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Influence of slip on the three-dimensional
instability of flow past an elongated
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The effects of superhydrophobic surfaces (SHSs), which consist of microgrates
oriented transverse to the flow direction, on the onset of three-dimensional instability
of flow past a bluff body were studied using Floquet analysis. The SHS was modelled
on an air–water interface with a shear-free condition. The results showed that SHSs
increased the vortex shedding frequency. Floquet analysis revealed that modes B′
and S′ were suppressed dramatically by the partial-slip condition compared with
a regular no-slip body; however, mode A was less affected. Correspondingly, the
critical spanwise wavelengths were not significantly affected by SHSs. A similar
phenomenon was observed in flow past a circular cylinder coated by SHSs. The
results also revealed that modes B′ and S′ were collapsed into mode A due to the
increased width of the air–water region for flow past an elongated body. Furthermore,
the critical Reynold numbers of different modes were diversely affected by gas
fraction (GF) variations. The unstable modes with short wavelengths, such as modes
B′ and S′, stabilized with increasing GF. Conversely, the opposite was seen for the
unstable mode A with a longer wavelength. The exact critical Reynolds number
depended on the geometric configuration, which should be between the critical values
of the two extreme cases. The application of SHSs could modify the transition
route from two- to three-dimensionality by alternating different unstable modes. As
the wavelength of the unstable mode decreases, the inhibition of three-dimensional
instability becomes more efficient by SHSs.

Key words: flow control, instability control, vortex shedding

1. Introduction
Flow past a bluff object is a fundamental topic in fluid mechanics, having attracted

the attention of researchers for nearly a century (e.g. Roshko 1955; Williamson
1996) in view of its numerous engineering applications. A transition from a steady
wake flow field to laminar two-dimensional vortex shedding occurs because of
Hopf bifurcation at a low Reynolds number. Further transitions cause the formation
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FIGURE 1. Schematic illustration of a superhydrophobic surface with air trapped between
the microfeatures. The air–water interface produces shear-free regions.

of three-dimensional vortex structures in the wake and eventually, as the Reynolds
number increases, turbulence. Vortex structures cause time-dependent dynamic loads to
be exerted on an object, and this may lead to flow-induced vibration, the generation
of noise, structural fatigue and turbulent mixing. Several methods of suppressing
vortex structures in a bluff-body wake flow have been introduced in recent decades.
These control methods involve the addition of energy, such as applying suction to or
blowing on the surface of the object (Delaunay & Kaiktsis 2001; Dong, Triantafyllou
& Karniadakis 2008), heating the surface (Lecordier, Hamma & Paranthoen 1991)
or modifying the geometry of the system such as by fixing a splitter plate (Roshko
1955) or a small object (Mittal & Raghuvanshi 2001; Yildirim, Rindt & Aa 2010) in
the wake.

Hydrophobic surfaces and superhydrophobic surfaces (SHSs) (produced through a
combination of hydrophobicity and surface roughness at the micro- and/or nanoscale),
which produce a composite solid–gas–liquid boundary, have recently begun to be
considered important candidates for decreasing drag, improving heat transfer and
modifying turbulent structures (Rothstein 2010; Park, Sun & Kim 2014). Hydrophobic
surfaces and SHSs are found in nature, e.g. the self-cleaning lotus leaf (Roach,
Shirtcliffe & Newton 2008) and the surfaces of the fishing spider (Flynn & Bush
2008). As illustrated in figure 1, an air–water interface forms on such surfaces
between the microfeatures, and the trapped gas produces partial-slip conditions.
No-slip conditions have been replaced with partial-slip conditions in a number of
studies to investigate the effects. Türk et al. (2014) performed a series of direct
numerical simulations (DNS) using channel flow under alternating no-slip and
shear-free conditions. They found that the drag reduction was mainly governed
by an effective slip length. For a large spanwise width of the free-slip area, the
effective slip length can be significantly reduced because of the underlying turbulence
and secondary flow. A similar drag reduction mechanism is also found in the DNS
results with more varied superhydrophobic patterns (Rastegari & Akhavan 2015).

In terms of flow past a bluff body, Muralidhar et al. (2011) and Daniello et al.
(2013) studied flow past a superhydrophobic-coated cylinder and found that the
shedding frequency increased with slip in the flow direction, and that the flow
behaviour was sensitive to the slip direction. Mastrokalos, Papadopoulos & Kaiktsis
(2015) found that, for the same non-dimensional slip length, the wake can be
stabilized by causing slip conditions to occur on only part of the cylinder surface.
SHSs have recently attracted a great deal of attention because they can be broadly
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applied to decrease drag and control flow. However, it remains unclear how SHSs
affect the three-dimensionality of flow fields. Presently, we seek to investigate how
the addition of a partial-slip boundary condition affects three-dimensional transition
in the wake of a bluff body.

The onset of three-dimensional instability and the subsequent three-dimensional flow
are fundamental to the turbulence found in the wake of a bluff body. Many studies
have investigated this issue (Barkley & Henderson 1996; Robichaux, Balachandar &
Vanka 1999). It has been proved both numerically and experimentally that there are
only two synchronized modes and one quasi-periodic mode in spatio-temporal and
spatially symmetrical flows (Marques, Lopez & Blackburn 2004) such as flow past
a cylindrical object. Barkley & Henderson (1996) used Floquet stability analysis to
investigate the onset of three-dimensional instability in flow past a circular cylinder,
and they predicted the existence of modes A and B in such a flow. The critical
Reynolds number and the dominant spanwise wavelength they predicted agreed well
with the results of experiments previously performed by Williamson (1988). Similar
modes A and B were also found in flow past a square cylinder by Robichaux et al.
(1999). A subharmonic mode C was found experimentally in bluff ring wakes by
Zhang et al. (1995) and later by Sheard, Thompson & Hourigan (2003). Mode C has
also been found in flow past a square cylinder with an angle of incidence (Sheard,
Fitzgerald & Ryan 2009), flow around two staggered circular cylinders (Carmo
et al. 2008) and flow past an inclined flat plate (Yang et al. 2013) and an aerofoil
(Meneghini et al. 2011). Mode C appears when the underlying wake symmetry of a
flow is broken. Blackburn & Sheard (2010) examined the relationship between the
quasi-periodic mode (mode QP) and mode C, and attempted to determine how mode
QP was replaced by mode C by distorting a circular cylinder into a ring and rotating
a square cylinder around its axis.

Previous studies showed that mode A is less stable than mode B in flow past
a cylindrical body. However, mode B can emerge before the other modes as
the Reynolds number increases in the wake of a bluff-elongated cylinder (Ryan,
Thompson & Hourigan 2005). Mode C emerges first as the Reynolds number
increases in flow past a square cylinder with an incidence angle within a certain
range (Yoon, Yang & Choi 2010), and in flow past an inclined flat plate (Yang et al.
2013). Thompson et al. (2006) found that mode QP becomes unstable before the
other modes as the Reynolds number increases in flow past a normal flat plate.

In flow past a circular cylinder, Legendre, Lauga & Magnaudet (2009) predicted
a delayed onset of shedding with increasing slip length and an extended steady
separated wake with an arbitrary uniformly applied partial-slip boundary using direct
numerical simulations. They also predicted that the vortex shedding frequency would
be increased and the vortex intensity would be decreased at smaller slip lengths.
Min & Kim (2005) showed that, in wall-bounded shear flows, the critical Reynolds
number increases as streamwise slip increases. They found that although the transition
to turbulence is delayed as streamwise slip increases, spanwise slip induces an earlier
transition. Introducing a slip boundary could be expected to decrease the flow shear
rate, so the critical Reynolds number could be expected to increase from steady
to unsteady flow. However, the transition from unsteady two-dimensional flow to
three-dimensional flow in the wake flow, which is homogeneous in the spanwise
direction, or the transition to turbulent in a boundary layer flow, have different flow
regimes by introducing slip surface.

In the transition from two- to three-dimensional flow, the flow shear rate of the base
flow is supposed to be reduced with slip boundary. This decreases the probability of
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FIGURE 2. Schematic illustration of flow past an elongated bluff body. (a) The
microgrates on the superhydrophobic surface were modelled using the upper and lower
walls of a body consisting of repeating no-slip and slip boundary conditions. (b) Two
superhydrophobic surface set-ups at the trailing edge. (c) One of the macroelement meshes
used in the simulation.

evoking spanwise disturbances. However, damping of the spanwise disturbances also
decreases when there is spanwise slip because the effect of viscous dissipation on
spanwise fluctuations decreases as the slip velocity in the spanwise direction increases.
In other words, the critical Reynolds number for three-dimensional instability depends
on competition between base flow stability and the damping of disturbances in a
spanwise direction. Here, we examine the effect of partial slip on three-dimensional
instability in the wake of an elongated bluff body. We also examine the effects for a
circular cylinder for comparative purposes.

2. Numerical method and validation
The flow considered is shown in figure 2. The cylindrical body consisted of a half-

circle and a flat plate. The aspect ratio of the bluff body was defined as AR= L/H,
where H and L are the thickness and length of the body, respectively. AR values of
2.4, 6.2, 11.8, 17.5, 23.2 and 28.8 were used to investigate the effect of aspect ratio.
To avoid vortex shedding from the leading edge of the plate, the Reynolds number,
defined as Re=U0H/ν, where U0 is the free-stream velocity and ν is the kinematic
viscosity, was no larger than 900 (Welsh et al. 1990). The results showed that no
vortex shedding occurred from the leading edge at Reynolds numbers within the range
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investigated. As Re is large enough, minor boundary layer fluctuation can be observed
along the plate. The upper and lower walls on the bluff body were covered by SHSs,
which consisted of an array of microgrates aligned normal (transverse) to the flow
direction, as shown in figure 2(a). The SHSs were modelled using boundary conditions
at the wall with alternating regions of no-slip and shear-free boundary conditions (i.e.
with spanwise slip), as shown in figure 1. This SHS model was first described by
Martell, Perot & Rothstein (2009) and then by Park, Park & Kim (2013), Seo, Garcia-
Mayoral & Mani (2015) and others. Different SHS designs were obtained mostly by
varying two parameters: the pitch (P) and the gas fraction (GF), as well as by different
trailing edge SHS arrangements. Here, GF is defined as (P−W)/P, where W is the
width of the microgrates. We will consider two sets of parametric studies with the
chosen aspect ratio: one set with a fixed GF of 0.5 and P/H values of 0.944, 1.214,
1.889, 3.4, 8.5 and 17, and the other with a fixed P/H of 1.889 and GF values
of 0.5, 0.75 and 0.875. Two different set-ups (cases 1 and 2), based on the no-slip
and shear-free boundary conditions at the trailing edge shown in figure 2(b), were
considered.

A direct numerical simulation of flow past an elongated bluff body was performed
using a spectral-element computational fluid dynamic package for time-dependent
Navier–Stokes equations in a two-dimensional domain, with the two-dimensional
flows serving as the basis for linear stability analysis. The governing equations can
be written in non-dimensional form as:

∂u
∂t
+ (u · ∇)u=−∇p+ 1

Re
∇2u, (2.1a)

∇ · u= 0. (2.1b)

The base flow could be obtained by solving (2.1a) and (2.1b) in two dimensions
using a high-order spectral-element method. The governing equations were integrated
forward in time using an operator splitting method to give third-order temporal
accuracy. The code has been validated and successfully applied to several problems
(Sheard 2011; Yang et al. 2013). The computational package has been described in
detail by Sheard et al. (2007) and Sheard & Ryan (2007).

Floquet stability analysis was used to investigate the onset of secondary instability
leading to three-dimensional flow. Using the Floquet theory, stability analysis
was performed by decomposing the velocity and pressure field (u, p) into a
two-dimensional base flow (U, P) and a three-dimensional disturbance (u′, p′), as
follows:

u=U+ u′, (2.2)
p= P+ p′. (2.3)

Substituting (2.2) and (2.3) into (2.1), cancelling out the base flow terms and
disregarding the products of the perturbation field gave the linearized Navier–Stokes
equations:

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U=−∇p′ + 1

Re
∇2u′, (2.4a)

∇ · u′ = 0. (2.4b)

The disturbance field was further simplified by decomposing (u′, p′) into a Fourier
series expansion in the spanwise direction, based on wavelength λ. The stability
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N 1t St CD C′D C′L
6 0.004 0.2010 1.0528 0.0465 1.5459
8 0.002 0.2006 0.9906 0.0285 1.3749

10 0.001 0.2013 0.9853 0.0287 1.3720
12 0.001 0.2017 0.9939 0.0292 1.3732
14 0.0008 0.2017 0.9941 0.0292 1.3749

TABLE 1. Convergence of global quantities with different order N for case 1 (AR= 17.5,
P/H = 1.889 and GF= 0.5, at Re= 900). The global quantities are the Strouhal number
St (St= fH/U0, based on the thickness of the body), the means and root mean squares of
the fluctuating drag coefficients CD and C′D and the root mean square of the fluctuating
lift coefficient C′L.

behaviour was then reduced to a two-parameter problem using the Reynolds number
and β = 2π/λ. The perturbation fields with different wavelengths were coupled with
the T-periodic base flow, and this could be computed independently. Linear stability
analysis was then performed by integrating the perturbation field forward in time, and
the growth or decay of the field was monitored. Simplistically, the linear stability
analysis is simplified as determining the eigenvalue of an ordinary differential equation
with T-periodic solutions.

The eigenvalues corresponded to Floquet multipliers (µ), and the eigenvectors gave
the modal shape of the perturbation field. A Floquet multiplier |µ| > 1 indicated a
positive growth rate and an unstable mode, and a Floquet multiplier |µ|< 1 indicated
a negative growth rate and a stable mode. The instability modes were classified as
regular modes (modes A and B) with Floquet multipliers containing only positive real
parts, a subharmonic mode (mode C) with only a negative real part and mode QP, with
a complex conjugate pair of multipliers with a non-zero imaginary part.

The computational domain extended to 10H upstream, 25H downstream and 10H
each side of the body. The domain was divided into macroelements, each of which
contained N ×N interpolation nodes. Free-stream boundary conditions were enforced
at the upstream and lateral boundaries, and Neumann-type boundary conditions
were used at the outlet. The most efficient mesh resolution for the simulation
was determined by performing a grid resolution study for case 1 with AR = 17.5,
P/H = 1.889, and GF= 0.5 at Re= 900. The results are shown in table 1. When the
order N > 12, varying the number of mesh nodes barely affected the global quantities,
so N = 12 was used in the simulations. One of the macroelement meshes used in the
simulations is shown in figure 2(c). In this case, with P/H = 1.889, N = 12 gave a
node number in one P of 23.

Blockage effects were assessed by performing a domain study for case 1 using
AR = 17.5, P/H = 1.889, and GF = 0.5. As expected, the results showed that
the Strouhal number was sensitive to the sidewall boundary width. A study was
undertaken using case 1 (AR = 17.5, P/H = 1.889 and GF = 0.5) with a mesh 22H
upstream, 40H downstream and 22H for each side of the body and 886 elements.
The Floquet multipliers over the full range of β were calculated for this large domain.
The critical Reynolds number for the transition from two- to three-dimensional flow
was slightly affected by domain size, with a variation of approximately 3. The smaller
domains mentioned above were used to study three-dimensional instability.
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(a)

(b)

(c)

FIGURE 3. (Colour online) Instantaneous vorticity snapshots of (a) base flow for a regular
body, (b) case 1 and (c) case 2 at Re= 700 and AR= 17.5. In both cases 1 and 2, P/H=
3.4 and GF= 0.5.
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FIGURE 4. Strouhal number St as a function of pitch P/H, showing that the vortex
shedding frequency is higher for a superhydrophobic than for a regular body (AR= 17.5).

3. Results and discussion
3.1. Effects of SHSs on vortex shedding

The two-dimensional base flow field results are summarized in this section to allow
their comparison with the results of previous studies. The vorticity contours for the
regular body case and cases 1 and 2 at Re = 700 and AR = 17.5 are shown in
figure 3. The P and GF values were 3.4 and 0.5, respectively, for cases 1 and 2. The
instantaneous vorticity snapshots of the base flow showed that the vortex shedding
frequency increased with spanwise slip in both cases 1 and 2 because the numbers
of vortices in the wakes increased.

Variations in the Strouhal number as a function of the P at a fixed GF of 0.5
and AR= 17.5 with varying Reynolds number are shown in figure 4. The results for
a regular no-slip body (P/H = 0) are also shown; these indicate that the Strouhal
number increased when a partial slip on the body was introduced in both cases 1
and 2, and that the Strouhal number increased further as the P increased. The main
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FIGURE 5. (Colour online) Roshko number Ro as a function of the Reynolds number
Re based on d′ (AR = 17.5). The shaded area indicates the spread of experimental data
produced by Eisenlohr & Eckelmann (1988).

difference between cases 1 and 2 was caused by alternating the no-slip and shear-free
boundary conditions of the elongated bluff body. Since the leading and trailing edges
of the bluff body play the most important role for the outer flow, cases 1 and 2 are
two extreme cases with totally different characteristics in those regions. Changing the
slip characteristics between cases 1 and 2 therefore caused the flow to be modified
over a wide range. Furthermore, at the same P length and with an SHS symmetrical
in the y-direction, the aspect ratio of the plate is only a little higher than that in
cases 1 and 2; i.e. there is an additional no-slip/slip part at the leading edge of case
1/2. Symmetrical SHSs were studied using P/H = 3.4 and GF = 0.5. The results
showed that the symmetry of the SHS has little effect on the critical values for the
different modes compared with the results for cases 1 and 2. This suggests that the
slip properties at the trailing edges of the elongated bluff body are crucial for the
effects of such SHSs.

The shedding frequencies, each in the form of a Roshko number Ro (Ro = Re St)
as a function of the Reynolds number, are shown in figure 5. The spatial scaling
parameter d′ used in figure 5 was defined as H + 2δ, with δ being the momentum
thickness of the boundary layer measured at the trailing edge of the body. The results
of a numerical simulation performed by Ryan et al. (2005) (in which flows past blunt
trailing-edge bodies with different aspect ratios (2.56AR6 17.5) were simulated) and
of experiments performed by Eisenlohr & Eckelmann (1988) (in which flows past
blunt trailing-edge bodies with aspect ratios of 506AR6800 were conducted) are also
shown in figure 5. A linear relationship between the Roshko and Reynolds numbers
almost independent of the P was found for case 1. These results were comparable
with the results of experiments performed by Eisenlohr & Eckelmann (1988) and of
simulations performed by Ryan et al. (2005). The P influenced the Strouhal number
less in case 1 than in case 2, even though the trends in Strouhal number were similar
in both cases as the P increased. This suggests that vortex shedding in the wake
may be strongly affected by slip characteristics at the trailing edge. It can be seen
from figure 5(b) that the curves almost converge as the P decreases. This shows that
the vortex shedding frequency is unaffected when there are sufficient P values. The
Roshko–Reynolds number curves shifted upwards as the GF was increased in both
cases.
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FIGURE 6. Floquet multipliers for the dominant modes plotted against the spanwise
wavelengths for a regular bluff body at different Reynolds numbers and AR= 17.5.

3.2. Floquet analysis with a no-slip boundary
Floquet analysis was first performed for a regular bluff body with no-slip boundary
conditions for a range of Reynolds numbers and AR = 17.5. Spanwise wavelengths
in the range 0.5< λ/H < 4.0 were considered. The Floquet multipliers for a regular
body are shown in figure 6. Three distinct stability branches can be observed. Similar
results were found by Ryan (2004), Ryan et al. (2005) for flow past an elongated bluff
body with a streamlined leading-edge geometry. A mode with similar spatio-temporal
symmetry to that of mode B instability described by Williamson (1988) was found
to become unstable first, at a critical Reynolds number Rec ≈ 435 when λ/H = 2.0.
This mode is later called mode B′. The spatial structure of the streamwise vorticity
of the perturbation field for the regular body case at Re = 450 and λ/H = 2.0 is
shown in figure 7. This was similar to mode B for a circular cylinder, in which
the streamwise vorticity sign was maintained from one half-cycle to the next. It
can be seen in figure 6 that the Floquet multipliers did not increase further for the
spanwise wavelength range of mode B′ when the Reynolds number increased above
approximately 595.

At λ/H ≈ 0.8, an instability mode with complex Floquet multipliers was observed,
and the mode became critically unstable at Rec≈595. Ryan (2004), Ryan et al. (2005)
termed this mode S′. As the Reynolds number increased further, a mode corresponding
to the longest wavelength became critically unstable at Rec ≈ 740 and λ/H ≈ 3.6.
This mode was topologically analogous to mode A for a circular cylinder wake; the
unstable wavelength was also similar to mode A.

The neutral stability curves for the regular bluff body are shown in figure 8. It can
be seen that the curve for mode S′ was closed (like an island) similar to mode C
for flow past an inclined flat plate at a 20◦ angle of attack (Yang et al. 2013) and
similar to mode A for flow past a rectangular cylinder with an AR of 0.125 (Choi
& Yang 2014). Mode B′ for the regular body was less stable than modes S′ and A.
In addition, unstable spanwise wavelengths for mode B′ occurred over a wide and
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(a)

(b)

FIGURE 7. (Colour online) Streamwise vorticity field for the wake for the Floquet mode
for a regular body (AR= 17.5, Re= 450, λ/H = 2.0). The images are separated by half
the shedding cycle.
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FIGURE 8. Neutral stability curves for a regular bluff body (AR= 17.5).

constant range after mode S′ had appeared, as shown in figure 6. It can also be seen
from figure 6 that the Floquet multiplier was less than 1 at λ/H ≈ 3.2 and Re= 740
and larger than 1 at λ/H≈ 3.0 and Re= 800. These wavelengths were the intersection
points of the multipliers for modes B′ and A. This suggests that the neutral stability
curves for modes B′ and A intersect at approximately λ/H ≈ 3.1 when the Reynolds
number increases above 740. The critical Reynolds numbers and wavelengths for the
three different instability modes found by Ryan (2004) and in our study are shown
in table 2. It can be seen that our results for modes B′ and A agree well with the
results found by Ryan (2004). The Floquet multipliers for mode S′ determined by
Ryan (2004) at Re=690 were larger than 1, so the critical Reynolds number for mode
S′ should be lower than 690.
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Present Ryan (2004)
Rec λ/H Rec λ/H

Mode B′ 435 2.01 426 2.2
Mode S′ 595 0.80 690 0.7
Mode A 740 3.55 718 3.5

TABLE 2. Critical Reynolds numbers and wavelengths for the three different instability
modes for the wake behind an elongated bluff body (AR= 17.5) found in this study and
that of Ryan (2004).
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FIGURE 9. For caption see page 81.

3.3. Effect of partial-slip conditions on three-dimensional instability at GF= 0.5
The effect of the micrograte P on three-dimensional instability was first investigated
by varying the micrograte P (i.e. the number of microgrates on the upper and lower
surfaces of the body). The Floquet multipliers for P/H= 0.944, 1.214, 1.889, 3.4, 8.5
and 17, a fixed GF of 0.5, and a fixed AR of 17.5 are shown in figure 9 for case 1
(figure 9a,c,e,g,i,k) and case 2 (figure 9b,d, f,h,j,l). The corresponding neutral stability
curves are shown in figure 10. The three stability branches that were observed for the
regular body remained visible when the surfaces were covered with SHSs (figure 9).
The most unstable mode in case 1 was mode B′. The critical Reynolds number for
mode B′ increased from Rec ≈ 435 for the regular body to Rec ≈ 500 for case 1
because of the introduction of partial-slip conditions with P/H = 0.944. The critical
Reynolds numbers for modes A and B′ changed slightly when P/H was changed from
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FIGURE 9 (cntd). For caption see next page.

0.944 to 17. Mode S′ was unstable at P/H = 1.889, 3.4 and 8.5, and the critical
Reynolds numbers were larger for mode S′ than for modes A and B′.

In case 2, the influence of a partial slip on the body surfaces changed the critical
Reynolds numbers dramatically, especially for modes B′ and S′. The neutral curves
are shown in figure 10. These curves showed that mode B′ was still associated with
a wide range of unstable spanwise wavelengths (compared with the results shown
by modes S′ and A). However, the range of unstable wavelengths for mode B′

became narrower as the P increased because of large changes in the upper branch
of each curve and slight changes in the lower branch. The unstable range for mode
S′ decreased as the P increased. It can be seen from figure 9(h) that the flow was
stable at spanwise wavelengths λ/H < 0.9 for Reynolds numbers up to 850, meaning
that mode S′ disappeared at P/H = 3.4 (figure 10h).
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FIGURE 9 (cntd). Floquet multipliers for the dominant modes at a fixed GF of 0.5 for
cases 1 and 2, with AR= 17.5, and (a,b) P/H = 0.944, (c,d) P/H = 1.214, (e, f ) P/H =
1.889, (g,h) P/H = 3.4, (i,j) P/H = 8.5 and (k,l) P/H = 17.
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FIGURE 10. For caption see next page.

The neutral stability curves shown in figure 10 indicate that mode A was less
affected than the other modes by changing the P, especially in case 1. However, the
critical Reynolds number was higher when partial-slip conditions were introduced
compared with the regular body (figure 8).

The relationships between the critical Reynolds numbers of the different three-
dimensional instability modes and the P at a fixed GF of 0.5 are shown in
figure 11(a,b), and the corresponding critical spanwise wavelengths (λc) are shown
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FIGURE 10 (cntd). Neutral stability curves for GF= 0.5 for cases 1 and 2, with AR=
17.5, and (a,b) P/H = 0.944, (c,d) P/H = 1.214, (e, f ) P/H = 1.889 and (g,h) P/H = 3.4.

in figure 11(c,d). In case 1, mode S′ was more stable than modes A and B′, and the
critical Reynolds number for mode S′ decreased as the P increased. However, the
critical Reynolds numbers for modes A and B′ varied only slightly. In case 2, the
critical Reynolds number for modes B′ and S′ increased with increases in P, and
mode S′ disappeared altogether when P/H increased above 3.4. The critical Reynolds
number for mode A was slightly higher for case 2 than for the regular body, and
remained almost constant, while the P was less than the wavelength for mode A.
The critical Reynolds number decreased dramatically as the P increased further. The
dominant spanwise wavelengths for the different modes were almost unaffected by
changes in the P, and were comparable to the corresponding modes for the regular
body case (figure 11c,d).

Three-dimensional direct numerical simulations were conducted to validate the
current study with SHSs. We selected case 1, with AR = 17.5, P/H = 1.889 and
GF= 0.5. The simulations were performed using a consistent mesh in the x–y plane,
assuming that the geometry would be homogeneous in the out-of-plane direction
(z in Cartesian coordinates). This was achieved by expanding the flow variable in
the out-of-plane direction using a Fourier expansion. The method was validated by
Thompson, Leweke & Williamson (2001). In our simulation, a spanwise domain size
of 12H was selected to allow all of the instability modes to fit inside the domain.
Sixty-four Fourier planes were used for the computation. The instantaneous flow
field for case 1 with AR = 17.5, P/H = 1.889 and GF = 0.5 at Re = 600 is shown
in figure 12. The three-dimensional simulation was continued for more than 40
vortex shedding periods after the flow reached a quasi-steady state. The streamwise
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FIGURE 11. Relationships between the critical values for the three-dimensional
instabilities and the pitch at a fixed GF of 0.5 and a fixed AR of 17.5. (a) and (b) The
critical Reynolds numbers. (c) and (d) The dominant spanwise wavelengths.

and spanwise vorticity isosurfaces shown in figure 12 resembled mode B′ vortex
structures. The spatial symmetry of the mode was identical to that of mode B′, and
the wavelength was consistent with the critical wavelength of the Floquet mode found
previously.

One may therefore conclude that the critical Reynolds number for three-dimensionality
should be decreased by the presence of SHSs consisting of microgrates oriented
transverse to the flow direction. Three-dimensional instability is generated through
the growth in spanwise disturbances. With spanwise slip, spanwise disturbances are
expected to be less damped due to a lack of viscous dissipation in the spanwise
direction. However, the Floquet results showed that the critical Reynolds number for
three-dimensionality increased. This could be because even though the damping of
spanwise fluctuation weakens, it does not disappear with GF = 0.5. On the other
hand, the spanwise disturbance is still dominated by the base flow. The evolution
of the three-dimensional disturbance is delayed by using SHS; therefore, the critical
Reynolds number of the three-dimensional instability increases.

3.4. Gas fraction effect
The effects of SHSs on the three-dimensional instability modes were assessed further
using P/H values of 1.889 and 3.4, an AR of 17.5, and GFs of 0.5, 0.75 and 0.875.
The Floquet multipliers for these cases are shown in figure 13. As described earlier,
three instability modes were found for P/H = 1.889 and GF= 0.5 (figures 9e, f and
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x

y

z

(a)

(b)

FIGURE 12. (Colour online) Three-dimensional view of the streamwise and spanwise
vortices at Re = 600 (case 1, AR = 17.5, P/H = 1.889, and GF = 0.5). Blue, ωx = 0.1,
ωz = 1.0; red, ωx =−0.1, ωz =−1.0.

10e, f ). In case 1, the initial instability was mode A as the critical Reynolds number
decreased when the GF increased to 0.75 and 0.875.

Three distinct stability branches were still visible in case 2, but only two, modes
A and B′, appeared to be critically unstable. Unlike for P/H = 1.889 and GF= 0.5,
mode A was less stable than mode B′ at GF= 0.75. The two modes merged into one
and the instability tended to cover a fairly broad range of wavelengths as the Reynolds
number increased further. At GF=0.875 (figure 13d), no growing Floquet modes were
found at Re< 650. Mode A became critically unstable at Re≈ 650 and λ/H≈ 3.9. A
similar pattern was found at P/H = 3.4 and GF= 0.75 (figure 13f ).

The critical Reynolds numbers in the different unstable modes at different GFs and
at P/H=1.889 are shown in table 3. Modes B′ and S′ both became more stable as the
GF increased, indicating that either the critical Reynolds number increased or these
modes disappeared. However, the critical Reynolds number for mode A decreased as
the GF increased in both cases. As discussed earlier, the growth of three-dimensional
disturbances depends on the base flow and the damping of disturbances caused by
viscous dissipation. The base flow became more stable when SHSs were added, but
the damping effect in the spanwise direction decreased at the same time, especially at
high GFs. The kinetic energy of spanwise fluctuations was small when the disturbance
wavelength was short, so viscous dissipation could have dampened the disturbances,
even though the effect was weakened by spanwise slip. Modes B′ and S′ therefore
became more stable as the GF increased, resulting in the base flow becoming more
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FIGURE 13. Floquet multipliers for the dominant modes at AR= 17.5 for (a,c,e) case 1
and (b,d, f ) case 2. (a,b) P/H= 1.889 and GF= 0.75. (c,d) P/H= 1.889 and GF= 0.875.
(e, f ) P/H = 3.4 and GF= 0.75.

stable. On the contrary, the disturbance with longer wavelengths, such as mode A,
possesses more kinetic energy. As GF increases, the damping effect of spanwise
disturbance weakens and becomes insufficient to dissipate the disturbance. In this
way, the critical Reynolds number of mode A decreases as GF increases.

3.5. Aspect ratio effect
According to Ryan et al. (2005), the stability characteristics of an elongated bluff
body with a streamlined leading-edge geometry are strongly affected by the aspect
ratio. We used AR values of 2.4, 6.2, 11.8, 17.5, 23.2 and 28.8 with a fixed P/H of
1.889 and a fixed GF of 0.5 to determine whether the suggested variations caused by
the slip surfaces changed qualitatively or quantitatively as the aspect ratio changed.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.21


86 Y. L. Xiong and D. Yang

Case GF Mode B′ Mode S′ Mode A

Regular body 0 Rec ≈ 435 Rec ≈ 595 Rec ≈ 740

Case 1 0.5 Rec ≈ 494 Rec ≈ 879 Rec ≈ 690
0.75 None None Rec ≈ 640

0.875 None None Rec ≈ 590

Case 2 0.5 Rec ≈ 523 Rec ≈ 795 Rec ≈ 795
0.75 Rec ≈ 795 None Rec ≈ 740
0.875 None None Rec ≈ 650

TABLE 3. Gas fraction effect on the critical Reynolds number at P/H = 1.889 and
AR= 17.5 for cases 1 and 2.
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Present
Ryan et al. (2005)

FIGURE 14. (Colour online) Critical Reynolds numbers for the different mode transitions
plotted against the aspect ratios for (a) case 1 and (b) case 2. The curves are approximate
fits to the data.

The AR values of 2.4, 6.2, 11.8, 17.5, 23.2 and 28.8 corresponded to micrograte
numbers of 1, 3, 6, 9, 12 and 15, respectively. The critical Reynolds numbers for the
different three-dimensional mode transitions are plotted against the cylinder aspect
ratios in figure 14. The results found by Ryan et al. (2005) are also plotted for
comparison.

In case 1, the critical Reynolds numbers of the different modes varied when
different aspect ratios were used. The critical Reynolds number for mode A increased
as the aspect ratio increased. However, the critical Reynolds numbers for modes B′
and S′ were different, so the mode sequence when different unstable modes occurred
differed for different aspect ratios. In case 2, the critical Reynolds numbers for the
different modes changed by a fixed amount because of the SHSs used for all aspect
ratios. In general, three-dimensional stability improved when additional SHSs were
added in both cases 1 and 2 for the different aspect ratios, as demonstrated by the
increase in the critical Reynolds number.

The streamwise vorticity field for the Floquet mode for case 1, at AR= 2.4, P/H=
1.889, GF= 0.5, Re= 450 and λ/H= 2.0, is shown in figure 15. The spatio-temporal
symmetry and perturbation field distribution for this mode were analogous to those
of mode A instability in flow past a circular cylinder. It can be seen from figure 15
that, at the same spanwise location, the streamwise vorticity swapped signs every half
vortex shedding cycle.
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FIGURE 15. (Colour online) Wake streamwise vorticity field of the Floquet mode for
mode A of case 1 (AR = 2.4, P/H = 1.889, GF = 0.5, Re = 300 and λ/H = 4.0). The
images are separated by half the shedding cycle.

3.6. Effect of the geometric configuration of the SHSs
Besides the P and GF, the geometric configuration of the SHSs can also affect the
slip characteristics and flow behaviour (Rastegari & Akhavan 2015). The results above
show that the SHSs increased the critical Reynolds number of the three-dimensionality
in both cases 1 and 2. However, the Reynolds numbers at which distinct modes
became critical were different in cases 1 and 2, as shown in figure 10. In fact, there
are an infinite number of geometric SHS configurations, and cases 1 and 2 are two
extreme configurations. Because the leading and trailing edges are the most influential
positions on an elongated bluff body, swapping slip and no-slip properties at these
positions modifies the flow, as shown by the different Floquet multipliers found for
cases 1 and 2 (figure 16b). Cases 1a and 2a (illustrated in figure 16a) were designed
to emphasize the importance of the leading and trailing edges. Cases 1a and 2a had
the same P lengths as the original cases, but the SHS arrangement was symmetrical
in the y-direction in cases 1a and 2a. In other words, the new cases 1a and 2a
had exactly the same slip characteristics at the trailing edges as cases 1 and 2, but
opposite slip characteristics in the middle of the elongated bluff body. The Floquet
multipliers were almost the same for cases 1a and 2a and cases 1 and 2, respectively,
as shown in figure 16(b).

While the trailing edge was not cut at an integer multiple P, such as in case 1b,
it was obtained by decreasing half the no-slip part at the trailing edge. To give case
1b the same aspect ratio as case 1, the no-slip part removed from the trailing edge
was added to the leading edge in the SHS area. The same SHS arrangements were
used for case 2b. It is evident that the Floquet multipliers for cases 1b and 2b are
between the two extremes found for cases 1 and 2 (figure 16b), which suggests that as
the modification of geometric configuration of SHSs, the critical Reynolds number of
three-dimensional instability is different. The exact critical Reynolds number should be
in the range between the critical values of cases 1 and 2. Regardless, the introduction
of SHSs can eventually delay the three-dimensional instability.
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FIGURE 16. (a) Superhydrophobic surface set-ups with P/H = 3.4 and GF = 0.5.
(b) Floquet multipliers for the dominant modes for the cases shown in (a) and the regular
body case. The Reynolds number was 500 in each case.

3.7. Mode characteristics
In previous studies (Williamson 1996; Leweke & Williamson 1998; Thompson et al.
2001), it was suggested that mode A is predominantly an elliptical instability that can
have a range of wavelengths varying from 3–4.5 cylinder diameters. The dispersion is
caused by the flow phases in which mode A is less regular. The present study shows
that both modes B′ and S′ are suppressed as the area of the body surface covered by
shear-free conditions increases. Mode A will eventually become the initial instability
mode. However, the results for mode A in cases 1 and 2 were found to be different.
This reflects slip conditions at the trailing edge of the elongated bluff body, which
severely affect mode A. We used a circular cylinder with alternative slip and no-slip
boundary conditions to avoid this effect.

We investigated flow past a circular cylinder coated with SHSs to investigate the
effects of partial-slip conditions on mode A instability. Two P values, P/D = 0.349
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FIGURE 17. (Colour online) (a,b) Schematic illustrations of flow past a circular cylinder
with different no-slip and shear-free boundary conditions. (c,d) Moduli of the Floquet
multipliers plotted against the spanwise wavenumber β (β = 2πD/l, where D is the
cylinder diameter) for flow past circular cylinders with different pitches at (c) Re= 220
and (d) Re= 280. The results of a previous study (Barkley & Henderson 1996) are also
shown for comparison.

and 0.6283, and a fixed GF of 0.5, were used. We previously published the numerical
method used and a validation of the Floquet stability analysis for flow past a circular
cylinder (Yang et al. 2013).

The two different SHS arrangements simulated are shown in figure 17(a,b). The
Strouhal numbers for these two arrangements were only 0.01 different at Re = 220.
The arrangement shown in figure 17(a) was symmetrical in the flow direction and
gave a lower Strouhal number than the arrangement shown in figure 17(b). Therefore,
the set-up in figure 17(a) was adopted for the following simulations.

The Floquet multipliers for different spanwise wavenumbers β at Re = 220 and
Re = 280 for flow past a circular cylinder are shown in figure 17. The effects of
the SHSs are presented to allow comparison of the results for the regular body
and the SHS-coated body. The Floquet multipliers for instability mode B decreased
dramatically when partial-slip conditions on the cylinder surface were introduced
by adding SHSs. The Floquet multipliers for instability mode A also slightly
decreased when the SHSs were added. The neutral stability curves for modes A
and B determined in a previous study (Posdziech & Grundmann 2001) are shown
in figure 18. The most unstable spanwise wavelengths calculated from the maximum
Floquet multipliers are also included. Our results agreed well with the results of
the previous study for the regular body. The unstable spanwise wavelength ranges
became narrower when SHSs were added for both modes A and B at P/D = 0.349.
Mode B was suppressed at Re= 280 and P/D= 0.6283. The most unstable spanwise
wavelengths decreased because of the partial-slip effect. However, the lower parts of
the neutral stability curves remained almost unchanged.

The streamwise vorticity contours for modes A and B are plotted in figures 19
and 20 to indicate the mode symmetries. It can be seen that the mode symmetries
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FIGURE 18. Neutral stability curves and the most unstable wavelengths for flow past
a circular cylinder. —— Posdziech & Grundmann (2001) (@ neutral curve mode A,
6 neutral curve mode B, C the most unstable wavelength mode A,A the most unstable
wavelength mode B). The results of this work for the regular body (⊕ mode A, p the
most unstable wavelength mode A,E mode B,f the most unstable wavelength mode B),
P/D= 0.349 (D mode A,t the most unstable wavelength mode A, mode B, the
most unstable wavelength mode B), and P/D= 0.6283 (B mode A,r the most unstable
wavelength mode A) are also shown.

FIGURE 19. (Colour online) Wake streamwise vorticity field of the Floquet mode for
mode A (P/D= 0.6283, GF= 0.5, Re= 220 and λ/D= 3.59). The images are separated
by half the shedding cycle.

were not affected by adding SHSs. For the circular cylinder, the perturbation vorticity
of mode B decayed downstream much more quickly than the perturbation vorticity of
mode A. Similar downstream decay was found for the unstable mode B′ in the wake
of the elongated bluff body, as described in the previous sections. This was because
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FIGURE 20. (Colour online) Wake streamwise vorticity field of the Floquet mode for
mode B (P/D= 0.349, GF= 0.5, Re= 280 and λ/D= 0.785). The images are separated
by half the shedding cycle.

mode B as considered here had a relatively short spanwise wavelength, and the flow
structures had lower energies and would be subject to viscous diffusion. Since the
wavelength of mode B is much shorter than that of mode A, the kinetic energy of
spanwise fluctuation of mode B can be quickly dissipated by the viscosity of fluid.
For the same reason, one can conclude that the shorter wavelengths of the unstable
modes tend to be more easily suppressed by SHSs. This finding agrees with the results
of all instability analyses performed in this study.

4. Summary and concluding remarks

We performed numerical simulations to study the influence of partial-slip boundary
conditions on three-dimensional instability in the wake behind a bluff body. An
elongated bluff body was considered, and a circular cylinder was used for comparative
purposes. SHSs consisting of microgrates oriented normal to the flow direction were
modelled under shear-free boundary conditions assuming that the air–water regions
were flat. When compared with a regular body, the two-dimensional base flow showed
some phenomena similar to that found by other researchers, such as an increased
vortex shedding frequency and a linear relationship between the Roshko and Reynolds
numbers, independent of partial-slip conditions.

Floquet stability analyses were performed to investigate the effects of the SHSs on
three-dimensional instability in set-ups with two different SHS boundary conditions
(cases 1 and 2). Cases 1 and 2 correspond to two extreme situations that limit the
range of the influence of SHS. Three modes were found for a regular body. These
were comparable to modes A, B′ and S′ for flow past a streamlined leading-edge body.
These instability modes had some similarities and differences with modes A, B and
QP, which have previously been identified in flow past circular and square cylinders.

The effects of the SHS geometries (i.e. the P and GF) were examined, and both the
flow behaviour and the critical Reynolds number were found to be strongly affected
when the no-slip and shear-free boundary conditions were swapped. Partial-slip
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conditions appeared to delay the onset of three-dimensional instability, especially for
modes B′ and S′ in cases 1 and 2. The critical Reynolds number for instability mode
A was slightly affected by the SHSs when the P decreased. The critical spanwise
wavelengths for the three modes were almost unaffected by the SHSs, and were
comparable to the critical spanwise wavelengths for a regular body. The critical
Reynolds numbers for different unstable modes changed markedly when the GF
increased. Increasing the GF decreased the critical Reynolds number of mode A, but
the critical Reynolds numbers for the unstable modes B′ and S′ either increased or
disappeared altogether. Therefore, mode A could become initially unstable during the
transition to three-dimensional flow in the wake of an elongated body by SHSs.

The elongated bluff-body aspect ratio strongly affected the three-dimensional
instability modes with or without the presence of SHSs. The critical Reynolds
number for three-dimensional instability increased when SHSs were present at any
given aspect ratio.

The results for flow past a circular cylinder coated with SHSs had similar
characteristics to the results found for an elongated body, including the critical
Reynolds numbers for modes A and B being delayed and the unstable spanwise
wavelength range becoming narrower.

Acknowledgements
This work was supported by the National Natural Science Foundation of China

(nos 11502086 and 11502087) and Fundamental Research Funds for the Central
Universities (nos 2015QN141, 2015QN018, 2015MS105).

REFERENCES

BARKLEY, D. & HENDERSON, R. D. 1996 Three-dimensional Floquet stability analysis of the wake
of a circular cylinder. J. Fluid Mech. 322, 215–241.

BLACKBURN, H. M. & SHEARD, G. J. 2010 On quasiperiodic and subharmonic Floquet wake
instabilities. Phys. Fluids 22, 031701.

CARMO, B. S., SHERWIN, S. J., BEARMAN, P. W. & WILLDEN, R. H. J. 2008 Wake transition in
the flow around two circular cylinders in staggered arrangements. J. Fluid Mech. 597, 1–29.

CHOI, C. B. & YANG, K. S. 2014 Three-dimensional instability in flow past a rectangular cylinder
ranging from a normal flat plate to a square cylinder. Phys. Fluids 26, 061702.

DANIELLO, R., MURALIDHAR, P., CARRON, N., GREENE, M. & ROTHSTEIN, J. P. 2013 Influence
of slip on vortex-induced motion of a superhydrophobic cylinder. J. Fluid Struct. 42, 358–368.

DELAUNAY, Y. & KAIKTSIS, L. 2001 Control of circular cylinder wakes using base mass transpiration.
Phys. Fluids 13, 3285–3302.

DONG, S., TRIANTAFYLLOU, G. S. & KARNIADAKIS, G. E. 2008 Elimination of vortex streets in
bluff-body flows. Phys. Rev. Lett. 100 (20), 204501.

EISENLOHR, H. & ECKELMANN, H. 1988 Observation in the laminar wake of a thin flat plate with
a blunt trailing edge. In Proceedings of the Conference on Experimental Heat Transfer, Fluid
Mechanics, and Thermodynamics, pp. 264–268. Elsevier.

FLYNN, M. R. & BUSH, J. W. M. 2008 Underwater breathing: the mechanics of plastron respiration.
J. Fluid Mech. 608, 275–296.

LECORDIER, J. C., HAMMA, L. & PARANTHOEN, P. 1991 The control of vortex shedding behind
heated circular cylinders at low Reynolds numbers. Exp. Fluids 10, 224–229.

LEGENDRE, D., LAUGA, E. & MAGNAUDET, J. 2009 Influence of slip on the dynamics of two-
dimensional wakes. J. Fluid Mech. 633, 437–447.

LEWEKE, T. & WILLIAMSON, C. H. K. 1998 Three-dimensional instabilities in wake transition. Eur.
J. Mech. (B/Fluid) 17, 571–586.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.21


Influence of slip on the three-dimensional instability 93

MARQUES, F., LOPEZ, J. M. & BLACKBURN, H. M. 2004 Bifurcations in systems with Z(2)
spatio-temporal and O(2) spatial symmetry. Phys. D 189, 247–276.

MARTELL, M. B., PEROT, J. B. & ROTHSTEIN, J. P. 2009 Direct numerical simulations of turbulent
flows over superhydrophobic surfaces. J. Fluid Mech. 620, 31–41.

MASTROKALOS, M. E., PAPADOPOULOS, C. I. & KAIKTSIS, L. 2015 Optimal stabilization of a
flow past a partially hydrophobic circular cylinder. Comput. Fluids 107, 256–271.

MENEGHINI, J. R., CARMO, B. S., TSILOUFAS, S. P., GIORIA, R. S. & ARANHA, J. A. P. 2011
Wake instability issues: from circular cylinders to stalled airfoils. J. Fluid Struct. 27, 694–701.

MIN, T. & KIM, J. 2005 Effects of hydrophobic surface on stability and transition. Phys. Fluids 17,
108106.

MITTAL, S. & RAGHUVANSHI, A. 2001 Control of vortex shedding behind circular cylinder for flows
at low Reynolds numbers. Intl J. Numer. Meth. Fluids 35, 421–447.

MURALIDHAR, P., FERRER, N., DANIELLO, R. & ROTHSTEIN, J. P. 2011 Influence of slip on the
flow past superhydrophobic circular cylinders. J. Fluid Mech. 680, 459–476.

PARK, H., PARK, H. & KIM, J. 2013 A numerical study of the effects of superhydrophobic surface
on skin-friction drag in turbulent channel flow. Phys. Fluids 25, 110815.

PARK, H., SUN, G. Y. & KIM, C. J. 2014 Superhydrophobic turbulent drag reduction as a function
of surface grating parameters. J. Fluid Mech. 747, 722–734.

POSDZIECH, O. & GRUNDMANN, R. 2001 Numerical simulation of the flow around an infinitely
long circular cylinder in the transition regime. Theor. Comput. Fluid Dyn. 15, 121–141.

RASTEGARI, A. & AKHAVAN, R. 2015 On the mechanism of turbulent drag reduction with super-
hydrophobic surfaces. J. Fluid Mech. 773, R4.

ROACH, P., SHIRTCLIFFE, N. J. & NEWTON, M. I. 2008 Progess in superhydrophobic surface
development. Soft Matt. 4, 224–240.

ROBICHAUX, J., BALACHANDAR, S. & VANKA, S. P. 1999 Three-dimensional Floquet instability of
the wake of square cylinder. Phys. Fluids 11, 560–578.

ROSHKO, A. 1955 On the wake and drag of bluff bodies. J. Aero. Sci. 22, 124–132.
ROTHSTEIN, J. P. 2010 Slip on Superhydrophobic Surfaces. Annu. Rev. Fluid Mech. 42, 89–109.
RYAN, K. 2004 The analysis of wake structures behind stationary, freely oscillating and tethered

cylinders. PhD thesis, Department of Mechanical Engineering, Monash University, Victoria,
Australia.

RYAN, K., THOMPSON, M. C. & HOURIGAN, K. 2005 Three-dimensional transition in the wake of
bluff elongated cylinders. J. Fluid Mech. 538, 1–29.

SEO, J., GARCIA-MAYORAL, R. & MANI, A. 2015 Pressure fluctuations and interfacial robustness
in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448–473.

SHEARD, G. J. 2011 Wake stability features behind a square cylinder: focus on small incidence
angles. J. Fluid Struct. 27, 734–742.

SHEARD, G. J., FITZGERALD, M. J. & RYAN, K. 2009 Cylinders with square cross-section: wake
instabilities with incidence angle variation. J. Fluid Mech. 630, 43–69.

SHEARD, G. J., LEWEKE, T., THOMPSON, M. C. & HOURIGAN, K. 2007 Flow around an impulsively
arrested circular cylinder. Phys. Fluids 19, 083601.

SHEARD, G. J. & RYAN, K. 2007 Pressure-driven flow past spheres moving in a circular tube.
J. Fluid Mech. 592, 233–262.

SHEARD, G. J., THOMPSON, M. C. & HOURIGAN, K. 2003 From spheres to circular cylinders: the
stability and flow structures of bluff ring wakes. J. Fluid Mech. 492, 147–180.

THOMPSON, M. C., HOURIGAN, K., RYAN, K. & SHEARD, G. J. 2006 Wake transition of two-
dimensional cylinders and axisymmetric bluff bodies. J. Fluid Struct. 22, 793–806.

THOMPSON, M. C., LEWEKE, T. & WILLIAMSON, C. H. K. 2001 The physical mechanism of
transition in bluff body wakes. J. Fluid Struct. 15, 607–616.

TÜRK, S., DASCHIEL, G., STROH, A., HASEGAWA, Y. & FROHNAPFEL, B. 2014 Turbulent flow
over superhydrophobic surfaces with streamwise grooves. J. Fluid Mech. 747, 186–217.

WELSH, M. C., HOURIGAN, K., WELCH, L. W., DOWNIE, R. J., THOMPSON, M. C. & STOKES,
A. N. 1990 Acoustics and experimental methods: the influence of sound on flow and heat
transfer. Exp. Therm. Fluid Sci. 3, 138–152.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.21


94 Y. L. Xiong and D. Yang

WILLIAMSON, C. H. K. 1988 The existence of two stages in the transition to three-dimensionality
of a cylinder wake. Phys. Fluids 31, 3165–3168.

WILLIAMSON, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28,
477–539.

YANG, D., PETTERSEN, B., ANDERSSON, H. I. & NARASIMHAMURTHY, V. D. 2013 Floquet stability
analysis of the wake of an inclined flat plate. Phys. Fluids 25, 094103.

YILDIRIM, I., RINDT, C. C. M. & AA, S. V. 2010 Vortex dynamics in a wire-disturbed cylinder
wake. Phys. Fluids 22, 094101.

YOON, D. H., YANG, K. S. & CHOI, C. B. 2010 Flow past a square cylinder with an angle of
incidence. Phys. Fluids 22, 043603.

ZHANG, H. Q., FEY, U., NOACK, B. R., KÖNIG, M. & ECKELMANN, H. 1995 On the transition of
the cylinder wake. Phys. Fluids 7, 779–794.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.21

	Influence of slip on the three-dimensional instability of flow past an elongated superhydrophobic bluff body
	Introduction
	Numerical method and validation
	Results and discussion
	Effects of SHSs on vortex shedding
	Floquet analysis with a no-slip boundary
	Effect of partial-slip conditions on three-dimensional instability at GF=0.5
	Gas fraction effect
	Aspect ratio effect
	Effect of the geometric configuration of the SHSs
	Mode characteristics

	Summary and concluding remarks
	Acknowledgements
	References




