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RANDOMNESS NOTIONS AND REVERSE MATHEMATICS

ANDRÉ NIES AND PAUL SHAFER

Abstract. We investigate the strength of a randomness notionR as a set-existence principle in second-
order arithmetic: for each Z there is an X that isR-random relative to Z. We show that the equivalence
between 2-randomness and being infinitely often C -incompressible is provable in RCA0. We verify that
RCA0 proves the basic implications among randomness notions: 2-random⇒weakly 2-random⇒Martin-
Löf random⇒ computably random⇒ Schnorr random. Also, over RCA0 the existence of computable
randoms is equivalent to the existence of Schnorr randoms.We show that the existence of balanced randoms
is equivalent to the existence of Martin-Löf randoms, and we describe a sense in which this result is nearly
optimal.

§1. Introduction.

1.1. Randomness. The theory of randomness via algorithmic tests has its begin-
nings in Martin-Löf ’s article [28], in the work of Schnorr [37, 38], as well as in the
work of Demuth such as [16]. Each of these authors employed algorithmic tools to
introduce tests of whether an infinite bit sequence is random. Rather than an abso-
lute notion of algorithmic randomness, a hierarchy of randomness notions emerged
based on the strength of the algorithmic tools that were allowed. Martin-Löf intro-
duced the randomness notion now named after him, which was based on uniformly
computably enumerable sequences of open sets in Cantor space. Schnorr considered
more restricted tests based on computable betting strategies, which led to theweaker
notion now called computable randomness and the even weaker notion now called
Schnorr randomness. Notions of randomness stronger than Martin-Löf ’s but still
arithmetical were introduced somewhat later by Kurtz [27]. Of importance for us
will be 2-randomness (namely, ML-randomness relative to the halting problem),
and the notion of weak 2-randomness intermediate between 2-randomness and
ML-randomness. See Sections 3 and 5 for the formal definitions.
The field of algorithmic randomness entered a period of intense activity from the
late 1990s, with a flurry of research articles leading to the publication of two text-
books [17,34].One reason for this was the realization, going back toKučera [24,25],
that sets satisfying randomness notions interact in a meaningful way with the
computational complexity of Turing oracles (the latter is a prime topic in com-
putability theory). One can discern two main directions in the study of randomness
notions:
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(A). Characterizing theorems.Give conditions onbit sequences that are equivalent
to being random in a particular sense and thereby revealmore about the randomness
notions. The Levin–Schnorr theorem characterizes ML-randomness of Z by the
incompressibility of Z’s initial segments in the sense of the prefix-free descriptive
string complexity K :

Z is ML-random ⇔ ∃b∀n K(Z�n) ≥ n − b.
2-randomness is equivalent to being infinitely often incompressible in the sense of
the plain descriptive string complexity C [30,35] (see also [34, Theorem 3.6.10]):

Z is 2-random ⇔ ∃b∃∞n C (Z�n) ≥ n − b.
There are also examples of characterizations not relying on the descriptive com-
plexity of initial segments. For instance, a bit sequence Z is 2-random iff Z is
ML-random and the halting probability Ω is ML-random relative to it; Z is weakly
2-random iff Z is ML-random and bounds no incomputable set that is below the
halting problem.

(B). Separating theorems. Given randomness notions that appear to be close to
each other, one wants to find a bit sequence that is random in the weaker sense but
not in the stronger sense. For instance, Schnorr provided a sequence that is Schnorr
random but not computably random. For a more recent example, Day and Miller
[15] separated notions only slightly stronger thanML-randomness. They provided a
sequence that is difference randombut not density random.Difference randomness,
introduced via so-called difference tests, is equivalent to being ML-random and
Turing incomplete [19]. Density randomness, by definition, is the combination of
ML-randomness and satisfying the conclusion of the Lebesgue density theorem for
effectively closed sets.
Some separations of randomness notions are open problems. For instance, it
is unknown whether Oberwolfach randomness is stronger than density random-
ness [33, Section 6] and of course whether ML-randomness is stronger than
Kolmogorov–Loveland randomness [1,31].
Some motivation for obtaining separations of notions that appear to be close was
provided by the above mentioned interaction of randomness with computability
and, in particular, with lowness properties of oracles. The Turing incomplete ML-
random set obtained in the Day/Miller result is Turing above all K-trivial sets
because it is not density random [5]. Whether such a set exists had been open for
eight years [31].

1.2. The viewpoint of reverse mathematics. Our purpose is to study randomness
notions from the viewpoint of reversemathematics. This program in the foundations
of mathematics, introduced by H. Friedman [20], attempts to classify the axiomatic
strength of mathematical theorems. The typical goal in reverse mathematics is to
determine which axioms are necessary and sufficient to prove a given mathematical
statement. In order to do this, onefixes a base axiomsystemoverwhich the reasoning
is done. Then one asks which stronger axioms must be added to this base system in
order to prove a given statement.
Algorithmic randomness plays an important role in reverse mathematics. Axioms
asserting that random sets exist are interesting because typically they are weak
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compared to traditional comprehension schemes; in particular, the randomness
notions that we consider produce axioms that are weaker than arithmetical com-
prehension. They still have important mathematical consequences, particularly
concerning measure theory. Given a randomness notion R, we consider the state-
ment “for every set Z, there is a set X that is R-random relative to Z.” Informally,
we refer to this statement as the “existence ofR-random sets.”
Quite a bit is known in the case that R is Martin-Löf randomness. The exis-
tence of Martin-Löf random sets is equivalent to weak weak König’s lemma, which
states that every binary-branching tree of positive measure has an infinite path. This
equivalence is obtained by formalizing a classic result ofKučera (see e.g., [34, Propo-
sition 3.2.24]). Via the equivalence, the existence of Martin-Löf random sets is also
equivalent to the statement “every Borel measure on a compact complete separable
metric space is countably additive” [45], as well as to themonotone convergence the-
orem for Borel measures on compact metric spaces [44] (see also [40, Section X.1]).
Recently [36], equivalences between the existence of Martin-Löf random sets and
well-known theorems from analysis have been found: “every continuous function of
bounded variation is differentiable at some point” and “every continuous function
of bounded variation is differentiable almost everywhere.”
In this article we mainly consider the reverse mathematics of randomness notions
other than Martin-Löf ’s. The two directions outlined above lead to two types of
questions.

(A) Examine whether characterizing theorems can be proved over a weak
axiomatic system such as RCA0.

(B) For randomness notions that appear close to each other yet can be separated,
see whether nonetheless the corresponding existence principles are equiva-
lent over RCA0. (If so, this would gives a precise meaning to the intuition
that the notions are close.)

1.3. Results. Our first result follows direction (A): we investigate the above-
mentioned fact that a set is 2-random if and only if it is infinitely often C -
incompressible. Formalizing randomness notions relative to the halting problem
is delicate in weak axiomatic systems because of subtleties involving the induction
axioms. For example, the existence of 2-random sets does not imply Σ02-bounding
(equivalently, Δ02-induction) [43], but weak weak König’s lemma for Δ

0
2 trees (i.e.,

2-weak weak König’s lemma) does imply Σ02-bounding [2]. Therefore the equivalence
between the existence of 2-random sets and 2-weak weak König’s lemma requires
Σ02-bounding. It is then natural to ask how much induction is required to prove the-
orems about 2-random sets. We show that the equivalence between 2-randomness
and infinitely often C -incompressibility can be proved without appealing to Σ02-
bounding. Formalizing infinitely often C -incompressibility in weak systems is
straightforward, whereas formalizing 2-randomness in terms of tests is not, so we
hope that the formalized equivalence between the two notions will prove useful in
future applications of algorithmic randomness in reverse mathematics, in addition
to being technically interesting.
Towards direction (B), as a motivating example consider balanced randomness,
introduced in [18, Section 7] (see Definition 6.1 below), which was the first notion
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slightly stronger than ML-randomness considered (Oberwolfach, density, and dif-
ference randomness, discussed above, are even closer to ML-randomness). The
existence of Martin-Löf random sets is equivalent to the existence of balanced ran-
dom sets (Theorem 6.3 below). Always relative to some oracle, if a balanced random
set exists, then that set is Martin-Löf random; conversely, if a Martin-Löf random
set exists, then at least one of its “halves” (i.e., either the bits in the even positions
or the bits in the odd positions) is balanced random, so a balanced random set
exists.
We show in Theorem 7.7 that the preceding equivalence is nearly optimal, in the
sense that if h : N → N is any function that eventually dominates every function of
the form n �→ kn, then the existence of h-weakly Demuth random sets is strictly
stronger than the existence of Martin-Löf random sets.
Still following (B),we show that the existence of Schnorr randomsets is equivalent
to the existence of computably random sets (Theorem 5.4). In all cases, we actually
prove that the equivalence holds for the same oracle.
In the alternative context of the Muchnik and Medvedev degrees (see [22,39,41]
for background), related work has recently been done by Miyabe [32]. He views
randomness notions as mass problems (so there is no relativization). Miyabe shows
that computable randomness and Schnorr randomness areMuchnik equivalent but
not Medvedev equivalent, and he gives a similar result for difference randomness
versus ML-randomness. Yet another alternative context for (B) is given by the
Weihrauch degrees. Randomness notions are now viewed as multivalued functions
mapping an oracleX to the sets random inX . See [8–10]. In theWeihrauch degrees,
ML-randomness is strictly weaker than weak weak König’s lemma. Brattka and
Pauly [10, Proposition 6.6] exactly characterizes ML-randomness in terms of weak
weak König’s lemma and a weak choice principle.
This article is organized as follows. In Section 2, we recall the basic axiom system

RCA0 and establish notational conventions. In Sections 3 and 5, we explain how
the randomness notions we discussed above can be formalized in second-order
arithmetic. In Section 4, we show that the equivalence between 2-randomness and
infinitely often C -incompressibility can be proved in RCA0. In Sections 5 and 6,
we study implications and equivalences among randomness notions as set-existence
principles that can be proved in RCA0. In Section 7, we exhibit nonimplications
over RCA0 among certain randomness notions, recursion-theoretic principles, and
combinatorial principles.

§2. Preliminaries.

2.1. Basic axioms. We provide a short introduction to the typical base system
of reverse mathematics RCA0 that suits our purposes here. We refer the reader to
Simpson [40] for further details. The setting of RCA0 is second-order arithmetic. Its
axioms consist of:

• The basic axioms of Peano arithmetic (denoted PA−) expressing that the
natural numbers form a discretely ordered commutative semi-ring with 1;

• the Σ01 induction scheme (IΣ01, for short), which consists of the universal closures
of all formulas of the form
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ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n + 1))) → ∀nϕ(n), (�)

where ϕ is Σ01;
• the Δ01 comprehension scheme, which consists of the universal closures of all
formulas of the form

∀n(ϕ(n)↔ �(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),
where ϕ is Σ01, � is Π

0
1, and X is not free in ϕ.

‘RCA0’ stands for ‘recursive comprehension axiom,’ which refers to the Δ01 com-
prehension scheme, and the ‘0’ indicates that the induction scheme is restricted to Σ01
formulas. The intuition is that RCA0 corresponds to computable mathematics. To
show that some set exists when working in RCA0, one must show how to compute
that set from existing sets.
RCA0 proves many variants of the Σ01 induction scheme, which we list here for the
reader’s reference. In the list below, ϕ is a formula and Γ is a class of formulas.

• The induction axiom forϕ is the universal closure of (�) above. The Γ induction
scheme consists of the induction axioms for all ϕ ∈ Γ.

• The least element principle for ϕ is the universal closure of the formula
∃nϕ(n)→ ∃n[ϕ(n) ∧ (∀m < n)(¬ϕ(m))].

The Γ least element principle consists of the least element principles for all
ϕ ∈ Γ.

• The bounded comprehension axiom for ϕ is the universal closure of the formula
∀b∃X∀n[n ∈ X ↔ (n < b ∧ ϕ(n))],

where X is not free in ϕ. The bounded Γ comprehension scheme consists of
the bounded comprehension axioms for all ϕ ∈ Γ.

• The bounding (or collection) axiom for ϕ is the universal closure of the formula
∀a[(∀n < a)(∃m)ϕ(n,m) → ∃b(∀n < a)(∃m < b)ϕ(n,m)],

where a and b are not free in ϕ. The Γ bounding scheme consists of the
bounding axioms for all ϕ ∈ Γ.
In addition to IΣ01, RCA0 proves

• the Π01 induction scheme (IΠ01);
• the Σ01 least element principle and the Π01 least element principle;
• the bounded Σ01 comprehension scheme and the bounded Π01 comprehension
scheme;

• the Σ01 bounding scheme (BΣ01).
The schemes IΣ01, IΠ

0
1, the Σ

0
1 least element principle, the Π

0
1 least element princi-

ple, the bounded Σ01 comprehension scheme, and the bounded Π
0
1 comprehension

scheme are all equivalent over PA− (or over PA− plus Δ01 comprehension in the
case of the bounded comprehension schemes). The scheme BΣ01 is weaker. RCA0
does not prove the Π01 bounding scheme (BΠ

0
1), which is equivalent to both the Σ

0
2

bounding scheme (BΣ02) and the Δ
0
2 induction scheme. We refer the reader to [21,

Section I.2] and [40, Section II.3] for proofs of these facts. The equivalence of BΣ02
and Δ02 induction is proved in [42].
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RCA0 suffices to implement the typical codings ubiquitous in computability the-
ory. Finite strings, finite sets, integers, rational numbers, etc. are coded in the usual
way. Real numbers are coded by rapidly converging Cauchy sequences of ratio-
nal numbers. RCA0 also suffices to define Turing reducibility ≤T and an effective
sequence (Φe)e∈N of all Turing functionals (see [40, Section VII.1]).

2.2. Notation. Let us fix some notation and terminology for strings.N<N denotes
the set of all finite strings, and 2<N denotes the set of all finite binary strings. We
also sometimes use 2n to denote the set of binary strings of length n, use 2<n to
denote the set of binary strings of length less than n, etc. For strings � and �,
|�| denotes the length of �, � ⊆ � denotes that � is an initial segment of �, ���
denotes the concatenation of � and �, and ��n = 〈�(0), . . . , �(n − 1)〉 denotes the
initial segment of � of length n (when n ≤ |�|). The ‘⊆’ and ‘�’ notation extend to
second-order objects, thought of as infinite strings. For example, � ⊆ X denotes
that � is an initial segment of X , and X �n = 〈X (0), . . . , X (n − 1)〉 denotes the
initial segment of X of length n. For a string �, [�] denotes the basic open set
determined by �, i.e., the class of all X such that � ⊆ X . Likewise, if U is a set of
strings, then [U ] represents the open set determined byU , andX ∈ [U ] abbreviates
(∃� ∈ U )(� ⊆ X ). As usual, a tree is a set T ⊆ N<N that is closed under initial
segments: ∀�∀�((� ∈ T ∧ � ⊆ �) → � ∈ T ). Tn = {� ∈ T : |�| = n} denotes the
nth level of tree T . A function f is a path through a tree T if every initial segment
of f is in T : ∀n(f�n ∈ T ). [T ] denotes the set of paths through tree T .
We follow the common convention distinguishing the two symbols ‘N’ and ‘�’
in reverse mathematics. ‘N’ denotes the (possibly nonstandard) first-order part
of whatever structure is implicitly under consideration, whereas ‘�’ denotes the
standard natural numbers. We write ‘N’ when explicitly working in a formal system,
such as when proving some implication over RCA0. We write ‘�’ when constructing
a standard model of RCA0 witnessing some nonimplication.

§3. Formalizing algorithmic randomness in second-order arithmetic. Here and
at the beginning of Section 5 we provide a reference for formalized definitions
from effective topology and algorithmic randomness for use in RCA0, following the
style of [2]. The notions we review here easily form a linear hierarchy according to
randomness strength; however, it will require some effort to verify these implications
in RCA0.
In order to define Martin-Löf randomness in RCA0, we must define (codes for)
effectively open sets and the measures of these sets. We could of course consider
2N as a complete separable metric space in RCA0 (see [40, Section II.5]) and use
the corresponding notion of open set. Instead, we use the following equivalent
formulation because it more closely resembles the definition used in algorithmic
randomness, and it makes defining an open set’s measure a little easier.

Definition 3.1 (RCA0).

• A code for a Σ01 set (or an open set) is a sequence (Bi )i∈N, where each Bi is a
coded finite subset of 2<N.

• A code for a Σ0,Z1 set is a code (Bi)i∈N for a Σ01 set with (Bi )i∈N ≤T Z.
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• A code for a uniform sequence ofΣ0,Z1 sets is a double-sequence (Bn,i)n,i∈N ≤T Z,
where (Bn,i)i∈N is a code for a Σ

0,Z
1 set for each n ∈ N.

• If U = (Bi )i∈N codes a Σ01 set, then ‘X ∈ U ’ denotes ∃i(X ∈ [Bi ]).
Equivalently, we could take a code for a Σ0,Z1 set to be an index e for WZ

e =
dom(ΦZe ). Typically, we write ‘U is a Σ0,Z1 set’ and ‘(Un)n∈N is a uniform sequence
of Σ0,Z1 sets’ instead of ‘U codes a Σ0,Z1 set’ and ‘(Un)n∈N codes a uniform sequence
of Σ0,Z1 sets.’
Now we define Lebesgue measure for Σ01 sets.

Definition 3.2 (RCA0).

• Let B ⊆ 2<N be finite. Define �(B) =∑
�∈B̂ 2

−|�|, where
B̂ = {� ∈ B : � has no proper initial segment in B}.

• Let U = (Bi )i∈N be a Σ01 set.
– The Lebesgue measure of U is �(U) = limm �(

⋃
i≤m Bi ) (if the limit exists).

– For r ∈ R, ‘�(U) > r’ denotes ∃m(�(⋃i≤m Bi) > r).
– For r ∈ R, ‘�(U) ≤ r’ denotes ∀m(�(⋃i≤m Bi) ≤ r).
Wewarn the reader thatRCA0 is not strong enough to prove that the limit defining
�(U) exists for every Σ01 set U , which is why we must give explicit definitions for
�(U) > r and �(U) ≤ r. In RCA0, the assertion �(U) = r includes the implicit
assertion that the limit exists.
Now we can define the notions of algorithmic randomness that we consider. We
start with Martin-Löf randomness.

Definition 3.3 (RCA0).

• A Σ0,Z1 -test (orMartin-Löf test relative to Z) is a uniform sequence (Un)n∈N of
Σ0,Z1 sets such that ∀n(�(Un) ≤ 2−n).

• X is 1-random relative toZ (orMartin-Löf random relative toZ) ifX /∈ ⋂
n∈N

Un
for every Σ0,Z1 -test (Un)n∈N.

• MLR is the statement “for every Z there is an X that is 1-random relative
to Z.”

A notion stronger than Martin-Löf randomness is weak 2-randomness. A weak
2-test generalizes the concept of a Martin-Löf test in that one no longer bounds the
rate at which the measures of the components of the test converge to 0.

Definition 3.4 (RCA0).

• A weak 2-test relative to Z is a uniform sequence (Un)n∈N of Σ
0,Z
1 sets such that

limn �(Un) = 0, meaning that ∀k∃n(∀m > n)(�(Um) ≤ 2−k).
• X isweakly 2-randomrelative toZ ifX /∈ ⋂

n∈N
Un for everyweak 2-test (Un)n∈N

relative to Z.
• W2R is the statement “for every Z there is an X that is weakly 2-random
relative to Z.”

Even stronger is 2-randomness, which we define here in terms of Σ0,Z2 -tests. We
must first define Σ02 sets and their measures.
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Definition 3.5 (RCA0).

• A code for a Σ02 set is a sequence (Ti )i∈N of subtrees of 2<N.
• A code for a Σ0,Z2 set is a code for a Σ02 set (Ti)i∈N with (Ti )i∈N ≤T Z.
• A code for a uniform sequence ofΣ0,Z2 sets is a double-sequence (Tn,i)n,i∈N ≤T Z,
where (Tn,i)i∈N is a code for a Σ0,Z2 set for each n ∈ N.

• IfW = (Ti )i∈N codes a Σ02 set, then X ∈ W denotes ∃i∀n(X �n ∈ Ti).

Again, we write ‘W is a Σ0,Z2 set,’ etc. instead of ‘W codes a Σ02 set,’ etc.

Definition 3.6 (RCA0). Let (Ti )i∈N be a sequence of trees that codes the Σ02 set
W . Let q ∈ Q. Then ‘�(W) ≤ q’ denotes ∀i∃n(2−n|⋃j≤i T nj | ≤ q).
Definition 3.7 (RCA0; [2]).

• A Σ0,Z2 -test is a uniform sequence (Wn)n∈N of Σ
0,Z
2 sets such that ∀n(�(Wn) ≤

2−n).
• A set X is 2-random relative to Z if X /∈ ⋂

n∈N
Wn for every Σ0,Z2 -test (Wn)n∈N.

• 2-MLR is the statement “for every Z there is an X that is 2-random relative
to Z.”

§4. 2-MLR and C -incompressibility over RCA0. The statement 2-MLR (i.e., the
existence of 2-random sets) is well studied in reverse mathematics. For instance,
in the presence of the scheme BΣ02 (i.e., Σ

0
2-bounding), 2-MLR is equivalent to two

formalizations of the dominated convergence theorem [2], and it implies the rainbow
Ramsey theorem for pairs and 2-bounded colorings [13,14].
The goal of this section is to prove the equivalence between 2-randomness and
infinitely oftenC -incompressibility in RCA0. The difficulty in doing so is in avoiding
arbitrary computations relative to Z′ for a set Z (in the sense described the discus-
sion of DNR in Section 7). In general, BΣ02 is required to show that if ∀n(ΦZ

′
(n)↓),

then for every n the sequence � = 〈ΦZ′
(0), . . . ,ΦZ

′
(n − 1)〉 of the first n values

of ΦZ
′
exists because this is essentially an arbitrary instance of bounded Δ02 com-

prehension, which is equivalent to Δ02 induction and hence to BΣ
0
2. Thus there is a

danger of needing BΣ02 when working with computations relative to Z
′ in RCA0.

Furthermore, we wish to give proofs that are as concrete as possible, meaning that
we prefer to work with objects that exists as sets in RCA0, such as codes for tests,
rather thanwith virtual objects defined by formulas, such asZ′ and sets computable
fromZ′. This is one reasonwhywe prefer the formalization of 2-randomness relative
to Z in terms of Σ0,Z2 -tests to the formalization in terms of 1-randomness relative
to Z′.
In RCA0, we may define the standard optimal plain oracle machine V from an
effective sequence of all Turing functionals in the usual way. We may then discuss
plain complexity relative to a set Z by writing

• CZ(�) ≤ n if there is a � such that |�| ≤ n and VZ(�) = � (and similarly with
‘<’ in place of ‘≤’);

• CZ(�) > n if CZ(�) � n (and similarly with ‘≥’ in place of ‘>’);
• CZ(�) = n if n is least such that CZ(�) ≤ n.
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RCA0 proves, using IΣ01 in the guise of the Σ
0
1 least element principle, that for

every � there is an n such that C (�) = n. However, the function � �→ C (�) is not
computable and therefore RCA0 does not prove that this function exists.

Definition 4.1 (RCA0).

• X is eventually CZ-compressible if ∀b∀∞m(CZ(X �m) < m − b).
• X is infinitely often CZ -incompressible if ∃b∃∞m(CZ(X �m) ≥ m − b).
• C -INC is the statement “for every Z there is an X that is infinitely often
CZ-incompressible.”

We first show that RCA0 � C -INC → 2-MLR. The original proof that every
infinitely often C -incompressible set is 2-random makes use of prefix-free Kol-
mogorov complexity relative to 0′, which we wish to avoid. We give a proof that
is similar to the one given in [6]. To do this, we use the following parameterized
version of [34, Proposition 2.1.14], which says that if 	(p, n, �, Z) defines a sequence
of Σ0,Z1 ‘sets’ (‘sets’ in quotation because, in RCA0, 	 may not literally define a set)
of requests indexed by p, then there is a machineM such that, for every p,M (p, ·)
honors request set p.

Proposition 4.2 (RCA0). Let Z be a set and suppose that 	(p, n, �, Z) is a Σ01
formula such that, for each p, n ∈ N, there are at most 2n strings � ∈ 2<N such that
	(p, n, �, Z) holds. Then there is a machineM such that

(∀p, n ∈ N)(∀� ∈ 2<N)[	(p, n, �, Z)↔ (∃� ∈ 2n)(MZ (p, �) = �)].
Proof. The proof is a straightforward (even in RCA0) extension of the proof
of [34, Proposition 2.1.14]. �
Theorem 4.3.

RCA0 � ∀X∀Z(X is infinitely often CZ -incompressible
→ X is 2-random relative to Z).

Hence RCA0 � C -INC → 2-MLR.
Proof. Wework in RCA0 and show that for everyX andZ, if X is not 2-random
relative to Z, then X is eventually CZ-compressible.
Suppose X and Z are sets where X is not 2-random relative to Z. Let
(Tn,i)n,i∈N ≤T Z be a code for a Σ0,Z2 -test (Un)n∈N capturing X . Assume that
(∀n, i, j)(i ≤ j → Tn,i ⊆ Tn,j) by replacing each Tn,j by

⋃
i≤j Tn,i if necessary.

Note that (∀n, i)(�([Tn,i ]) ≤ 2−n) because (Un)n∈N is a Σ0,Z2 -test.
Recall that for a tree T , Tm = {� ∈ T : |�| = m} denotes the mth level of T . To
compress the initial segments of X , define a parameterized Σ0,Z1 set of requests as
follows. First, uniformly define auxiliary sequences p < mp,0 < mp,1 < mp,2 < · · ·
for each p ∈ N so that (∀p, i)(|Tmp,ip+1,i | ≤ 2mp,i−p), which is possible because
(∀p, i)(�([Tp+1,i ]) ≤ 2−(p+1)). Let

	(p, n, �, Z) = ∃i [(� ∈ Tp+np+1,i) ∧ (mp,i ≤ p + n < mp,i+1)].
If 	(p, n, �, Z) holds, then it must be that � ∈ Tp+np+1,i for the i such that mp,i ≤
p + n < mp,i+1. There are at most 2mp,i−p ≤ 2n such � by the choice of mp,i . Thus
for every p, n ∈ N, there are at most 2n strings � ∈ 2<N such that 	(p, n, �, Z) holds.
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Thus letM be as in the conclusion of Proposition 4.2 for this 	. LetN be a machine
such that (∀p ∈ N)(∀� ∈ 2<N)(NZ (0p�1��) = MZ(2p, �)) (here we warn the
reader that in N , ‘0p’ is the string of 0’s of length p, but in M , ‘2p’ is the number
2p). Let c ∈ N be a constant such that ∀�(CZ (�) ≤ CZN (�) + c).
We show that∀b∀∞m(CZ(X �m) < m−b) by showing that∀b∀∞m(CZN (X �m) <
m− b− c). Fix b ∈ N. Let p be large enough so that 2p > b+ c+p+1. By the fact
that (Un)n∈N captures X , let i0 be such that (∀i ≥ i0)(X ∈ [T2p+1,i ]). Now consider
any n ≥ m2p,i0 − 2p. Let i ≥ i0 be the i such that m2p,i ≤ 2p + n < m2p,i+1. Then
X �(2p + n) ∈ T 2p+n2p+1,i by the choice of i0, so 	(2

p, n,X �(2p + n), Z). Thus there is a
� ∈ 2n such that NZ (0p�1��) =MZ(2p, �) = X �(2p + n). Thus

CZN (X �(2p + n)) ≤ p + 1 + |�| = p + 1 + n < 2p + n − b − c.
Therefore, if m ≥ m2p,i0 , then CZN (X �m) < m − b − c, as desired. Thus X is
eventually CZ-compressible. �
Next we show the harder implication that RCA0 � 2-MLR → C -INC. The proof
in Miller [30] that every 2-random set is infinitely often C -incompressible uses
the familiar characterization of 2-random sets in terms of prefix-free Kolmogorov
complexity relative to 0′, which we wish to avoid. The proof in Nies, Stephan, and
Terwijn [35] (see also Nies [34, Theorem 3.6.10]) uses the so-called compression
functions and an application of the low basis theorem. Though we did not pursue
this approach in detail, we believe that it is possible to give a metamathematical
version of the argument via compression functions in RCA0 by following the proof
of [34, Theorem 3.6.10] and using a carefully formalized version of the low basis
theorem, such as Hájek and Pudlak [21, Theorem I.3.8]. This strategy could be
implemented entirely (and quite delicately) in RCA0, or it could be implemented by
observing that the desired statement

∀X∀Z(X is 2-random relative to Z (�)

→ X is infinitely often CZ-incompressible)

is Π11 and by appealing to conservativity. A classic result of Harrington is that
every countable model of RCA0 can be extended to a countable model of WKL0
with the same first-order part (see [40, Theorem IX.2.1]). It follows that WKL0 is
Π11-conservative over RCA0. By combining the proof of Harrington’s result with
the proof of the formalized low basis theorem from Hájek and Pudlak, one may
ensure that the sets in the extended model of WKL0 are all low in the sense of
Hájek and Pudlak. This yields that RCA0 plus the statement “every infinite binary-
branching tree has a low infinite path” isΠ11-conservative overRCA0. The conceptual
advantage of the conservativity strategy over the directly-in-RCA0 strategy is that
one may assume that the desired compression function actually exists as a second-
order object instead of merely being defined by some formula. We thank Keita
Yokoyama for many helpful comments concerning metamathematical approaches
to showing that RCA0 � (�).
We prefer a concrete argument given in RCA0 to the metamathematical approach
outlined above, and find it interesting that a concrete argument is possible. Our
argument is a formalization of the proof presented in Bauwens [4], which itself is
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based on the proof in Bienvenu et al. [6]. The proof in [4] proceeds via the following
covering result.

Theorem 4.4 (Conidis [12, Theorem3.1]). Let q ∈ Q, and let (Ui)i∈� be a uniform
sequence of Σ01 sets such that �(Ui ) ≤ q for each i . For every p ∈ Q with p > q, there
is a Σ0,0

′
1 set V such that �(V) ≤ p and ⋂i≥N Ui ⊆ V for each N . Furthermore, V is

produced uniformly from an index e such that Φe = (Ui)i∈N as well as q and p.

Assuming Theorem 4.4, we sketch the argument that no eventually C -
compressible set X is 2-random. Suppose that ∀∞i(C (X �i) < i − b) for each
b. We want to find a Σ0,0

′
1 -test capturing X . Define a double-sequence (Ub,i)b,i∈� of

Σ01 sets by taking Ub,i = {Y : C (Y �i) < i − b}. Then �(Ub,i) ≤ 2−b for each b
and i . By Theorem 4.4, we obtain a Σ0,0

′
1 -test (Vb)b∈� such that

⋂
i≥N Ub+1,i ⊆ Vb

for each b and N . The test (Vb)b∈� captures X because for each b there is an N
such that (∀i > N)(C (X �i) < i − (b + 1)), and hence X ∈ ⋂

i≥N Ub+1,i , which is
contained in Vb . Thus X is not 2-random.
The proof of Theorem 4.4 in [4] makes use of an inclusion–exclusion principle
for open sets provable in RCA0. We include the standard proof in order to convince
the reader that it can be carried out in RCA0.

Lemma 4.5 (RCA0). LetA,B ⊆ 2N be open sets, and let a, b, r ∈ Q≥0 be such that
�(A) ≤ a, �(B) ≤ b and �(A ∪ B) > r. Then �(A ∩ B) ≤ a + b − r.
Proof. Suppose for a contradiction that �(A ∩ B) > a + b − r. Then �(A ∩

B) > a + b − r + 2−n for some n ∈ N, so there is a clopen C ⊆ A ∩ B with
a + b − r +2−(n+1) ≤ �(C) ≤ a + b − r +2−n. Let A0 = A\ C, and let B0 = B \ C.
Note that �(A0) ≤ a − (a + b − r + 2−(n+1)) = r − b − 2−(n+1) and that �(B0) ≤
b − (a + b − r + 2−(n+1)) = r − a − 2−(n+1). Then
�(A ∪ B) ≤ �(A0) + �(B0) + �(C)

≤ (r − b − 2−(n+1)) + (r − a − 2−(n+1)) + (a + b − r + 2−n) = r.
This contradicts �(A ∪ B) > r. �
Lemma 4.6 formalizes Theorem 4.4 for use in RCA0. Notice that the set V
produced is now a Σ0,Z2 set, rather than a Σ

0,Z′
1 set.

Lemma 4.6 (RCA0). Let Z be a set, let q ∈ Q, and let (Ui)i∈N be a uniform
sequence of Σ0,Z1 sets such that ∀i(�(Ui) ≤ q). Then, for every p ∈ Q with p > q,
there is a Σ0,Z2 set V such that �(V) ≤ p and ∀N(⋂i≥N Ui ⊆ V). Furthermore, V is
produced uniformly from Z, an index e such that ΦZe = (Ui)i∈N, q, and p.

Proof. The basic idea is to replace⋃
N∈N

⋂
i≥N

Ui

by a superset of the form

V =
⋃
N∈N

bN⋂
i=N

Ui
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for an appropriate sequence 0 < b0 < b1 < · · · because ⋃N∈N

⋂
i≥N Ui is too

complicated, whereas
⋃
N∈N

⋂bN
i=N Ui is open (but in our case not effectively open;

we produce a Σ02 code for a set that happens to be open).
Wewant to identify a sequence 0 < b0 < b1 < · · · that yields�(V) ≤ p. The proof
in [4] computes such a sequence from 0′. We wish to avoid explicit computations
relative to 0′ because the analysis of such computations has the danger of possibly
requiring BΣ02.
First some notation. For a, b ∈ Nwith a < b, let Ua...b =

⋂b
i=a Ui . For a sequence

〈b0, b1, . . . , bn−1〉 with 0 < b0 < b1 < · · · < bn−1, let

S〈b0,...,bn−1〉 =
⋃
j<n

Uj...bj .

We can fix codes for these sets:

• Let (Ui,s )i,s∈N ≤T Z denote the code for (Ui )i∈N so that, for all i ,
⋃
s∈N
[Ui,s ] =

Ui .
• From (Ui,s )i,s∈N, define codes (Ua...b,s)s∈N ≤T Z uniformly for all a, b ∈ N
with a < b so that

⋃
s∈N
[Ua...b,s ] = Ua...b .

• Similarly, for every sequence 〈b0, b1, . . . , bn−1〉 with 0 < b0 < b1 < · · · < bn−1,
uniformly define codes (S〈b0 ,...,bn−1〉,s)s∈N ≤T Z so that

⋃
s∈N
[S〈b0,...,bn−1〉,s ] =

S〈b0,...,bn−1〉.

Notice that if 〈b0, b1, . . . , bn−1〉 is a sequence with 0 < b0 < b1 < · · · < bn−1,
then

⋂
i≥N Ui ⊆ S〈b0,...,bn−1〉 holds when N < n.

We would like to define V by taking the union of sets of the form S〈b0,...,bn−1〉 for
longer and longer sequences 〈b0, . . . , bn−1〉. However, we also need to ensure that
�(V) ≤ p. Thus we need to find sequences 〈b0, . . . , bn−1〉where S〈b0 ,...,bn−1〉 has small
measure and that additionally are extendible to longer sequences 〈b0, . . . , bm−1〉 ⊇
〈b0, . . . , bn−1〉 where S〈b0,...,bm−1〉 also has small measure. Part (ii) of the following
claim says that this is possible: there are sequences 〈b0, . . . , bn−1〉 of arbitrary length
such that for every subsequence 〈b0, . . . , bk〉 with k < n, the set S〈b0,...,bk〉 ∪ Ui has
small measure for all i > bk . The main technical work to prove the claim is in its
Part (i).

Claim 4.7.

(i) For every a ∈ N and every r ∈ Q with r > q, there is b > a such that
�(Ua...b ∪ Ui) ≤ r for each i > b.

(ii) For every n ∈ N and every q0, . . . , qn−1 ∈ Q with q < q0 < · · · < qn−1, there
is a sequence 〈b0, b1, . . . , bn−1〉 with 0 < b0 < b1 < · · · < bn−1 such that
�(S〈b0 ,...,bk〉 ∪ Ui) ≤ qk) for each k < n and each i > bk .

Proof of Claim. (i) Suppose for a contradiction that (∀b > a)(∃i > b)(�(Ua...b∪
Ui) > r). Consider for a moment any b > a and a c > b such that�(Ua...b ∪Uc) > r.
We assume that �(Uc) ≤ q, so if �(Ua...b) ≤ x for some x ∈ Q, then �(Ua...c) ≤
�(Ua...b ∩ Uc) ≤ x − (r − q) by Lemma 4.6. By iterating this argument sufficiently
many times, we find a contradictory c such that �(Ua...c) < 0.
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To implement this argument formally, consider the formula

ϕ(k) = (∃〈b0, . . . , bk〉 ∈ N)[
(a < b0) ∧ (∀i < k)(bi < bi+1) ∧ (∀i < k)(�(Ua...bi ∪ Ubi+1 ) > r)

]
.

The formula ϕ(k) is Σ0,Z1 because ‘�(Ua...bi ∪ Ubi+1 ) > r’ is Σ0,Z1 . Thus we may
conclude ∀kϕ(k) by IΣ01 and the assumption (∀b > a)(∃i > b)(�(Ua...b ∪ Ui) > r).
Now choose k > q/(r − q) and, by ϕ(k), let a < b0 < b1 < · · · < bk be such that
(∀i < k)(�(Ua...bi ∪ Ubi+1 ) > r). Then, for any x ∈ Q and i < k, if �(Ua...bi ) ≤ x,
then �(Ua...bi+1 ) ≤ x − (r − q) by Lemma 4.5 and the assumption �(Ubi+1 ) ≤ q.
By IΠ01, we can then conclude that (∀i ≤ k)[�(Ua...bi ) ≤ q − i(r − q)]. This is a
contradiction because for i = k it gives

�(Ua...bk ) ≤ q − k(r − q) < q − q = 0.
(ii) Given n and q0, . . . , qn−1 ∈ Q with q < q0 < · · · < qn−1, let b > n be
such that �(Un...b ∪ Ui) ≤ q0 for each i > b. Let bj = b + j for each j < n.
Then (∀k < n)(S〈b0,b1,...,bk〉 ⊆ Un...b), so if i > bk ≥ b, then �(S〈b0 ,b1,...,bk〉 ∪ Ui) ≤
�(Un...b ∪ Ui) ≤ q0 ≤ qk . �
Choose an increasing sequence of rationals q0 < q1 < q2 < · · · inside the interval
(q, p). We first illustrate some of the ideas behind constructing the code for V before
diving into its full construction. Claim 4.7 part (ii) tells us that it is possible to find
arbitrary long sequences b0 < · · · < bn−1 with �(S〈b0,...,bn−1〉) under control that can
be extended to even longer sequences with the corresponding measure still under
control. The conclusion of Claim 4.7 part (ii) is Π0,Z1 , so we can use trees to identify
sequences b0 < · · · < bn−1 satisfying the conclusion for q0, . . . , qn−1 in the following
way. For each t and 〈b0, . . . , bn−1〉 we can define a tree T〈t,b0,...,bn−1〉 such that

[T〈t,b0,...,bn−1〉] =

⎧⎪⎨⎪⎩
[S〈b0,...,bn−1〉,t] if 〈b0, . . . , bn−1〉 satisfies

Claim 4.7 part (ii),
∅ otherwise.

This is accomplished by adding toT〈t,b0 ,...,bn−1〉 all strings comparablewith the finitely
many strings in S〈b0,...,bn−1〉,t until possibly noticing that b0 < · · · < bn−1 does not
satisfy Claim 4.7 part (ii) for q0, . . . , qn−1.
For a fixed b0 < · · · < bn−1, we then have that⋃

t∈N

[T〈t,b0,...,bn−1〉] =⎧⎪⎨⎪⎩
⋃
t∈N
[S〈b0,...,bn−1〉,t] = S〈b0,...,bn−1〉 if 〈b0, . . . , bn−1〉 satisfies

Claim 4.7 part (ii),
∅ otherwise.

Therefore, if we take the sequence (Ti)i∈N of all trees T〈t,b0,...,bn−1〉 for all t, n, and
b0 < · · · < bn−1 as a code for the Σ02 set V , we get that

V =
⋃

{S〈b0,...,bn−1〉 : 〈b0, . . . , bn−1〉 satisfies Claim 4.7 part (ii)}.
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In this case, we certainly have ⋃
N∈N

⋂
i≥N

Ui ⊆ V ,

but we have done nothing to help keep track of �(V).
So instead of having V contain S〈b0,...,bn−1〉 for every b0 < · · · < bn−1 that satisfies
Claim 4.7 part (ii), we want V to contain S〈b0,...,bn−1〉 for exactly one b0 < · · · < bn−1
satisfying Claim 4.7 part (ii) for each n. Moreover, if n > m, we want 〈b0, . . . , bn−1〉
to extend 〈b0, . . . , bm−1〉 so thatS〈b0,...,bn−1〉 ⊇ S〈b0,...,bm−1〉, whichmakes themeasures
of these sets easier to analyze. To accomplish this and to give the full construction
of the code for V , we introduce the notion of a good sequence.
Call a sequence 〈b0, s0, . . . , bn−1, sn−1〉 good if 〈s0, . . . , sn−1〉 witnesses that

〈b0, . . . , bn−1〉 is the lexicographically least sequence of length n satisfying Claim 4.7
part (ii) for q0, . . . , qn−1. More formally, 〈b0, s0, . . . , bn−1, sn−1〉 is good if
(i) 0 < b0 < b1 < · · · < bn−1;
(ii) (∀k < n)(∀i > bk)(�(S〈b0 ,...,bk〉 ∪ Ui) ≤ qk); and
(iii) for all k < n, if bk > bk−1+1 (or if b0 > 1 in the case k = 0), then sk = 〈i, s〉

is such that i > bk − 1 and �([S〈b0 ,...,bk−1,bk−1〉,s ] ∪ [Ui,s ]) > qk .
Item (iii) says that if bk is not as small as possible (i.e., if bk > bk−1+1 or if b0 > 1
in the case k = 0), then sk is a pair witnessing that bk cannot be chosen smaller and
still satisfy Claim 4.7 part (ii). It is in this sense that 〈s0, . . . , sn−1〉 witnesses that
〈b0, . . . , bn−1〉 is the lexicographically least sequence of length n satisfying Claim 4.7
part (ii). Notice that items (i) and (iii) are Δ0,Z1 and that item (ii) is Π0,Z1 , so
‘〈b0, s0, . . . , bn−1, sn−1〉 is good’ is Π0,Z1 . So instead of defining trees T〈t,b0,...,bn−1〉 as
above, we will define similar trees T〈t,b0,s0,...,bn−1,sn−1〉 so that

[T〈t,b0,s0,...,bn−1,sn−1〉] =

{
[S〈b0 ,...,bn−1〉,t] if 〈b0, s0, . . . , bn−1, sn−1〉 is good,
∅ otherwise.

However, before we do this, we show that the good sequences do indeed have their
intended properties. Note that if 〈b0, s0, . . . , bn−1, sn−1〉 is good and k ≤ n, then
〈b0, s0, . . . , bk−1, sk−1〉 is also good. By the following the good sequences identify
a unique infinite sequence 0 < b0 < b1 < · · · , which is the sequence we use to
define V .
Claim 4.8. For each n there is exactly one sequence b0 < · · · < bn−1 for which
there are s0, . . . , sn−1 such that 〈b0, s0, . . . , bn−1, sn−1〉 is good.
Proof of Claim. Fix n. We first show that there is at most one sequence b0 <

· · · < bn−1 for which there are s0, . . . , sn−1 such that 〈b0, s0, . . . , bn−1, sn−1〉 is good.
Suppose that 〈b0, s0, . . . , bn−1, sn−1〉 and 〈b′0, s ′0, . . . , b′n−1, s ′n−1〉 are both good and
that (for the sake of argument) there is a k < n such that bk < b′k and (∀j < k)(bj =
b′j). Then (∀i > bk)(�(S〈b0 ,...,bk〉 ∪Ui) ≤ qk) because 〈b0, s0, . . . , bn−1, sn−1〉 is good.
However, S〈b′0 ,...,b′k−1,b′k−1〉 ⊆ S〈b0,...,bk〉 because bk ≤ b′k − 1 and (∀j < k)(bj = b′j).
Therefore (∀i > b′k − 1)(�(S〈b′0 ,...,b′k−1,b′k−1〉 ∪ Ui) ≤ qk). Thus there can be no
s ′k = 〈i, s〉 such that i > b′k − 1 and �([S〈b′0 ,...,b′k−1,b′k−1〉,s ] ∪ [Ui,s ]) > qk . Therefore
〈b′0, s ′0, . . . , b′n−1, s ′n−1〉 is not good.
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Now we show that there is at least one sequence b0 < · · · < bn−1 for which there
are s0, . . . , sn−1 such that 〈b0, s0, . . . , bn−1, sn−1〉 is good. By Claim 4.7 part (ii) and
the Π01 least element principle, there is a least code 〈b0, . . . , bn−1〉 with 0 < b0 <
· · · < bn−1 and such that (∀k < n)(∀i > bk)(�(S〈b0 ,...,bk〉 ∪ Ui) ≤ qk). As usual, we
tacitly assume that the coding of sequences is increasing in every coordinate. Let A
be the set of k < n such that bk > bk−1 + 1 (or b0 > 1 in the case k = 0). Then,
by the minimality of 〈b0, . . . , bn−1〉, (∀k ∈ A)(∃i > bk − 1)(�(S〈b0 ,...,bk−1,bk−1〉 ∪
Ui) > qk) and so (∀k ∈ A)(∃i > bk − 1)(∃s)(�([S〈b0 ,...,bk−1,bk−1〉,s ] ∪ [Ui,s ]) > qk).
Thus, for every k ∈ A we may choose an sk = 〈i, s〉 such that i > bk−1 and
�([S〈b0 ,...,bk−1,bk−1〉,s ]∪ [Ui,s ]) > qk . Then, letting sk = 0 for all k < n that are not in
A, we see that 〈b0, s0, . . . , bn−1, sn−1〉 is good. �
We are now ready to define a code (Ti)i∈N for the desired Σ

0,Z
2 set V . The idea

is to arrange that V = ⋃
n∈N

S〈b0 ,...,bn−1〉, for the sequence b0 < b1 < · · · identified
above.
We view each i as a sequence i = 〈t, b0, s0, . . . , bn−1, sn−1〉 and use the trees
T〈t,b0,s0,...,bn−1,sn−1〉 to ensure that S〈b0,...,bn−1〉 ⊆ V when there are s0, . . . , sn−1 such
that 〈b0, s0, . . . , bn−1, sn−1〉 is good. Thus for every 〈t, b0, s0, . . . , bn−1, sn−1〉 ∈ N, we
define T〈t,b0,s0,...,bn−1,sn−1〉 so that

[T〈t,b0,s0,...,bn−1,sn−1〉] =

{
[S〈b0 ,...,bn−1〉,t] if 〈b0, s0, . . . , bn−1, sn−1〉 is good,
∅ otherwise,

as described above.
To define T〈t,b0,s0,...,bn−1,sn−1〉, first check that 〈b0, s0, . . . , bn−1, sn−1〉 satisfies items
(i) and (iii) in the definition of ‘good.’ If the check fails, set T〈t,b0,s0,...,bn−1,sn−1〉 = ∅.
If the check passes, then add to T〈t,b0,s0,...,bn−1,sn−1〉 all initial segments of the strings
in S〈b0 ,...,bn−1〉,t , and then add all extensions of all strings in S〈b0 ,...,bn−1〉,t , level-by-
level, until possibly seeing that 〈b0, s0, . . . , bn−1, sn−1〉 is not good by the failure of
item (ii) in the definition of ‘good.’ In the end, if 〈b0, s0, . . . , bn−1, sn−1〉 is good, then
T〈t,b0,s0,...,bn−1,sn−1〉 consists of all strings comparable with some string in S〈b0,...,bn−1〉,t ,
so [T〈t,b0,s0,...,bn−1,sn−1〉] = [S〈b0,...,bn−1〉,t]. Otherwise, T〈t,b0,s0,...,bn−1,sn−1〉 is finite, so we
have that [T〈t,b0,s0,...,bn−1,sn−1〉] = ∅.
Formally, if 〈b0, s0, . . . , bn−1, sn−1〉 is not good by the failure of either (i) or (iii),
then let T〈t,b0,s0,...,bn−1,sn−1〉 = ∅. Otherwise, let T〈t,b0,s0,...,bn−1,sn−1〉 be the set of all
strings � ∈ 2<N such that either
• � ⊆ � for some � ∈ S〈b0,...,bn−1〉,t ; or
• � ⊇ � for some � ∈ S〈b0,...,bn−1〉,t and (∀k < n)(∀i < |�|)(i > bk →
�([S〈b0 ,...,bk〉,|�|] ∪ [Ui,|�|]) ≤ qk).

That is, in this case we add to T〈t,b0,s0,...,bn−1,sn−1〉 all extensions of strings in
S〈b0,...,bn−1〉,t until possibly reaching a level witnessing that 〈b0, s0, . . . , bn−1, sn−1〉
is not good by the failure of (ii).
Let V denote the Σ0,Z2 set defined by (Ti )i∈N according to Definition 3.5. To show
that �(V) ≤ p, we need to show that ∀m∃
(2−
 |⋃i≤m T 
i | ≤ p). Fix m ∈ N. We
find an 
 large enough so that each string in

⋃
i≤m T



i is an extension of some string

in
⋃
t∈N
S〈b̃0,...,b̃ñ−1〉,t for a 〈b̃0, . . . , b̃ñ−1〉 for which there are s̃0, . . . , s̃ñ−1 such that

〈b̃0, s̃0, . . . , b̃ñ−1, s̃ñ−1〉 is good. Once we have 
 , it follows that 2−
 |
⋃
i≤m T



i | ≤ p
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because then

2−


∣∣∣∣∣∣
⋃
i≤m
T 
i

∣∣∣∣∣∣ ≤ �(S〈b̃0 ,...,b̃ñ−1〉) ≤ qñ−1 < p.

To find 
 , first use bounded Π01 comprehension to let A be the set of all
〈t, b0, s0, . . . , bn−1, sn−1〉 ≤ m such that 〈b0, s0, . . . , bn−1, sn−1〉 is good. By bounded
Σ01 comprehension, let B be the set of all 〈t, b0, s0, . . . , bn−1, sn−1〉 ≤ m such
that 〈b0, s0, . . . , bn−1, sn−1〉 is not good due to the failure of (ii). Then, for each
〈t, b0, s0, . . . , bn−1, sn−1〉 ∈ B,

(∃k < n)(∃i > bk)(∃s)(�([S〈b0 ,...,bk〉,s ] ∪ [Ui,s ]) > qk).
ByBΣ01 there is a bound 
 such that, for each 〈t, b0, s0, . . . , bn−1, sn−1〉 ∈ B, there are
a k < n, an i with bk < i < 
 , and an s < 
 such that �([S〈b0 ,...,bk〉,s ] ∪ [Ui,s ]) > qk .
Therefore T
〈t,b0,s0,...,bn−1,sn−1〉 = ∅ for each 〈t, b0, s0, . . . , bn−1, sn−1〉 ∈ B. We have
established that if 〈t, b0, s0, . . . , bn−1, sn−1〉 ≤ m and 〈b0, s0, . . . , bn−1, sn−1〉 is not
good, then T
〈t,b0,s0,...,bn−1,sn−1〉 = ∅. Therefore ⋃

i≤m T


i =

⋃
i∈A T



i . Now, let ñ

be greatest such that some 〈t̃ , b̃0, s̃0, . . . , b̃ñ−1, s̃ñ−1〉 is in A, and fix a witnessing
〈b̃0, . . . , b̃ñ−1〉. By Claim 4.8, 〈b̃0, . . . , b̃ñ−1〉 is the unique sequence of length ñ for
which there are s̃0, . . . , s̃ñ−1 such that 〈b̃0, s̃0, . . . , b̃ñ−1, s̃ñ−1〉 is good. Therefore, for
any 〈t, b0, s0, . . . , bn−1, sn−1〉 ∈ A, it must be that n ≤ ñ (by the maximality of ñ)
and (∀j < n)(bj = b̃j). We thus have that if 〈t, b0, s0, . . . , bn−1, sn−1〉 ∈ A, then

[T〈t,b0,s0,...,bn−1,sn−1〉] = [S〈b0 ,...,bn−1〉,t] ⊆ S〈b0,...,bn−1〉 ⊆ S〈b̃0,...,b̃ñ−1〉.

However, �(S〈b̃0,...,b̃ñ−1〉) ≤ qñ−1. So if we increase 
 so as to be greater than the
length of every string in every S〈b0,...,bn−1〉,t for every 〈t, b0, s0, . . . , bn−1, sn−1〉 ∈ A,
we have that

2−


∣∣∣∣∣∣
⋃
i≤m
T 
i

∣∣∣∣∣∣ = 2−

∣∣∣∣∣⋃
i∈A
T 
i

∣∣∣∣∣ ≤ �(S〈b̃0 ,...,b̃ñ−1〉) ≤ qñ−1 < p

as desired.
To see that

⋂
i≥N Ui ⊆ V for each N ∈ N, fix N and suppose that X ∈ ⋂

i≥N Ui .
Let 〈b0, s0, . . . , bN , sN 〉 be good (which exists because by Claim 4.8 there are good
sequences of arbitrary length). Then

X ∈
⋂
i≥N

Ui ⊆ UN...bN ⊆ S〈b0,...,bN 〉.

Let t be such that X ∈ [S〈b0,...,bN 〉,t]. Then X ∈ [T〈t,b0,...,bN 〉] ⊆ V as desired.
Finally, we observe that the sequence of trees (Ti)i∈N, and therefore the set V , is
produced with the required uniformity. �
Theorem 4.9.

RCA0 � ∀X∀Z(X is 2-random relative to Z
→ X is infinitely often CZ-incompressible).

Hence RCA0 � 2-MLR → C -INC.
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Proof. We work in RCA0 and show that for every X and Z, if X is eventually
CZ-compressible, then X is not 2-random relative to Z.
Suppose X and Z are sets where X is eventually CZ-compressible. That is,

∀b∀∞i(CZ(X �i) < i − b).
We show that there is a Σ0,Z2 -test capturing X and therefore that X is not 2-random
relative to Z.
Define a double-sequence of open sets (Ub,i)b,i∈N ≤T Z by defining Ub,i,s so that,
for each b and i ,

⋃
s∈N
Ub,i,s is an enumeration of all � ∈ 2i such thatCZ(�) < i−b.

Then ∀b∀i(�(Ub,i) ≤ 2−b) because there are at most 2i−b strings � with CZ(�) <
i − b. Thus, for each fixed b ∈ N, (Ub,i)i∈N is a sequence of open sets such that
∀i(�(Ub,i) ≤ 2−b). Therefore, by the uniformity in Lemma 4.6, there is a sequence
(Vb)b∈N ≤T Z of Σ0,Z2 sets such that ∀b(�(Vb) ≤ 2−b+1) and ∀N(

⋂
i≥N Ub,i ⊆ Vb).

The sequence (Vb+1)b∈N is thus a Σ
0,Z
2 test. We show that it captures X . Given b, let

N be such that (∀i ≥ N)[CZ (X �i) < i − (b + 1)]. Then (∀i ≥ N)(X ∈ Ub+1,i).
Thus X ∈ ⋂

i≥N Ub+1,i ⊆ Vb+1 as desired. �
Corollary 4.10.

RCA0 � ∀X∀Z(X is infinitely often CZ -incompressible
↔ X is 2-random relative to Z).

Hence C -INC and 2-MLR are equivalent over RCA0.

§5. Implications between major randomness notions in RCA0. Recall the implica-
tions of randomness notions

2-random⇒ weakly 2-random⇒ 1-random
⇒ computably random⇒ Schnorr random.

In this section, we show that the implications between the corresponding principles
are provable in RCA0. We first provide the definitions of Schnorr and computable
randomness. For a Schnorr test one requires that the nth component of the test has
measure exactly 2−n.

Definition 5.1 (RCA0). A Schnorr test relative toZ is a Martin-Löf test (Un)n∈N

relative to Z where additionally the measures of the components of the test are
uniformly computable from Z: (�(Un))n∈N ≤T Z. X is Schnorr random relative to
Z if X /∈ ⋂

n∈N
Un for every Schnorr test (Un)n∈N relative to Z. SR is the statement

“for every Z there is an X that is Schnorr random relative to Z.”

For the purpose of defining Schnorr randomness relative to a set Z, we may
assume that if (Un)n∈N is a Schnorr test relative to Z, then �(Un) = 2−n for
every n. It is straightforward to implement the usual proof of this fact (see [17,
Proposition 7.1.6], for example) in RCA0.
Computable randomness is defined in terms of computable betting strategies.
They are called supermartingales in this context.

Definition 5.2 (RCA0). A function S : 2<N → Q≥0 is called a supermartingale
if

(∀� ∈ 2<N)(S(��0) + S(��1) ≤ 2S(�)),
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and it is called a martingale if the defining property always holds with equality. A
supermartingale S succeeds on a set X if ∀k∃n(S(X �n) > k). X is computably
random relative to Z if there is no supermartingale S ≤T Z that succeeds on X .
CR is the statement “for every Z there is an X that is computably random relative
to Z.”

By [34, Propositions 7.1.6 and 7.3.8], it makes no difference whether computable
randomness relative to Z is defined in terms of

• supermartingales S : 2<N → Q≥0 that are ≤T Z;
• supermartingales S : 2<N → R≥0 that are ≤T Z;
• martingalesM : 2<N → Q≥0 that are ≤T Z; or
• martingalesM : 2<N → R≥0 that are ≤T Z.
It is straightforward to formalize these arguments inRCA0. In this setting, a function
S : 2<N → R≥0 is coded by the corresponding sequence of values (S(�))�∈2<N .

Proposition 5.3.

(i) RCA0 � ∀X∀Z(X is 2-random relative to Z
→ X is weakly 2-random relative to Z).

Hence RCA0 � 2-MLR → W2R.
(ii) RCA0 � ∀X∀Z(X is weakly 2-random relative to Z

→ X is 1-random relative to Z).
Hence RCA0 � W2R → MLR.

(iii) RCA0 � ∀X∀Z(X is 1-random relative to Z
→ X is computably random relative to Z).

Hence RCA0 � MLR → CR.
(iv) RCA0 � ∀X∀Z(X is computably random relative to Z

→ X is Schnorr random relative to Z).
Hence RCA0 � CR → SR.

Proof. (i) To prove that every 2-random set is weakly 2-random, one views
2-randomness as 1-randomness relative to ∅′ and shows that every weak 2-test can
be thinned to a Martin-Löf test relative to ∅′ because ∅′ can uniformly compute the
measures of Π01 classes. However, our formulation of 2-randomness in RCA0 is in
terms of Σ02-tests, so we need a version of this argument that works with Σ

0
2-tests

instead of with Martin-Löf tests relative to 0′.
Let (Un)n∈N be a weak 2-test relative to Z, and let (Un,i)n,i∈N ≤T Z be a code
for (Un)n∈N. For notational ease, assume that ∀n∀i(Un,i ⊆ Un,i+1). We define a
double-sequence (Tn,i)n,i∈N ≤T Z of trees coding a Σ0,Z2 -test (Wn)n∈N such that⋂
n∈N

Un ⊆
⋂
n∈N

Wn . The idea is to takeWn =
⋃
i∈N
[Tn,i ] to be Um for the least m

such that �(Um) ≤ 2−n. To do this, we view each i as a triple i = 〈�,m, s〉 and use
the trees Tn,〈�,m,s〉 to ensure that [�] ⊆ Wn when [�] ⊆ Um and m is least such that
�(Um) ≤ 2−n.
To define Tn,〈�,m,s〉, first check that � ∈ Um,s and that s is large enough to witness
that �(Uk) > 2−n for all k < m. If one of the checks fails, set Tn,〈�,m,s〉 = ∅. If
both checks pass, then [�] ⊆ Um, and possibly m is least such that �(Um) ≤ 2−n.
In this case, start adding to Tn,〈�,m,s〉 all strings comparable with �, level-by-level,
until possibly seeing that �(Um) > 2−n. In the end, if [�] ⊆ Um, m is least such that

https://doi.org/10.1017/jsl.2019.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.50


RANDOMNESS NOTIONS AND REVERSEMATHEMATICS 289

�(Um) ≤ 2−n, and s is large enough, thenTn,〈�,m,s〉 consists of all strings comparable
with�, so [Tn,〈�,m,s〉] = [�].Otherwise,Tn,〈�,m,s〉 is finite, so [Tn,〈�,m,s〉] = ∅. Therefore
Wn = Um.
Formally, for each n and 〈�,m, s〉, define Tn,〈�,m,s〉 so that

[Tn,〈�,m,s〉] =

⎧⎪⎨⎪⎩
[�] if � ∈ Um,s , �(Um) ≤ 2−n,

and (∀k < m)(�(Uk,s ) > 2−n),
∅ otherwise.

To do this, if � /∈ Um,s or (∃k < m)(�(Uk,s ) ≤ 2−n), then let Tn,〈�,m,s〉 = ∅.
Otherwise, letTn,〈�,m,s〉 be the set of all strings � ∈ 2<N such that � is comparable with
� (i.e., either � ⊆ � or � ⊇ �) and �(Um,|�|) ≤ 2−n. Observe that (Tn,i)n,i∈N ≤T Z
because (Un,i)n,i∈N ≤T Z. Let (Wn)n∈N denote the uniform sequence of Σ0,Z2 sets
defined by (Tn,i)n,i∈N.
Fix n. We show that there is a least m such that �(Um) ≤ 2−n, that Um ⊆ Wn,
and that �(Wn) ≤ 2−n.
To see that there is a least m such that �(Um) ≤ 2−n, first observe that there is
some m such that �(Um) ≤ 2−n because limm �(Um) = 0 by the fact that (Un)n∈N

is a weak 2-test. Thus there is a least such m by the Π01 least element principle.
Henceforth m always denotes the least m such that �(Um) ≤ 2−n.
To show that Um ⊆ Wn, we first show that there is a t large enough to witness
that �(Uk) > 2−n for all k < m. Once we have t, we argue that if � ∈ Um,s for
some s , then � ∈ Um,s for some s > t (as we assume that the Um,s ’s are nested),
in which case [�] = [Tn,〈�,m,s〉] ⊆ Wn . Formally, because m is least, we have that
(∀k < m)(�(Uk) > 2−n) and hence that (∀k < m)(∃t)(�(Uk,t) > 2−n). By BΣ01,
there is a fixed t such that (∀k < m)(�(Uk,t) > 2−n). Now, suppose that Y ∈ Um,
and let � ⊆ Y and s > t be such that � ∈ Um,s . Then [Tn,〈�,m,s〉] = [�], so
Y ∈ [Tn,〈�,m,s〉] ⊆ Wn. Thus Um ⊆ Wn.
To show that �(Wn) ≤ 2−n, we need to show that ∀i∃b(2−b|

⋃
j≤i T

b
n,j | ≤ 2−n).

Fix i . We find a b large enough so that each string in
⋃
j≤i T

b
n,j is an extension

of some string in
⋃
s∈N
Um,s . This is achieved by choosing b to be greater than

|�| for every 〈�, k, s〉 ≤ i and greater than the length of every string in the finite
trees Tn,〈�,k,s〉 with 〈�, k, s〉 ≤ i . Once we have b, since �(Um) ≤ 2−n it follows that
2−b |⋃j≤i T bn,j | ≤ 2−n.
As above, let t be such that (∀k < m)(�(Uk,t) > 2−n). Let b > max{t, i} (so
that if 〈�, k, s〉 ≤ i , then b > |�|). We show that this b is large enough. Consider a
〈�, k, s〉 ≤ i . If k < m, then T tn,〈�,k,s〉 = ∅ because �(Uk,t) > 2−n by choice of t. If
k > m, thenTn,〈�,k,s〉 = ∅ because�(Um,s ) ≤ 2−n. So if � ∈ Tbn,〈�,k,s〉 for 〈�, k, s〉 ≤ i ,
then it must be that k = m, � ∈ Um,s , and � ⊇ �. Thus every string in

⋃
j≤i T

b
n,j is an

extension of some string in
⋃
s∈N
Um,s . Therefore 2−b |

⋃
j≤i T

b
n,j | ≤ �(Um) ≤ 2−n.

Now, suppose that X is not weakly 2-random relative to Z. Then there is a
weak 2-test (Un)n∈N relative to Z that captures X . By the above, there is a Σ0,Z2 -test
(Wn)n∈N such thatX ∈ ⋂

n∈N
Un ⊆

⋂
n∈N

Wn. ThereforeX is not 2-random relative
to Z.
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(ii) This is immediate from the definitions because every Martin-Löf test relative
to Z is also a weak 2-test relative to Z.

(iii) See the proof of the (i)⇒(iii) implication of [34, Proposition 7.2.6], which is
straightforward to formalize in RCA0.

(iv) See the proof of [34, Proposition 7.3.2], which is straightforward to formalize
in RCA0. Note however that this proof makes use of R≥0-valued martingales. �
Not every Schnorr random set is computably random (see, for example [34,
Theorem 7.5.10]). However, it is provable in RCA0 that if a Schnorr random set
exists, then a computably random set exists. Thus computable randomness and
Schnorr randomness are equivalent as set-existence axioms.

Theorem 5.4. RCA0 � SR → CR. Thus SR and CR are equivalent over RCA0.

Proof. Assume SR. Let Z be given. We want to find a set X that is computably
randomrelative toZ. BySR, letY beSchnorr randomrelative toZ. IfY is 1-random
relative to Z, then it is also computably random relative to Z by Proposition 5.3
and we are done. Otherwise, Y is not 1-random relative to Z, so there is a Σ0,Z1 -
test (Un)n∈N with Y ∈ ⋂

n∈N
Un. Let (Bn,i)n,i∈N denote the code for (Un)n∈N. For

notational ease, assume that ∀n∀i(Bn,i ⊆ Bn,i+1). Define f : N → N by

f(n) = the least i such that (∃� ∈ Bn,i)(� ⊆ Y )
(recall that each Bn,i is finite, so f can be defined in RCA0).
For functions f, g : N → N, say that f eventually dominates g if (∃n)(∀k >
n)(g(k) < f(k)).

Claim 5.5. If g : N → N is a function with g ≤T Z, then f eventually dominates
g.

Proof of Claim. Suppose for a contradiction that there is a g ≤T Z that is not
eventually dominated by f. Define a uniform sequence of Σ0,Z1 sets (Vn)n∈N coded
by (Cn,m)n,m∈N ≤T Z by letting

Cn,m =

⎧⎪⎨⎪⎩
∅ if n ≥ m,
a finite C ⊇ Cn,m−1 ∪ Bm,g(m) if n < m.
with �(C ) = 2−n − 2−m

This is possible because if n < m and �(Cn,m−1) = 2−n − 2−(m−1), then

�(Cn,m−1 ∪ Bm,g(m)) ≤ 2−n − 2−(m−1) + 2−m = 2−n − 2−m,
so such a Cn,m exists. We have that ∀n(�(Vn) = 2−n), so (Vn)n∈N is a Schnorr test
relative toZ. Furthermore, this test capturesY because ifm > n andf(m) ≤ g(m),
then Y ∈ [Bm,g(m)] ⊆ [Cn,m] ⊆ Vn. This contradicts that Y is Schnorr random
relative to Z. �
The rest of the proof follows the usual proof that every high set computes a
computably random set (see, e.g., [34, Theorem 7.5.2]). We use f to define a
supermartingale that multiplicatively dominates every supermartingale ≤TZ. In
the following, all supermartingales areQ≥0-valued.
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First, using our effective sequence (Φe)e∈N of all Turing functionals, define a
sequence of Turing functionals (Ψe)e∈N such that ΨZe always computes a par-
tial supermartingale, and if ΦZe is total and computes a supermartingale, then
∀�(ΦZe (�) = ΨZe (�)). This can be accomplished by setting

ΨZe (∅) = ΦZe (∅)

ΨZe (�
�a) =

⎧⎪⎨⎪⎩
ΦZe (�

�a) if ΦZe (�)↓, ΦZe (��0)↓, ΦZe (��1)↓,
and ΦZe (�

�0) + ΦZe (�
�1) ≤ 2ΦZe (�),

↑ otherwise,

for a ∈ {0, 1}. Now define a sequence of Turing functionals (Γe)e∈N such that
ΓZe always computes a partial supermartingale, Γ

Z
e (|�|) = 1 if |�| ≤ e, and if

ΦZe is total and computes a supermartingale, then there is a c ∈ N such that
∀�(ΦZe (�) ≤ cΓZe (�)). This can be accomplished by setting

ΓZe (�) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if |�| ≤ e,
0 if |�| > e and ΨZe (��e)↓ = 0,
ΨZe (�)/Ψ

Z
e (��e) if |�| > e, ΨZe (�)↓, and ΨZe (��e)↓ > 0,

↑ otherwise.

If ΦZe is total and computes a supermartingale, let c > max{ΦZe (�) : � ∈ 2e}. Then
∀�(ΦZe (�) ≤ cΓZe (�)).
Assemble a supermartingale from Z and f as follows. First, for each e ∈ N, let

Se(�) =

⎧⎪⎨⎪⎩
ΓZe (�) if |�| ≤ e

or (∀� ∈ 2≤|�|)(ΓZe (�) halts within f(|�|) + e steps),
0 otherwise.

Now let S(�) =
∑
e∈N
2−eSe(�). Notice that S is Q≥0-valued because Se(�) = 1

when e ≥ |�|, so∑e≥|�| 2
−eSe(�) = 2−e+1. One may then verify that each Se is a

supermartingale and therefore that S is a supermartingale.
Suppose that P ≤T Z is a supermartingale. We show that there is a d ∈ N such
that ∀�(P(�) ≤ dS(�)). Let e0 be such that P = ΦZe0 . Then ΓZe0 is total, so define
the total function g ≤T Z by

g(n) = the least t such that (∀� ∈ 2≤n)(ΓZe0 (�) halts within t steps).
By Claim 5.5, there is an n ∈ N such that (∀k > n)(g(k) < f(k)). By padding, let
e1 > max{g(m) : m ≤ n} be such that Γe1 is the same functional as Γe0 . Then

(∀k)(∀� ∈ 2≤k)(ΓZe1 (�) halts within f(k) + e1 steps),
and therefore ∀�(Se1 (�) = ΓZe1 (�)). Let c be such that ∀�(P(�) ≤ cΓZe1 (�)). Let
d = c2e1 . Then, for all � ∈ 2<N,

P(�) ≤ cΓZe1 (�) = cSe1 (�) ≤ c2e1S(�) = dS(�),
as desired.
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To finish the proof, let X be the leftmost nonascending path of S. That is, define
X = lims �s recursively by �0 = ∅ and

�s+1 =

{
�s

�0 if S(�s�0) ≤ S(�s ),
�s

�1 otherwise.

If P ≤T Z is a supermartingale, there is a d ∈ N such that ∀�(P(�) ≤ dS(�)). So
for all n ∈ N, P(X �n) ≤ dS(X �n) ≤ dS(∅). Thus P does not succeed on X . Thus
no supermartingale P ≤T Z succeeds on X , so X is computably random relative
to Z. �

§6. WeakDemuth and balanced randomness. Randomness notions that havebeen
introduced only recently include h-weakDemuth randomness for an order function
h as well as the special case of balanced randomness, where h(n) can be taken to be
2n [18, Section 7]. An h-Demuth test is like a Martin-Löf test, except that we allow
ourselves to change the index of the nth component of the test up to h(n) many
times. To make this precise, we must first define codes for h-r.e. functions.

Definition 6.1 (RCA0). Let h : N → N. A (coded) h-r.e. function is a function
g : N × N → N such that |{s : g(n, s) �= g(n, s + 1)}| ≤ h(n) for every n ∈ N. If
also h, g ≤T Z for some setZ, then we say that g is a (coded) h-r.e. function relative
to Z.

If g codes an h-r.e. function, then RCA0 proves that the limit lims g(n, s) exists
for each individual n, but it does not prove that there is always a function f such
that ∀n(f(n) = lims g(n, s)).
Definition 6.2 (RCA0).

• Let h ≤T Z. A code for an h-Demuth test relative to Z is a coded h-r.e.
function g ≤T Z where, for all n ∈ N, en = lims g(n, s) is an index such that
ΦZen computes a code for a Σ

0,Z
1 set Un with �(Un) ≤ 2−n.

• A set X weakly passes the h-Demuth test relative toZ coded by g if there is an
n ∈ N such that X /∈ Un, where, as above, Un is the Σ0,Z1 set coded by ΦZen for
en = lims g(n, s).

• For h ≤T Z, X is h-weakly Demuth random relative to Z if X weakly passes
every h-Demuth test relative to Z. These definitions are sometimes extended
to classes of order functions in the expected way.

• X is balanced random relative toZ ifX weakly passes everyO(2n)-Demuth test
relative to Z (that is, if, for every c ∈ N, X weakly passes every c2n-Demuth
test relative to Z).

• Let h be a function that is provably total in RCA0. Then h-WDR is the statement
“for every Z there is an X that is h-weakly Demuth random relative to Z.”

• BR is the statement “for everyZ there is anX that is balanced random relative
to Z.”

Not every 1-random set is balanced random. For example, there are left-r.e. 1-
random sets, but no left-r.e. set is balanced random. However, if X = X0 ⊕ X1 is
1-random, then either X0 is balanced random or X1 is balanced random. This fact
follows from the more elaborate [18, Theorem 23], which states that a 1-random set
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X is O(h(n)2n)-weakly Demuth random for some order function h if and only X
it is not �-r.e.-tracing (roughly, X is �-r.e.-tracing if for each �-r.e. function there
is an X -r.e. trace of a fixed size bound). We sketch the argument. Suppose that
X = X0 ⊕X1 is 1-random. Then X0 is 1-random and X1 is 1-random relative to X0
by van Lambalgen’s theorem. If X0 is not �-r.e.-tracing, then, by [18, Theorem 23],
X0 is O(h(n)2n)-weakly Demuth random for some order function h, and therefore
X0 is balanced random. On the other hand, ifX0 is�-r.e.-tracing, then everyO(2n)-
Demuth test can be converted into a Σ0,X01 -test. So if X1 were not balanced random,
then X1 would not be 1-random relative to X0, which contradicts van Lambalgen’s
theorem. Thus, in this case, X1 must be balanced random.
We now give a direct proof that if X = X0⊕X1 is 1-random, then either X0 orX1
is balanced random. This proof avoids considering �-r.e.-traceability and is easy to
formalize in RCA0.
Theorem 6.3. RCA0 � MLR → BR. ThusMLR and BR are equivalent over RCA0.
Proof. Assume MLR. Let Z be given. We want to find a set that is balanced
random relative toZ. LetX = X0⊕X1 be 1-random relative toZ.We show that one
ofX0,X1 is balanced randomrelative toZ.Assumeotherwise.Let g0 , g1 : N×N → N
be codes for c2n-Demuth tests (for some c ∈ N) relative to Z capturing X0 and X1,
respectively. By modifying g0 and g1 if necessary, we may assume that ΦZg0(n,s) and

ΦZ
g1(n,s)

both compute codes of Σ0,Z1 sets U0n,s and U1n,s of measure ≤ 2−n for all n
and s . We may also assume that g0(n, ·) and g1(n, ·) change at least once for each n
(by increasing c by 1 and adding dummy changes, if necessary).
We define a Σ0,Z1 -test capturing X , contradicting that X is 1-random relative to
Z. If g0 does not change last on infinitely many n, then g1 changes last on infinitely
many n. So suppose for the sake of argument that g0 changes last on infinitely many
n. Define a uniform sequence (On)n∈N of Σ0,Z1 sets by letting

On =
⋃
s>0

g0(n,s) 
=g0(n,s−1)

U0n,s ⊕ U1n,s

for each n. Here, forΣ01 setsA0 andA1,A0⊕A1 denotes theΣ01 set of allY = Y0⊕Y1
with Y0 ∈ A0 and Y1 ∈ A1. For Σ01 sets A0 and A1, it is straightforward to
produce a code for A0 ⊕ A1 and to show that if �(A0) ≤ a0 and �(A1) ≤ a1,
then �(A0 ⊕ A1) ≤ a0a1. So �(U0n,s ⊕ U1n,s) ≤ 2−2n for all n and s . Each On is the
union of at most c2n sets (because g0 is c2n-r.e.) of measure at most 2−2n each.
Therefore �(On) ≤ c2−n for each n. Now, choose k such that 2k > c. Define
another uniform sequence (Vn)n∈N of Σ0,Z1 sets by letting Vn =

⋃
i>n+k Oi for each

n. Then �(Vn) ≤ c2−n−k ≤ 2−n for each n, so (Vn)n∈N is a Σ
0,Z
1 -test.

We claim that X ∈ ⋂
n∈N

Vn. It suffices to show that, for every n, there is an
i > n + k with X ∈ Oi . By the assumption on g0, let i > n + k be such that there
is an s0 > 0 such that g0(i, s0) �= g0(i, s0 − 1) and (∀t > s0)(g1(i, t) = g1(i, s0)). Let
s0 > 0 be greatest such that g0(i, s0) �= g0(i, s0 − 1). Then g0(i, s0) = lims g0(i, s)
and g1(i, s0) = lims g1(i, s), so X0 ∈ U0i,s0 and X1 ∈ U1i,s0 because the c2n-Demuth
tests coded by g0 and g1 capture X0 and X1. Thus

X = X0 ⊕ X1 ∈ U0i,s0 ⊕ U1i,s0 ⊆ Oi
as desired. �
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§7. Nonimplications via �-models. In this section, we exhibit �-models of RCA0
that witness various nonimplications between pairs of randomness-existence prin-
ciples. We also compare randomness-existence principles to principles asserting the
existence of diagonally nonrecursive functions.

Definition 7.1 (RCA0). A functionf : N → N is diagonally nonrecursive relative
to Z if ∀e(ΦZe (e)↓ → f(e) �= ΦZe (e)). DNR is the statement “for every Z there is an
f that is diagonally nonrecursive relative to Z.”

DNR is a common benchmark by which to gauge the computability-theoretic
strength of set-existence principles. It is a well-known observation of Kučera
(see e.g., [34, Proposition 4.1.2]) that every 1-random set computes a diago-
nally nonrecursive function. By formalizing this result, one readily sees that
RCA0 � MLR → DNR. In contrast, CR is not strong enough to produce diagonally
nonrecursive functions.

Proposition 7.2. There is an �-model of RCA0 + CR + ¬DNR. Thus RCA0 �
CR → DNR, and therefore also RCA0 � CR → MLR.

Proof. For the purposes of this proof, say that a setA is high relative to a set B if
there is a single function f ≤T A that eventually dominates every function g ≤T B.
We apply the following two results.

(i) If A is high relative to B, then A ⊕ B computes a set that is computably
random relative to B (see [34, Theorem 7.5.2]; the proof is also replicated in
the proof of Theorem 5.4).

(ii) If B does not compute a diagonally nonrecursive function, then there is an
A that is high relative to B such that A ⊕ B does not compute a diagonally
nonrecursive function [11, Lemma 4.14].

By iterating result (ii) in the usual way, we produce an �-model M = (�,S) of
RCA0 + ¬DNR such that for every B ∈ S there is an A ∈ S that is high relative to
B. By result (i),M |= CR. ThusM |= RCA0 + CR+ ¬DNR. �
In order to give useful formalizations of stronger versions of DNR, we must
carefully express computations relative to Z′ for a set Z without implying the
existence of Z′ as a set. We make the following definitions in RCA0 (see [2,7]).

• Let e ∈ Z′ abbreviate the formula ΦZe (e)↓.
• Let � ⊆ Z′ abbreviate the formula (∀e < |�|)(�(e) = 1↔ e ∈ Z′).
• Let ΦZ′

e (x) = y abbreviate the formula (∃� ⊆ Z′)(Φ�e (x) = y). Similarly, let
ΦZ

′
e (x)↓ denote that there is a y such that ΦZ

′
e (x) = y.

Notice that, by bounded Σ01 comprehension, RCA0 proves that the set {e < n :
e ∈ Z′} exists for every Z and n. Then by letting � be the characteristic string of
{e < n : e ∈ Z′}, we see that RCA0 proves that for every Z and n there is a � of
length n such that (∀e < |�|)(�(e) = 1↔ e ∈ Z′).

Definition 7.3 (RCA0). A functionf : N → N is diagonally nonrecursive relative
to Z′ for a set Z if ∀e(ΦZ′

e (e)↓ → f(e) �= ΦZ′
e (e)). 2-DNR is the statement “for

every Z there is an f that is diagonally nonrecursive relative to Z′.”
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Kučera in fact showed that every n-random set computes a function that is
diagonally nonrecursive relative to 0(n−1). This result can be formalized in RCA0
(see, [7, Theorem 2.8]). In particular, RCA0 � 2-MLR → 2-DNR. In contrast,
W2R is not strong enough to produce diagonally nonrecursive functions relative
to 0′.

Theorem 7.4. There is an �-model of RCA0 +W2R + ¬2-DNR. Thus RCA0 �
W2R → 2-DNR, and therefore also RCA0 � W2R → 2-MLR.

Proof. The intuition is to build a model of RCA0 +W2R + ¬2-DNR out of the
columns of a weakly 2-random set Z that does not compute a 2-DNR function. For
this idea to work, Z must be chosen with a little care because the relevant direction
of van Lambalgen’s theorem does not hold for weak 2-randomness in general [3].
Recall that a set A has hyperimmune-free degree (or is computably dominated)
if every f ≤T A is eventually dominated by a computable function. Let Z be
a 1-random set of hyperimmune-free degree that does not compute a diagonally
nonrecursive function relative to 0′. Such a Z exists by [26, Theorem 5.1] (also
see [34, Exercise 1.8.46]), which states that if C ⊆ 2� is a nonempty Π01 class and
B >T 0′ is Σ02, then there is a Z ∈ C of hyperimmune-free degree with Z′ ≤T B. Let
C ⊆ 2� be a nonempty Π01 class consisting entirely of 1-randoms, and let B be any
set r.e. in 0′ such that 0′ <T B <T 0′′. LetZ ∈ C be of hyperimmune-free degree such
that Z′ ≤T B. Then of course Z is 1-random and has hyperimmune-free degree.
Furthermore, Z does not compute a diagonally nonrecursive function relative to
0′. If Z computes a diagonally nonrecursive function relative to 0′, then so does B,
but then we would have B ≥T 0′′ by the Arslanov completeness criterion relative to
0′, which is a contradiction.
Decompose Z into columns Z =

⊕
n∈� Zn , where Zn = {k : 〈n, k〉 ∈ Z} for

each n. By a straightforward relativization of [34, Proposition 3.6.4], if X ⊕ Y
has hyperimmune-free degree and Y is 1-random relative to X , then Y is also
weakly 2-random relative to X . It follows that Zn+1 is weakly 2-random relative to⊕
i≤n Zi for every n. This is because

⊕
i≤n+1 Zi has hyperimmune-free degree (as

Z has hyperimmune-free degree) and Zn+1 is 1-random relative to
⊕
i≤n Zi by van

Lambalgen’s theorem.
Let S = {X : ∃n(X ≤T

⊕
i≤n Zi )}, and letM = (�,S). S contains no diagonally

nonrecursive function relative to 0′, soM |= RCA0 + ¬2-DNR. If X ∈ S and n is
such that X ≤T

⊕
i≤n Zi , then Zn+1 ∈ S is weakly 2-random relative to X . Thus

M |=W2R. ThereforeM |= RCA0 +W2R+ ¬2-DNR. �

The principles 2-MLR and 2-DNR are closely related to the rainbow Ramsey
theorem. Let [N]n denote the set of n-element subsets of N, and call a function
f : [N]n → N k-bounded if |f−1(c)| ≤ k for every c ∈ N. Call an infinite R ⊆ N
a rainbow for f if f is injective on [R]n . The rainbow Ramsey theorem for pairs
and 2-bounded colorings (denoted RRT22) is the statement “for every 2-bounded
f : [N]2 → N, there is a setR that is a rainbow forf.” By formalizing work of Csima
andMileti [14], Conidis and Slaman [13] have shown thatRCA0 � 2-MLR → RRT22.
J.Miller [29], again building on [14], has shown that in factRCA0 � 2-DNR ↔ RRT22.
By Theorem 7.4, it follows that RCA0 � W2R → RRT22.
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From Theorem 6.3, we know that RCA0 � MLR → BR. In particular, if h is any
provably total function that is O(2n), then RCA0 � MLR → h-WDR. We now show
that this implication is close to optimal. Specifically, in Theorem 7.7 below we show
that if h is a provably total function that dominates the function n �→ kn for every
k, then RCA0 � MLR → h-WDR. In fact, in this case evenWKL0 � h-WDR.WKL0
is the system whose axioms are those of RCA0, plus weak König’s lemma, which is
the statement “every infinite subtree of 2<N has an infinite path.”WKL0 is strictly
stronger than RCA0 +MLR [45].
Recall the following definitions for a set X ⊆ �.
• Write � <L X if � is to the left of X : ∃	(	�0 ⊆ � ∧ 	�1 ⊆ X ). Then X is
left-r.e. if {� : � <L X} is r.e.

• X is superlow if X ′ ≤tt 0′. Equivalently, X is superlow if X ′ ≤wtt 0′ because,
for any Z ⊆ �, Z ≤wtt 0′ if and only if Z ≤tt 0′.
Proposition 7.5. For every nonemptyΠ01 class C ⊆ 2� , there is a superlow Z ∈ C
such that, for every set X ≤T Z, there is a k ∈ � such that X is kn-r.e.
Proof. Let Z �→WZ be the r.e. operator defined by

2e(2n + 1) ∈WZ ⇔ ΦZe (n) = 1.
Apply the proof of the superlow basis theorem as given in [34, Theorem 1.8.38], but
with the operatorW instead of the usual Turing jump operator J , to get a Z ∈ C
such thatWZ is left-r.e. Clearly Z′ ≤m WZ , from which it follows thatZ superlow.
Now suppose that X ≤T Z, and let e be such that ΦZe = X . The fact thatWZ is
left-r.e. implies that X is 22

e(2n+1)-r.e., so X is kn-r.e. for k = 22
e+2
. �

Proposition 7.6. There is an �-model M = (�,S) of WKL0 such that every
X ∈ S is superlow and for every X ∈ S there is a k ∈ � such that X is kn-r.e.
Proof. Given a set Z, decompose Z into columns Z =

⊕
n∈� Zn , and let

SZ = {X : ∃n(X ≤T
⊕
i≤n
Zi)}.

Let C ⊆ 2� be a nonempty Π01 class such that (�,SZ ) |= WKL0 for all Z ∈ C.
This can be accomplished, for example, by taking C to be the class of all sets Z
such that, for every n, Zn+1 codes a {0, 1}-valued diagonally nonrecursive function
relative to

⊕
i≤n Zi . Then, for any such Z, (�,SZ ) models RCA0 plus “for every

X there is a {0, 1}-valued diagonally nonrecursive function relative to X ,” which
is well known to be equivalent toWKL0 by formalizing classic results of Jockusch
and Soare [23]. Let Z ∈ C be as in the conclusion of Proposition 7.5. Then every
X ∈ SZ is superlow, and, for every X ∈ SZ , there is a k such that X is kn-r.e. Thus
M = (�,SZ ) is the desired model. �
Theorem 7.7. Let h : � → � be a function that is provably total in RCA0 and
eventually dominates the function n �→ kn for every k ∈ �. Then there is an �-model
of WKL0 + ¬h-WDR. Thus WKL0 � h-WDR and therefore also RCA0 � MLR →
h-WDR.

Proof. If X is kn-r.e. and h eventually dominates kn, then it is straightforward
to define an h-Demuth test capturing X . Thus no kn-r.e. set is h-weakly Demuth
random. Let M = (�,S) be the model of WKL0 from Proposition 7.6. Then no
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X ∈ S is h-weakly Demuth random because for every X ∈ S there is a k such that
X is kn-r.e. ThusM |=WKL0 + ¬h-WDR. �
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national de Rencontres Mathématiques and of Mathematisches Forschungsinstitut
Oberwolfach. The first author acknowledges support through the Marsden fund
of New Zealand. The second author acknowledges the support of the Fonds voor
Wetenschappelijk Onderzoek–Vlaanderen Pegasus program.

REFERENCES
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Computing K -trivial sets by incomplete random sets. Bulletin of Symbolic Logic, vol. 20 (2014), no. 1, pp.
80–90.
[6] L. Bienvenu, A. Muchnik, A. Shen, andN. Vereshchagin, Limit complexities revisited. Theory

of Computing Systems, vol. 47 (2010), no. 3, pp. 720–736.
[7] L. Bienvenu, L. Patey, and P. Shafer,On the logical strengths of partial solutions to mathematical

problems. Transactions of the London Mathematical Society, vol. 4 (2017), no. 1, pp. 30–71.
[8] V. Brattka, G. Gherardi, and R. Hölzl, Las Vegas computability and algorithmic randomness,

32nd International Symposium on Theoretical Aspects of Computer Science (E. W. Mayr and N. Ollinger,
editors), Leibniz International Proceedings in Informatics, vol. 30, Schloss Dagstuhl. Leibniz-Zentrum
für Informatik, Wadern, 2015, pp. 130–142.
[9] V. Brattka, M. Hendtlass, and A. P. Kreuzer, On the uniform computational content of

computability theory. Theory of Computing Systems, vol. 61 (2017), no. 4, pp. 1376–1426.
[10] V. Brattka and A. Pauly, On the algebraic structure of Weihrauch degrees. Logical Methods in

Computer Science, vol. 14 (2018), no. 4, pp. 1–36.
[11] P. Cholak, N. Greenberg, and J. S. Miller, Uniform almost everywhere domination, this

Journal, vol. 71 (2006), no. 3, pp. 1057–1072.
[12] C. J. Conidis, Effectively approximating measurable sets by open sets. Theoretical Computer

Science, vol. 428 (2012), pp. 36–46.
[13] C. J. Conidis and T. A. Slaman, Random reals, the rainbow Ramsey theorem, and arithmetic

conservation, this Journal, vol. 78 (2013), no. 1, pp. 195–206.
[14] B. F. Csima and J. R. Mileti, The strength of the rainbow Ramsey theorem, this Journal, vol. 74

(2009), no. 4, pp. 1310–1324.
[15] A. R. Day and J. S. Miller, Density, forcing, and the covering problem.Mathematical Research

Letters, vol. 22 (2015), no. 3, pp. 719–727.
[16] O. Demuth, Constructive pseudonumbers. Commentationes Mathematicae Universitatis Caroli-

nae, vol. 16 (1975), pp. 315–331, (Russian).
[17] R. G. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Theory and

Applications of Computability, Springer, New York, 2010.

https://doi.org/10.1017/jsl.2019.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.50
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