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SUMMARY

In parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic
systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies
can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on
parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for
schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to
be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the
last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes.
Besides approaches using particle bombardment, electroporation or virus-based infection strategies to introduce DNA
constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in
establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity.
Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs
especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene
of interest.

Key words: Schistosomes, transgenesis, particle bombardment, electroporation, reporter genes, somatic transgenesis,
germline transgenesis, RNAi.

INTRODUCTION

Today we are witness to remarkable progress in
schistosome research. Supported by the improve-
ment of automated sequencing technologies, com-
prehensive genome and transcriptome data have been
generated (Oliveira et al. 2008; Berriman et al. 2009;
The Schistosoma japonicumGenome Sequencing and
Functional Analysis Consortium, 2009). This marks
the beginning of the post-genomic era, which
necessitates the interpretation and exploitation of
the amassed data. In this context it is essential to have
technologies available allowing functional genetics.
Heterologous expression systems such as C. elegans,
mammalian cell lines or frog oocytes have been used
to characterize parasite genes of interest in the past to
overcome limitations associated with some parasite
systems (Brooks and Isaac, 2002; Boyle and Yoshino,
2003; Britton andMurray, 2006). Although new data
on gene regulation and functional evidence were
obtained, heterologous systems are only partially able
to provide indications for the function of a gene
because it is expressed in a different genomic environ-
ment. Conclusive interpretations about gene func-
tions can only be made upon its analysis in a

homologous genomic environment. Therefore, it is
of vital importance to establish transformation proto-
cols for each parasite of interest.
For all plathyhelminths, transformation proto-

cols have been developed demonstrating the possi-
bility of generating genetically modified flatworms
(Aboobaker and Blaxter, 2004; Grevelding, 2006;
Spiliotis et al. 2008). The methods used are largely
based on existing techniques and can be applied to
any organism of interest if in vitro culture systems
exist allowing the maintenance and manipulation of
parasite life stages ex vivo. Premium prerequisites are
met if accessible life stages can be repatriated into the
life cycle, which is the case for schistosomes. To this
end, miracidia can be harvested from eggs in vitro,
transduced with nucleic acids by physical methods,
such as particle bombardment (Wippersteg et al.
2002a,b, 2003), and used for snail infection after-
wards (Beckmann et al. 2007). Furthermore, mira-
cidia can be transformed in vitro and the emerging
mother sporocysts transplanted into snails (Jourdane
and Theron, 1980; Jourdane et al. 1985; Cohen and
Eveland, 1988). Even daughter sporocysts can be
generated in vitro frommother sporocysts (Bayne and
Grevelding, 2003) and then transplanted into snails.
Finally, schistosomula can be generated in vitro from
cercariae and transplanted into final hosts such as
mice (Nollen et al. 1976; Basch and Humbert, 1981;
Clough, 1981). What approaches have been per-
formed to generate transgenic schistosomes?
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SCHISTOSOME TRANSFECTION

In principle, several biochemical or physical methods
are available for transfection and transformation. The
most common ones are lipofection, microinjection or
electroporation which were successfully used for a
variety of cells or organisms including protozoan
parasites (Clayton, 1999; de Koning-Ward et al.
2000; Meissner et al. 2007). Consequently, these
methods were also tested in different laboratories to
evaluate their potential for transient transformation
of schistosomes.

In our laboratory, experiments with lipofection
were performed with in vitro cultured adults or
sporocysts and different commercially available
lipofection reagents. Using plasmid-based DNA
constructs with GFP (green fluorescent protein) as
the reporter gene, no GFP fluorescence could be
detected following lipofection regardless of the
reagent used (K. Kapp, unpublished). In parallel,
using fluorescence-labeled reagents for lipofection, it
was shown that these reagents stick to the surface of
adult schistosomes after treatment and no indications
of uptake into subtegumental areas were observed
(J. Kusel, Glasgow, 1999, personal communication).
However, Nabhan and colleagues (2007) successfully
used a lipofection reagent to introduce small inter-
fering RNAs (siRNAs) into freshly transformed
schistosomula. This indicates that either the stage
used for lipofection or the combination of stage and
reagent may be pivotal. The siPORT lipid transfec-
tion reagent (Ambion) used in their study had not
been used by us before. Due to the soft structure of
the tegument microinjection was found to be diffi-
cult. Approaches with adults and sporocysts showed
the possibility to inject dyes which diffuse through
the body after treatment (V. Wippersteg, unpub-
lished). However, this technique is time consuming
with a low efficiency. Only a very low number of
individuals could be manipulated within one day,
and most of these did not survive in culture after-
wards. Electroporation was first successfully used by
Correnti and Pearce (2004) introducing luciferase
mRNA into Schistosoma mansoni schistosomula. The
electroporation targeted the majority of the schisto-
somula, and immunolocalization studies indicated
that the RNA was delivered to tegumental and sub-
tegumental tissues. However, the RNAwas unstable:
luciferase activity declined by 24 h post-electropora-
tion, and it was not detectable by 72 h. Nevertheless,
these results opened the way to deliver DNA
constructs as well as double stranded RNAs
(dsRNAs) or siRNAs for RNA-silencing approaches
(RNAi) into adult and larval schistosomes by
electroporation. Shortly thereafter, electroporation
was also established for transformation of S. japoni-
cum (Yuan et al. 2005). In the following years,
electroporation was used to introduce plasmid-based
DNA constructs into schistosomula (Correnti et al.

2007; Morales et al. 2007). For adult schistosomes,
electroporation was found to be inefficient for the
introduction of DNA constructs, and this method
may cause dysregulated transcription of reporter
genes (Dvořák et al. 2010). Electroporation was also
tested for miracidia but, depending on the con-
ditions, miracidia either died or they were biologi-
cally inactive after treatment. Currently,
electroporation is mainly used for the transient
transformation of schistosomula with mRNAs or
DNA constructs as well as for the delivery of dsRNAs
and siRNAs into adult and larval S. mansoni or S.
japonicum, but also into eggs of S. mansoni (Krautz-
Peterson et al. 2007; Ndegwa et al. 2007; Zhao et al.
2008; Kines et al. 2010).

Finally, particle bombardment was also tested to
transiently transform schistosomes, a biolistic ap-
proach that has been shown previously to work when
other approaches had not. Particle bombardment was
successfully used for different parasites including
Leishmania tarantolae (Sbicego et al. 1998), Brugia
malayi (Higazi et al. 2002),Trypanosoma brucei (Hara
et al. 2002), and for the free-living nematode C.
elegans (Wilm et al. 1999; Berezikov et al. 2004).
Compared to microinjection, the biolistic approach
allows the manipulation of a higher amount of
individuals simultaneously and in a significantly
shorter time period. One of the first reports on
particle bombardment as a strategy to introduce
nucleic acids in multicellular parasites was published
more than a decade ago in a landmark study by Davis
and colleagues (1999). They used embryos of the
parasitic nematode Ascaris as a model to develop
methods for the introduction of nucleic acids and
then successfully applied these methods to adult
schistosomes and introduced DNA constructs and
mRNA. Using a plasmid containing the luciferase
gene under the control of the S. mansoni spliced
leader (SL)-RNA promoter, luciferase activity was
found to be elevated 20-fold in adults after particle
bombardment, indicating that the transgene is
expressed in this organism. However, molecular or
microscopical data demonstrating the level of trans-
gene expression and the quality of the worms after
bombardment were not provided for eitherAscaris or
for S. mansoni.

Particle bombardment

Parallel to the study of Davis et al. (1999) we had
started a similar approach with the PDS 1000 particle
bombardment system to transform adult and larval
S. mansoni. In our experiments a modified form of
the green fluorescent protein (GFP) gene from the
jellyfish Aequorea victoria (Reichel et al. 1996) was
used. Its expression generates strong visible bio-
luminescence (Chalfie et al. 1994), which can be
easily detected by fluorescence microscopy. As
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regulatory elements to control the expression of the
GFP reporter-gene we used promoter and terminator
regions of a variety of known schistosome genes.
Among these was the heat-shock protein (HSP) gene
hsp70. Expression studies had demonstrated earlier
that the schistosome hsp70 gene is developmentally
regulated and inducible in adults by heat stress
(Neumann et al. 1993). Thus a plasmid construct was
made containing the GFP gene under the control of
the promoter and terminator regions of the hsp70
gene. This construct was introduced by particle
bombardment in adult S. mansoni males. Molecular
analyses demonstrated the presence of the hsp70-
GFP vector and its heat-inducible transcription and
translation (Wippersteg et al. 2002b). Confocalmicro-
scopy finally confirmed correct transgene expression
by exhibiting fluorescing signals in different areas
of the worms that co-localized with the presence of
gold particles. These signals weremainly found in the
tegument and the tubercles of the males. Histochem-
ical analyses by methylene-blue staining of 5 μm
sections of bombarded worms indicated the presence
of gold particles in nearly all tissues. Therefore,
this specific signal localization was not due to an
insufficient penetrance of gold particles into deeper
tissue areas. Additionally, using an antibody against
S. mansoni HSP70, its expression was detected
predominantly in the tegument of worms after heat
shock indicating a predominant role of HSP70 in the
tegumental area following stress (Grevelding, 2006).
Since the biolistic approach worked well with adults,
it was also tried to perform bombardment exper-
iments with larval schistosomes using sporocysts as
targets. Establishing a more sensitive protocol with
lower pressures assured the survival of the larvae after
bombardment. Again, the presence and the tran-
scription of the hsp70-GFP vector after bombard-
ment were confirmed, and fluorescing signals
were detected in different tissues of the sporocysts
(Wippersteg et al. 2002b). Following up this work, a
second ‘proof of principle’ vector was built consisting
of GFP fused to the regulatory elements of the ER60
gene. It codes for a cysteine protease in schistosomes
and was shown to be expressed in excretory/secretory
tissues such as the gastrodermis or the protonephridia
(Finken-Eigen and Kunz, 1997). After particle
bombardment of adult schistosomes with an ER60-
GFP vector, significant GFP signals were detected in
the gastrodermis (Fig. 1 A, B). In addition, fluor-
escence was also observed as stripe-like structures
within the parenchyma (Wippersteg et al. 2003).
Using a colocalization approach of biolistic trans-
formation with ER60-GFP and Texas Red (TxR)-
BSA, a fluorescent dye that enters the excretory/
secretory system and especially the excretory tubules
as part of the protonephridium (Tan et al. 2003), the
occurrence of GFP and TxR-BSA in the same tissue
was confirmed (Wippersteg et al. 2003). Also in
sporocysts, ER60 promoter-induced expression of

GFPwas localized in excretory/secretory tissues such
as the lateral gland and the ridge cytons (Wippersteg
et al. 2003). The same combination of biolistic
transformation and co-localization with TxR-BSA
was used byRossi and colleagues (2003) to investigate
the expression of calcineurin A from S. mansoni.
Similar to the results of ER60, calcineurin A was also
expressed in the excretory/secretory system of adult
parasites. Using promoters of gut-specific genes it
was later shown, in collaboration with James
McKerrow’s group at the University of California
at San Francisco, that tissue-specific reporter gene
activity can also be visualized in deeper tissue layers.
To this end the promoters of the S. mansoni gut
protease gene cathepsin L1 induced GFP expression
in the gut following bombardment (Wippersteg et al.
2005). In the same study, the promoter of the
protease gene cathepsin B2, whose protein product
was known to be localized in the tegumental tubercles
of males (Caffrey et al. 2002), was tested in a similar
approach. Under the control of the regulatory
elements of the cathepsin B2 gene fluorescence was
observed in the tegument (Fig. 1 C, D), as expected,
confirming the tissue-specificity of reporter gene
expression after particle bombardment.
As well as particle bombardment works as a

transformation method for adult and larval schisto-
somes, disadvantages are the relatively low number of
transgenic worms after bombardment and/or the
intensity of transgene expression in the parasite. To
improve these parameters, Dvořák and colleagues
(2010) recently modified the protocol. First, they
created new constructs by fusing the GFP reporter
gene with signal sequences of proteases and achieved
tissue-specific GFP expression. Second, they intro-
duced mCherry as new fluorescent reporter gene,
which can serve as an alternative, spectrally distinct
reporter besides GFP. However, mCherry signals
were observed less frequently compared to GFP in
the parasites and the rate of transgenic worms could
not be increased. To consider electroporation as an
alternative for the delivery of DNA constructs and
transgenes into adult schistosomes, Dvořák et al.
(2010) also tested this method. Their results indi-
cated that electroporation, in contrast to particle bom-
bardment, could lead to a non-specific expression of
the reporter genes in adult schistosomes. Electro-
poration was also tested by Correnti et al. (2007) for
schistosomules. Using the promoter sequence of the
S. mansoni actin 1 (SmAct1.1) gene and luciferase as
reporter, they were able to detect transgene ex-
pression in growing schistosomula (Correnti et al.
2007). In parallel, we tested the SmAct1.1 promoter
to drive GFP expression in bombarded adult
S. mansoni males and sporocysts (Beckmann et al.
2007). In adults, we detected GFP signals in the
tegument including the tubercles, subtegument,
parenchyma and in muscle cells (Fig. 1 E, F).
This pattern corresponded perfectly to previous
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Fig. 1. For legend see next page.
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immunolocalization data showing the presence of
actin in these tissues (MacGregor and Shore, 1990).
Besides GFP and firefly luciferase, also a Gaussia
luciferase was proven by Cheng and Davis (2007) in
biolistic and electroporation experiments as a suitable
reporter gene. The authors showed that, besides
significantly higher levels of luciferase activity in
schistosomes compared to other tested luciferases,
the Gaussia luciferase can be secreted into culture
media allowing non-invasive analysis of reporter gene
activity (Cheng and Davis, 2007).

TRANSIENTLY TRANSFORMED SCHISTOSOMES

After the establishment of transient transformation
in schistosomes, a number of studies have been
performed using different regulatory elements and
reporter genes introduced by particle bombardment
(Davis et al. 1999; Wippersteg et al. 2002a,b, 2003,
2005; Heyers et al. 2003; Rossi et al. 2003; Beckmann
et al. 2007; Dvořák et al. 2010; Table 1). All these
studies proved the reliability of the method. How-
ever, the main disadvantage of this approach so far
has been the transient nature of transgene expression.
To further develop transgenesis in schistosomes, it
has been necessary to explore methods for stable
germline transformation which would allow genetic
as well as phenotypic studies in subsequent gener-
ations. Towards this end, we developed a modified
particle bombardment protocol that allowed the
introduction of transgenes into the germline using
miracidia as targets (Beckmann et al. 2007). After
bombardment, the miracidia were still biologically
active and able to infect snails to continue the life
cycle – a critical step for the establishment and moni-
toring of stable transgenesis. As proofs of principle
miracidia were bombarded with ER60-GFP-ER60
or hsp70-GFP-hsp70 constructs and afterwards used
for the snail infection. Usingmolecular tools, wewere
able to detect the presence of the transgenes in
cercariae and adults of the F0 and the F1 generation.
These data demonstrated that transgenes can be
passed on from one life stage to the next within one
generation and, furthermore, from one generation
to the next. Since the germ cells are considered to be
the only constant cell line during schistosome de-
velopment we could indirectly demonstrate the pres-
ence of transgenes in the germline and a successful
germline-transformation approach (Beckmann et al.

2007). However, the presence of the transgenes
could not be detected from generation F2 on. There-
fore, it seemed likely that the constructs occured
extrachromosomally as episomes, which failed to
integrate into the genome of the germ cells and thus
were lost during cell divisions. In an independent
study Heyers and colleagues (2003) confirmed the
suitability of miracidia as starting stages for germ line
transgenesis. In addition to demonstrating that
bombarded miracidia could still infect snails, gold
particles were detected in the germ balls of parasites
within the snail tissue in which also reporter gene
expression was also detected (Heyers et al. 2003).

FROM TRANSIENT TO STABLE TRANSFORMATION

Particle bombardment is a suitable method for adult
and larval schistosomes to introduce vector con-
structs into the germline. However, strategies need to
be developed that allow their integration into the
genome of germ cells to achieve a heritable trans-
genesis. Approaches using mobile genetic elements
as well as virus-based strategies have achieved the
integration of transgenes into schistosome chromo-
somes, and the principle applicability of these
approaches has been successfully shown (reviewed
in Mann et al. 2008 and Hagen et al. 2011).

Mobile genetic elements – endogenous retroposons
and DNA-transposons

Transposable elements (TEs) are subdivided into
two groups according to their regulatory components
and mechanistic features of their mode of action. TEs
of class I represent retroposons which are generated
and disseminated by reverse transcription of an RNA
intermediate. Class II TEs transpose themselves or
via a DNA copy (DNA-transposons). Depending
on their physical integrity, class II TEs can be
autonomous or non-autonomous with respect to their
mobility. TEs are ancient vestiges of prokaryotic and
eukaryotic genomes including those of parasites
(Thomas et al. 2010; Venancio et al. 2010). In
schistosomes, class I and II TEs have been described.
Among the class I TEs are Boudicca and fugitive,
gypsy-like long terminal repeat (LTR) retrotrans-
poson or Sinbad, a Pao/BEL-type retrotransposon
(Copeland et al. 2003, 2005). Molecular characteriz-
ation of these TEs provided strong evidence for their

Fig. 1. Adult S. mansoni males following particle bombardment with the plasmid construct ER60-GFP-ER60 (A, B;
Wippersteg et al. 2003), CB2-GFP-HSP70 (C, D; Wippersteg et al. 2005), or Act-GFP-Act (E, F; Beckmann et al.
2007) (A, C, E: fluorescence images; B: bright field image; D, F: overlay of fluorescence and bright field image).
Fluorescence signals were detected by confocal laser scanning microscopy (Leica TCS NT) 24–48 hours after particle
bombardment using a wavelength of 488 nm for excitation of GFP. The promoter regions of the cysteine protease gene
SmER60, the cathepsin gene SmCB2, and the actin gene SmAct1 induced GFP expression as expected in the
gastrodermis around the gut lumen (A, B), the tegument (C, D), and the subtegumental/muscle region as well as the
parenchyma (E, F), respectively [g: gastrodermis, p: parenchyma, st: subtegument, t: tegument, tu: tubercle].
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Table 1. Approaches towards transgenic schistosomes (S. mansoni, S. japonicum)

Delivery
method Reference Life cycle stage Genetic material Regulatory elements

Reporter
gene

Activity/localization of reporter
gene expression

pa
rt
ic
le

bo
m

ba
rd

m
en

t

Davis et al. 1999 adult worms plasmid DNA SmSL promoter, enolase 3′
UTR and poly-adenylation
signal

luciferase luciferase activity was measured

mRNA –
Wippersteg et al. 2002b adult males,

sporocysts
plasmid DNA SmHsp70 promoter and

terminator
GFP tegument surface several tissues

Wippersteg et al. 2002a sporocysts plasmid DNA SmER60 promoter and
terminator

GFP excretory/secretory system

Wippersteg et al. 2003 adult males plasmid DNA SmER60 promoter and
terminator

GFP excretory/secretory system

Rossi et al. 2003 adult males plasmid DNA SmCalcineurinA promoter
and terminator

GFP excretory/secretory system

Heyers et al. 2003 adult males,
miracidia

plasmid DNA SmHsp70 promoter and
terminator

EGFP tegument surface (transfected miracidia
infective for snails)

Wippersteg et al. 2005 adult males plasmid DNA SmCL1 or SmCB2 promoter
and SmHsp70 terminator

GFP gut, tegument

Beckmann et al. 2007 adult males,
sporocysts,
mircidia

plasmid DNA SmAct1 promoter and
terminator, SmHsp70 or
SmER60 promoter and
terminator

GFP tegument, parenchyma, muscle cells of adults;
several tissues of sporocysts; transfected
miracidia infective for snails; transgenes were
passed on to the next generations

el
ec

tr
op

or
at
io
n Correnti and Pearce,

2004
schistosomula mRNA – luciferase tegumental and subtegumental tissues

Yuan et al. 2005 schistosome cells,
schistosomula,
adults

plasmid DNA CMV promoter EGFP reporter gene expression was confirmed by
molecular analyses and microscopically

Correnti et al. 2007 schistosomula,
immature
schistosomes

plasmid DNA SmAct1 promoter, SmSL
promoter, SmMHC 3′
UTR, SmAct 3′UTR, SV40
3′UTR

luciferase luciferase activity was measured

Morales et al. 2007 schistosomula piggyBac donor
plasmid+transposase
mRNA

SmAct1 and SmHsp70
promoter, SV40 3′UTR

luciferase integration of the piggyBac transposon into
genomic DNA

pa
rt
ic
le

bo
m

ba
rd

m
en

t
vs

el
ec

tr
op

or
at
io
n Chen et al. 2007 miracidia,

sporocysts,
schistosomula,
adults

mRNA − different
luciferases

luciferase activity was measured

Dvořák et al. 2010 adults, immature
worms

plasmid DNA SmCD or SmCF promoter
and terminator

GFP
mCherry

gut (particle bombardment) tissue-unspecific
(electroporation)
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transcriptional activity in larval and adult stages of
schistosome development, and they occur in different
schistosome species. Therefore, it has been debated
whether theymay have the potential to become useful
tools for the establishment of a retroposon-based
transgenesis system (Mann et al. 2008). Additionally,
the Boudicca and Sinbad LTRs were tested for pro-
moter function, and it was shown that the Sinbad
LTRs but not the Boudicca LTRs were able to drive
transgene activity in human cell culture (Copeland
et al. 2007).
SmMerlin is a class II TE of S. mansoni and may

represent another vehicle candidate for transgenesis.
Due to its similarity to bacterial insertion sequences
Merlin belongs to the superfamily of Merlin/IS1016
DNA elements, which occur also in higher eukar-
yotes. More than 500 Merlin sequences were ident-
ified in the genome of S. mansoni, many of these are
deletion variants (Feschotte, 2004). This indicates
that the Merlin family consists of autonomous and
non-autonomous members. BlastN-analyses in EST
databases of S. mansoni and S. japonicum resulted in
many hits indicating not only transcriptional activity,
but also the occurrence of Merlin in different
schistosome species. Two kinds of transcripts were
found, those with and those without flanking host
sequences. This shows that Merlin family members
can integrate in transcriptional active regions of
the genome, but it also indicates a potential influence
of transcriptionally active schistosome genes in the
neighbourhood on the expression of Merlin family
members. Consequently, typical Merlin footprints
were identified in the genome of S. mansoni
(Feschotte, 2004) consisting of 8 bp target site dupli-
cations, which occur during the integration process
and remain after the transposon has left this target
site again. All these results suggest that Merlin is an
active mobile element tramping through the schisto-
some genome. Its relatively small size of 1·4 kbmakes
SmMerlin a ‘lab-friendly’ candidate for vector con-
struction. SmMerlin has two exons separated by a
32 bp intron. The exons code for a protein of 294
amino acids which reveals significant homology to
transposases (Feschotte, 2004). The ends of Merlin
are characterized by 24 bp terminal inverted repeats.
To start cloning vectors for transgenesis on the basis
of SmMerlin we amplified Merlin transposase se-
quences recently and detected that all of these
contained the 32 bp intron (Beckmann et al., un-
published). Its sequence predicts that presence of this
intronmay lead to a premature stop of translation and
an incomplete transposase. This finding indicates
that SmMerlin activity may be controlled in the
schistosome genome in a similar way as known from
P-elements in Drosophila (Bachmann and Knust,
2008). Here, an intron between the open reading
frames 2 and 3 is not spliced in somatic cells, which
prevents any mobilization, whereas in the germline
splicing occurs leading to transposition in this cell
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line (Laski et al. 1986). By cloning Merlin-based
constructs containing theMerlin transposase without
the 32 bp intron it seems feasible to develop a potent
transformation system. Using particle bombardment
we were able to introduce these Merlin constructs
into adult and larval schistosomes and the transcrip-
tion of the transgeneMerlin transposase was detected
afterwards by RT-PCR analyses. In future studies we
will focus on the detection of excision and integration
events to evaluate this system for its suitability to
stably transform schistosomes. Besides Merlin, a
member of the CACTA (also called En/Spm) super-
family of DNA transposons was also described for
schistosomes (DeMarco et al. 2006). It was called
SmTRC1 and suggested to be a potential new tool for
insertional mutagenesis because CACTA elements
had been successfully used for this purpose in plants
(Tissier et al. 1999). As for Merlin, future studies
have to show whether SmTRC1 is another candidate
for DNA transposon-based transformation.

Exogenous DNA-transposons

PiggyBac, a class II TE originating from the genome
of the cabbage looper moth Trichoplusia ni, has been
successfully used as a vehicle for transformation in
diverse eukaryotic organisms such as mosquitoes,
planarians, Plasmodium falciparum, but also in hu-
man or other mammalian cells. Morales and col-
leagues (2007) demonstrated that piggyBac is able
to deliver reporter transgenes into the genome of
S. mansoni. After electroporation of schistosomula
with a piggyBac donor plasmid containing the firefly
luciferase gene under the control of schistosome
gene promoters together with piggyBac transposase
mRNA, numerous transposon integrations into the
parasites’ chromosomes were detected. This result
represented substantial progress in somatic trans-
genesis, although the inheritance of piggyBac-based
vector constructs has yet to be demonstrated.

Virus-based approaches

Since retroviruses have been used successfully for
transgenesis in other organisms, Kines and colleagues
(2006) established a transduction system for
S. mansoni, using replication incompetent Moloney
Murine Leukaemia Virus (MMLV) virions that
were pseudotyped with Vesicular Stomatitis Virus
Glycoprotein (VSVG) carrying EGFP or luciferase
reporter genes under the control of the Sl or hsp70
promoter. After co-cultivation of larval schistosomes
(schistosomules or spororcysts) with the virions,
the authors showed virus binding and uptake into
the parasite tegument. Thus, the retroviruses seemed
able to transduce cultured schistosomes. Finally,
evidence of proviral integration into genomic DNA
as well as the presence of transcripts encoding

reporter transgenes were obtained. The same group
later used Southern blot analysis and an anchored
PCR-based approach to demonstrate integration of
proviral MMLV retroviruses into schistosome chro-
mosomes, proving somatic transgenesis. Further-
more, reporter gene/luciferase activity in transduced
schistosomula and adult schistosomes was measured
(Kines et al. 2008). The anchored PCR approach
detects the transgenes in the chromosomes and also
determines the efficiency of transduction after the
exposure of schistosomes to virions (Rinaldi et al.
2011). Furthermore, the transduction approach with
VSVG-pseudotyped retroviruses also works for
schistosomules of S. japonicum (Yang et al. 2010).
Besides larval and adult schistosomes, alsoS. mansoni
eggs can serve as targets for VSVG-pseudotyped
MMLV virions (Kines et al. 2010). After exposure of
schistosomes eggs to virions by either soaking or
electroporation, proviral transgenes were detected by
PCR within the genomic DNA of miracidia arising
from them. Although the integration of proviral
forms and transgenes into the genome of schisto-
somes has been achieved (Kines et al. 2008; Rinaldi
et al. 2011; Table 1), the heredity of such integrated
transgenes has not yet been demonstrated. Since it is
possible to transduce eggs and to obtain viable
miracidia carrying the transgenes, it seems feasible
to obtain germ line integration provided that the
virions integrate into chromosomes of germ cells.
Detecting transgenes in subsequent life cycle stages
and subsequent generations would provide strong
evidence for stable transformation and the general
applicability of this approach.

RNAI : ELUCIDATING SCHISTOSOME GENE

FUNCTION BY SMALL INTERFERING RNAS

Since classical genetic approaches analyzing gene
function are not feasible in schistosomes, RNAi has
become a powerful tool for functional gene analysis in
this parasite (reviewed in Bhardwaj et al. 2011 and
Hagen et al. 2011). Since the first reports of the
successful application of this post transcriptional
gene-silencing technique in S. mansoni (Boyle et al.
2003; Skelly et al. 2003) many studies have been
published (Table 2) using this method to explore the
function of genes with hypothesized roles in physi-
ology (Cheng et al. 2005; Correnti et al. 2005;
Delcroix et al. 2006; Krautz-Peterson and Skelly,
2008a; Morales et al. 2008; Mourão et al. 2009a, b;
Krautz-Peterson et al. 2010b; Kumagai et al. 2009;
McVeigh et al. 2011), development (Dinguirard and
Yoshino, 2006; Freitas et al. 2007; Pereira et al. 2008;
Rinaldi et al. 2009; Beckmann et al. 2010; Taft and
Yoshino, 2011; Zou et al. 2011), and other aspects of
biology (Tran et al. 2010; Yoshino et al. 2010; Wu
et al. 2011). For some genes, like the schistosome
thioredoxin glutathione reductase (TGR) or cAMP-
dependent protein kinase (PKA), RNAi induced
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lethal phenotypes were observed by simple soaking of
schistosomula (Kuntz et al. 2007) or electroporation
of adults (Swierczewski and Davies, 2009) with cor-
responding dsRNAs indicating a role of these genes
in worm survival. Although much was invested to
improve the protocols for RNAi in adult and larval
schistosomes (Krautz-Peterson et al. 2007, 2010a;
Ndegwa et al. 2007; Stefanić et al. 2010), there are
still some limitations. First, not all schistosomes
genes can be silenced by RNAi to the same extent.
Second, some genes seem to totally resist silencing
and are not “knockable” at all (Krautz-Peterson et al.
2010a; Beckmann et al., unpublished observations).
This finding is thought not to depend on the
expression of the genes in specific cells that can resist
RNAi, but rather to be caused by secondary struc-
tures of the target mRNAs. The latter may lead to an
inaccessibility of the RNAimachinery to these folded
transcripts (Krautz-Peterson et al. 2010a). Further-
more, in each RNAi experiment a number of adult
or larval schistosomes was exposed to dsRNA or
siRNA. Not all parasites may take up the same
amount of dsRNAs/siRNAs resulting in differences
in RNAi pathway activation, and thus in a high
variability of gene silencing among individuals but
also in different experiments. By simple soaking
dsRNA or siRNA can be easily delivered to larval
schistosomes (schistosomula). However, additional
electroporation seems to deliver dsRNA/siRNA
more efficiently into the parasites increasing the
efficiency of silencing. In the case of adults (single
worms or pairs), it seems that electroporation is more
important to achieve a higher level of gene suppres-
sion compared to larval stages (Krautz-Peterson et al.
2010a). Operational parameters such as taking into
in vitro culture may have an additional influence on
the results of RNAi approaches since the culture
media alone has a baseline effect on, for example,
vitality and viability of schistosomula (Stefanić et al.
2010). Off-target effects, time- and dose-dependency
as well as dosing limits seem to be additional critical
factors for RNAi experiments in schistosomes
(Stefanić et al. 2010). Furthermore, there is no
correlation between the degree of silencing and the
appearance of a phenotype. Depending on dosage
effects, moderate silencing levels can also produce
clear phenotypes (Freitas et al. 2007; Beckmann et al.
2010; Krautz-Peterson et al. 2010a). In contrast, a
significant down-regulation of gene activity is not
necessarily associated with an observable phenotype
(e.g. Atkinson et al. 2010; McVeigh et al. 2011;
Beckmann et al., unpublished observations).
Another question that remains unanswered is how

dsRNA or siRNA enter larval or adult schistosomes.
For newly transformed schistosomula, simple soak-
ing alone seems to be sufficient for dsRNA delivery.
Štefanić and colleagues (2010) investigated whether
the gutmay serve as a route for dsRNA entry into this
larval stage. Using 30 μg/ml Cy5-labeled dsRNA the

authors demonstrated that the gut of schistosomula
takes up and concentrates the dsRNAwithin minutes
after mechanical transformation of cercariae. Accu-
mulation of the dye was evident along the gut and in
the two terminal caecal chambers by 90min post-
transformation, and the signal remained visible dur-
ing an incubation period of 6 days (Stefanić et al.
2010). To follow the soaking route of dsRNAs into
adult schistosomes, we performed some preliminary
experiments in our laboratory and incubated male
schistosomes with rhodamin-labeled dsRNAs
in vitro. The 5-carboxy-X-rhodamin was covalently
linked to the dsRNA using the Label IT® Nucleic
Acid Labeling Kit (Mirus Bio; USA). In each
experiment, 10 males were cultivated in medium
containing 5 μg labeled dsRNA/ml for up to five days.
As a control, males were incubated with unlabeled
dsRNA. After washing of the males, fluorescence
signals were detected with a confocal laser scanning
microscope (Leica TCS NT; Heidelberg) with an
extinction of 597 nm. After only 2 hours incubation
with rhodamin-labeled dsRNAs, weak fluorescence
was detected within the excretory tubules and the
flame cells (Fig. 2 B). Signal intensity increased with
the time of incubation (Fig. 2 C). At day 5, fluores-
cence was also detected in the parenchyma (Fig. 2 D)
and was no longer restricted to the excretory system.
This fluorescence pattern in adult schistosomes is
congruent with the staining pattern of Texas Red,
which specifically stains the excretory tubules (Tan
et al. 2003; Wippersteg et al. 2003). The excretory
system of schistosomes has long been thought of as a
route of removal for waste products. However,
evidence for further functions including endocytosis
was also obtained (Kusel et al. 2009). Our results
suggest that the excretory tubules may also be in-
volved in the uptake of dsRNAs into adult schisto-
somes.
Once the dsRNA is taken up via the gut or the

excretory system of schistosomes, it has to be dis-
tributed to other tissues and cells to induce effects. In
C. elegans, the multispan transmembrane protein
SID-1 (systemic RNAi defective-1) is required for
the uptake and transport of dsRNA (Feinberg and
Hunter, 2003). Krautz-Peterson and colleagues
recently identified in silico the schistosome homo-
logue SmSID-1 (Krautz-Peterson et al. 2010a). The
authors assume that SmSID-1 might also act as a
channel to importdsRNAintoschistosomes.Further-
more, since most schistosome tissues are syncytial,
the authors speculated that once dsRNAhas entered a
tissue, it may be able to traverse relatively large dis-
tances without the need to cross additional mem-
branes (Krautz-Peterson et al. 2010a). Once the
dsRNA is taken up by cells, it has to be processed by
the RNAi machinery to silence gene function. Up to
now, a number of proteins has been identified in
schistosomes representing homologues of proteins
involved in the RNAi pathway of other organisms,
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Table 2. RNAi approaches in schistosomes (S. mansoni, S. japonicum)

Delivery
method Reference Life cycle stage Genetic material Targeted schistosome gene Silencing effect/phenotype

so
ak

in
g

Boyle and Yoshino,
2003

sporocysts dsRNA SGTP1 (glucose transporter), GAPDH
(glyceraldehyde-3-phosphate dehydrogenase)

decreased transcript levels of the target genes;
decreased glucose uptake in case of SGTP1
RNAi

Cheng et al. 2005 schistosomula siRNA GCP (gynaecophoral canal protein) decreased transcript and protein level
Delcroix et al. 2006 3-week-old worms dsRNA cathepsins B1.1, L1, and D; asparaginyl

endopeptidase
decreased transcript levels

Dinguirard and
Yoshino, 2006

miracidia dsRNA SRB (class B scavenger receptor) decreased transcript level and sporocysts’
length

Freitas et al. 2007 adult pairs dsRNA InAct (Inhibin/Activin) decreased transcript level; failed egg
development

Kuntz et al. 2007 schistosomula dsRNA TGR (thioredoxin glutathione reductase) decreased TGR activity; decreased parasite
movement and survival

Nabhan et al. 2007 schistosomula siRNA RPN11/POH1 (proteasome subunit) decreased transcript level and parasite
viability

Mourão et al. 2009a sporocysts dsRNA superoxide dismutase, Smad1, Smad2, Smad4,
RHO1, RHO2, Cav2A, ring box, GST26,
calcineurin B, lactate dehydrogenase, EF1alpha,
myosin, PKCB, HEXBP, calcium channel,
Sma2, PKC receptor, DHHC, PepcK, TPx1,
TPx2, calreticulin, calpain, Smeg, 14.3.3, K5,
SPO1, SmZF1, GPx, fibrillarin, GST28

decreased gene expression levels was highly
dependent on the selected gene, the used
specific dsRNA sequence, and the timing of
evaluation after treatment

Mourão et al. 2009b sporocysts dsRNA GST26 and 28, Prx1/2, GPx, SOD decreased transcript levels; higher
susceptibility to oxidative stress

Kumagai et al. 2009 schistosomula dsRNA Prx-1/2 (peroxiredoxin-1/2) decreased transcript level; higher
susceptibility to hydrogen peroxide

Rinaldi et al. 2009 eggs dsRNA LAP1/2 (leucine aminopeptidase 1/2) decreased transcript and protein levels;
inhibition of miracidial hatching

Tran et al. 2010 schistosomula,
adults

dsRNA TSP-1/2 (tetraspanin 1/2) changes in the tegument structure; reduced
worm burden in vivo

Taft and Yoshino, 2011 miracidia dsRNA CaM1/2 (calmodulin 1/2) decreased transcript level; reduced growth
Zou et al. 2011 schistosomula siRNA CRHSP-24 (calcium-regulated heat-stable

protein of 24 kDa)
decreased transcript level; affected
morphology and vitality

so
ak

in
g,

li
po

fe
ct
io
n

Skelly et al. 2003 schistosomula dsRNA cathepsin B decrease in enzyme activity
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el
ec

tr
op

or
at
io
n

Correnti et al. 2005 schistosomula dsRNA cathepsin B1 decreased transcript level and enzyme activity;
growth retardation

Ndegwa et al. 2007 adult males or
females,
schistosomula

dsRNA, siRNA AP (alkaline phosphatases) decreased transcript level and enzyme activity

Krautz-Peterson and
Skelly, 2008a

adult males siRNA AE (asparaginyl endopeptidase) decreased transcript and protein levels

Morales et al. 2008 schistosomula dsRNA cathepsin D decreased transcript level and enzyme activity;
significant growth retardation; dsRNA
treated schistosomula did not survive to
maturity after transfer into mice

Zhao et al. 2008 schistosomula shRNA expressing
vector

Mago nashi decreased transcript and protein level; changes
in testicular lobes after re-introduction of the
parasites into hosts

Swierczewski and
Davies, 2009

adults dsRNA PKA-C (cAMP-dependent protein kinase
catalytic subunit)

decreased transcript and protein level;
increased parasite death

Atkinson et al. 2010 schistosomula dsRNA PAL (peptidylglycine alpha-amidating lyase) variable and inconsistent silencing effect
Beckmann et al. 2010 adult pairs dsRNA TK4 (Syk tyrosine kinase) decreased transcript level; disordered

oogenesis and spermatogenesis
Krautz-Peterson et al.
2010a

schistosomula,
adult pairs

siRNA AQP (aquaporin)
AP (alkaline phosphatases)

decreased transcript levels; not all schistosome
genes can be suppressed to the same extent;
variation in the level of suppression for one
target gene

dsRNA SPRM1hc (amino acid permease heavy chain)
Krautz-Peterson et al.
2010b

schistosomula
adults

siRNA SGTP1/4 (glucose transporter 1/4) decreased transcript levels; impaired ability to
import glucose; decreased viability in vivo

dsRNA
Ayuk et al. 2011 schistosomula shRNA-expressing

vector, siRNA,
dsRNA

exogeneous luciferase (luciferase was introduced
as mRNA)

reduced enzyme activity

McVeigh et al. 2011 schistosomula dsRNA npp-1 (neuropentapeptide) decreased transcript level
Wu et al. 2011 schistosomula siRNA tetraspanins tsp-1, tsp-3, tsp-6, tsp-8, tsp-9,

tsp-12, tsp-13, tsp-14, tsp-15, tsp-17, tsp-20,
Sj23, tsp-26, and tsp-76D

decreased transcript level

so
ak

in
g,

el
ec

tr
op

or
at
io
n

Stefanić et al. 2010 schistosomula dsRNA cathepsins B1 (CB1.1, CB1.2), C, CB2, and D;
annexin, Sm29, GSK-3 (glycogen synthase
kinase-3), MetAP (methionine aminopeptidase),
PP-2a (protein phosphatase-2a), NEC
(neuroendocrine convertase), nMT (n-myristoyl
transferase)

decreased transcript levels; selective transcript
suppression; variant sensitivity of
suppression
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Table 2. (Cont.)

Delivery
method Reference Life cycle stage Genetic material Targeted schistosome gene Silencing effect/phenotype

el
ec

tr
op

or
at
io
n
,

so
ak

in
g,

li
po

fe
ct
io
n

Krautz-Peterson et al.
2007

schistosomula dsRNA cathepsin B1 decreased transcript level and enzyme activity

pa
rt
ic
le

bo
m

ba
rd

m
en

t

Osman et al. 2006 adults siRNA TGFβ-RII (transforming growth factor-beta
receptor II)

decreased transcript level of SmTβ-RII and
reduced expression of SmGCP

re
tr
ov

ir
al

tr
an

sd
u
ct
io
n

Tchoubrieva et al. 2010 adults dsRNA hairpin-
expressing viral
vector

cathepsin B1 decreased transcript level and enzyme activity

in
je
ct
io
n
in
to

in
fe
ct
ed

m
ic
e

Pereira et al. 2008 adults in vivo siRNA HGPRTase (hypoxanthine-guanine
phosphoribosyltransferase)

reduction in parasite target mRNA but not of
the homologous host target; reduced number
of parasites

so
ak

in
g,

in
je
ct
io
n
in
to

in
fe
ct
ed

m
ic
e

Cheng et al. 2009 12-day-old worms,
adults in vivo

siRNA GCP (gynaecophoral canal protein) decreased transcript and protein levels;
abolition of pairing in vitro and in vivo;
reduced worm burden in vivo

[dsRNA: double stranded RNA; siRNA: small interfering RNA; shRNA: small hairpin-RNA].
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which indicates a similar scenario in schistosomes
(Krautz-Peterson et al. 2010a).

Vector-based dsRNA and siRNA/shRNA delivery

Vector-based approaches have been successfully used
to deliver small RNAs (dsRNAs, siRNAs) in gene
silencing experiments. Zhao and colleagues (2008)
first reported vector-mediated gene silencing in
S. japonicum. They used siRNAs delivered from
short hairpin-RNAs (shRNAs) expressed in vivo in
schistosomules by a mammalian Pol III promoter H1
and successfully suppressed aMago nashi gene (Zhao

et al. 2008). Similarly to this approach Ayuk et al.
(2011) established a vector-based RNAi technique
for S. mansoni using a plasmid expressing shRNAs
driven by the schistosome U6 gene promoter. They
demonstrated that a shRNA targeting reporter firefly
luciferase reduced firefly luciferase mRNA and
luciferase enzymatic activity in transformed schisto-
somules (Ayuk et al. 2011). Tchoubrieva and col-
leagues (2010) designed a viral vector expressing a
dsRNA hairpin to silence the expression of the
schistosome cathepsin B1 (SmCB1) gene and were
the first to show that this approach also works in adult
schistosomes. The vector-based delivery of dsRNAs
or shRNAs could be a preferable technique for the

Fig. 2. Adult S. mansoni males following in vitro incubation with rhodamin-labeled dsRNAs after 2 hours (B), 3 days
(C), and 5 days (D), or as control with unlabeled dsRNA (A). Fluorescence signals were detected by confocal laser
scanning microscopy (Leica TCS NT) with an extinction of 597 nm. [et: excretory tubules, fc: flame cells,
p: parenchyma].
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investigation of long-term silencing effects of specific
mRNAs compared to the transient suppression
of gene expression achieved by soaking or electro-
poration.

Large-scale RNAi approaches

De Moraes Mourao and colleagues (2009a) made the
first attempt to use RNAi for large-scale screening
approaches. They selected 32 different genes and
analyzed potential morphological changes in sporo-
cysts after application of corresponding dsRNAs.
Their results indicated that the efficiency of altered
gene expression due to dsRNA-treatment is highly
variable and dependent on (1) the selected target
gene, (2) the selected dsRNA sequence within the
target gene, and (3) the timing of evaluation after
treatment. The authors concluded that potential off-
target effects, non-specific effects of some dsRNAs,
and variable efficiencies of specific gene silencing
still are critical points of RNAi in schistosomes
(de Moraes Mourao et al. 2009a). Optimization is
needed as well as careful gene-specific testing as part
of RNAi experiments and data interpretation. In
addition, improvements of dsRNA delivery methods
were discussed as being critical. Regarding large-
scale RNAi experiments, Mourão and colleagues
concluded that low and inconsistent dsRNA uptake,
the low number of parasites that can be processed in a
single treatment, the limited phenotype repertoire,
and the lack of more sensitive detection tools cur-
rently restrict large-scale approaches. Thus RNAi
seems presently to be suitable only for small scale or
gene-by-gene characterization approaches (Mourão
et al. 2009a). Stefanić and colleagues (2010) tried to
define operational parameters, which may facilitate
larger RNAi screening and suggested the use of
newly transformed schistosomula due to handling
advantages.

In vivo RNAi approaches

A few approaches have been undertaken using
siRNAs as therapeutical agents. Pereira and col-
leagues (2008) successfully used in vivo RNAi to re-
duce worm burdens in mice chronically infected with
S. mansoni. SiRNAs targeting the hypoxanthine-
guanine phosphoribosyl-transferase (HGPRTase)
were intravenously injected in infected mice. This
led to a significant reduction of the total number of
parasites after six days as well as to a reduction of the
parasite target mRNA, but not of its host’s homo-
logue (Pereira et al. 2008). Cheng et al. (2009) used a
similar approach to knock down the gynaecophoral
canal protein of S. japonicum (SjGCP) in vivo, which
led to a reduction in parasite pairing and total worm
burden. These results indicate that in vivoRNAimay
also be possible.

UNANSWERED QUESTIONS ON THE WAY TO

TRANSGENIC SCHISTOSOMES

Over the last decade, much effort and enthusiasm
have been invested into the establishment of systems
to generate transgenic schistosomes. Different in-
novative approaches were performed indicating their
suitability for transient transformation/transfection
of this multicellular parasite. Although the first trans-
gene integrations into schistosome chromosomes
have been achieved, there is still a long way to go
towards obtaining stably transformed schistosomes.

Are miracidia and eggs the only life cycle stages
useful as targets for transformation approaches with
the aim to enter the germ line? Both appear to be
preferable stages, because their germ cells seem to be
easily accessible using particle bombardment or
retroviruses. Furthermore, miracidia, either directly
transformed, transfected or hatching from trans-
fected eggs, can be reintroduced into the schistosome
life cycle by snail infection. In theory, although they
differ in the number of germ cells, sporocysts, schisto-
somula or adults also represent potential targets, but
they must be reintroduced into the life cycle by
implanting into intermediate or final hosts, respect-
ively. The implantation of sporocysts into snails
(Jourdane and Theron, 1980; Jourdane et al. 1985) or
of schistosomula and adults into final hosts (Basch
and Humbert, 1981) is possible, but the approaches
are technically demanding and time consuming.

How can we achieve a tissue-specific knock-down
of gene activity? If stable transformation of schisto-
somes could be achieved, the door would open for a
number of fundamental analyses in this direction.
For example, by integrating a transgene cassette
expressing a dsRNA or shRNA under the control of
certain schistosome gene promoters, tissue-specific
RNAi experiments would be possible in various
different life stages. Problems with tissue-dependent
off-target effects as well as with the dsRNA/shRNA
delivery and its intra-organism transport could be
overcome. Concerning this point, it is still not ab-
solutely clear how dsRNAs, shRNas or siRNAs enter
the parasite finding their way to different tissues and
cells, and whether all tissues and cells can be reached.
Especially for adults we cannot exclude that not all
tissues are accessible to dsRNAs, shRNAs or siRNAs
to the same degree and that in different tissues RNAi
effects might be effective to different extents due to
variable concentrations of these nucleic acids or other
factors.

Are all members of the RNAi machinery expressed
to the same degree in all tissues of schistosomes, and
in all life stages? With respect to the observation that
some genes can be effectively knocked down in con-
trast to others may hint at the possibility that ‘non-
knockable’ genes are expressed in tissues (1) which
cannot be reached by dsRNAs/shRNAs/siRNAs, or
(2) in which not all components of the RNAi
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processing pathway are present. Localization exper-
iments employing whole mount in situ hybridization
recently showed that transcription of the S. mansoni
Argonaute 2 (Smago2), an essential member of the
RNAi pathways (Ketting, 2011), is restricted to the
ovary, the vitelline glands and testes of adult worms
(Cogswell et al. 2011). Since the used hybridization
probe was specific for Smago2, it cannot be excluded
that the S. mansoni homologues of ago1 and/or ago3
transcripts were present in other tissues fulfilling
ago2-like, redundant RNAi functions. Thus, further
localization experiments are needed to ascertain the
expression patterns of relevant members of the pre-
dicted schistosome RNAi pathway. Using RT-PCR
analyses, the expressions of the schistosome Dicer
homologues (SmDicer, SjDicer) and schistosome
Argonaute homologues (SjAGO1, 2, 3) were shown
in different life cycle stages with the highest ex-
pression in larval stages (Krautz-Peterson and Skelly,
2008b; Luo et al. 2010) demonstrating that, in prin-
ciple, all life stagesmight be susceptible to RNAi, but
also indicating that RNAi could be more effective in
the larval stages. However, it still has to be elucidated
why not all schistosome genes seem to be susceptible
to RNAi, and whether factors like the localization or
conformation of the target mRNA or as yet unknown
factors may additionally influence RNAi in schisto-
somes.
Stably transformed schistosomes seem to be the

most attractive solution to problems with delivery,
uptake and variable concentrations of ds/sh/siRNAs
in different tissues. Provided that gene cassettes
expressing such RNAs are not silenced at the
genomic level by epigenetic factors such as methyl-
ation post transformation, as observed in plant trans-
genesis (Matzke et al. 2000; Fischer et al. 2006), such
integrated transgenes would ensure the constant
delivery of RNAs and probably continuous silencing
effects.
Summarizing we would like to make the point that

combining the techniques already available today
might be the way to reach this goal in the near future.
For example, with a combination of transposon or
retrovirus-based systems and particle bombardment
ofmiracidia it should not only be possible to reach the
germ cells and to achieve the integration of transgenes
into their genomes, but also to reintroduce transgenes
via miracidia into the schistosome life cycle and to
monitor their heredity during life cycling through
subsequent generations.
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