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In a recent paper, Deguchi & Hall (J. Fluid Mech., vol. 752, 2014a, pp. 602–625)
described a new kind of exact coherent structure which sits at the edge of an
asymptotic suction boundary layer at high values of the Reynolds number Re. At a
distance ln Re from the wall, the structure is driven by the fully nonlinear interaction
of tiny rolls, waves and streaks convected downstream at almost the free-stream
speed. The interaction problem satisfies the unit-Reynolds-number three-dimensional
Navier–Stokes equations and is localized in a layer of the same depth as the
unperturbed boundary layer. Here, we show that the interaction problem is generic
to any boundary layer that approaches its free-stream form through an exponentially
small correction. It is shown that away from the layer where it is generated the
induced roll–streak flow is dominated by non-parallel effects which now play a major
role in the streamwise evolution of the structure. The similarity with the parallel
boundary layer case is restricted only to the layer where it is generated. It is shown
that non-parallel effects cause the structure to persist only over intervals of finite
length in any growing boundary layer and lead to a flow structure reminiscent of
turbulent boundary layer simulations. The results found shed light on a possible
mechanism to couple near-wall streaks with coherent structures located towards the
edge of a turbulent boundary layer. Some discussion of how the mechanism adapts
to a three-dimensional base flow is given.

Key words: boundary layer stability, instability, transition to turbulence

1. Introduction
Our concern is with nonlinear equilibrium structures which develop in growing

boundary layers. In a previous paper, Deguchi & Hall (2014a), hereafter referred
to as DH, described a class of nonlinear equilibrium structures generated in a layer
at the edge of the asymptotic suction boundary layer (ASBL). The boundary layer
thickness of this flow is unchanged in the streamwise direction and so there are no
non-parallel effects, which we know from, for example, Hall (1983) to be crucial in
the streamwise development of streamwise vortex disturbances. In the first instance
we will investigate how the nonlinear interaction at the heart of the free-stream
coherent states of DH is modified by non-parallel effects. Then we describe how the
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streaky structures stimulated by the nonlinear interaction at the edge of the boundary
layer are accommodated by the rest of the flow; we will see that the effects are
major and lead to flow structures completely different from the parallel case.

In turbulent boundary layers, coherent structures are observed both near to the wall
and further out towards the edge of the boundary layer. Experimental observations
of outer layer coherent structures show that the structures are typically characterized
by 3-shaped and hairpin-shaped vortices rather than the rolls and streaks seen in
the near-wall region; see Head & Bandyopadhyay (1981), Robinson (1991), Adrian,
Meinhart & Tomkins (2000) and Adrian (2007). The relationship between the inner
and outer coherent structures has been of much interest in boundary layer studies. For
example, Rao, Narasimha & Narayanan (1971) and Head & Bandyopadhyay (1981)
suggested that the vortical structure situated outside the boundary layer is coupled to
the inner boundary layer structure. In contrast, Jimenez & Pinelli (1999) claimed that
the inner and outer coherent structures are independent. A key property of the coherent
structures in growing boundary layers is that these structures can exist only for a finite
interval in the streamwise direction. Once generated they evolve over many boundary
layer length scales before decaying to zero. The generation and annihilation of the
structures occurs regularly at different positions and times in the flow.

The work reported in DH was partially motivated by many recent investigations of
exact coherent structures in parallel internal shear flows, most notably plane Couette
flow. The first numerical results for nonlinear equilibrium solutions in plane Couette
flow are due to Nagata (1990), while the terminology ‘exact coherent structures’
can be traced back to the work of Waleffe (1997), who interpreted the solutions
and coherent structures in turbulent transition using dynamical systems theory. The
interaction involving rolls, streaks and waves which drives the ‘self-sustained process’
uncovered numerically by Waleffe was shown by Hall & Sherwin (2010) to be exactly
the vortex–wave interaction theory elucidated by Hall & Smith (1991) in the context
of high-Reynolds-number flows.

Therefore, we shall now make a few remarks about why it is believed that the
asymptotic theories of exact coherent structures are important to shear flow transition
processes. The exact coherent structures found numerically are usually labelled as
lower or upper branch states by tracing them back to the saddle-node bifurcation
from which they emanate. For the lower branch plane Couette flow solution, Hall &
Sherwin (2010) demonstrated that the asymptotic results of vortex–wave interaction
theory are almost indistinguishable from the full numerical solutions even at Reynolds
numbers of the order of 103. Although the exact coherent structures have a relatively
simple time dependence, a number of studies have revealed the importance of such
structures in more complicated flow dynamics. Numerical investigations have shown
that the lower branch states often act as edge states separating initial disturbances
which eventually become turbulent or remain laminar, while the upper branch states
often act as attractors for fully turbulent flows; see Itano & Toh (2001), Skufca, Yorke
& Eckhardt (2006), Gibson, Halcrow & Cvitanovic (2008) and Kreilos & Eckhardt
(2012). Thus, it was believed that the states were of a fundamentally different nature.
However, Deguchi & Hall (2014b) recently showed that at high Reynolds numbers
the upper and lower branch modes have the same vortex–wave interaction structure
as first given by Hall & Smith (1991). Therefore, this means that at increasingly
high Reynolds numbers of engineering interest vortex–wave interaction theory might
sensibly be used to define both the edge states and at least some properties of
turbulent attractors. The reader is referred to the article of Deguchi & Hall (2014c)
for a discussion of the key numerical and asymptotic results for plane Couette flow.
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A further link between the asymptotic theory of exact coherent structures and
turbulence simulations or experiments in channel flows was given by Deguchi,
Hall & Walton (2013). In that paper, the long-streamwise-wavenumber limit of the
vortex–wave interaction system was used as a starting point to describe equilibrium
states where weak and strong localizations are found in the streamwise and spanwise
directions. In Deguchi & Hall (2014b), it was found by finite-Reynolds-number
computations that the streamwise localization is sometimes enhanced when the
convergence to the long-wavelength asymptotic state is prevented by the snaking
of the solution branch. The origin of the snaking is the local contamination of
the long-wavelength structure by the O(1) wavelength vortex–wave interaction state.
The reader is referred to Deguchi & Hall (2014b) and the papers referenced in
that paper for more discussion of snaking. The localized states and mean-flow
distortion described by these studies were found to be similar to turbulent spots
found experimentally or numerically in, for example, Lundbladh & Johansson (1991),
Tillmark & Alfredsson (1992) and Duguet, Schlatter & Henningson (2009).

In view of the apparent importance of exact coherent structures in internal flows,
DH investigated the development of such states when plane Couette flow is deformed
via homotopy into the ASBL. The ASBL was chosen as a simple model of boundary
layers because it is a parallel one so that it does not come with the complication of
boundary layer growth. Recently, a relationship between exact coherent structures and
edge states of this flow was investigated by Kreilos et al. (2013) and Khapko et al.
(2012). DH found that some typical vortex–wave interaction states of plane Couette
flow deform into equivalent states in the ASBL. The structure of such asymptotic
states is concentrated in the near-wall boundary layer and captures features of the edge
states.

However, solutions were also found where the roll–streak–wave interaction is
localized in the free stream of the boundary layer while the interaction simultaneously
generates large-amplitude near-wall streaks. At large values of the Reynolds number
these free-stream coherent structures develop what we will show here to be a
canonical form relevant to quite arbitrary boundary layers. The free-stream coherent
structures found numerically and described asymptotically in DH are intrinsically
associated with the boundary layer nature of the background state. DH refer to the
region where the nonlinear interaction is localized as the production layer. Within
the production layer the exponential correction of the streamwise velocity from
its free-stream value is small and there is a nonlinear interaction involving rolls,
waves and streaks described by a nonlinear eigenvalue problem associated with the
unit-Reynolds-number Navier–Stokes equations. Below the layer the flow returns to
its unperturbed state at leading order but the small correction of the mean streamwise
velocity interacts with a decaying roll flow to produce an exponentially increasing
streak flow. The growth of the streak was found to continue all the way down to
the unperturbed boundary layer where the streak therefore attained its maximum size.
This streak generation mechanism is a direct consequence of the unperturbed flow
approaching its free-stream value through exponentially small terms. One of the main
results of DH was to show that large-amplitude wall streaks can occur as a passive
byproduct of the nonlinear interaction at the edge of the boundary layer. This result
is of relevance to the debate in the turbulence community about the interplay, if any,
between near-wall streaks and free-stream coherent structures. Here, we remark that
a similar generation mechanism resulting in a large wall streak was observed earlier
by Brandt, Henningson & Ponziani (2002), where an interaction of a pair of oblique
linear disturbances was considered.
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In these asymptotic or fully numerical studies of exact coherent structures in
parallel flows, periodicity in the streamwise direction is assumed. However, for a
growing boundary layer that approach is no longer viable, and moving downstream
the local Reynolds number changes, so any coherent structure moving downstream
must adjust to the local boundary layer length scale and Reynolds number. Thus,
high-resolution calculations of exact coherent structures in developed flows are not
easily extended to growing boundary layers. For example, in a Blasius boundary layer
the local streamwise and spanwise wavenumbers increase like the square root of the
distance along the wall, so the number of modes retained would need to change
at the same rate. Obviously, without the periodic assumption a direct calculation
of growing boundary layers requires massive computational power. Moreover, the
transition process is not clear unless a specific upstream input is prescribed. In the
case of shear flows which can support Tollmien–Schlichting waves much is known
about the route to transition and there is excellent agreement between experiment and
numerical simulations of transition following the excitation of the waves upstream. It
is also widely known that the streaky field is then generated by secondary instability.
However, if the upstream input is sufficiently strong the generation of the streaky
field can be bypassed. Although details of the transition process cannot be discussed
without reference to the receptivity problem, the work of Khapko et al. (2012)
suggests the relevance of equilibrium states to bypass transition. To the best of our
knowledge, the only equilibrium state calculations in growing boundary layers are
due to Cherubini et al. (2011) and Duguet et al. (2012), where edge states of Blasius
flow were identified by imposing some initial conditions. However, such coherent
structures must ultimately disappear when the boundary layer is unforced.

It is known from the asymptotic work by Hall (1983) that centrifugal instabilities
in growing boundary layers are dominated by non-parallel effects, and we anticipate
a similar complication here since the underlying roll–streak flow in exact coherent
structures scales in the same way as the centrifugal instability problem. Crucially,
in this asymptotic framework the equations become parabolic in the long spatial
scale and we can march the equations spatially from some given upstream conditions.
Therefore, it seems appropriate to use a high-Reynolds-number assumption to describe
the generic mechanism of coherent structures in boundary layers; indeed, it is
worth noting that without the high-Reynolds-number assumption the boundary layer
itself would not exist. We also point out that, although the original formulation of
vortex–wave interaction theory by Hall & Smith (1991) was for growing boundary
layers and had a similar long-spatial-scale development, the asymptotically obtained
interaction equations for that problem remain unsolved.

The free-stream coherent structures derived in DH owe their very existence to the
fact that in the ASBL the difference of the streamwise velocity from its free-stream
value is an exponentially decaying function of distance from the wall. For growing
boundary layers the corresponding approach is more complex and the wave–roll–streak
system at the heart of the interaction must adjust to local properties of the flow as
the interaction moves downstream. We shall show that, surprisingly, the production
layer problem for the ASBL is generic to almost all two-dimensional or weakly
three-dimensional boundary layers. The streak induced at the production layer takes
on a maximum beneath that layer and non-parallel effect restrict the streaks to exist
only over finite distances in the downstream direction. Therefore, free-stream coherent
structures can connect the near-wall behaviour to a nonlinear interaction in the free
stream, and so, if our nonlinear states are relevant to turbulent flows, the interaction
between wall streaks and the outer flow in turbulent boundary layers is not necessarily
as one-sided as some authors believe.
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In order to set the scene we shall in the next section recall the description in DH
of the production layer problem for the ASBL. In § 3 we shall discuss the nature of
the approach of a quite general boundary layer to its free-stream form; this issue was
discussed at length by Brown & Stewartson (1965) and so we quote the key results
from their work. In § 4 we will derive the production layer problem for arbitrary two-
dimensional boundary layers. Section 5 concerns the roll–streak flow driven by the
forcing in the production layer. Results are presented for Blasius flow in § 6, and in
§ 7 we give some conclusions. In appendix A some details of the structure described
in § 5 are given, while in appendix B we discuss the extension of the work to infinite
swept boundary layers.

2. Free-stream coherent structures in the parallel boundary layer
Now let us summarize the key features of the exact free-stream coherent structures

described in DH for the ASBL. Consider the flow of a viscous fluid of kinematic
viscosity ν past a plate defined by y∗ = 0 with respect to Cartesian coordinates
(x∗, y∗, z∗). If the corresponding velocity field is u∗ = (u∗, v∗, w∗), we impose
the condition u∗ → (U∗, −V∗, 0) a long distance from the wall, while at the
wall we require that u∗ = (0, −V∗, 0). If we now use ν/V∗ as a length scale,
write (x, y, z) = (x∗, y∗, z∗)/(ν/V∗) and take U∗ as a typical flow speed, then the
basic ASBL velocity field satisfying the equations of motion and the boundary
conditions is

u= ub = (1− e−y)i − j
Re
, (2.1)

where Re=U∗/V∗ is the Reynolds number and i and j are unit vectors in the x and y
directions respectively. The structure identified in DH sits in the free stream in a layer
of depth O(1) a distance ln Re from the wall. Within that layer the total velocity field
differs from the free-stream speed by O(1/Re). The structure moves downstream with
a speed differing from the dimensionless free-stream speed of unity by an amount
O(1/Re). We take coordinates (Φ, Y, Z)= (x− ct, y− ln Re, z) so that the flow we are
considering is located in a box a distance ln Re from the wall with all sides of size
O(1). Since the nonlinear interaction that produces the new state occurs in this layer,
DH referred to it as the production layer. We write

u = (1, 0, 0)+ Re−1U(Φ, Y, Z)+ · · · ,
p= Re−2P(Φ, Y, Z)+ · · · , c= 1− Re−1c1 + · · · , (2.2a−c)

and the nonlinear eigenvalue problem for the perturbed wavespeed c1 is then found to
be

([U + c1i] · ∇)U =−∇P+∇2U, (2.3)
∇ ·U = 0, (2.4)

together with the periodicity conditions

U(Φ, Y, Z) = U(Φ, Y, Z + 2π/β)=U(Φ + 2π/α, Y, Z), (2.5)
P(Φ, Y, Z) = P(Φ, Y, Z + 2π/β)= P(Φ + 2π/α, Y, Z) (2.6)

and boundary conditions

(U, V,W)→ (0,−1, 0) as Y→∞, (2.7)
(UeY, V,W)→ (−1,−1, 0) as Y→−∞. (2.8)
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Here, the operator ∇ is defined by ∇ = (∂Φ, ∂Y, ∂Z) and α, β are streamwise and
spanwise wavenumbers respectively. The conditions in the vertical direction require
that below the layer the flow returns to the ASBL at leading order and that above
the layer it approaches the free-stream velocity field of the ASBL. What is crucial is
the second of these conditions, which requires that U v e−Y for large negative Y and
therefore does not preclude the possibility that higher-order terms in U also grow
exponentially albeit at a lower rate. This higher-order growth can only occur for
the part of U independent of x, and allows it to grow exponentially large compared
with its value in the production layer. Thus, a viscous nonlinear wave–roll–streak
interaction involving a small O(1/Re) velocity field in the production layer generates
a much larger streak beneath that layer. A more detailed examination of the flow
shows that exponential growth is possible only for spanwise wavenumbers β < 1/

√
2.

The system (2.3)–(2.8) specifies a nonlinear eigenvalue problem for c1 = c1(α, β) in
terms of specified wavenumbers α, β.

In order to analyse the possibility of the higher-order growth, it is convenient
to decompose the total flow field into its mean flow, vortex and wave components.
Here, the mean-flow component is the average in Φ, Z of the total flow, while
the vortex component is the Φ average of the flow without the mean part. The
vortex components of U and (V,W) are called the streak and roll respectively. The
mechanism for the growth is found by looking at the roll and streak components as
the production layer is exited in the negative Y direction. It should be noted that the
roll field owes its existence to the Reynolds stresses associated with the wavefield
because there are no external forces to sustain it. Since the self-sustained mechanism
is not operational for large negative Y , the wave must quickly decay, and thus the
roll must also decay exponentially. Then the streak is driven through the nonlinear
term in the streamwise momentum equation involving the roll acting on the mean
flow. The fact that the mean flow is growing exponentially for large negative Y in
order to return to the basic ASBL enables the streak to also grow exponentially.
Thus, a viscous nonlinear wave–roll–streak interaction of a small velocity field in the
production layer generates a much larger streak below the layer; the roll–streak flow
beneath the production layer is discussed in the more detailed asymptotic analysis
below.

Due to the symmetry of the solution computed in DH, the roll–streak flow has one
half of the spanwise wavelength of the wave. An analysis of the roll–streak equations
below the production layer shows that the flow there behaves like

U→−e−Y + J1e(ω1−1)Y cos(2βz)+ · · · , (2.9)
V→K1eω1Y cos(2βz)+ · · · (2.10)

as Y→−∞, where the constant ω1 is defined by

ω1 =
√

1+ 16β2 − 1
2

> 0 (2.11)

and J1 =−K1/(2ω1). It follows that the exponential growth of the streak is possible
only for spanwise wavenumbers β < 1/

√
2. We further note that the higher harmonics

in z and the mean-flow correction term can also grow for large negative Y , but more
slowly than the term proportional to cos(2βz). The constant K1=K1(α, β) multiplying
the least slowly exponentially decaying part of V is to be determined as a part of the
numerical solution of the nonlinear eigenvalue problem for c1.
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If we now write the streak and roll flows exiting the production layer in terms of
the variable describing the unperturbed boundary layer we find that

u→ 1− e−y + Re−ω1J1e(ω1−1)y cos(2βz)+ · · · , (2.12)
v→−Re−1 + Re−(ω1+1)K1eω1y cos(2βz)+ · · · (2.13)

as Y→−∞. Thus, we see that the term proportional to cos(2βz) in u is now of size
Re−ω1�Re−1 if β < 1/

√
2. The above forms for u, v are then reduced to zero within

the main boundary layer, see DH, and it turns out that the maximum of the streamwise
velocity component proportional to cos(2βz) occurs within the unperturbed boundary
layer. Therefore, the free-stream coherent structure has a fully nonlinear interaction
involving tiny O(Re−1) wave, roll and streak fields in the production layer stimulating
a passive streak of much larger size, O(Re−ω1), concentrated in the wall layer.

The asymptotic structure described by DH was found to be in excellent agreement
with numerical calculations of equilibrium solutions of the full equations of motion.
That excellent agreement allows us to extract, for example, c1, K1 of the production
layer structure from the high-Reynolds-number ASBL computation. DH gave solutions
of the production layer eigenvalue problem for a range of vales of β and α/β = 0.5.
Here, we give results for an extended range of values of β for the same ratio of α/β,
and we see in figure 1(a) that a closed loop of eigenvalues c1 beginning and ending
in saddle-node bifurcations exists over a finite range of values of β ∈ [0.2062, 0.4633].
The corresponding values of the constant K1, which plays a crucial role in the streak
generation, can be extracted from the computations and are shown in figure 1(b).
Along the bifurcation curve, the flow fields at β = 0.23, 0.3 and 0.44 are visualized
in figures 2 and 3. Figure 3 shows that all of the flow fields are characterized by
3-shaped counter-rotating vortex pairs. The corresponding roll–streak field in figure 2
shows that growing streak and decaying roll fields are indeed generated as a result
of interaction.

3. The approach of a boundary layer flow to its free-stream form
The question of how an arbitrary two-dimensional boundary layer approaches

its free-stream form was addressed, most notably, by Brown & Stewartson (1965)
and Goldstein (1965). It was found that, apart from isolated singular cases where
the approach to the free-stream speed is through algebraically decaying terms, the
approach to the free stream is through exponentially decaying terms with the exponent
proportional to the square of the distance from the wall. That is of course different
from the case of the ASBL, so we might be apprehensive about applying the DH
approach to growing boundary layers given that the whole nonlinear interaction
described there hinges on the streamwise velocity being an exponential function of
distance from the wall. However, what will become apparent in both this and the
next sections is that non-parallelism mimics the effect of wall suction so as to force
the decay in a localized region to be once again an exponential function of distance.
Here, we will summarize the main results of Brown & Stewartson (1965) needed
for our analysis. Using the notation of Brown & Stewartson (1965), we take the
boundary layer equations in the form

u
∂u
∂x
+ v ∂u

∂y
=U1

∂U1

∂x
+ ∂

2u
∂y2

, (3.1)

∂u
∂x
+ ∂v
∂y
= 0. (3.2)
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FIGURE 1. The values of (a) c1 and (b) K1 of the production layer eigenvalue solution
for α/β = 0.5. The curves are computed from the ASBL solutions with finite height H
and Reynolds number Re. It should be noted that the upper branch of (a) corresponds to
that of (b). The convergence to the asymptotic state is confirmed by computing solutions
for (Re,H)= (200 000, 24), (100 000, 32), (100 000, 48) and (100 000, 56) by using up to
180 Chebyshev modes, 14 streamwise modes and 26 spanwise modes.

Here, x, y measure distance along and perpendicular to the wall and U1(x) is the free-
stream speed. The equations are to be solved subject to

u= v = 0 on y= 0, (3.3)
u→U1 as y→∞. (3.4)

In addition, we must prescribe u as a function of y at some value of x, say x = x1.
Following the discussion given by Brown & Stewartson (1965), we seek a solution of
the equations for large y of the form

u=U1(x)+A(x, y) exp
[
−(y− k(x))2

2F(x)

]
+ · · · , v=−yU′1(x)+ h′(x)+ · · · , (3.5a,b)

where the displacement thickness k and F, h′ are functions of x alone, A is algebraic
in y and a prime denotes a derivative with respect to x. By substituting the above
expression into the boundary layer equations then equating like powers of y2, y, 1 we
obtain

U1F′ + 2U′1F= 2, (3.6)

U1k′ +U′1k= h′, (3.7)

U1
∂A
∂x
+
(

2
F
−U′1

)
y
∂A
∂y
+ A

(
U′1 +

1
F

)
= 0. (3.8)
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FIGURE 2. The streamwise-averaged field of the production layer solutions along the
bifurcation curve in figure 1 ((a,d) β=0.23; (b,e) β=0.3; (c,f ) β=0.44). The disturbance
velocity U+ eY (i.e. the streak) and vorticity ∂ZV− ∂YW associated with the roll are plotted
in the left and right halves of each figure. Here, Cmax= 3668.4 (a), 2670.5 (b) and 1476.9
(c) for the streaks, Cmax = 94.5 (a), 92.2 (b), 111.2 (c) for the rolls; Cmax = 3524.7 (d),
2403.8 (e) and 1327.7 (f ) for the streaks, Cmax = 75.3 (d), 69.4 (e) and 99.9 (f ) for the
rolls.

Hence, it follows that

FU2
1 = 2

∫ x

x1

U1(x̂) dx̂, kU1 = (h+ k1). (3.9a,b)

Here, x1, k1 are constants of integration and the equation for A can be integrated to
give

A=−Â(x)
(

y√
F

)n

, (3.10)

where n, Â(x) are fixed by the upstream conditions. For example, for Blasius flow,
which has U1= 1, we find that n=−1, k1= x1= 0 and h= h1

√
2x. It follows that for

Blasius flow F= 2x, k(x)= h(x) and that for large y

u' 1− Â
√

2x
y

exp

[
−(y− h1

√
2x)2

4x

]
, (3.11)

where h1 w 1.217, Â w 0.3354.
Thus, the major difference between the ASBL and growing boundary layers is that

the approach to the free-stream speed occurs through an exponential dependence on
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FIGURE 3. Three-dimensional plots of the disturbance flow field of the production layer
solutions along the bifurcation curve in figure 1 ((a,d) β = 0.23; (b,e) β = 0.3; (c,f ) β =
0.44). The red/blue surfaces correspond to where the streamwise vorticity is 70 % of its
maximum/minimum value. The colourmap corresponding to the streak contours shown in
the figure is as given in figure 2.

the square of the displaced distance from the wall rather than the first power. For the
free-stream coherent structures in the ASBL it was the part of the mean flow decaying
exponentially that produced the growing streaks beneath the production layer, and so
it is not clear at this stage that growing boundary layers can support a related kind
of free-stream coherent structure.

4. The production layer problem for free-stream coherent structures in any two-
dimensional boundary layer
We consider the general boundary layer flow discussed in the previous section with

speed U∗U1(x∗) a long way from the wall defined by y∗ = 0. We use boundary layer
scalings and so take dimensionless variables (x, y, z)=((x∗/L),Re1/2(y∗/L),Re1/2(z∗/L)),
where L is a typical streamwise length scale and Re = (U∗L/ν) is the Reynolds
number. Throughout, we will assume that the Reynolds number is large. If we scale
the corresponding velocity components on U∗, Re−1/2U∗, Re−1/2U∗, time on (U∗/L)
and pressure on ρU∗2, where ρ is the fluid density, then the Navier–Stokes equations
take the form

(∂t + u · ∇)u=−(∂xp, Re ∂yp, Re ∂zp)T + (Re−1∂2
x + ∂2

y + ∂2
z )u, (4.1)

∇ · u= 0, (4.2)

and the boundary conditions to be satisfied are

u= v =w= 0 on y= 0, (4.3)
(u, v,w)→ (U1,−yU′1, 0) as y→∞. (4.4)
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In the high-Reynolds-number limit the leading-order approximations to u, v, p satisfy
the boundary layer equations (3.1) and (3.2) of the previous section with p=−(U2

1/2).
The velocity field approaches its free-stream form through exponentially small terms
as described in the previous section so that, for sufficiently large y, the basic flows
u, v are given by (3.5) and w= 0, with A, h, k,F as given in the previous section. We
assume that, given some large as yet unspecified quantity K, the nonlinear interaction
driving a free-stream coherent structure takes place in a box with all the sides of
comparable dimensional length Re−1/2K−1L located a distance KL from the wall. In
view of our scalings for x, y, z with respect to that coordinate system, the box should
be taken to have respective sides of lengths Re−1/2K−1, K−1, K−1; the functional
dependence of K on R can be fixed by the following argument.

First, we assume that the wave-like part of the flow in the production layer convects
downstream with almost the free-stream speed. Next, we take the difference of the
streamwise velocity component from its free-stream value to be comparable with
A(x, y) exp[−((y− k(x))2/2F(x))], the corresponding deviation of the unperturbed
streamwise velocity component from its free-stream value. The production layer is
viscous, so, based on the above assumptions, we can fix K by balancing convective
and viscous terms. This requires

A(x, y) exp
[
−(y− k(x))2

2F(x)

]
∂x ∼ Re−1∂2

x . (4.5)

Noting that A(x, y)=−Â(x)(y/
√

F)n, where n is fixed by the upstream conditions
and Â is a known function of x, within the production layer we write

(y− k(x))√
F(x)

=K + Ỹ
K
√

F(x)
, (4.6)

so that

A(x, y) exp
[
−(y− k(x))2

2F(x)

]
≈−ÂKne−(K

2/2)e−(Ỹ/
√

F). (4.7)

Since ∂x is now O(KRe1/2), the balance between convective and diffusion effects is
achieved if

Kne−K2/2 = K√
Re
, →K =√ln Re+ (n− 1)

ln(
√

ln Re)√
ln Re

+ · · · . (4.8a,b)

The argument given above is essentially the same as that first given by Gulyaev
et al. (1989) in the context of the penetration of free-stream disturbances into a
boundary layer. More recently, Dong & Wu (2013) discussed the layer in the context
of the continuous spectrum associated with linear instability. The minor difference
between the scalings of the latter papers and here arises because the structures here
have streamwise wavelength comparable with the depth of the layer. The fact that
the boundary layer is growing also means that the wavespeed of the structure must
change as it moves downstream. From the streamwise scaling, we can take care of
this local requirement by expressing the wave dependence of the production layer
structure, taken to be of fixed period (2π/Ω) in time, by defining a phase variable Φ̃,

Φ̃ =KRe1/2

(∫ x [
α0(x)+ K√

Re
α1(x)+ · · ·

]
dx−Ωt

)
. (4.9)

Here, the difference in size between the first two terms inside the integral is fixed by
the difference in size between the free-stream speed and the streamwise velocity in
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the production layer. Since the wave has fixed frequency Ω and convects downstream
with the free-stream speed it follows immediately that

α0(x)U1(x)=Ω, (4.10)

which fixes the local leading-order streamwise wavenumber.
The production layer structure operates on the same length scale in all three

directions, so we must introduce a short spanwise variable Z̃ =Kz. Given our choice
of box size and the streamwise velocity scale, the scalings for the normal and
spanwise velocity components in the production layer then follow from the equation
of continuity (4.2). In the production layer we then write

u = U1 + K√
Re

Ũ(x, Φ̃, Ỹ, Z̃)+ · · · , (4.11)

v = −KU′1
√

F+KṼ(x, Φ̃, Ỹ, Z̃)+ · · · , (4.12)

w = KW̃(x, Φ̃, Ỹ, Z̃)+ · · · , (4.13)

p = 1
2

U2
1 +

K2

Re
P̃(x, Φ̃, Ỹ, Z̃)+ · · · . (4.14)

The first term in the expansion of the normal velocity component comes from the
leading-order term in the expansion around the centre of the production layer of the
vertical component of the unperturbed boundary layer. Within the production layer the
material derivative ∂t + u∂x + v∂y +w∂z is approximated by

KRe1/2(α0U1 −Ω)∂Φ̃ +K2

×
{
α1U1∂Φ̃ −

[
U′1
√

F+ U1F′

2
√

F

]
∂Ỹ + α0Ũ∂Φ̃ + Ṽ∂Ỹ + W̃∂Z̃

}
+ · · · .

(4.15)

In view of (4.10), the leading-order term vanishes and using (3.6) the terms in the
square bracket can be replaced by 1/

√
F. Hence, we see that non-parallel effects

produce an effective suction velocity 1/
√

F, which plays an identical role to the
constant suction driving an ASBL. This is the crucial result, which allows for
non-parallel effects in the production layer to be taken care of in a quasi-parallel
manner. The zeroth-order approximation to the production layer equations for a
growing boundary layer therefore becomes([

Ũ + U1α1i
α0
− j√

F

]
· ∇̃

)
Ũ =−∇̃P̃+ ∇̃2

Ũ, (4.16)

∇̃ · Ũ = 0, (4.17)

where ∇̃ = (α0∂Φ̃, ∂Ỹ, ∂Z̃). The velocity field Ũ must return at leading order to its
unperturbed value (−Âe−Ỹ/

√
F, 0, 0) above and below the production layer, so that we

must impose the conditions

(Ũ, Ṽ, W̃)→ (0, 0, 0) as Ỹ→∞, (4.18)

(ŨeỸ/
√

F, Ṽ, W̃)→ (−Â, 0, 0) as Ỹ→−∞. (4.19)

In addition, we require periodicity in Φ̃, Z̃ with periods 2π, (2π/β0) respectively. We
see that, apart from various scaling factors, the production layer problem is identical to
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(2.3)–(2.8) first derived for the ASBL. In fact, if we write (U,V,W,P)=√F(Ũ, Ṽ −
(1/
√

F), W̃,
√

FP̃) and make the transformations

Φ = Φ̃

α0
√

F
, Y = Ỹ√

F
− ln(
√

FÂ), Z = Z̃√
F
, c1 = U1α1

√
F

α0
, (4.20a−d)

then the leading-order equations in the production layer become (2.3)–(2.8) with
local wavenumbers α = α0

√
F = Ω

√
F/U1 and β = β0

√
F. We have shown

the rather remarkable result that the production layer problem for the ASBL is
apparently generic in so far as it applies to all boundary layers approaching the
free-stream speed through exponentially decaying terms. Thus, we conclude that
as the interaction proceeds downstream, the solution can be determined from the
ASBL problem with the appropriate local values of the streamwise and spanwise
wavenumbers. The dependence of U1 on x fixes the functional form of the local
wavenumbers. For Blasius flow the local wavenumbers α, β are in a constant ratio
as the structure evolves downstream. More generally, for a Falkner–Skan boundary
layer with free-stream speed U1 proportional to xm the local streamwise and spanwise
wavenumbers α, β are related by β/α(1−m)/(3−m) = constant.

For the ASBL the solution beneath the production layer is relatively simple, with
the decaying roll and growing streak continuing with the exponential behaviour fixed
on exiting the production layer all the way to the unperturbed boundary layer where
the roll and streak are reduced to zero. For a growing boundary layer we shall see
that the picture is completely different, with non-parallel effects coming into play
and indeed dominating the flow. Based on the asymptotic forms (2.9) and (2.10) for
what we now refer to as the canonical production layer problem (2.3)–(2.8), and the
description given above, we can write down the asymptotic forms for the streak and
roll on exiting the production layer associated with a growing boundary layer. Using
(2.9), (2.10) and (4.20) we find

u→U1 − K√
Re

Âe−(Ỹ/
√

F) + K√
Re

J1(
√

FÂ)(1−ω1)

√
F

e(ω1−1)(Ỹ/
√

F) cos(2Kβ0z)+ · · · , (4.21)

v→−KU′1
√

F+K
K1(
√

FÂ)−ω1

√
F

eω1(Ỹ/
√

F) cos(2Kβ0z)+ · · · , (4.22)

for Ỹ→−∞. Here, we have retained only the leading-order z-independent part of the
velocity since the leading-order exponentially growing term will dominate. It should
be noted that J1,K1 are determined from the canonical production layer problem with
wavenumbers α0

√
F and β0

√
F.

We recall that the question in § 2 of whether the fundamental z-dependent terms
generated in the production layer grow or decay exponentially as Y tends to −∞
depends on the size of the spanwise wavenumber. In the growing boundary layer case
the behaviour is therefore fixed by

√
Fβ0, so that for a fixed physical vortex spanwise

wavelength the growth of a streak beneath the production layer will only occur for
values of x satisfying

√
Fβ0 < (1/

√
2). It is important, however, to point out that

the latter condition is only a necessary condition for the production layer problem
to produce an exponentially growing streak.

5. The roll–streak flow beneath the production layer
We need to consider the flow below the production layer in order to see how the

exponential growth of the streak exiting the production layer is accommodated by the
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rest of the flow. We shall now solve for the induced flow between the production layer
and the wall and, following DH, we use the fact that here the disturbance is always
small compared with the basic flow. The appropriate approximation to the equations
of motion is valid all the way down to the wall and leads to the linear Görtler vortex
equations of Hall (1983) with the Görtler number set equal to zero; more recently,
these equations are elsewhere referred to as the boundary-region equations. If the
unperturbed boundary layer is denoted by u = (ub, vb, 0) we perturb the flow by
writing

u= ub + us(x, y) cos(2Kβ0z), v = vb + vr(x, y) cos(2Kβ0z), (5.1a,b)

w=wr(x, y) sin(2Kβ0z), p=U2
1/2+ Re−1pr(x, y) cos(2Kβ0z), (5.2a,b)

where, in view of (4.21) and (4.22), we have taken the spanwise wavenumber to be
2Kβ0. The component us represents the streak while (vr,wr) is the roll. The primitive
form of the linearized system satisfied by the perturbation is found from (4.1) and
(4.2) to be

(ub∂x + vb∂y)

us
vr
wr

+ (us∂x + vr∂y)

ub
vb
0

=
 0
−∂ypr

2Kβ0pr

+ (∂2
y − 4K2β2

0 )

us
vr
wr

 , (5.3)

∂xus + ∂yvr + 2Kβ0wr = 0. (5.4)
The above equations are parabolic in x and can be integrated by marching in x
subject to an initial velocity distribution imposed at some value of x and subject to
the forcing conditions (4.21) and (4.22). Without any loss of generality we suppose
that the production layer forcing begins at x=1. The forcing from the production layer
is on a short, O(K−1), spanwise length scale, so (5.3) and (5.4) develop what turns
out to be a rich asymptotic structure as the roll–streak flow develops downstream.

Within the present asymptotic framework we cannot address the issue of how
this initial velocity field is created, but since in the high-Reynolds-number limit the
equations are parabolic in x, the problem is well posed. Likewise, we note in passing
that the vortex–wave interaction solutions of, for example, Hall & Smith (1991) and
Hall & Sherwin (2010) are yet to be connected formally to an imposed upstream
velocity field, but nevertheless full direct Navier–Stokes simulations certainly reveal
the relevance of these states to turbulent flows.

The production layer is located a distance O(K) from the wall and is of thickness
O(K−1), and so, not surprisingly, the most important region to consider is the
layer where y ∼ O(K). Beneath the production layer the asymptotic form of the
roll–streak flow will adjust to be compatible with the mean flow which no longer
has a simple exponential form, and so henceforth we will refer to the region
y ∼ O(K) as the adjustment layer. In order to motivate the large-wavenumber
solution of (5.3) and (5.4) in the adjustment layer we first write the forcing from the
production layer in a slightly different form. We define the scaled similarity variable
ξ = (y− k(x))/(K

√
F(x)), so that (Ỹ/

√
F)= K2(ξ − 1), and seek a solution where ξ

is O(1). The appropriate form for the structure in this layer is indicated by expressing
the roll and streak flows emanating from the production layer in terms of (ξ − 1). A
little manipulation shows that (4.21) and (4.22) become

u→U1 − K√
Re

Âe−K2(ξ−1) + K√
Re

J1(
√

FÂ)(1−ω1)

√
F

eK2(ω1−1)(ξ−1) cos(2Kβ0z)+ · · · , (5.5)

v→−KU′1
√

F+K
K1(
√

FÂ)−ω1

√
F

eK2ω1(ξ−1) cos(2Kβ0z)+ · · · , (5.6)
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when ξ→ 1−. It is important to realize here that the quantities ω1, J1,K1 are functions
of x because at each local station the canonical production layer problem (2.3)–(2.8)
is to be solved with the local values of the wavenumbers. Based on the production
layer solution, and the fact that x is O(1), we might anticipate that the x dependence
will be parametric, but we will see below that this is not the case. Suppose we now
adopt the roll–streak scaling as in (4.21) and (4.22) and write

us=KR−1/2Us(x, ξ), vr =KVr(x, ξ), wr =KWr(x, ξ), pr =K2Pr(x, ξ); (5.7a−d)

then if the pressure and spanwise disturbance velocity are eliminated from (5.3) and
(5.4) we obtain

K−2

(
∂2
ξ

K2
+ ξ∂ξ − F[∂x + 4K2β2

0 ]
)

Us − F1/2ÂVrξ
n+1e−K2(ξ2−1)/2 = 0, (5.8)(

∂2
ξ

K2
+ ξ∂ξ + 1− F[∂x + 4K2β2

0 ]
)(

∂2
ξ

K2
− 4K2Fβ2

0

)
Vr√

F
= 0, (5.9)

where some exponentially small terms have been neglected. We note from (3.5) that
for ξ ∼ O(1) the basic flow can be approximated as ub ∼ U1 − Âξ ne−K2(ξ2−1)/2 and
vb ∼−KU′1

√
Fξ + h′. The form of the above equations and the boundary conditions

at the edge of the production layer (5.5) and (5.6) suggest that the solution can be
found using a Wentzel–Kramers–Brillouin (WKB) approach.

In order to solve for the roll it is first convenient to define the quantity Vr(x, ξ),
which satisfies (

∂2
ξ

K2
+ ξ∂ξ + 1− F[∂x +K24β2

0 ]
)

Vr = 0. (5.10)

In fact, Vr(x, ξ) is proportional to the streamwise vorticity and can be used to
determine the roll velocity Vr by solving(

∂2
ξ

K2
− 4K2Fβ2

0

)
Vr√

F
= Vr. (5.11)

The streak can then be found using (5.8). The nature of the WKB solution for
the streamwise vorticity will reveal the presence of a shock associated with the
onset of forcing from the production layer. The ‘jumps’ across the shock which
straddle a curve C emanating from (ξ , x) = (1, 1) are resolved by the introduction
of a diffusion front; see figure 4. It follows from (5.11) that the solution for Vr
will contain homogeneous (irrotational) and inhomogeneous terms with different
WKB phase functions, and the exponential dependence driven by Vr dominates that
associated with the operator ((∂2

ξ /K
2) − K24Fβ2

0 ) everywhere above a second curve
D emanating from (ξ , x) = (1, 1); see figure 4. The curve D acts like a classical
WKB turning point across which the exponential dependence driven by Vr becomes
subdominant to that associated with the homogeneous part. In the region below D
the roll flow becomes irrotational at leading order and takes on a particularly simple
form.

We shall see that both the diffusion front and the WKB turning point layer are
of thickness O(K−1) in ξ . The three regions subdivided by the curves C and D are
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0

1

1
x

Irrotational Lower Upper

WKB turning point layer
curve

Diffusion front
curve

FIGURE 4. The different regions associated with the adjustment layer. Crossing the
diffusion front corresponds to a switch between the upper/lower WKB solutions, while
on crossing the lower curve the roll flow becomes irrotational. The thin lines represent
the characteristic curves of the Charpit solutions of the eikonal equation.

referred to as the upper region, lower region and irrotational region; see figure 4.
In § 5.1 we begin by calculating the WKB solution for Vr in the upper and lower
adjustment layers. Having found Vr in the adjustment layer we then solve for Vr, Us in
§ 5.2. The solutions are used to construct a composite solution valid in the adjustment
layer, the diffusion front and the WKB turning point layer described in appendix A.

5.1. The streamwise vorticity in the upper and lower adjustment layers
We begin by seeking a WKB solution of the form

Vr =K2V (x, ξ ,K)eK2Θ(x,ξ), (5.12)

where, following the usual nomenclature, we refer to Θ as the phase function and V
as the amplitude. We shall see that V ∼ O(1) in the upper adjustment layer while
V ∼O(K−1) in the lower adjustment layer. The roll equation is satisfied exactly if

(Θ2
ξ + ξΘξ − F(U1Θx + 4β2

0 ))V

+ [K−4Vξξ +K−2{(2Θξ + ξ)Vξ + (Θξξ + 1)V − FU1Vx}] = 0, (5.13)

where the subscripts x, ξ represent partial differentiations. In the limit K →∞ the
terms in the square brackets in (5.13) are neglected to give the eikonal equation for Θ ,

Θ2
ξ + ξΘξ − F(U1Θx + 4β2

0 )= 0. (5.14)

At the next order the terms in the curly bracket in (5.13) produce an amplitude
equation for the leading-order approximation to V ,

(2Θξ + ξ)Vξ + (Θξξ + 1)V − FU1Vx = 0. (5.15)

The phase Θ is found by using Charpit’s method, which shows how information from
the production layer for x> 1 propagates down into the upper adjustment layer. Once
the phase function Θ is known, (5.15) can be integrated to find the leading-order
amplitude function.
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5.1.1. The upper adjustment layer
Downstream of x = 1 the effect of the interaction will first diffuse into the upper

adjustment layer through the phase function Θ . It follows from (5.5) and (5.6) that
the appropriate conditions for Θ are

Θ = 0, Θξ =ω1(x) on ξ = 1 for x > 1, (5.16a,b)

while V must satisfy

V = K1(
√

FÂ)−ω1

F
(ω2

1 − 4Fβ2
0 )≡ V0(x) on ξ = 1 for x > 1. (5.17)

Here, it should be stressed that in these equations all the functions apart from Θ are
fixed by the production layer problem at the location x. The eikonal equation is a first-
order nonlinear partial differential equation and can be solved using Charpit’s method.
We parameterize the characteristic curve on which the boundary conditions are to be
specified by

x= s, ξ = 1, s > 1. (5.18a,b)

If we let p̂=Θx and q̂=Θξ , then the Charpit equations associated with (5.14) are

dx
FU1
= dξ
−(2q̂+ ξ) =

dp̂
−((FU1)′p̂+ 4β2

0 F′)
= dq̂

q̂
= dΘ

FU1p̂− q̂(2q̂+ ξ) = dτ , (5.19)

which must be solved subject to

τ = 0, Θ = p̂= 0, q̂=ω1(s), V =V0(s) on x= s, ξ = 1 for s> 1. (5.20a−d)

Along each characteristic curve x, ξ , p̂, q̂, Θ can be solved in terms of the variable τ .
Thus, the phase function Θ satisfying the required boundary condition is given
implicitly in terms of ξ, x by

eτ = U1(x)
√

F(x)
U1(s)

√
F(s)

, ξ = (1+ω1(s))e−τ −ω1(s)eτ , (5.21a,b)

Θ =
(

1− e2τ

2

)
ω2

1(s)− 4β2
0

∫ x

s

dx̂
U1(x̂)

, Θξ =ω1(s)eτ , Θξξ = −e2τ

B(s)+ e2τ
,

(5.22a−c)
where

B(x)= (2ω1 + 1)(ω1 + 1)+ 4β2
0 U1FF′

ω1(2ω1 + 1)− 4β2
0 U1FF′

. (5.23)

We complete the solution in the upper diffusion layer by solving (5.15) for V . Along
a characteristic curve we have

(Θξξ + 1)V − FU1Vx = 0, (5.24)

so the solution for the amplitude is found by integrating to give

V = V0(s) exp
{∫ τ

0
[Θξξ + 1] dτ̂

}
= V0(s)eτ

√
B(s)+ 1

B(s)+ e2τ
. (5.25)
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The phase in (5.22) and the amplitude in (5.25) uniquely determine the solution
in the adjustment layer above the curve C . The limiting characteristic corresponds to
s= 1 and so the curve C is defined by

ξ = ξ(x)= (1+ω1(1))
I(x)

−ω1(1)I(x), (5.26)

where

I(x)= U1(x)
√

F(x)
U1(1)

√
F(1)

. (5.27)

On the curve C we deduce that

V = V (x)= V0(1)I(x)

√
B(1)+ 1

B(1)+ I2(x)
. (5.28)

It is easy to show that V (x) is regular in x for ξ ∈ [0, 1]. At the curve C the quantity
Vr is reduced in size within the diffusion front. Thus, at large spanwise wavenumbers
we anticipate that the effect of the forcing from the production layer beginning at
x = 1 is most strongly felt in the upper adjustment layer which sits between ξ = 1
and ξ = ξ(x). However, we shall see that the maximum of the WKB streak phase
occurs in the lower adjustment layer which sits beneath the curve C .

5.1.2. The lower adjustment layer
The production layer forcing determines the adjustment layer solution only

above C . Beneath the curve C we continue the WKB solution by stipulating that
all characteristics now must pass through the singular point (ξ , x)= (1, 1). We retain
the expression for Vr given by (5.12), so the Charpit equations remain the same as
(5.19) but with different boundary conditions. By using s>ω1(1) as a parameter, the
Charpit solution satisfying

τ = 0, Θ = 0, Θξ = s for s >ω1(1) (5.29a−c)

is found to be
eτ = I(x), ξ = (1+ s)

I
− sI, (5.30a,b)

Θ = 1− I2

2
s2 − 4β2

0

∫ x

1

dx̂
U1(x̂)

, Θξ = sI, Θξξ =− I2

I2 − 1
. (5.31a−c)

Eliminating s from (5.30) and (5.31), we find an explicit expression for the phase
function Θ . The amplitude function V can again be found by integrating along a
characteristic to give

V =N(s)
I(x)√

I2(x)− 1
, (5.32)

where N(s) is an arbitrary function of s = s(x, ξ). This arbitrariness is of course
associated with the fact that, since all the characteristics pass through (x, ξ)= (1, 1),
there is no boundary condition to be imposed on V at τ = 0.

An examination of the upper and lower Charpit solutions (5.22) and (5.31) shows
that, if [.] denotes the difference in a quantity just above or below C , then

[Θ] = 0, [Θξ ] = 0, [Θξξ ] ≡ J(x) 6= 0. (5.33a−c)
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Free-stream coherent structures in growing boundary layers 469

Therefore, the two forms of the WKB solution do not have phases that connect
smoothly at C defined by ξ = ξ(x). The jump points to the existence of a diffusion
front or shock at the curve C . The thickness of the diffusion front is fixed by
observing that eK2Θ changes by a factor eK2(ξ−ξ)2J/2 across the shock, which means
that the amplitude function must vary on an O(1) length scale φ proportional to
K(ξ − ξ). Thus, the diffusion front is of thickness O(K−1) in ξ and the jump is
accommodated in this layer. The details of the solution within the diffusion front are
given in appendix A.

By taking the limit of |φ| large in the diffusion layer solution we find that the
solution matches the upper form of the WKB solution, while a match with the lower
form (5.32) requires

N(s)= V0(1)

K
√

2π(s−ω1(1))
. (5.34)

This means that the amplitude of the vorticity in the WKB solution falls by a
factor of K−1 on passing through C from above. Thus, to summarize, in the lower
adjustment layer Vr is given by (5.12) with the phase function Θ given by (5.31)
and the amplitude

V = −V0(1)I
√

I2 − 1

K
√

2π[Iξ − 1+ω1(1)(I2 − 1)] . (5.35)

Having found the streamwise vorticity induced below the production layer we now
solve for the roll and streak.

5.2. The roll–streak flow generated beneath the production layer
Given Vr we can solve (5.11) for the roll flow and then (5.8) for the streak flow. In
this section we denote the upper/lower WKB solution by a +/− superscript. If we
use the WKB form of Vr (5.12) with the phase Θ given by

Θ+ in (5.20), Θ− in (5.31) (5.36a,b)

and the amplitude V given by

V + in (5.22), V − in (5.32), (5.37a,b)

then we find that

Vr =
√

FV eK2Θ

Θ2
ξ − F4β2

0
, Us =−

√
FÂξ ne−K2((ξ2−1)/2)

2Θξ

Vr. (5.38a,b)

We recall that the upper and lower adjustment layers are separated at ξ = ξ(x) defined
by (5.26). By using the scaled normal coordinate φ=K(ξ − ξ(x))/1(x) with 1(x) as
defined in appendix A, it is shown there that the diffusion front solution Vr takes the
form

Vr =K2V C(x, φ)eK2ΘC(x,φ,K). (5.39)

Here, ΘC is the Taylor series expansion of Θ+ around ξ = ξ̄ ; see the appendix
for more details. A careful examination shows that (5.38) become singular when
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470 K. Deguchi and P. Hall

(Θ2
ξ − 4Fβ2

0 ) vanishes, and this happens when the lower Charpit parameter s =√
F2β0/I. Thus, the curve D alluded to earlier and which lies beneath C is defined

as
ξ = ξ(x)= I−1 +√F2β0(I−2 − 1). (5.40)

The origin of this singular behaviour corresponds to the two possible phases in a
WKB solution of (5.9) coalescing, and so we have a classical WKB turning point
problem. The details of this layer can be found in appendix A. Taking ϕ = K(ξ −
ξ(x))/δ(x) with δ(x) as defined in appendix A, it is shown that in the turning point
layer the roll is given by

Vr = VD(x, ϕ)eK2ΘD(x,ϕ,K). (5.41)

Here, ΘD is the Taylor series expansion of Θ− around the curve D ; see the
appendix for more details. Beneath the curve D we have irrotational flow of the
form

Vr = V i(x)eΘ
i(x,ξ), Us =−

√
FÂξ n+1e−K2((ξ2−1)/2)

(ξ + ξ)Θ i
ξ

Vr, (5.42a,b)

which matches with the WKB turning point layer solution. The functions V i and Θ i

are given in appendix A. We recall that V + is O(1) and V − is O(K−1). Thus, on
crossing the curve D from above the roll amplitude increases in size by a factor of K.

Now we complete the calculation of the induced roll–streak driven by the motion in
the production layer. The results can be combined to produce a composite asymptotic
approximation valid everywhere beneath the production layer. First, we define the
WKB phase of the roll as

Θ =


Θ+ in (5.20) if ξ > ξ,
Θ− in (5.31) if ξ > ξ > ξ,
Θ i in (A 18) if ξ < ξ.

(5.43)

Although this WKB phase function is continuous everywhere, there are singularities
for the roll amplitude when crossing C or D . Thus, we consider the following
composite roll solution so that the limiting forms of V C(x, φ) and VD(x, ϕ) cancel
the singularities:

Vr =



V C

V C∞

VD

VD∞

√
FV +eK2Θ

Θ2
ξ − F4β2

0
if ξ > ξ,

V C

V C−∞

VD

VD∞

√
FV −eK2Θ

Θ2
ξ − F4β2

0
if ξ > ξ > ξ,

V C

V C−∞

VD

VD−∞
V ieK2Θ if ξ < ξ.

(5.44)

The limiting forms V C
∞(x, φ), V

C
−∞(x, φ), VD

∞(x, ϕ) and VD
−∞(x, ϕ) are given in (A 8)

and (A 18). It should be noted that by taking the logarithm we can show that the above
expression becomes a standard composite solution of the form of (inner solution) +
(outer solution) − (common part).

The composite roll solution also completes the description of the composite streak
flow in the region x> 1, 1 > ξ > 0 through the streak equations in (5.38b) for ξ > ξ
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Free-stream coherent structures in growing boundary layers 471

and (5.42b) for ξ < ξ . We note that our asymptotic solution breaks down when
x→ 1+ because the subdominant part of the roll solution becomes singular and is
eventually comparable with the leading-order term. We shall see in the following
section that the asymptotic solution already constructed agrees well with a full
numerical calculation of the streak apart from near x = 1. Moreover, the maximum
streak amplitude occurs well downstream of that point and is well described by the
asymptotic theory. Therefore, we do not consider the extra region separately. Because
of the WKB form of the solution the size of the streak is primarily determined by
the effective phase function

M(x, ξ)=Θ(x, ξ)− ξ
2 − 1

2
, (5.45)

with Θ given by (5.43). Of particular importance is the question of where the streak
WKB phase takes on its maximum value. The necessary condition for a maximum,
∂xM= ∂ξM= 0, shows that the maximum occurs in the lower adjustment layer where

β0

√
2F(2I2 − 1)= I, ξ = β0

√
2F. (5.46a,b)

Thus, the maximum streak amplitude occurs well downstream of x= 1 and well away
from ξ = 0. This means that the streak structure in the unperturbed main boundary
layer, where ξ ∼O(K−1), is not dominant. However, we indicate briefly how the roll–
streak flow is continued into the main boundary layer. The solution follows in much
the same way as for the ASBL, see DH, and is closely linked to the WKB description
of small-wavelength linear Taylor or Görtler vortex modes given by Hall (1982).
For η = y/

√
F ∼ O(1), the vertical structure of the roll–streak field must operate on

the same length scale, and so the vertical structure for the roll will be proportional to
exp[K2Θ0(x)+Kθ(x, y)], where Θ0(x)=Θ(x, 0) is the ξ→ 0 limit of the WKB phase
of the roll. Using (5.3) and (5.4) we see that the eikonal equation for θ will only
involve η derivatives of the phase function and there will be two positive and two
negative roots. One of the positive values will match onto the incoming (decaying
towards the wall) roll, and together with the corresponding solutions for the negative
roots can be used to satisfy the no-slip condition at η= 0. Thus, within the boundary
layer the roll–streak has the same size in terms of Re as the roll–streak at the bottom
of the adjustment layer.

6. Results for free-stream coherent structures in Blasius flow
In this section we use the asymptotic description of the streak presented in the last

section to make predictions for a Blasius boundary layer. In that case, U1= 1,F= 2x
and the basic flow can be approximated by (3.11) for large y. We suppose that the
production layer interaction starts at x = 1 so that the flow field corresponds to the
left saddle-node bifurcation point at β ≈ 0.2062 in figure 1(a). This means that we
must choose β0 ≈ 0.2062/

√
2 ≈ 0.1458 and Ω = β0/2. Moving downstream, the

larger β = √2xβ0 solution in figure 1(a) is taken and the interaction ends when β
reaches the right saddle node at β ≈ 0.4633, i.e. x≈ 5.05. Therefore, the interaction
can only occur over a finite interval in the streamwise direction; this is consistent
with experimental observations. In order to construct the adjustment layer roll–streak
solution we need the value of K1 at each position x. Here, we use the upper branch
solutions in figure 1(b) for this purpose.

Given the values of K1 and Re we can march the boundary region equations (5.3)
and (5.4) downstream to produce numerical solutions beneath the production layer.
The composite asymptotic solution (5.44) will then be used to predict the roll–streak
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structure and compare it with direct solutions of the linearized boundary-region
equations. Following Hall (1983), equations (5.3) and (5.4) are most easily solved by
eliminating the pressure and spanwise disturbance velocity to produce a fourth-order
equation in y for vr and a second-order equation in y for us. For computational
purposes the equations are further rewritten in terms of x and the similarity variable
η= y/

√
2x; see for example (2.9) of Hall (1983). Here, second-order-accurate central

difference is employed to approximate derivatives with respect to η using 2000 grid
points. At the end points of the grid, no-slip conditions are used at the wall and the
production layer conditions (5.5) and (5.6) are specified at η = K + h1, i.e. ξ = 1.
In order to march downstream the Crank–Nicolson method is used for the diffusion
terms while the other terms are treated by the Adams–Bashforth method. We integrate
(5.3) and (5.4) using the initial conditions us = vr = 0 at x = 1 for all η with the
streamwise step size 10−4. It should be noted again that the asymptotic solution
computed in § 5 is valid only a small distance beyond x= 1 and so does not satisfy
the same initial conditions as those applied above. However, we expect that a short
distance downstream the numerical solution will approach the asymptotic solution.

Before presenting the comparison of the asymptotic and boundary-region equation
solutions we discuss the properties of the WKB phase function which is independent
of Re and the value of K1. The dominant asymptotic scales for the roll vr and streak
us are given approximately by ReΘ and ReM−1/2 respectively, so we can deduce from
the values of Θ and M how the induced roll and streak vary in size in the adjustment
layer. Figure 5 shows contour plots of Θ and M in the x–ξ plane. The locations of the
diffusion front and the WKB turning point layer are shown as the solid curves. The
thin curve represents the maximum in ξ of M where Θξ − ξ = 0. If calculations are
continued at higher values of x we find that the curve reaches ξ = 1 at x= 1/(4β2

0 )≈
11.8. Beyond this point there is no streak growth below the production layer; see
the necessary condition for the streak growth given at the end of § 4. The variation
of M along the thin curve is plotted in figure 6. We see that M attains its global
maximum value in the lower adjustment layer. From (5.46), this maximum occurs at
x= (1+2β0)/(4β0)≈2.22 and ξ =2β0

√
x≈0.434, as indicated by the circle symbol in

figure 5. The maximum value of M is approximately 0.25 and so the streak amplitude
indeed increases in size by a maximum factor 'Re0.25 from the edge of the production
layer. The variation of M is also plotted at ξ = 0 in figure 6. We observe that, for
Blasius flow, M is constant at ξ = 0 in the irrotational adjustment layer, and that
the constant is approximately 0.5 − √8β0 ≈ 0.088, so that M has reduced from its
maximum value but is still slightly increased from its value in the production layer.

Now let us compare the composite streak solution and the streak part of the
solution of the boundary-region equations. The results are presented in figure 7
for Re = 104, 107 and 1010. It should be noted that we only plot the composite
solutions up to ξ = 0.1. As shown by the black dashed line in (a,c,e), for Blasius
flow the limiting curves C and D reduce at leading order to straight lines in the x–y
plane. We see that as the Reynolds number increases the asymptotic and numerical
approaches give increasingly consistent predictions of the streak field, including its
maximum value the overall shape. It is worth bearing in mind that the agreement
is very encouraging given that our ‘large’ expansion parameter K ' √ln Re is only
approximately 4 even for Re = 1010. We see in the figure that with increasing Re
the maximum of the streak solution from the boundary-region equation calculation
moves upstream, thereby approaching that predicted by the phase function M. The
other small maximum of the composite solution appearing in the irrotational region
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FIGURE 5. The roll phase function Θ (a) and the streak phase function M (b) for Blasius
flow. The thick lines are the curves C and D . The thin line in (b) shows the position
where the maximum of M in ξ occurs. The circle on the thin line denotes where M is a
maximum in x, ξ .
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FIGURE 6. The maximum in ξ of M as a function of x, and M at the lower boundary.

is also captured in the slight expansion of the boundary-region equation solution near
x= 1.

In figure 8, a y–z slice of the disturbance streamwise velocity and vorticity is
plotted at x= 1.244, 2.116 and 4.552. The numerical solutions of the boundary-region
equations for Re = 107 were used. The streamwise positions chosen correspond to
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FIGURE 7. Comparison of the composite solution (a,c,e) and the boundary-region equation
solution (b,d,f ). The streak field −us is shown for (a) Re = 104, (b) Re = 107 and (c)
Re= 1010. The white dashed line represents ξ = 1. The black dashed lines in (a,c,e) are
the curves C and D .

β = 0.23, 0.3 and 0.44, and therefore the flow regimes shown in figure 8 match
to the production layer solutions shown in figure 2(a–c) after some rescaling. The
combined plot of the production layer solution and the boundary-region equation
solution for Re= 104 is given in figure 9 to show the evolution of the structure. The
overall flow structure is now clear. Even for the non-parallel flow a key result of DH
does not change: large-amplitude wall streaks occur as a passive byproduct of the
nonlinear interaction at the edge of the boundary layer. However, since solutions of
the canonical production layer problem (2.3)–(2.8) only exist for a finite range of x,
and there is a necessary condition for streak growth at a given streamwise location,
the large streak induced in the adjustment layer must ultimately diminish for large x.

7. Conclusion and discussion
Our asymptotic theory has uncovered a family of coherent structures for arbitrary

growing boundary layer flow. The coherent structures are produced by a nonlinear
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FIGURE 8. The y–z plot of the roll–streak field for Re = 107. The boundary-region
equation solutions at x = 1.244, 2.116 and 4.552 are used. The disturbance streamwise
velocity and vorticity are plotted in the left and right halves of each figure. Here,
Cmax = 0.01 (a), 0.03 (b) and 0.03 (c) for the streaks; Cmax = 8 (a), 10 (b) and 25 (c)
for the rolls. The horizontal white dashed lines represent ξ = 1.
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FIGURE 9. Combined plot of the free-stream coherent structures for the Blasius boundary
layer; Re = 104. The green surface represents the isocontour of the streamwise vorticity
computed by the upper branch ASBL solutions in figure 1. See § 4 for the rescaling used
to map out the ASBL solutions to the production layer solution shown in this figure. The
red/blue surfaces are positive/negative isocontours of the streak computed by the boundary
layer solution shown in figure 7. The interval x ∈ [2, 3], z ∈ [0, 2π/β] is used. The
transparent grey surface is the 99 % unperturbed boundary layer thickness.

interaction of waves, rolls and streaks in a layer at the edge of the boundary layer.
In this ‘production layer’, the interaction problem found in DH turns out to be a
generic kind of nonlinear interaction in the free stream. At the local streamwise
position around x, the production layer solutions can be found from the ASBL results
with ‘local’ wavenumbers. The local wavenumbers are functions of x, since the
local wavelengths must be changed so that the wave has fixed frequency and fixed
spanwise global wavenumber for all x. Thus, the streamwise distance x only affects
the production layer problem parametrically. The distance to the production layer
from the wall, K, is approximately scaled as

√
ln Re. The production layer thickness

of O(K−1) is found to be thinner than the main boundary layer; it should be noted
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that for the ASBL the thickness of the production layer was comparable to the main
boundary layer. Moreover, we saw that free-stream coherent structures now cause
the streaks to have wavelengths a factor of K smaller than those of the vortex–wave
interaction states. For the ASBL the spanwise wavelengths of both modes were
comparable; see DH. Between the production layer and the main boundary layer,
there is an adjustment layer of thickness O(K) where a rich asymptotic structure
has been found. The adjustment layer solution is found to take on a WKB form
for large Re, with three different regions separated by a diffusion front and a WKB
turning point layer. For Blasius flow, the composite asymptotic solution and the
direct numerical solution beneath the production layer are compared for finite Re and
excellent agreement is observed.

We believe that the equilibrium solutions we described provide a new mechanism
through which nonlinear structures in the free stream communicate with structures
near the wall. We have found, for the first time, what can be thought of as a self-
sustaining structure that may persist over both long times and streamwise distances
at the edge of the growing boundary layer. At the very least, our result suggests that
in turbulent simulations the free-stream disturbances might not be as passive as some
believe; it should be noted that whether the free-stream coherent structure describes
a particular turbulent flow is not our main issue. The point is that we show that
the edge of a boundary layer can support tiny nonlinear structures stimulating much
larger passive motions lower down in the boundary layer. That makes the question of
whether wall streaks drive structures in the free stream or vice versa perhaps more
complicated than was thought to be the case.

In order to calculate the adjustment layer solution we used the forcing from the
upper branch production layer solution found in DH; see figure 1. Since the solution
exists for a finite local spanwise wavenumber range, the production layer forcing
only exists for a finite streamwise interval; that result is consistent with experimental
observations; see, for example, Adrian (2007). However, in our asymptotic framework,
we did not address how the production layer interaction starts and ends. In general,
the mechanism by which the asymptotic states are created or destroyed as the flow
evolves in experiments cannot be addressed within the asymptotic theory so far
developed, but a great deal of evidence from Navier–Stokes simulations suggests
the importance of exact coherent structures in flow dynamics; see § 1. Likewise,
the asymptotic theory of the free-stream coherent structures which we derived for a
growing boundary layer describes the spatial evolution of the states from an upstream
disturbance consistent with their asymptotic structure.

Here, we shall comment briefly on this issue. First, if we use the phase variable
Φ̃ = KRe1/2(

∫ x
α0(x̂) dx̂−Ωt) instead of (4.9) and introduce a new short streamwise

variable ζ = K2
∫ x

x0
U−1

1 dx̂ around x = x0, then we find an ‘unsteady’ form of
the production layer problem where the phase speed term is replaced by the
derivative with respect to the time-like variable ζ . Thus, if solutions of this unsteady
canonical production layer problem exist, we can use them to describe the short-scale
development of the growing boundary layer production layer problem. The scaling
of ζ means that this phenomenon occurs at x − x0 ∼ O(K−2) for arbitrary x0; it
should be noted that this streamwise scale is smaller than the non-parallel scale but
much larger than that of the wave oscillation. It is now clear from this small-scale
dynamical system that in order to sustain our equilibrium solutions we need to
choose the upstream condition to be on the stable manifold of the production layer
solution at x = 1, which corresponds to the left saddle node in figure 1. Moreover,
after the upper and lower branches of the production layer problem end at the right
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saddle node, it is reasonable to assume that the disturbance decays back to the
unperturbed flow. In this case the forcing from the production layer diminishes in
an O(K−2) streamwise length after the saddle node is reached. More generally, if
there is a heteroclinic connection between two equilibrium solutions of the canonical
production layer problem, which is similar to that observed in plane Couette flow
by Halcrow et al. (2009), it is possible to consider a jump between the two distinct
production layer solution branches in figure 1 at a certain streamwise position.

The production layer interaction for growing boundary layers is similar to that
for the ASBL in that the interaction drives large-amplitude streaks near the wall
and further out in the boundary layer, suggesting the possibility that some near-wall
streaks are the passive signature of self-sustained free-stream coherent structures.
However, for growing boundary layers the maximum of the streak occurs in the
adjustment layer, unlike in the ASBL case, where the maximum of the streak occurs
in the main boundary layer. This flow structure is entirely consistent with a number of
boundary layer experiments and simulations summarized by Adrian (2007), where a
strong vortex signature in the free stream creates a large streamwise velocity distortion
beneath the vortex. In experiments the streamwise velocity distortion has two peaks
according to the schematic pictures in Adrian (2007). The first peak, which occurs
between the free-stream vortex and the main boundary layer, is reminiscent of the
passive streaky field seen in the free-stream modes studied in this paper. We recall
here that there is widespread belief that the vortex–wave interaction/self-sustaining
process is the one sustaining wall streaks in turbulent flows. On that basis the
vortex–wave interaction states found by DH for the ASBL are probably relevant to
wall streaks in turbulent growing boundary layers, although direct evidence of the
relevance cannot be addressed without the solution of the full vortex–wave interaction
problem formulated by Hall & Smith (1991) for growing boundary layers. Therefore,
the second peak in the main boundary layer is likely to be a consequence of a wall
mode of vortex–wave interaction type. A comparison of these two distinct modes for
the ASBL can be found in DH.

Nonlinear states involving both vortex–wave structures and the free-stream coherent
structures are allowed by the Navier–Stokes equations. The two modes can coexist
almost independently for growing boundary layers since the modes have different
spanwise length scales. The presence of wall modes just influences the location of
the production layer slightly via a mean-flow distortion in the free stream. It is an
open question whether the streak induced by a free-stream mode can produce a wall
mode. The interplay of the two structures could be determined from the properties
of those solutions and upstream conditions. We do not attempt that problem here,
but certainly the fact that wall streaks in the ASBL can be generated passively by
nonlinear interactions in the free stream is at least suggestive that the motion in the
free stream is not necessarily the result of interactions near the wall.

However, if we assume that the two structures coexist in turbulent boundary layers
some characteristics of experimentally observed coherent structures can be elucidated.
Consistent with the asymptotic theories here and in Hall & Sherwin (2010), in
experiments streamwise roll–streak structures are found in the unperturbed boundary
layer while there is more complicated vortex structure above them. A 3-shaped
vortex sitting at the top of the structure in the free stream has been observed in
experiments and is similar to our production layer solution. It was pointed out by
DH and Deguchi & Hall (2014c) that our production layer solutions do not have the
head part of the hairpin structure sometimes observed in experiments. However, we
note that the production layer problem in the unit-Reynolds-number Navier–Stokes
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form does not preclude the possibility of hairpin-shaped solutions. This is of course
another motivation to solve the unsteady version of the canonical production layer
problem. The computation may be done by directly solving the unsteady version
of (2.3)–(2.6) with asymptotic conditions (2.7) and (2.8), or alternatively by ASBL
simulations with some minor modifications. It should be noticed that for any type
of production layer solutions the streak, which is passively driven in the adjustment
layer, exists only for a finite streamwise interval since there is a critical streamwise
position where the streak growth beneath the production layer is prohibited; see
figure 5.

The existence of the production layer interaction is only dependent on the basic
flow profile approaching its free-stream form through exponentially decaying terms,
and therefore the free-stream coherent structure theory presented in DH and here
has quite a wide range of application. This type of exponential decay towards the
free stream can be typically found in quite general boundary layers or jets. Indeed,
Deguchi & Hall (2014c) demonstrated that the free-stream coherent structures can be
built into the Burgers vortex sheet problem where once again the flow approaches
its free-stream form through exponentially small terms. In our boundary layer study
the roll–streak flow is only forced by the production layer interaction. When the flow
is also forced by an external body force, induced linear instability of the basic flow
and the production layer can compete and resonate. Therefore, it is of interest to
consider the production layer problem in curved flows where centrifugal instabilities
are possible.

Finally, we remark that the discussion so far in this paper is valid for any
two-dimensional boundary layer. For infinite swept boundary layers our analysis
is readily modified to account for the three-dimensionality of the boundary layer. A
discussion of that problem is given in appendix B. This flow is relevant to flows
over swept wings, where the spanwise component is a ‘parasitic’ boundary layer
decoupled from the flow in the x–y directions, which is itself identical to the flow in
the case with zero spanwise flow. The spanwise velocity is then determined by an
equation involving the x–y velocity field and is directly proportional to the free-stream
spanwise velocity component. In aerodynamics, increasing the free-stream spanwise
velocity corresponds to increasing the angle of sweep of the wing. It is easy to
show that when the sweep is increased from zero there is at first little effect on
the production layer problem, and thus there is a growth of the streak towards the
adjustment layer. However, for larger values of the sweep the effect of the sweep
gradually diminishes the penetration of the growing streak into the adjustment layer,
and a new thin layer appears in the adjustment layer. With increasing sweep the
position of the new layer moves up to the production layer, so that ultimately the
sweep kills off the link to the near-wall streaks. This adjustment layer behaviour is
similar to the Gortler vortex instability in three-dimensional boundary layers discussed
by Hall (1985). For more general three-dimensional boundary layers the approach to
the free-stream velocity is more complicated and so we cannot take our results over
to a general three-dimensional boundary layer.

Acknowledgement

This work was supported by EPSRC grant EP/1037946/1. We wish to thank the
referees for constructive comments on the first draft of this paper.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.314


Free-stream coherent structures in growing boundary layers 479

Appendix A. The diffusion front and the WKB turning point layer

(a) The diffusion front problem
The function Θξξ is discontinuous at C so that the two forms of the WKB solution
do not connect smoothly there and a diffusion front must exist. The structure at the
front leads to a failure of the WKB approach and is rectified by bringing higher
derivatives back into play in a layer straddling the front. The thickness of the layer
follows immediately from the condition that the second-order derivative in the square
bracket of (5.13) must be comparable with the leading-order terms. This condition
requires that the layer should be of thickness O(K−1) in ξ , so we write

φ = K(ξ − ξ(x))
1(x)

, (A 1)

with the function 1(x) to be determined in terms of the jump in the second derivative
of the phase J(x).

We denote a quantity evaluated on C by an overbar and quantity defined by the
upper/lower form of the WKB solution by a +/− superscript. The formal solution of
the diffusion front problem then follows by writing

Vr =K2V C(x, φ)eK2ΘC(x,φ,K). (A 2)

Here, we have taken ΘC(x, φ, K) to be the truncated Taylor series expansion of Θ+
around ξ = ξ :

Θ+ ≈Θ+ +Θ+ξ (ξ − ξ)+
Θ
+
ξξ

2
(ξ − ξ)2 ≡ΘC, (A 3)

where we note that Θ
+

, Θ
+
ξ and Θ

+
ξξ are functions of x only. We can show from the

Charpit equation (5.19) that

2Θ
+
ξ + ξ + FU1ξ

′ = 0. (A 4)

Thus, from (5.13), (A 1) and (A 4) the function V C(x, φ) satisfies

1
∆2

V C
φφ +

[
2Θ
+
ξξ + 1+ FU1

∆′

∆

]
φV C

φ + (Θ+ξξ + 1)V C − FU1V
C

x = 0, (A 5)

where a subscript φ represents a partial differentiation with respect to that variable.
The jump J(x) is expressed as (Θ

+
ξξ −Θ−ξξ ). The matching with the upper form of the

WKB solution together with the condition that V C tends to zero below the diffusion
front requires

V C→
{

V (x) as φ→∞,
0 as φ→−∞, (A 6)

where V (x) is the limiting upper WKB amplitude defined in (5.28).
In order to solve the equation for V C we make some observations. First, we note

that if 1(x)=√2/J then

2
∆2
= 2Θ

+
ξξ + 1+ FU1

∆′

∆
, (A 7)
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so that the terms in the square bracket of (A 5) simplify. Second, using the above
result and (5.24) enables us to find a separable solution for V C of the form V C =
V (x)V̂ C(φ), where V̂ C(φ) satisfies the error function equation. Hence, it follows that

V C = V
erf(φ)+ 1

2
→


V C
∞ ≡ V as φ→∞,

V C
−∞ ≡−

V

2
√

πφ
e−φ

2
as φ→−∞,

(A 8)

where erf(x) = (2/√π)
∫ x

0 e−x̂2 dx̂. Thus, it is clear that the exponential behaviour of
V C in the large negative φ produces the required phase jump.

The large-φ form of the solution (A 8) ensures the required match with the upper
adjustment layer solution, while the asymptotic form for large negative φ yields the
unknown function of s appearing in the lower WKB amplitude (5.32). From (5.24)
and (A 7) we can show that

FU1
d
dx
[ln(V ∆)] = I2

I2 − 1
, (A 9)

so that
V ∆= V0(1)

√
2
√

I2 − 1. (A 10)

Using (A 10) we deduce that as φ→−∞, (A 1) behaves like

Vr→K2

(
−V0(1)

√
I2 − 1

K
√

2π(ξ − ξ)

)
exp

[
K2

{
Θ
− +Θ−ξ (ξ − ξ)+

Θ
−
ξξ

2
(ξ − ξ)2

}]
. (A 11)

We therefore obtain a match with the lower form of the WKB solution if we take
N(s) to be defined by (5.34).

(b) The WKB turning point layer
Once the roll vorticity Vr is known, we calculate the roll velocity field Vr by solving
(5.11). In the lower adjustment layer the roll velocity is given by (5.38) with Θ =Θ−
given by (5.31), and the WKB turning point problem occurs when the phase function
of the homogeneous WKB solution of this equation coincides with Θ . The difficulty
arises on the curve D defined by ξ = ξ(x) in (5.40). The remedy is to introduce a thin
layer straddling D in which a second-order term derivative of the amplitude function
can enter. That consideration, similar to the last section, shows that the layer is of
thickness O(K−1), so that we write

ϕ = K(ξ − ξ(x))
δ(x)

, (A 12)

where δ(x) is again determined in terms of the jump in the second derivative of the
phase.

We write the formal solution of the WKB turning point layer as

Vr = VD(x, ϕ)eK2ΘD(x,ϕ,K), (A 13)

where ΘD(x, ϕ,K) is the truncated Taylor series expansion of the lower Charpit phase
around ϕ = 0,

Θ− ≈Θ− +Θ−ξ (ξ − ξ)+
Θ−ξξ

2
(ξ − ξ)2 ≡ΘD, (A 14)
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and we denote a quantity evaluated on D by an underbar. Since beneath the curve
D the phase of the homogeneous part satisfies Θξ = 2

√
2F, the phase beneath D

does not have terms proportional to ξ 2. Thus, we anticipate the jump [Θξξ ] = −Θ−ξξ
= I2/(I2 − 1) across the curve D and write

δ(x)=
√

2/(−Θ−ξξ ). (A 15)

Using (5.11) we find that VD satisfies

∂VD

∂ϕ
− 2ϕVD =− Vi√

π
, (A 16)

where we have defined V i(x) as

V i = −V0(1)I

4β0[2
√

Fβ0 −ω1(1)I]
. (A 17)

It follows that VD can be solved as

VD =−V i e
ϕ2
(erf(ϕ)− 1)

2
→

VD
∞ =

V i

2
√

πϕ
as ϕ→∞,

VD
−∞ = V ieϕ2 as ϕ→−∞.

(A 18)

The first of the above equations shows that moving upwards from D the roll Vr
matches to that of the lower WKB solution. On the other hand, when ϕ→−∞ we
see that the exponential term exactly cancels the quadratic term in ΘD, so that below
D the roll Vr is given by

Vr = V i(x)eK2Θ i(x,ξ), (A 19)

where the phase

Θ i(x, ξ)= 2β2
0

[
F(I−2 − 1)− 2

∫ x

1

dx̂
U1(x̂)

]
+ 2
√

Fβ0(ξ − ξ); (A 20)

this ensures the leading-order irrotational property of the flow.

Appendix B. Free-stream coherent structures in three-dimensional flows: infinite
swept boundary layers

Here, we generalize the discussion of free-stream coherent structures given in the
main part of this paper to include the effect of a spanwise cross-flow. We retain the
Navier–Stokes equations written in the form (4.1) and (4.2), but for the spanwise
velocity we now impose the conditions

w= 0 on y= 0, w→ Γ as y→∞, (B 1a,b)

where Re−1/2Γ . O(1) is the size of the cross-flow velocity at infinity.
The basic spanwise velocity is completely determined in terms of the unswept two-

dimensional boundary layer. By using the basic flow (ub, vb)= (u, v) given in § 3, we
can show that the basic spanwise velocity wb satisfies

ub
∂wb

∂x
+ vb

∂wb

∂y
= ∂

2wb

∂y2
. (B 2)
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For large y the asymptotic approach of the spanwise basic flow to its free-stream value
is easily shown to be given by

wb = Γ
(

1+ d(x)y−1 exp
[
−(y− k(x))2

2F(x)

]
+ · · ·

)
, (B 3)

where the exponent of the exponential term is the same as that in (3.5) and d(x) is a
given O(1) function.

In the production layer scaling (4.11)–(4.14), we need to replace (4.13) by

w= Γ +KW̃(x, Φ̃, Ỹ, Z̃)+ · · · , (B 4)

where the first term in the expansion is the constant free-stream value of the spanwise
mean flow. This difference produces an extra term in the production layer problem.
However, since this extra term can be cancelled if we define a ‘drift’ variable−→
Z = Z̃−Γ t so that ∂t→ ∂t−Γ ∂−→Z and ∂Z̃→ ∂−→Z , we get exactly the production layer
problem for the two-dimensional problem. This is not an unexpected result since the
change in the spanwise variable means moving in a frame of reference sliding in the
spanwise direction with the constant free-stream velocity of the unperturbed spanwise
flow. In other words, since the spanwise component of the boundary layer is constant
across the production layer, we can recover the unswept production layer problem by
sliding the coordinate frame in the spanwise direction with the appropriate speed. It
should be noted that this is possible only because the unperturbed spanwise velocity
is at leading order constant in the production layer and down to the edge of the
unperturbed boundary layer.

Within the adjustment layer the spanwise velocity is constant at leading order,
so initially sweeping the boundary layer there has essentially no effect; however,
within the unperturbed boundary layer the forced structure will now differ from the
two-dimensional case. In order to see how sweep eventually enters the adjustment
layer problem consider the operator ∂t + u∂x + v∂y + w∂z −∇2 there. Once again the
extra term from the time derivative associated with the drift coordinate can be used
to cancel the leading-order term coming from the spanwise mean part of the flow
multiplying the ∂z term. However, the next-order exponential correction term of the
spanwise mean part enters the equations at a layer around (y− k/

√
F)=−→K , where

−→
K

satisfies
Γ
−→
K −1e−

−→
K 2/2∂z ∼ ∂2

z . (B 5)

Since ∂z∼K, if we write Γ =Rel with 0< l< 1/2 then we see that a balance occurs
when −→

K −1e−
−→
K 2/2 =KRe−l,

−→
K =√2l ln Re+ · · · , (B 6a,b)

and the upper and lower limits for l put the new layer in the main boundary layer
and the production layer respectively. In this new layer we write

(y− k(x))√
F(x)

=−→K +
−→
Y

−→
K
√

F(x)
(B 7)

and
v = vb +KV (x,

−→
Y ) exp[i2β0

−→
Z +Θ(x,−→Y )] + c.c.+ · · · (B 8)
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to seek the roll solution of WKB form. Here, c.c. stands for complex conjugate. The
eikonal equation associated with the roll problem is(

Φ2−→
Y

2l
− 4β2

0 − 2iβ0e−
−→
Y + · · ·

)(
Φ2−→

Y

2l
− 4β2

0

)
= 0. (B 9)

No root crossing is possible, and the complex root from above connects with the
root Φ−→Y ∼ e−(

−→
Y/2) at large negative

−→
Y , so we get super-exponential decay of the roll

on exiting the new layer moving downwards. An examination of the streak equation
shows that it also has super-exponential decay below the new layer, so the sweep
basically kills off the induced streak at some position between the production layer
and the wall.

Now we summarize the effect of sweep inferred from the above analysis. On
increasing Γ from zero, the first distinguished scaling of Γ is achieved when the
spanwise free-stream velocity is comparable with the spanwise velocity component
of the free-stream coherent structure in the production layer. That occurs when
Γ ∼O(K), and the production layer problem is unchanged from (4.16)–(4.19) except
that the spanwise velocity must now approach its non-negligible constant free-stream
value. In a frame of reference sliding in the spanwise direction with spanwise flow
outside the boundary layer, the problem is reduced exactly to the two-dimensional
case. Thus, for weak sweep the structures survive unscathed apart from now sliding
in the spanwise direction. Within the adjustment layer the flow is found from the
two-dimensional case again moving into a frame of reference sliding in the spanwise
direction. However, at some stage as the spanwise mean flow increases the exponential
correction to the unperturbed spanwise boundary layer from its free-stream form enters
the leading-order equations determining the roll and streak fields. The effect is to
destroy the roll and streak flows within a thin layer at some position in the adjustment
layer with no penetration of the streak towards the wall. Thus, increasing the sweep
moves the position of the thin layer up until it reaches the production layer, and no
induced streak is generated beneath the production layer. The size of the spanwise
free-stream speed needed to achieve this limit is Γ ∼ O(Re1/2). Thus, we have a
situation very similar to the Görtler vortex problem in three-dimensional boundary
layers, see Hall (1985), where increasing the sweep basically destroys the Görtler
vortex mechanism. Further increase of the sweep eventually modifies and destroys
the canonical production layer structure given in two-dimensional boundary layers.
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