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ABSTRACT
I introduce an organizational model describing the response of the hospital emergency department. The
hybrid simulation/analytical model (called a “metamodel”) can estimate a hospital’s capacity and
dynamic response in real time and incorporate the influence of damage to structural and nonstructural
components on the organizational ones. The waiting time is the main parameter of response and is used
to evaluate the disaster resilience of health care facilities. Waiting time behavior is described by using a
double exponential function and its parameters are calibrated based on simulated data. The metamodel
covers a large range of hospital configurations and takes into account hospital resources in terms of staff
and infrastructures, operational efficiency, and the possible existence of an emergency plan; maximum
capacity; and behavior both in saturated and overcapacitated conditions. The sensitivity of the model to
different arrival rates, hospital configurations, and capacities and the technical and organizational
policies applied during and before a disaster were investigated. This model becomes an important tool in
the decision process either for the engineering profession or for policy makers. (Disaster Med Public
Health Preparedness. 2014;8:436-444)
Key Words: Damage, disaster resilience, hospital, hospital capacity, organizational model, metamodel

Health care facilities have been recognized as
strategic buildings in hazardous events and
play a key role in disaster rescues; however, no

attempt to practically relate structural damage to the
organizational aspects of a facility has been proposed
so far. Extensive literature reviews are available on the
definition of the main parameters of disaster resilience
for health care systems and on the definition of the
general framework,1,2 but no references are found
regarding modeling and the measure of the organiza-
tional aspects of resilience. Indeed, organizational resi-
lience is needed to be able to evaluate the response of
the community to hazardous events and to evaluate the
real loss in terms of healthy population and quality of
care provided. This article describes the implementa-
tion of an organizational model describing the response
of a hospital emergency department (ED).

Managing and improving processes are not possible in
any organization without capturing knowledge about
the models and also collecting measures about processes
and compiling them into performance indicators
at different levels of granularity. In the health care
domain, similar to other domains, (i) collecting mea-
sures and (ii) pulling them together in the form of
performance indicators are critical elements for drawing
the overall picture representing states of care processes.
The status of indicators can then be used to improve

the effectiveness and efficiency of care processes.
Delivering satisfactory health care services relies on
effective and efficient care processes. Achieving
and maintaining such qualities depend on continuously
measuring the performance of processes.

Care processes are usually described informally. They are
frequently complex and can be composed of numerous
steps. These processes involve a variety of care-providing
actors; these actors provide different care services to
patients. Frequent transfer of responsibilities among the
actors blurs the boundary lines of patient states, which
are required to calculate basic measures such as waiting
time (WT).3 Take the example of a cardiac patient
whose WT exceeds the regulatory limit of 1 hour.
To identify the root cause of the excessive delay, fine-
grained data about the patient, the current care process,
and the involved actors must be aggregated into more
abstract and meaningful measures that can be used
by care administrators. The informal representation of
complex cardiac processes makes it very difficult to
know, with reasonable certainty, the exact steps of the
process that are contributing to longer WTs.4

TECHNICAL AND ORGANIZATIONAL RESILIENCE
The main purpose of this research is to relate the
technical aspects of health care facilities to their orga-
nizational aspects to obtain a measure of organizational
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resilience that has not been attempted so far. The goal is to relate
the resilience index to the quality of care provided and the eventual
loss of healthy population, caused by the performance of the health
care facility during a disaster. Disaster resilience is defined in
Equation 1.1 as the integral of the normalized function Q(t)
indicating the capability to sustain a level of functionality or
performance over a control period of time TLC. In other words, it
describes the ability to recover from disastrous events.

R ¼
ðtOE +TLC

tOE
QðtÞ=TLCdt (1.1)

Technical aspects are combined with organizational aspects, and
the formulation of organizational resilience for a hospital facility
is provided by using a hybrid simulation analytical model
(metamodel) that can describe the response of the ED during a
hazardous event. The system diagram in Figure 1 identifies the
key steps of the framework to quantify resilience.

In order to define resilience, it is necessary to first define the
functionality Q of the hospital facility. Three definitions of
functionality and its components are discussed below:

∙ a qualitative functionality related to the quality of
service (QS),

∙ a quantitative functionality related to the losses in healthy
population,

∙ a combined generalized functionality related to both
qualitative (i.e., QS) and quantitative services.

In this article, functionality is defined as the combination of a
qualitative functionality related to QS and a quantitative
functionality related to the losses in healthy population.
The qualitative functionality is related to QS and can be
defined by using the WT spent by patients in the emergency
room before receiving care. The WT is the main parameter
for evaluating the response of the hospital during normal
and hazardous event operating conditions. Common sense,
but also a relevant literature review reported in various
references,5-7 indicates that the functionality of a hospital is
definitely related to the QS. Therefore, if a measure of QS is
found, then it is possible to measure the functionality Q of
the health care facility. Maxwell5 identified several multi-
dimensional aspects of the QS. In particular, 6 dimensions
were suggested, such as access to care, relevance of need,
effectiveness of care, equity of treatment, social acceptability,
and efficiency and economy. Each dimension needs to
be recognized and requires different measures and different
assessment skills.

FIGURE 1
Resilience framework (Multidisciplinary Center for Earthquake Engineering Research approach).

B indicates beds; DES, discrete event simulation; E, efficiency; OR, operating rooms; WT, waiting time.
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A well-acknowledged study demonstrated that the WT in an
ED can be used as a key parameter in the quantification of QS
in health care settings.5 WT is defined as the time elapsed
between the received request of care by the hospital and the
provision of care to the patient. Thompson et al.8 recognize
that the WT is considered an important determinant of
patient satisfaction, which results from meeting or exceeding
patient expectations, but that providing information, pro-
jecting expressive quality, and managing WT perceptions and
expectations may be a more effective strategy to achieve
improved patient satisfaction in the ED than decreasing
actual WT. An extensive review of the literature indicated
that WT is a good indicator of the QS; therefore, QS can be
defined by using the WT spent by patients in the emergency
room before receiving care. Thus, WT is the main parameter
for evaluating the response of the hospital during normal and
hazardous event operating conditions. Shown in Figure 2 is the
qualitative functionality that is the linear combination of two
functions describing the QS of the hospital in saturated and
nonsaturated conditions. In particular, as shown in Equation
1.2, in the nonsaturated condition, when λ≤ λU, the quality of
care is expressed by the function QQS,1(t), equal to

QQS;1ðtÞ ¼ maxððWTcrit�WTðtÞÞ; 0Þ
WTcrit

if λ≤ λu (1.2)

where

λ(t) = arrival rate of patients at the hospital λU;
λU = critical arrival rate of patients when the hospital
reaches the saturated condition;
WTcrit = critical waiting time of the hospital in the saturated
condition, when λ = λU; and
WT(t) = waiting time when λ = λ(t).

In the saturated condition, when the maximum capacity of
the hospital is reached, the hospital cannot guarantee a
normal level of QS, because the main goal now is to provide
treatment to the most number of patients. Therefore, in this
case, the number of patients treated N is a good indicator of
functionality Q. The quantitative functionality QLS(t) is then
defined as a function of the losses L(t), which are defined as
the total number of patients not treated NNTR versus the total

number of patients requiring care Ntot. The quantitative
functionality QLS for a large hospital (500 beds), with a high
surgery capacity (15 operating rooms [ORs]), and the highest
class of efficiency (1200 operations per OR per year) is shown
in Figure 3. The total functionality Q(t) of the hospital that
appeared in Equation 1.1 is given by the product of the two
functionalities defined above

QðtÞ ¼ QQSðtÞ :QLSðtÞ (1.3)

where

QQS(t) = qualitative functionality related to the quality of
service and
QLS(t) = quantitative functionality related to the losses in
terms of healthy population.

In the literature, the evaluation of the performance of the
hospital in the saturated condition, when the maximum
capacity of the hospital is reached, is not considered. In this
latter condition, the hospital cannot guarantee a normal level
of QS, because the main goal now is to provide treatment to
the most number of patients. Therefore, in this case, the
number of patients treated NTR is a good indicator of
functionality Q. The quantitative functionality QLS(t) is
then defined as a function of the losses L(t), which are
defined as the total number of patients not treated (NNTR)
versus the total number of patients requiring care (Ntot). In
this case, the loss is given by the number of patients who are
not treated as follows:

QLSðtÞ ¼ 1� LðtÞ (1.4)

where the loss function is defined by the normalized patients
not treated. The combined functionality and the sensitivity
to the weighting factor of the qualitative part QQS(t) is shown
in Figure 4. It is important to mention that both QQS and
quantitative QLS functionality require the estimation of the
WT that is given in the next paragraph.

FIGURE 2
Qualitative functionality for different α factors.

QS indicates quality of service.

FIGURE 3
Quantitative functionality (500 beds, 15 operating
rooms, and 1200 class of efficiency).
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MODELING HEALTH CARE FACILITIES
Health care systems are inherently complicated, in terms
of details and dynamic and organizational aspects, because of
the existence of multiple variables, which may produce an
enormous number of connections and effects. A variety of
modeling methods are available in the literature to represent
hospital operations; these are summarized by model type in
Cimellaro et al.2 Among the models described, the meta-
model is the simplest because it requires less computational
effort, is reliable, and can describe the dynamic behavior
during the transition. Because all simulations are run off-line
and the metamodel is developed in advance, system dynamic
behavior can be obtained virtually instantaneously in real
time. Therefore, the use of a continuous metamodel seems to
be the best candidate for the description of a generic hospital
because it satisfies all of the following requirements:

1. It represents the operations for any generic hospital;
2. It can be used in real time, with a great reduction in time

consumption;
3. It describes the complexity of the hospital operations;
4. It captures the transient dynamic behavior of the hospital;
5. It predicts the long-term steady state behavior of the

hospital; and
6. It uses the continuously changing dynamic arrival rate

as input.

Assumptions in the Discrete Event Simulation Model
All of the parameters of the metamodel depend on the
calibration done on the data generated by more complicated
simulation models such as the discrete event simulation
(DES) model. The results are strongly dependent on the
assumption made at the simulation level. The parameters of
the metamodel were obtained from a statistical analysis of a
set of simulation runs performed by Yi9 and Paul et al.10

with use of the DES model. The structure of the ED of the
Mercy Hospital located in Buffalo, NY, and the human
resources have been modeled by using Promodel (Promodel
Cooperation, Orem, UT), and the DES model is shown in

Figure 5. It is assumed that all ORs have the same capability
and a path processing assigns to each entity the routing
through the system and defines which operation takes place at
each location. Patients coming through the ED are treated in
different units of the ED and after treatment are discharged
and either leave the ED or are admitted for longer treatment
to one of the other units of the facility. Each patient is
assigned to a certain survivability time (WT) corresponding
to his or her severity of injury according to the HAZUS
definition. The survivability time gives the priority to accede
resources, but when two patients of the same severity level
attempt to enter the same unit, a First In, First Out (FIFO)
rule is used.11

A more general model can be obtained by using off-line
simulation runs, which can represent hospitals of various sizes
and capabilities, which describes statistically one ensemble of
hospitals located in California. The numerical simulations
of the model described by Yi9 provided the data for the
calibration of the parameters of the metamodel described in
the next paragraph.

In this article, the hospital functionality during a disaster is
indicated by how quickly it can treat the injured patients.
Therefore, it is directly correlated to the patient WT that is
the response variable of the metamodel and it indicates how
busy the hospital is. The mathematical formulation for the
evaluation of WT is taken in analogy with the model of a
manufacturing production line system in Yi,5 because the
transient behavior of the hospital during a disaster resembles
that of a machine breakdown in a manufacturing production
line. WT depends on internal and external organizational
factors. The internal factors are the number of beds (B), the
number of ORs, the resources, and staff productivity;
the arrival rate and the patient mix are the external inputs
that can be defined as the percentage of patients who need
the OR, which is the most critical resource in the disaster
condition. Regarding capacities, emergency rooms and labs
are assumed to be proportional to the size of the hospital
(i.e., the number of beds) and are not a direct input of the
simulation model. The resources and staff productivity as well
as the equipment and instruments are not modeled explicitly,
but with the efficiency factor E, which provides the number
of surgeries per OR per year.12

By combining the potentiality of off-line simulation runs and
the capability of metamodeling to describe the transient
behavior of the system, a generic hospital model is built and
calibrated, according to the ED patient volume, hospital size,
and operating efficiency considered. The metamodel obtained
in this way is built in two steps:

1. Off-line simulations (normal condition). In this phase, the
calibration of the parameters of the model is based on
hospital steady-state behavior under a constant arrival rate.
The initial parameters of the model are usually provided by

FIGURE 4
Combined functionality Q for different weighting
factors.
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numerical simulations and national statistics. In particular,
three steady-state conditions are considered:
a) Normal operative condition: This is the steady state in

which the hospital copes with the normal arrival rate
expected in a facility of that size and the efficiency and
normal duties of nurses, doctors, physicians, and
anesthetists.

b) Base case condition: This is the instant in which,
after the disaster strikes, the hospital activates the
emergency plan, calls all physicians and nurses on
duty, and accedes to the emergency resources. It is
assumed that there is a delay between activation of the
emergency plan and the highest flow of patients in
the hospital. Thus, it can be assumed that the arrival rate
in the base condition is equal to the normal arrival rate.

c) Critical case condition: This is the steady state reached
by the hospital in the saturated condition, in which
all the resources are used and no further patients can
be accepted. The hospital works at full capacity and be
overcapacitated with any additional input.

2. Online simulations during the disaster condition. In this
phase, the results of the off-line simulation are used to
build the response of the hospital in real time, when the
disaster patient flow reaches the ED.

Continuous Metamodel
The main parameters of response of the hospital are divided
into internal organizational factors and external ones. The
number of beds (B), the number of ORs, the resources, and
staff productivity belong to the first group; the arrival rate
λ and the patient mix α are the external inputs that can
be defined as the percentage of patients who need the OR.
The mathematical formulation for the evaluation of WT is
taken in analogy with the model of a manufacturing pro-
duction line system in Yi.9 A double exponential function
that allows generic modeling of transient WT is considered
and the procedure to calibrate the double exponential func-
tion is described in the flowchart shown in Figure 6. Using
the double exponential function, it is possible to calibrate the
time constant for only the base case and the critical case,

FIGURE 5
Discrete event simulation model of Mercy Hospital in Buffalo.
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without the need for simulation runs for any patient arrival
rate. Further details about the method can be found in
Cimellaro et al.13

CASE STUDY: STATISTICAL HOSPITAL MODEL OF A
CALIFORNIA HOSPITAL
The example shown is a statistical hospital model, repre-
sentative of a typical configuration of a Californian hospital.
Three levels for each of the following parameters, the number
of beds (B = 100, 300, 500), the number of ORs (OR = 5,
10, 15), and the efficiency (E = 600, 900, 1200) are used. In
total, 27 combinations are possible, but only 21 feasible
combinations were considered. The parameters of the meta-
model are calibrated from the statistical analysis of data
obtained on a set of simulation runs performed by Yi9 and
Paul et al.,10 using a DES model during the post-earthquake
event. Regression equations are obtained for both pre-
earthquake and post-earthquake WTs by using average daily
patient arrival rates calculated from national statistics. For the
case of patient inflow to an ED during an earthquake, the
only data available are those collected during the Northridge

Earthquake, which are the data used in this example. The
sensitivity analysis of resilience to the main parameters that
characterize the organizational metamodel were investigated.
As shown in Figure 7, for a medium-sized hospital (B = 300),
the best way to improve the organizational resilience of the
hospital is to increase the number of ORs, generating an
increment of the resilience index up to 40%.

The metamodel also considers the capabilities of the staff
and the existence of an emergency plan during the disaster.
During a disaster, a facility may elect a tiered response, which
provides for different actions to be taken according to the
number of casualties expected. The hospital can apply the so-
called “surgery in place response”: it can increase its capability
with a premature discharge of the inpatients already present,
adapt the existing surgery capacity, and organize temporary
external shelters.14 A large portion of inpatients can be
discharged within 24 to 72 hours in the event of a mass
casualty accident. The discharge function is not an exact
science, and there is no mathematical formulation. Usually,
10% to 20% of operating bed capacity can be mobilized
within a few hours, and the availability of ORs can increase

FIGURE 6
Flowchart of double exponential function.
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20% to 30%. The external shelters can provide additional
room for the triage and first aid of the injured, thus reducing
the pressure on the hospital by allowing the staff to con-
centrate on the nonambulatory patients. Triage and initial
treatment at the site of injury, the so-called “off-site patient
care,” can relieve pressure on the emergency transportation
and care system or can relieve pressure when local health care
is damaged. It is assumed that doctors’ skills can increase the
efficiency of the hospital up to 20%. On the other hand, the
existence of the emergency plan, which can be applied with a
certain delay, can increase the number of ORs and the
number of beds, respectively, by 10% and 20%. The effect of
the application of the emergency plan on the values of resi-
lience has been investigated. It is assumed that the emergency
plan increases the number of beds by 10% and the surgery
capacity (number of ORs) by 30%. The values of the penalty
factors before and after the application of the emergency plan
for the three size classes considered are reported in Table 1.

The variation of the organizational resilience is illustrated
in Figure 8 as a function of the time of application of
the emergency plan. The emergency plan generates a sudden
increase in the values of the organizational parameters (in this

case, the number of beds and the number of ORs) with a
certain delay from the stroke of the earthquake (0, 4, 8, 16,
and 24 hours). The emergency plan has a beneficial effect
only in the case of medium- and large-sized hospitals, with a
medium to high surgery capacity (10 to 15 ORs) as shown in
the figure. The figure also shows that the performance in
terms of hospital resilience increases up to 20% for medium-
sized and high-efficiency hospitals and the number of patients
treated is up to 20 units higher.

CONCLUDING REMARKS
In this article, the technical and organizational aspects
of health care facilities to obtain a measure of disaster resi-
lience that has not been attempted so far are introduced.
The resilience index is directly related to the quality of care,
measured through the WT, and to the eventual loss of
healthy population, caused by the performance of the health

FIGURE 7
Increments of the resilience index versus different internal parameters B, OR, and E.

B indicates beds; E, efficiency; OR, operating rooms.

FIGURE 8
Effect of the emergency plan on the configuration with
10 ORs and E = 900 operations per year for different
sized hospitals.

B indicates beds; E, efficiency; OR, operating rooms.

TABLE 1
Penalty factors before and after the application of the
emergency plan

Without EP With EP

B PFB PFOR PFeff PF′B PF′OR PF′eff

100 0.540 0.540 0.540 0.594 0.702 0.540
300 0.561 0.561 0.561 0.617 0.729 0.561
500 0.612 0.612 0.612 0.673 0.796 0.612

Abbreviations: B, beds; eff, efficiency; EP, emergency plan; OR, operating
rooms; PF, penalty factor.
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care facility during an extreme event. An organizational
metamodel for health care facilities (e.g., hospitals) has been
defined and implemented that can measure the hospital
capacity and the dynamic response of the hospital ED in real
time by use of a single parameter: the WT before the service
can be received. The WT is described by using a double
exponential function that has been opportunely modified to
take into account the behavior of the ED in overcapacitated
conditions. Furthermore, the effect of damage to structural
and nonstructural components inside the hospital is incor-
porated into the organizational model by using penalty fac-
tors. The metamodel has been designated to cover a large
range of hospital configurations and takes into account hos-
pital resources, in terms of staff and infrastructures, opera-
tional efficiency and the possible existence of an emergency
plan, maximum capacity, and behavior in both saturated and
overcapacitated conditions. In order to illustrate the metho-
dology, an example of a statistical hospital model repre-
sentative of a typical Californian hospital was implemented.
The results based on the example showed that for a medium-
sized hospital of 300 beds, the most significant way to improve
the performance of the ED during a disaster is to increase the
number of ORs, whereas the presence of an emergency plan
has a beneficial effect only in the case of medium- and large-
sized hospitals.

The metamodel does not need to remain static. It can
be updated through additional inputs as more simulation
replications become available. The metamodel could also be
updated through direct observation of the system, if that were
possible. Both of these additional training methods could
be applicable to the ED. More simulations may be run as
computational resources and time allow, and the system may
be observed directly through special studies or daily records.
However, changes to the simulation (e.g., distribution para-
meters, addition or subtraction of variables) would invalidate
the network metamodel, and a new metamodel reflecting the
altered simulation would need to be developed. Future
research efforts in this area should include communication
strategies, patient tracking, and a general methodology
for variance estimates and should work on establishing the
trade-offs of using simulation computation time for replications
versus new training points. Updating the metamodel with new
simulation runs could also be investigated to develop a work-
able methodology. Another area mentioned in the previous
section is the use of statistics besides mean and variance to
account for asymmetries in the system. This is especially
applicable in ED simulations of patient time in the system,
where one would expect a skewed distribution. The authors are
pursuing efforts in all these areas.

A framework for integrating modeling, simulation, and visuali-
zation tools can help to address some of the requirements of the
first responders, in particular, for the command and control
personnel at the state, regional, and national level Emergency
Operations Centers. Integration of such tools will allow

looking at the overall picture and will help to guide better
decision making. It will allow the bringing together of tools
from various modeling domains such as plume dispersion,
traffic movement, communication processes, and hospital
operations to rapidly build a virtual representation of an
emergency response scenario.15

Because this research covers several heterogeneous topics,
many future research directions can arise out of it. Here we
briefly characterize some of these research issues.

∙ Further research on RFID (radio frequency identification)
implementation in ED. Actual full-scale RFID implemen-
tation affects many aspects of ED functioning. Therefore,
to make a final decision on actual full-scale implemen-
tation of RFID, a more comprehensive simulation study
is needed.

∙ Numerous practical and research challenges arose prior to this
relocation of the hospital operations. For example, multi-
skilled emergency medicine physicians will work in the new
ED, in contrast with the previous state, where internal and
trauma patients were treated by different physician teams.

∙ Enhancing forecasting algorithms. This issue deserves addi-
tional research effort. For example, an alternative approach to
arrival load forecasting has been presented in which the
authors estimate the parametric rate function of a non-
homogeneous Poisson process.15-18 Verifying whether these
methods provide better goodness-of-fit to our data than long-
term moving average (MA) is an interesting research topic.

∙ Integration between ED simulators and hospital data
repositories. The Service Engineering Enterprise Center at
the Faculty of Industrial Engineering and Management in the
Technion has created and maintained data repositories from
service systems. These are all based on the DataMOCCA
model.19 The model provides a uniform presentation of
(mainly operational) data from various sources for statistical
analysis, operations research, and simulation. Initially designed
for call center data storage and processing, DataMOCCA was
generalized to accommodate other sources and types of data,
including health care data in general and ED data in
particular. Indeed, repositories at the Service Engineering
Enterprise Center now contain data from the EDs and internal
wards of several hospitals.

To increase processing speed, Service Engineering Enterprise
Center databases are designed in two levels, containing as the
second level precompiled summary tables, which are created
once and are efficient enough to support online (few-seconds)
processing. This provides an environment that is suitable for
real-time statistical analysis and simulations. In addition,
software for statistical algorithms (including fitting of para-
metric and mixture distributions, survival analysis, etc) has
been developed and connected to the databases.

Data from any hospital, in particular Service Engineering
Enterprise Center data, can be used by our simulation model.
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Moreover, the statistical capabilities of DataMOCCA could
be integrated into the simulator. Note that enhancement of
data-collection methods (using, RFID, for example) will
increase the benefits of such an integration. For example,
estimates of service times for nurses and physicians will be
derived from the database, whereas field studies are now
required to incorporate them into the model.
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