directly analogous to the typical ruin-
theory set-up described in Dickson & Waters (2002): x is the surplus level;
l is the claim rate; m describes the exponential claim size; and r is the
continuous rate of premium income. The only difference is that we do not
allow damage to be repaired above x, i.e. we do not allow growth. This is
analogous to a dividend strategy which pays out immediately above a certain
capital level.

A6.2 We denote by fðx; tÞ the probability that an organism with x
initial functioning elements will survive for time t � 0. f is therefore a
survivor function with 0 � f � 1. The following boundary conditions are
satisfied:

fð0; tÞ ¼ 0; 8t � 0

fðx; 0Þ ¼ 1; 8x > 0:
ð36Þ

A6.3 The survival function can be conditioned on whether or not
damage occurs in a small interval dt, and, if it does, whether the damage kills
the organism. Denoting the damage probability density function by f and
the distribution function by F, for small interval of time dt the following
applies:

fðx; dtÞ ¼ ð1� ldtÞ:fðxþ rdt; 0Þ þ ldtFðxÞ þ oðdtÞ

¼ ð1� ldtÞ:1þ ldtð1� e�mxÞ þ oðdtÞ

¼ 1� ldte�mx þ oðdtÞ

ð37Þ

since, with probability ldtð1� FðxÞÞ, there is a damage event which is large
enough to kill the organism outright. From this we can calculate the force of
mortality at time zero with initial value x from:
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mðx; 0Þ ¼ lim
dt!0þ

1� fðx; dtÞ

dt

¼ lim
dt!0þ

ldte�mx
þ oðdtÞ

dt

¼ le�mx:

ð38Þ

A6.4 Equation (38) makes intuitive sense; the force of mortality at time
zero is the event intensity l multiplied by the probability of the damage being
enough to kill the organism outright. Extending the derivation of the force
of mortality to any future time t is tricky, and it is easier to explore mðx; tÞ by
Monte-Carlo means. Figure 13 shows that the choice of some combinations
of parameters leads to age-related increases in mortality, as well as a
deceleration at the most advanced ages.

Figure 13. Force of mortality in one million simulations of ruin

Crude forces of mortality (�) and the P-spline fitted values (solid line). The parameters for the
simulations were l ¼ 100, m ¼ 90, r ¼ 0:9 and x ¼ 10. Although the model is very simple, it
appears to produce both age-related increases in mortality and an apparent late-life deceleration
in mortality increases at the oldest ages. This would need to be confirmed with more analytic
work. However, as there is always the risk that the empirical hazard here is shaped by flaws in
the random-number generator, we have used the minimal standard generator discussed by
Park & Miller (1988), with implemementation taken from Press et al. (2002). The program
which generated this data is available for download at http://www.richardsconsulting.co.uk/
laws.html
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