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LIFSCHITZ REALIZABILITY AS A TOPOLOGICAL CONSTRUCTION

MICHAEL RATHJEN AND ANDREW W. SWAN

Abstract. We develop a number of variants of Lifschitz realizability for CZF by building topological

models internally in certain realizability models. We use this to show some interesting metamathematical

results about constructive set theory with variants of the lesser limited principle of omniscience including

consistency with unique Church’s thesis, consistency with some Brouwerian principles and variants of the

numerical existence property.

§1. Introduction. In [22] and [23], Van Oosten shows how the Lifschitz realizabil-
ity topos can be viewed as a category of sheaves over a particular Lawvere–Tierney
topology constructed in the effective topos. Although a remarkable result, it has
some shortcomings:

1. The construction refers explicitly to computable functions and Lifschitz’s
encoding of finite sets. This makes it appear that the construction is unique to
the effective topos and cannot be carried out in other toposes.

2. The construction relies on many technical definitions and techniques from
topos theory.

3. The construction is not guaranteed to work predicatively.

In this paper we will give a new presentation of this result. Instead of topos
theory we work in the set theory CZF, which is regarded as a predicative theory for
mathematics. Instead of Lawvere–Tierney topologies, we will use formal topologies
and a predicative notion of topological model due to Gambino.
Aside from this difference in presentation, our results are more general than Van

Oosten’s in two ways (although the first of these does relate to some more recent
results by Lee and Van Oosten in [11]).
Firstly, instead of considering just one formal topology, we will consider an

infinite family of formal topologies Ln for each natural number n ≥ 2, with the
original Lifschitz realizability model just corresponding to the formal topology L2.
The topologies Ln correspond to certain variants of the lesser limited principle of
omniscience, LLPO, which were first studied by Richman in [19], and are denoted
LLPOn. We will use these models to give a new proof of a theorem due to Hendtlass
and Lubarsky in [9]: LLPOn+1 is strictly weaker than LLPOn. This answers
positively a question raised by Hendtlass: is there a variant of Lifschitz realizability
that separates LLPOn from LLPOn+1?
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LIFSCHITZ REALIZABILITY AS A TOPOLOGICAL CONSTRUCTION 1343

Secondly,we identify axioms, IPFn,NN that hold in theMcCarty realizabilitymodel
V (K1) that suffice to carry out internally the construction of the formal topologies
Ln we will use in the models. This can be done entirely in CZF+MP+ IPFn,NN ,
without any explicit reference to computable functions. This enables us to easily
generate variants of Lifschitz realizability by simply checking that the same axioms
IPFn,NN hold in other realizability models. By using realizability with truth in this
way we will show that the theories CZF+MP+LLPOn have certain variants of the
numerical existence property. By using realizability overK2 in this way we will show
that CZF+LLPO is consistent with certain (but not all) Brouwerian continuity
principles.
Amore traditional versionofLifschitz realizability forCZF+LLPO+CT! similar

to that in [5] can be recovered by a two step process of interpreting the topological
model V (L2) in the McCarty realizability model V (K1), itself constructed in CZF+
MP as illustrated below.

Theory CZF+MP CZF+MP CZF+MP
+LLPO+CT! +IPF2,NN +CT0

→֒ →֒

Model V (L2) V (K1) V

§2. Constructive set theory. We will consider the intuitionistic set theories CZF
and IZF, as described for instance in [1] or [2].
We will use the following set theoretic formulations of Markov’s principle and

Church’s thesis.

Definition 2.1. Markov’s principle, MP, is the following axiom. Let α : N→ 2
be a function. Then,

¬¬ (∃n ∈ N)α(n) = 1 → (∃n ∈ N)α(n) = 1.

Definition 2.2. Church’s thesis, CT0 is the following axiom. Let φ(x,y) be any
formula. Then, writing {e}(n) to mean the result of running the eth Turing machine
with input n,

(∀n ∈ N)(∃m ∈ N)φ(n,m) → (∃e ∈ N)(∀n ∈ N)φ(n,{e}(n)).

Church’s thesis for functions, CT! is the axiom that every function from N to N is
computable.

We recall the following definitions and theorems on finite sets, as appear in [2,
Chapters 6 and 8]. The theorems will often be used implicitly while working with
finitely enumerable sets.

Definition 2.3. A set X is finite if for some n ∈ N there exists a bijection from n
to X.
A set X is finitely enumerable if for some n ∈ N there exists a surjection from n to

X.

Theorem 2.4 (CZF). Suppose that φ(x1, ...,xn) is a formula of arithmetic, where
all quantifiers are bounded, and the only free variables are amongst x1, ...,xn. Then we
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1344 MICHAEL RATHJEN AND ANDREWW. SWAN

can prove the following instance of excluded middle.

(∀x1, ...,xn ∈ N) φ(x1, ...,xn)∨¬φ(x1, ...,xn).

Proof. See [2, Theorem 6.6.2]. ⊣

Theorem 2.5 (CZF). “The Pigeonhole Principle for Finitely Enumerable Sets.”
Let A be a finitely enumerable set. Every injective function f : A֌ A is also a
surjection.

Proof. See [2, Theorem 8.2.10]. ⊣

Theorem 2.6 (CZF). “The Finite Axiom of Choice.” Suppose A is a finite set, B
is any set, and R ⊆ A×B is a relation such that (∀a ∈ A)(∃b ∈ B)〈a,b〉 ∈R.
Then there is a function f : A→ B such that for all a ∈ A, 〈a,f(a)〉 ∈R.

Proof. See [2, Theorem 8.2.8]. ⊣

We can also prove a finite version of LPO:

Theorem 2.7 (CZF). For every finitely enumerable set X and every f : X → 2,
either there exists some x ∈ X such that f(x) = 1 or for all x ∈ X , f(x) = 0.

Proof. Show by induction on n that if there is a surjection n։X then the result
holds for X. ⊣

§3. Formal topologies and Heyting valued models of CZF.

3.1. Basic definitions. We recall the basic definitions of formal topology and
Gambino’s Heyting valued interpretation ofCZF. For details see [8]. The basic idea
here is that to each formula in set theory, we assign an open set, which we think of
as the “truth value” of the formula. We use Gambino’s presentation of topological
models since it can be formalised in, and provides models for CZF.

Definition 3.1. If 〈S, ≤〉 is a poset, and p is a subset of S, we write p ↓ for the
downwards closure of p. That is,

p ↓ := {x ∈ S | (∃y ∈ p)x ≤ y}.

Definition 3.2. A formal topology is 〈S, ≤ ,◁〉 such that 〈S, ≤〉 is a poset, and
◁ is a (class) relation between elements and subsets of S, such that

1. if a ∈ p, then a◁p;
2. if a ≤ b and b◁p, then a◁p;
3. if a◁p and (∀x ∈ p)(x◁q), then a◁q; and
4. if a◁p and a◁q, then a◁ ↓ p∩ ↓ q.

Definition 3.3. Let S := 〈S, ≤ ,◁〉 be a formal topology. A set-presentation for
S is a (set) function R : S→P(PS) such that

a◁p↔ (∃u ∈R(a))u ⊆ p.

If (S, ≤ ,◁) has a set-presentation, we say it is set-presentable.
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LIFSCHITZ REALIZABILITY AS A TOPOLOGICAL CONSTRUCTION 1345

Definition 3.4. Let S := 〈S, ≤ ,◁〉 be a set presentable formal topology. We
define the nucleus of S to be the following class function j : P(S)→ P(S). For
p ⊆ S,

j(p) := {a ∈ S | a◁p}.

We extend j to an operation, J, on subclasses of S by

J (P) :=
⋃
{j(v) | v ⊆ P}.

Definition 3.5. We say a formal topology 〈S, ≤ ,◁〉 is proper if for all a ∈ S,
¬a◁∅. (Or equivalently if j(∅) = ∅.)

Definition 3.6. Let S = 〈S, ≤ ,◁〉 be a set presentable formal topology. The class
V (S) is defined inductively as the smallest class such that f ∈ V (S) whenever f is a
functionwith dom(f)⊆V (S) and for allx ∈ dom(f),f(x) is a◁-closed subset ofS.

For each sentence φ in the language of set theory with parameters from V (S), we
assign a ◁-closed class denoted [[φ]], which we define by induction on formulas as
follows. For bounded φ, [[φ]] will be a set.
We first define a complete Heyting algebra structure on the class of ◁-closed

classes as follows. For P and Q ◁-closed classes,

⊤ := S,

⊥ := J (∅),

P∧Q := P∩Q,

P∨Q := J (P∪Q),

P→Q := {a ∈ S | a ∈ P→ a ∈Q},

∨

x∈U

Px := J

(⋃

x∈U

Px

)
,

∧

x∈U

Px :=
⋂

x∈U

Px .

We define the interpretation of atomic sentences a ∈ b and a = b by simultaneous
induction on a and b:

a ∈ b :=
∨

c∈dom(b)

b(c)∧ [[a = c]],

a = b :=
∧

c∈dom(a)

a(c)→ [[c ∈ b]] ∧
∧

c∈dom(b)

b(c)→ [[c ∈ b]].

We then extend this to all formulas as below.

[[⊥]] :=⊥,

[[φ∧ø]] := [[φ]]∧ [[ø]],

[[φ∨ø]] := [[φ]]∨ [[ø]],

[[φ→ ø]] := [[φ]]→ [[ø]],
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1346 MICHAEL RATHJEN AND ANDREWW. SWAN

[[(∃x ∈ a)φ]] :=
∨

x∈dom(a)

[[φ]],

[[(∀x ∈ a)φ]] :=
∧

x∈dom(a)

[[φ]],

[[(∃x)φ]] :=
∨

x∈V (S)

[[φ]],

[[(∀x)φ]] :=
∧

x∈V (S)

[[φ]].

We write V (S) |= φ to mean [[φ]] = ⊤. For a collection of formulas, Φ, we write
V (S) |=Φ to mean V (S) |= φ for all φ ∈Φ.

Theorem 3.7 (Gambino). Let S be a set presentable formal topology. Then

V (S) |= CZF.

Proof. See [8]. ⊣

3.2. Some absoluteness lemmas. For some of the results later, it will be important
that under certain conditions statements that hold in the background universe also
hold internally in the topological model and vice versa. To this end, we prove a series
of absoluteness lemmas below.
First note that any set x can be viewed as an element of V (S), x̂ as follows.

dom(x̂) := x,

x̂(y) :=⊤ for all y ∈ x.

Lemma 3.8. In the below, let φ and ø be any formulas, possibly with parameters
from V (S).

1. We can prove in CZF that for any set x, [[φ(ŷ)]] = ⊤ holds for all y in x if and
only if [[(∀y ∈ x̂)φ(y)]] =⊤ holds.

2. [[φ]]⊆ [[ø]] if and only if [[φ→ ø]] =⊤.
3. [[φ]] =⊤ and [[ø]] =⊤ if and only if [[φ∧ø]] =⊤.
4. For proper formal topologies, [[⊥]] = ∅.
5. If (∃y ∈ x) [[φ(ŷ)]] =⊤ then [[(∃y ∈ x̂)φ(y)]] =⊤.
6. If [[φ]] =⊤ or [[ø]] =⊤ then [[φ∨ø]] =⊤.

Proof. For 1, 2 and 3 note that joins and implications in the Heyting algebra on
◁-closed classes are exactly the usual joins and implications for the Heyting algebra
of subsets of a set. 1, 2 and 3 follow by the basic properties of Heyting algebras.
4 is just by unfolding definitions.
For 5, note that we have

[[(∃y ∈ x̂)φ(y)]] = J

(⋃

y∈x

[[φ(ŷ)]]

)
.
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However, we also have

⋃

y∈x

[[φ(ŷ)]]⊆ J

(⋃

y∈x

[[φ(ŷ)]]

)
.

Then 5 easily follows.
One can then prove 6 by a similar argument. ⊣

Lemma 3.9. Suppose that (
⋃
x [[φ(x̂)]]) ⊆ [[ø]]. Then [[((∃x)φ(x)) → ø]] = ⊤.

Suppose that [[φ]]∨ [[ø]]⊆ [[÷]]. Then [[φ∨ø→ ÷]] =⊤.

Proof. Suppose that (
⋃
x [[φ(x̂)]]) ⊆ [[ø]]. Then we have

J

(⋃

x

[[φ(x̂)]]

)
⊆ J ([[ø]]) .

However, [[ø]] is already ◁-closed, so J ([[ø]]) = [[ø]]. But then it easily follows that
[[(∃x)φ(x)]]⊆ [[ø]] and so [[((∃x)φ(x)) → ø]] =⊤.
The other part can be proved by a similar argument. ⊣

Lemma 3.10. Let x and y be sets and let z ∈ V (S). Then,

[[z ∈ {̂x,y} ↔ z = x̂∨ z = ŷ]] =⊤. (1)

[[z ∈
⋃̂
x ↔ (∃w ∈ x̂)z ∈ w]] =⊤. (2)

Proof. We first check (1). Unfolding definitions we have that both [[z ∈ {̂x,y}]]
and [[z = x̂ ∨ z = ŷ]] are equal to j([[z = x̂]]∪ [[z = ŷ]]). It easily follows that (1)
holds.
We now check (2). Unfolding definitions we have the following.

[[z ∈
⋃̂
x]] = j

(⋃

v∈x

⋃

w∈v

[[z = ŵ]]

)
,

[[(∃w ∈ x̂)z ∈ w]] = j

(⋃

v∈x

j

(⋃

w∈v

[[z = ŵ]]

))
.

By monotonicity of j and union we have [[z ∈
⋃̂
x]] ⊆ [[(∃w ∈ x̂)z ∈ w]]. We now

check [[z ∈
⋃̂
x]] ⊇ [[(∃w ∈ x̂)z ∈ w]]. By axiom 3.2 of the definition of formal

topology, it suffices to check that
⋃
v∈x j(

⋃
w∈v[[z = ŵ]])⊆ j(

⋃
v∈x

⋃
w∈v[[z = ŵ]]).

Let a ∈
⋃
v∈x j(

⋃
w∈v[[z = ŵ]]). Then for some v ∈ x, we have a ∈ j(

⋃
w∈v[[z = ŵ]]).

But now a ∈ j(
⋃
v′∈x

⋃
w∈v′ [[z = ŵ]] by monotonicity of j, as required. ⊣

Lemma 3.11. The natural numbers are absolute, in the following sense.

[[(∀u) [u ∈ N̂ ↔ (∅= u∨ (∃v ∈ N̂)u = v∪{v})]]] =⊤.

Proof. First note that [[(∀u ∈ N̂)u∩{u} ∈ N̂]] =
⋂
u∈N
[[û∪{û} ∈ N̂]] but this is

equal to ⊤ by Lemma 3.10 and the fact that {u}∪u ∈ N for every u ∈ N. We also

easily have [[∅ ∈ N̂]]. But we have now shown one half of the bi-implication:

[[(∀u) [u ∈ N̂ → (∅= u∨ (∃v ∈ N̂)u = v∪{v})]]] =⊤.
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1348 MICHAEL RATHJEN AND ANDREWW. SWAN

Now assume that for some v ∈ N, a ∈ [[u = v̂ ∪{v̂}]]. Then using the soundness

of the laws of equality, we have [[u = v̂ ∪{v̂}]]∩ [[v̂ ∪{v̂} ∈ N̂]] ⊆ [[u ∈ N̂]]. Hence

a ∈ [[u ∈ N̂]]. But we now apply both parts of Lemma 3.9 to deduce

[[(∀u) [u ∈ N̂ ← (∅= u∨ (∃v ∈ N̂)u = v∪{v})]]] =⊤

which is the other half of the bi-implication we require. ⊣

Lemma 3.12. Suppose that 〈S, ≤ ,◁〉 is a proper formal topology. Then equality
and membership are absolute for the natural numbers in the following sense. For

every m,n ∈ N, we have that either [[m̂ = n̂]] = ⊤ or [[m̂ = n̂]] = ∅, m = n if and
only if [[m̂ = n̂]] = ⊤, either [[m̂ ∈ n̂]] = ⊤ or [[m̂ ∈ n̂]] = ∅ and m ∈ n if and only if
[[m̂ ∈ n̂]] =⊤.

Proof. These are proved simultaneously by induction on n and m. ⊣

Lemma 3.13. Finite tuples are absolute, in the following sense.We can show inCZF
that for every set x and every n ∈ N and every set z,

[[z ∈ x̂n ↔ z ∈ x̂ n̂]] =⊤.

Proof. This can be proved by induction on n. ⊣

Lemma 3.14. Let x be a set. Then function application for Nx is absolute, in the

sense that for f ∈ Nx , z ∈ x and n ∈ N, f(z) = n if and only if [[f̂(ẑ) = n̂]] =⊤.

Proof. Note that the formula f̂(ẑ) = n̂ is equivalent to the following

(∀w ∈ f̂)(∀v ∈ x̂)(∀u ∈ N̂)w = 〈v,u〉 → u = n̂.

This is clearly absolute by the previous lemmas. ⊣

Remark 3.15. In [8] it is stated that all restricted formulas are absolute. This is
not provable in IZF or CZF, since the converses to parts 3.8 and 3.8 of Lemma 3.8
do not hold in general and atomic formulas are not in general absolute. The double
negation formal topology provides a counterexample, as do the formal topologies
Ln considered in this paper. Also note that properness is necessary to show that ⊥
is absolute.

§4. LLPO and LLPOn .

4.1. An alternative formulation of LLPO. We will first show how LLPO can be
formulated in terms of the poset N∞ defined below. This formulation will motivate
the definition of the formal topology as the simplest one making LLPO true in the
topological model (based on an observation of Van Oosten in [22]).

Definition 4.1. Let N∞ be the set of decreasing binary sequences, i.e.,

N∞ := {α : N→ 2 | (∀i ≤ j)α(j)≤ α(i)}.

We will consider N∞ as a poset with the pointwise ordering, i.e., α ≤ â if for all
i ∈ N, α(i)≤ â(i).
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Proposition 4.2. If α,â ∈ N∞, then the join α∨â exists and is defined pointwise,
i.e., for i ∈ N

(α∨â)(i) := α(i)∨â(i).

Hence, if F is a finitely enumerable subset of N∞, then
∨
F exists and is defined

pointwise.

The top element of N∞ is the function constantly equal to 1. We’ll write this
function as 1.

Lemma 4.3. For all α ∈ N∞, we have ¬¬α = 1→ α = 1.

Proof. Suppose ¬¬α = 1. For each i ∈ N, we have that α(i) is either 0 or 1. But
if α(i) = 0, then we would have ¬α = 1, contradicting ¬¬α = 1. Hence α(i) = 1 for
all i ∈ N, and so α = 1. ⊣

Lemma 4.4. Assume Markov’s principle. Suppose that F ⊆ N∞ is a finitely

enumerable set such that
∧
F 6= 1. Then for some α ∈ F , α 6= 1.

Proof. Suppose
∧
F 6= 1. Then by Markov’s principle, there is some n such

that
∧
F(n) = 0. However, we now clearly have α(n) = 0 for some α ∈ F (since

{α(n) | α ∈ F} is a finitely enumerable set of natural numbers), and hence α 6= 1. ⊣

Lemma 4.5. Assume Markov’s principle. Suppose that F ⊆ N∞ is a finitely

enumerable set such that for each α ∈ F , α 6= 1. Then
∨
F 6= 1.

Proof. SinceF is finitely enumerable, we canwriteF = {α1, ...,αk}. ByMarkov’s
principle we have for each i, ni such that αi(ni) = 0. Take N := maxi ni . Then we
have that (

∨
F)(N ) = 0 and therefore

∨
F 6= 1. ⊣

Recall that LLPO is usually formulated as below.

Definition 4.6. The lesser limited principle of omniscience (LLPO) is the
following axiom. Let α : N→ 2 be a binary sequence such that for all i,j ∈ N,
if α(i) = α(j) = 1 then i = j. Then either for all i ∈ N, α(2i) = 0, or for all
i ∈ Nα(2i+1) = 0.

We now obtain the equivalent presentations of LLPO below.

Proposition 4.7. The following are equivalent:

1. LLPO;
2. for all α,â ∈ N∞, if α∨â = 1, then α = 1 or â = 1; and
3. for all inhabited finitely enumerable sets F ⊆ N∞, if

∨
F = 1, then there exists

α ∈ F such that α = 1.

Proof. To show 1⇒ 2, letα,â ∈N∞ be such thatα∨â =1. Then define ã :N→ 2
as below.

ã(i) =





1 if i = 2j,α(j) = 1 and α(j+1) = 0;

1 if i = 2j+1,â(j) = 1 and â(j+1) = 0;

0 otherwise.

Then by applying LLPO to ã, we can show either α = 1 or â = 1.
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Now to show 2⇒ 1, let ã : N→ 2 be such that for all i,j if ã(i) = ã(j) = 1, then
i = j. Define α and â as follows.

α(i) =

{
1 for all j ≤ i,ã(2j) = 0;

0 for some j ≤ i,ã(2j) = 1.

â(i) =

{
1 for all j ≤ i,ã(2j+1) = 0;

0 for some j ≤ i,ã(2j+1) = 1.

Then one can easily check that α∨â = 1, and if α = 1 then ã(2i) = 0 for all i, and
if â = 1 then ã(2i+1) = 0 for all i.
Finally note that 2 is a special case of 3, and that 3 follows from 2 by showing by

induction on n that the result holds for all F that admit a surjection n։ F . ⊣

4.2. Generalising toLLPOn . In [19], Richman considered for each n≥ 2 a variant
ofLLPO, that he denotedLLPOn. These axiomswere also studied byHendtlass and
Lubarsky, who showed (amongst other results) thatLLPOn+1 is strictly weaker than
LLPOn. In this section we show that like LLPO, LLPOn can also be formulated
using N∞.

Definition 4.8. Let n ≥ 2. LLPOn is the following statement: Let α :N→ 2 be a
binary sequence such that for all i,j ∈N, α(i) = α(j) = 1 implies i = j. Then there
is some k with 0≤ k < n such that for all i, α(in+k) = 0.

Remark 4.9. In [3] Akama, Hayashi, Berardi andKohlenbach studied a separate
hierarchy of variants of LLPO, denoted Σ0n – LLPO. They show (amongst other
results) that for each n, Σ0n+1 – LLPO is strictly stronger than Σ

0
n – LLPO. Another

variant of Lifschitz realizability (relativised to ∆0n functions) was used for one of
their separation results.

We now give the equivalent formulation using N∞.

Proposition 4.10. Let n ≥ 2. The following are equivalent:

1. LLPOn.
2. Let α1, ...,αn ∈N∞ be such that for all i,j with 1≤ i 6= j ≤ n, αi ∨αj = 1. Then
there exists i ∈ {1, ...,n} such that αi = 1.

Proof. Similar to the proof of proposition 4.7. ⊣

We now aim towards another characterisation of LLPOn analogous to part 3 of
proposition 4.7 that will be useful later.

Definition 4.11. For each n, we define the set of n- treesby the following recursive
definition.

1. There is an n-tree nil.
2. Ifwe have a list of n-treesT1, ...,Tn and a list of decreasing sequencesα1, ...,αn ∈

N∞, then Tr(T1, ...,Tn;α1, ...,αn) is an n-tree.

Definition 4.12. An n-tree is defined to be good according to the following
recursive definition.
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LIFSCHITZ REALIZABILITY AS A TOPOLOGICAL CONSTRUCTION 1351

1. nil is good.
2. Tr(Ti ;αi) is good if for any 1≤ i 6= j ≤ n, αi ∨αj = 1, and for any 1≤ i ≤ n,
if αi = 1 then Ti is good.

Definition 4.13. An n-tree is defined to be very good according to the following
inductive definition.

1. nil is very good.
2. Tr(Ti ;αi) is very good if it is good, and for some 1 ≤ i ≤ n, αi = 1 and Ti is
very good.

Theorem 4.14. LLPOn is equivalent to the statement that every good n-tree is very
good.

Proof. We first assume that every good n-tree is very good and deduce LLPOn.
Let α1, ...,αn ∈ N∞ be such that for any 1≤ i 6= j ≤ n, αi ∨αj = 1. Then note that
we can form a good n-tree Tr(nil;αi). If Tr(nil;αi) is very good, then for some i,
αi = 1, as required.
For the converse, we assume LLPOn and prove by induction that for every n-tree,

T, if T is good then T is very good.
For nil, this is clear.
For T = Tr(Ti ;αi), assume that T is good. Then for 1 ≤ i 6= j ≤ n we have

αi ∨αj = 1. Hence, for some i, αi = 1 by LLPOn. Since T is good and αi = 1, we
have that Ti is good. But by induction we may assume now that Ti is very good.
Hence, T is also very good. ⊣

Definition 4.15. LLPO∞ is the following statement. Let (,) : N×N→ N be a
surjective pairing function, and letα :N→ 2 be a binary sequence such thatα(i) = 1
for at most one n. Then for some k ∈ N, and for all n ∈ Nα(k,n) = 0.

Proposition 4.16. LLPO∞ is equivalent to the following statement. Let (αi)i∈N

be such that αi ∈N∞ for each i ∈N. Suppose further that for i 6= j, αi ∨αj = 1. Then
for some i, αi = 1.

4.3. Absoluteness results for n-trees. We next show how to encode n-trees as
functions N→ N.

Definition 4.17. Let T be an n-tree. We define the shape of T, S(T ) ∈ N as
follows. Assume that we have a standard way of encoding lists of natural numbers
as natural numbers such that encoding and decoding can be done in a primitive
recursive manner and the code for a list is greater than each of its elements, and
write this using brackets ().

1. S(nil) is defined to be ().
2. S(Tr(Ti ;αi)) is defined to be (S(T1), ..., S(Tn)).

We define the data for T, D(T ) ∈ 2N as follows.

1. D(nil)(j) := 0 for all j ∈ N.
2. We define D(Tr(Ti ;αi)) as follows. For any j ∈N, j can be written uniquely as
either 2nk+2i or 2nk+2i+1 where 0≤ i < n. We define

D(Tr(Ti ;αi))(2nk+2i) := αi(k);
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D(Tr(Ti ;αi))(2nk+2i+1) := D(Ti)(k).

Lemma 4.18. There are primitive recursive functions b, c, f, g0 and g1 such that an
n-tree T is good if and only if

∀l < b(S(T )) (c(l, S(T )) = 1 → (∀i ∈ N) D(T )(f(l, S(T ),i)) = 1) →

(∀i ∈ N)¬(D(T )(g0(l, S(T ),i)) = 0∧D(T )(g1(l, S(T ),i)) = 0).
(3)

Proof. We define b(S(nil)) to be 0. We can then take c,f,g0,g1 to be anything
(e.g., constantly equal to 0).
We now deal with the case T = Tr(Ti ;αi). We define

b(S(Tr(T1, ...,Tn;α1, ...,αn)) :=
n∑

i=1

b(S(Ti))+n(n – 1).

Now given l < b(S(T1, ...,Tn;α1, ...,αn)) we have one of the following two cases
(and we can decide which in a primitive recursive manner).

1. For some (unique) 0 ≤ l0 < n and 0 ≤ l1 < n – 1, l =
∑n
i=1 b(S(Ti)) + nl0

+(l1 – 1).

2. For some 1 ≤ k ≤ n and 0 ≤ l ′ < b(S(Tk)), l =
∑k–1
i=1 b(S(Ti)) + l

′, and this
is unique when we require furthermore that k is the greatest such value.

For case 1, we take c(l,S(T )) := 0. The value of f now makes no difference, so
we take it to be constantly 0. Now write l ′1 for l1 if l1 < l0 and l1+1 if l1 ≥ l0 (so that
in any case we have 0≤ l ′1 < n and l0 6= l

′
1). We define

g0(l, S(T ),i) := 2ni+2l0;

g1(l, S(T ),i) := 2ni+2l
′
1.

(This corresponds to ensuring that αl0 ∨αl ′1
= 1)

For case 2, we define c(l,S(T )) := 1. Let l ′ and k be as in the description of case
2. We split into cases on whether or not c(S(Tk)) = 1. If c(S(Tk)) = 1, then define

f(l, S(T ),2i) := 2ni+2k;

f(l, S(T ),2i+1) := 2nf(l ′, S(Tk),i)+2k+1.

If c(S(Tk)) 6= 1, then define

f(l, S(T ),i) := 2ni+k.

In either case, we define

g0(l, S(T ),i) := 2ng0(l
′, S(Tk),i)+2k+1;

g1(l, S(T ),i) := 2ng1(l
′, S(Tk),i)+2k+1.

(This corresponds to ensuring that if αk(j) = 1 for all j then Tk is good.) ⊣

Theorem 4.19. Let α :N→N. Then the statement “f is the code of a good tree” is

absolute in V (S), for any proper formal topology S.

Proof. Note that if f is a primitive recursive function, then the formulaf(n) =m
is equivalent to one built from bounded universal quantifiers, conjunctions, ⊥ and
implication, and hence is absolute. Note that formula (3) is built from formulas
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of this form together with function application, bounded universal quantification
implication and negation. Hence it is absolute. We showed in Lemma 4.18 that the
statement that α codes a good tree is equivalent to this formula and so that is also
absolute. ⊣

Lemma 4.20. There are primitive recursive functions b and f such that for any

n-tree T, T is very good if and only if there is l < b(S(T )) such that for all i ∈N
D(T )(f(l, S(T ),i)) = 1. Furthermore, assuming Markov’s principle, if for all l <
b(S(T )), there exists i ∈ N such that D(T )(f(l, S(T ),i)) = 0, then T is not good.

Proof. For T = nil we define b(S(T )) to be 0, so we can take f(l, S(nil),i) to
be anything.
For T = Tr(T1, ...,Tn;α1, ...,αn), we define

b(S(T )) :=
n∑

i=1

b(S(Ti)).

Then, note that for l < b(S(T )), l can be written as

l =
k∑

i=1

b(S(Ti))+ l
′,

where 0≤ k < n and 0≤ l ′ < b(S(Tk)) and this is unique if we require the greatest
such k.
Then splitting into cases depending on whether the input to f is odd or even, we

define

f(l, S(T ),2i) := 2ni+k;

f(l, S(T ),2i+1) := 2nf(l ′, S(Tk),i)+2k+1. ⊣

Corollary 4.21 (CZF+MP). For any n-tree T, and any list of n-trees T1, ...,Tk ,
we have

1. If T is good, then the double negation of “T is very good” is true.
2. Suppose the following statement is false: Ti is very good for every 1 ≤ i ≤ k.
Then for some 1≤ i ≤ k, Ti is not good.

Proof. Note that part 1 follows directly from Lemma 4.20.
We now show part 2.
Suppose that it is false that Ti is very good for every 1≤ i ≤ k. We define a finite

sequence α0,1, ...,α0,k ∈ N∞ using f from Lemma 4.20 by,

α0,i(j) := f(0, S(Ti),j).

Note that we cannot have α0,i = 1 for all i, since then each Ti would be very good.
Hence byMarkov’s principle, there is some i0 such that α0,i0 6= 1.We then define α1,i
by

α1,i(j) :=

{
α0,i(j) i 6= i0,

f(1, S(Ti),j) otherwise.
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Then, repeating the same argument as before, we find i1 such that α1,i1 6= 1. We
continue this process until reach n such that in = b(S(Tin ) – 1. At this point, we have
found j such that f(l, S(Tin ),j) 6= 1 for every l < b(S(Tin )) and hence can apply
Lemma 4.20 to show that Tin is not good. ⊣

§5. Some special cases of independence of premisses. In this section we define a
family of variants of independence of premisses (IP). The motivation for this it that
it allows us to easily state some special cases of IP that hold in certain realizability
models and are needed to construct the formal topologies we will use later.

Definition 5.1. Let Φ(x,y) be a formula with only x and y free variables and
Ψ(z) a formula with only z as a free variable. We will think of Ψ as a class, and write
z ∈Ψ to mean Ψ(z). We think of Φ(x,y) as a class of pairs and write 〈x,y〉 ∈Φ to
mean Φ(x,y).
Write IPΦ,Ψ for the following axiom schema. For any formula φ,

〈x,y〉 ∈Φ → ((∀u ∈ y)(∃v ∈Ψ)φ) → ((∀u ∈ x)(∃v ∈Ψ)(u ∈ y→ φ)).

Lemma 5.2. Let X and Y be definable sets. By viewing them as classes in the usual

way, we can define IPΦ,X and IPΦ,Y . If there are (provably and definably) functions
f : X → Y and g : Y → X such that f ◦g = 1Y , then IPΦ,X implies IPΦ,Y .

Proof. We want to show

〈x,y〉 ∈Φ → ((∀u ∈ y)(∃v ∈ Y )φ) → ((∀u ∈ x)(∃v ∈ Y )(u ∈ y→ φ)).

So assume that x,y ∈Φand ((∀u ∈ y)(∃v ∈Y )φ). Note that we can define a formula
φ′(u,w) equivalent to φ(u,f(w)) and show

(∀u ∈ y)(∃w ∈ X )φ′.

This is because for every u ∈ y, we have some v ∈Y such that φ(v), but we can then
take w to be g(v). Then since f(w) = f(g(v)) = v, we have φ(u,f(w)).
Now applying IPΦ,X , we have

(∀u ∈ x)(∃w ∈ X )(u ∈ y→ φ′)

Taking v to be f(w), we have

(∀u ∈ x)(∃v ∈ Y )(u ∈ y→ φ)

But we have now proved IPΦ,Y , as required. ⊣

5.1. The schema IPFn,NN . We now come to the special cases, IPFn,NN , of IPΦ,Ψ
that we will need to construct the formal topologies later.

Definition 5.3. Let n ∈ N. Define Fn to be the class of pairs 〈x,y〉 where x
is of the form {α1, ...,αn} where α1, ...,αn ∈ N∞ such that for any 1 ≤ i 6= j ≤ n,
αi ∨αj = 1 and y = x∩{1}.
Then viewing NN as a class, we define IPFn,NN according to definition 5.1.
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It is important to note that IPFn,NN implies several variants, that will also be used
throughout this paper. Where it is clear from context, we will write that we invoke
IPFn,NN when we actually mean one of the variants listed below.

Proposition 5.4. IPFn,NN implies IPFn,N, IPFn,List(NN), IPFn,Tn and IPFn,List(Tn)
where we write List(X ) for the set of finite lists of elements of X and Tn to mean the
set of n-trees.

Proof. One can easily define suitable functions to apply Lemma 5.2. For n-trees
we use the “shape and data” encoding from Definition 4.17. ⊣

Lemma 5.5. LLPOn implies IPFn,Ψ for any Ψ (and in particular LLPOn implies
IPFn,NN).

Proof. Suppose that x = {α1, ...,αn} where αi ∨αj = 1 for i 6= j and such that
for all u ∈ x∩{1} there exists v ∈Ψ such that φ(u,v).
ByLLPOn, we know thatαi =1 for some i. However, this implies that 1∈ u∩{1},

so there must exist v ∈ Ψ such that φ(1,v). Note that we trivially have that u = 1
implies φ(u,v), and so we have now proved this instance of IPFn,Ψ. ⊣

5.2. IPFn,NN in V (K1). We now check that IPFn,NN actually holds in the most

basic realizability model for set theory, V (K1), developed by McCarty in [14]. The
proof uses a key idea that is already implicit in Lifschitz’s original presentation of
Lifschitz realizability [12] and also appears the newer versions by Van Oosten [21].

Lemma 5.6 (CZF+MP). IPFn,NN holds in V (K1). In fact, a more general version

holds. Let Φ be the class of pairs 〈x,y〉 with x any subset of NN and y = x ∩{1}
(writing 1 for the function constantly equal to 1). Then IPΦ,NN holds in V (K1).

Proof. Note firstly that we can show in CZF that for any f ∈ NN, ¬¬f = 1
implies f = 1. Hence, we can replace y by {f ∈ x | ¬¬f = 1}.
We are given a0,a1 ∈ K1 such that

a0 
 (∀u ∈ x)u ∈ NN,

a1 
 (∀u ∈ x) ¬¬u = 1→ (∃v ∈ NN)φ

and need to construct computably b ∈ K1 such that

b 
 (∀u ∈ x)(∃v ∈ NN) ¬¬u = 1→ φ.

Note that for any formula ø, we have c 
 ¬ø for some c ∈ K1 if and only if c 
 ¬ø
for every c ∈ K1. Hence, if c 
 ¬¬u = 1 for some c ∈ K1, then 0 
 u = 1.
Now let 〈d,u〉 ∈ x. Note that (a0d )0 is a code for a total computable function.

We define a new computable function as follows. Given input n, in parallel, run the
following two algorithms.
First algorithm: For each m in turn, evaluate (a0d )0m. If (a0d )0m 6= 1, then halt

and return 0. Otherwise, continue running.
Second algorithm: Try to evaluate a1d0. If this is successful, then try to evaluate

(a1d0)0n. If this is successful, then halt and return (a1d0)0n.
Let n ∈ K1. Suppose that neither of these algorithms halts. Then in particular,

for all m, (a0d )0m = 1. However, we would then have 0 
 ¬¬u = 1 and so a1d0
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must be defined, with (a1d0)0 a total computable function. This implies that the
second algorithm halts successfully, giving a contradiction. Hence by MP one of
the algorithms must halt, and so we get a total computable function. Note that we
did this uniformly in d, so in fact we have b0 ∈ K1 such that for each 〈d,u〉 ∈ x, b0d
denotes and is a total computable function defined as above.
Now define b such that for every d ∈ K1,

bd = p(b0d )(ëz.(a1d0)1).

Note first that for any 〈d,u〉 ∈ x, bd ↓, since b0d ↓ and for any term t, ëz.t denotes
(even if t does not). Furthermore, as shown above, (bd )0 is always a total computable

function. In particular, we have 〈(bd )0,(bd )0〉 ∈ NN, where (bd )0 is the function in

V (K1) represented by (bd )0, andNN is the standard implementation ofNN inV (K1).
Now suppose that for some c ∈ K1, c 
 ¬¬u = 1. In particular, this implies that

for everym, (a0d )0m= 1. Then the first algorithm above never halts. Hence wemust

have that for every n, b0dn = (a0d0)0n, and so b0d = (a0d0)0. But, we also have

(a1d0)1 
 φ[v/(a0d0)0]. Therefore we have established that

(bd )1c 
 φ[v/b0d ]

and so

b 
 (∀u ∈ x)(∃v ∈ NN) ¬¬u = 1→ φ

as required. Finally, note that we constructed b uniformly in a, so we do indeed have
a realizer for the implication

((∀u ∈ y)(∃v ∈ NN)φ) → ((∀u ∈ x)(∃v ∈ NN)(u ∈ y→ φ)). ⊣

5.3. IPFn,NN in realizability with truth. We now do the same thing for realizability
with truth. For this to work we this time need to assume that IPFn,NN holds already
in the background universe (which was not needed for V (K1)).

Lemma 5.7. (CZF+MP+ IPFn,NN). IPFn,NN holds in the realizability with truth

model V ∗ studied in [16].

Proof. LetV ∗ be the realizability with truth model from [16]. We will construct,
for each instance ø of IPFn,NN a closed application term tø such that tø 
tr ø.
Recall from the proof of lemma 5.6, that each instance of IPFn,NN is equivalent to

a formula of the following form.

(∀x ∈ Fn)((∀u ∈ x)¬¬u = 1→ (∃v ∈ NN)φ) →

((∀u ∈ x)(∃v ∈ NN)¬¬u = 1→ φ). (4)

Finding a realizer for this formula amounts to

1. Showing that the implication is true
2. Constructing a such that whenever

b 
tr (∀x ∈ Fn)((∀u ∈ x)¬¬u = 1→ (∃v ∈ NN)φ) (5)
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ab is defined, and

ab 
tr (∀u ∈ x)(∃v ∈ NN)¬¬u = 1→ φ. (6)

To show 1, we simply apply IPFn,NN in the background.
For 2, let b be as in (5). We need to construct a realizer as in (6). Since the formula

is of the form (∀u ∈ x)ø, we need to show (∀u ∈ x◦)(∃v ∈ NN)¬¬u = 1→ φ◦ and
construct ab such that for any 〈d,u〉 ∈ x,

abd 
tr (∃v ∈ NN)¬¬u = 1→ φ.

For the truth part, we once again apply IPFn,NN in the background. For the
realizability part, we follow the same proof as for Lemma 5.6 to construct a total
computable function f.
Finally, we need to construct a realizer for

¬¬u = 1→ φ[v/f].

Since, this is an implication, it once again consists of both a realizability part and
a truth part. However, by [16, Lemma 5.10] we have that if ¬¬u◦ = 1 is true, then
0 
tr ¬¬u = 1. Hence, we can apply the proof used in Lemma 5.6 for both parts,
and therefore the same realizer constructed there still works for this case. ⊣

Theorem 5.8. Let T be one of the theories CZF, CZF+REA, IZF, IZF+REA.
Then T +MP+ IPFn,NN has the numerical existence property and is closed under

Church’s rule.

Proof. Using Lemma 5.7, the proof of [16, Theorem 1.2] now applies here. ⊣

5.4. IPFn,NN in function realizabilitymodels. Wenow check that the same axioms,
IPFn,NN , also hold in function realizability models.

Lemma 5.9 (CZF+MP). There is α ∈ K2 such that the following holds. Suppose
that â ∈ K2 is such that for all ã ∈ K2 if ã(n) = 1 for all n ∈ N, then âã ↓. Then,

1. αâ ↓.
2. For all ã ∈ K2, αâã ↓.
3. If ã(n) = 1 for all n ∈ N, then (âã ↓ by assumption and) αâã = âã.

Proof. We define α so that for each â , αâ is as follows.

αâ(〈n,m1, ...,mk〉) =

{
1 if mi 6= 1 for some i ≤ k,

â(〈n,m1, ...,mk〉) otherwise.

Note that there is such an α since this is clearly continuous in â and any continuous
function is representable in K2. Also, note that by unfolding the definition of
application in K2 and applyingMP one can show that α is as required. ⊣

Lemma 5.10 (CZF+MP). Let V P be the function realizability model from [15].
Let Φ be the class of pairs 〈x,y〉 with x any subset of NN and y = x ∩{1} (writing 1
for the function constantly equal to 1). Then IPΦ,NN (and hence also IPFn,NN for each

n) holds in V P.
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Proof. One can easily use Lemma 5.9 to adapt the proof of Lemma 5.6 to work
over K2. ⊣

§6. The topological models V (Ln). We now define the topological models.
In this section, we will assume a fixed n throughout, and refer to n-trees simply as

trees.

6.1. Definition of Ln . In this section we define the formal topologies that we will
use for the topological models and check that they are in fact formal topologies.
The basic idea is to use the formulation of LLPOn in terms of trees to produce
the simplest formal topology where LLPOn holds in the respective topological
model, even when it does not hold in the background universe. This is based on the
observation of Van Oosten in [22] that the Lifschitz realizability topos is the largest
subtopos of the effective topos where an axiom equivalent to LLPO in the presence
of Church’s thesis holds.

Definition 6.1. LetT be a tree. Thenwe define the cover fromT, Cover(T )⊆{0},
inductively as follows.

1. Cover(nil) = {0}.
2. Cover(Tr(Ti ;αi)) =

⋃n
i=1{0 ∈ Cover(Ti) | αi = 1}.

Lemma 6.2. Let T be a good tree. Then 0 ∈ Cover(T ) if and only if T is very good.

Proof. We show this by induction on trees.
For T = nil, we have both 0∈Cover(T ) and T is very good, so the result is clear.
Now suppose that T = Tr(Ti ;αi). If T is very good then for some i, αi = 1 and

Ti is very good. However, if Ti is very good, then 0 ∈ Cover(Ti) by the induction
hypothesis, and so, we have 0 ∈ Cover(T ). We have shown that if T is very good
then 0 ∈ Cover(T ). Now suppose that 0 ∈ Cover(T ). Then for some i, αi = 1 and
0 ∈ Cover(Ti). The latter implies Ti is very good by the induction hypothesis, and
so by the former T is very good, as required. ⊣

Proposition 6.3 (CZF+MP). Let T be a good tree. Then we have¬¬0∈CoverT .

Proof. Suppose thatT is a good tree and that 0 /∈Cover(T ). Since 0 /∈Cover(T ),
we have by Lemma 6.2 that T is not very good. Then by corollary 4.21 we have
that T is not good, giving us a contradiction. Hence we have ¬¬0 ∈ CoverT as
required. ⊣

Definition 6.4. Let S, ≤ be the poset with S = {0}. Define the relation ◁ as
follows. 0◁p precisely if Cover(T )⊆ p for some good tree,T. WriteLn for the tuple
〈S, ≤ ,◁〉 (we will show that this is a formal topology).

Lemma 6.5 (CZF+MP). Ln satisfies axioms 1, 2 and 4 in the definition of formal
topology.

Proof. 1 and 2 are clear. It remains to prove 4, that is, that whenever 0◁p and
0◁q, we have 0◁p∩q.
Fix a good tree, T. We will show by induction that for any tree S, there is a tree

R such that Cover(R)⊆ Cover(T )∩Cover(S), and that if S is good then R is also
good.
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For S = nil, we just take R to be T.
Now suppose that S = Tr(Si ;αi). Then we have for each i, a tree Ri such that

Cover(Ri)⊆ Cover(T )∩Cover(Si) and Ri is good if Si is good. Define R to be the
tree Tr(Ri ;αi). Suppose that 0 ∈ Cover(R). Then for some 1≤ i ≤ n we must have
αi = 1 and 0 ∈ Cover(Ri). Since Cover(Ri) ⊆ Cover(T )∩Cover(Si), we also have
0 ∈Cover(Si) and 0 ∈Cover(T ). But, now recalling that αi = 1, the former implies
0 ∈ Cover(S). Hence, Cover(R)⊆ Cover(T )∩Cover(S).
Now suppose that S is good. Then we have that for any 1≤ i 6= j ≤ n, αi ∨αj = 1.

Also, for any i, if αi = 1, then Si is good. But this then implies that Ri is good.
Hence R is also good.
We can now easily deduce axiom 4. ⊣

Theorem 6.6 (CZF+MP+ IPFn,NN). Ln is a formal topology.

Proof. We have already shown in Lemma 6.5 that axioms 1, 2 and 4 hold. It
remains to show that axiom 3 holds. That is, whenever 0◁p and p◁q, we have
0◁q.
Fix q ⊆{0}.We show the following by induction on trees. LetT be a tree. Suppose

that T is good and whenever 0 ∈ Cover(T ) we have 0◁q. Then there is a good tree
S such that Cover(S)⊆ q.
First assume T = nil. Then 0 ∈ Cover(T ), and so we have 0◁q. Let S be any

good tree such that Cover(S)⊆ q.
Now assume that T = Tr(Ti ;αi). Assume that T is good and whenever 0 ∈

Cover(T ) we have 0◁q. Since T is good, we have that for any 1 ≤ i 6= j ≤ n,
αi ∨αj = 1. Let 1 ≤ i ≤ n be such that αi = 1. Then Ti is good, and Cover(Ti) ⊆
Cover(T ). The latter implies that whenever 0 ∈ Cover(Ti) we have 0◁q and so we
may apply the induction hypothesis, to show there exists S such that Cover(S)⊆ q.
However, we can now apply IPFn,NN to find for each 1≤ i ≤ n, a treeSi such that if

αi = 1 then Si is good and Cover(Si)⊆ q. Define S to be Tr(Si ;αi). Then whenever
i is such that αi = 1, we have that Si is good, and so S must be good. Suppose that
0 ∈Cover(S). Then for some i we have αi = 1 and 0 ∈Cover(Si). Hence also 0 ∈ q.
But we have now shown Cover(S)⊆ q as required. ⊣

6.2. Some basic properties of Ln and V
(Ln).

Lemma 6.7 (CZF+MP). If LLPOn is true, then we have

1. V (Ln) is isomorphic to the class of all sets, V.
2. V (Ln) |= φ if and only if φ is true.

Proof. By LLPOn, we know that every good n-tree is very good. Hence, in this
case Ln reduces to the trivial formal topology, where for every p ⊆ {0}, 0◁p if and
only if 0 ∈ p. The result clearly follows. ⊣

Lemma 6.8 (CZF+MP+ IPFn,NN). For each j ∈ N, let pj be a subset of {0}.
Suppose that 0◁

⋃
j∈N
pj . Then there is some finite set J ⊆ N such that 0◁

⋃
j∈J pj .

(That is, Ln is countably compact.)

Proof. We show by induction on trees, that for every tree T, if T is good and
Cover(T ) ⊆

⋃
j∈N
pj then there exists a finite set J ⊆ N and another good tree S

such that Cover(S)⊆
⋃
j∈J pj .
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For T = nil, we have 0 ∈
⋃
j∈N
pj and so for some j ∈ N, 0 ∈ pj . Hence we can

just take J := {j} and S = nil.
Now suppose T =Tr(Ti ;αi). Note that if 1≤ i ≤ n is such that αi = 1, then Ti is

good and Cover(Ti)⊆ Cover(T )⊆
⋃
j∈N
pj . So by the induction hypothesis, there

is a finite set J and a good tree S such that Cover(S) ⊆
⋃
j∈J pj . Hence we can

apply IPFn,NN to find for each 1 ≤ i ≤ n, a finite set Ji ⊆ N and a tree Si such that

if αi = 1 then Si is good and Cover(Si)⊆
⋃
j∈Ji
pj . We then take J :=

⋃n
i=1 Ji and

S := Tr(Si ;αi) and note these are as required. ⊣

Lemma 6.9 (CZF+MP+ IPFn,NN). Suppose that V (Ln) |= (∃j ∈ N)φ(j). Then

there is some finite J ⊆ N such that V (Ln) |= (∃j ∈ Ĵ )φ(j).

Proof. Apply Lemma 6.8 with pj := [[φ(ĵ)]] for j ∈ N. ⊣

The following lemma will be key to showing later that certain choice axioms and
existence properties hold. It appears to be related to the constructions developed by
Lee and Van Oosten in [11, Sections 4 and 5]. We will return to this point in §8.1.

Lemma 6.10 (CZF+MP+ IPFn,NN). Let 1≤ k < n and for each j ∈ N, let pj be
a subset of {0}. Suppose that 0◁

⋃
j∈N
pj (relative to Ln). Suppose further that for

every J ⊆ N such that J is finite and |J |> k we have
⋂
j∈J pj = ∅.

Then for some j ∈N there exists a good ⌈ nk ⌉-tree, S such thatCover(S)⊆ pj (where
⌈ nk ⌉ means round up

n
k to the next integer).

Proof. We show by induction on trees that for every n-tree, T, if T is good
and Cover(T ) ⊆

⋃
j pj , then there exists j ∈ N and an ⌈ nk ⌉-tree S such that

Cover(S)⊆ pj .
For T = nil, we have 0 ∈

⋃
j∈N
pj . Hence for some j ∈ N we in fact have 0 ∈ pj .

We can then take S to be nil.
Now suppose that T = Tr(Ti ;αi).
Suppose that αi = 1. Then Ti is good and Cover(Ti)⊆

⋃
i pi . So there exist j ∈N

and S a good ⌈ nk ⌉-tree such that Cover(S)⊆ pj .
Hence we can apply IPFn,NN to find for each 1≤ i ≤ n, ji ∈ N and an ⌈ nk ⌉-tree Si

such that if αi = 1 then Si is good and Cover(Si)⊆ pji .
Now suppose that |{ji | 1 ≤ i ≤ n}| > k. Let I ⊆ {1, ...,n} be such that

|I |= |{ji | 1≤ i ≤ n}|= |{ji | i ∈ I }| (which exists by finite choice and decidability of
equality forN). By assumption,

⋂
i∈I pi = ∅. Suppose that for all i ∈ I , αi = 1. Then

we would have that each Si is good but
⋂
i∈I Cover(Si) = ∅, giving a contradiction

by Corollary 4.21 and Lemma 6.2. Hence by Lemma 4.4, for some i, αi 6= 1. Let
i ′ ∈ I \ {i}. Since αi 6= 1, we vacuously have αi = 1 implies that Cover(Si) ⊆ pji′ .
Hence we may “replace” ji with ji′ .
By repeating the above argument we may assume without loss of generality that

in fact

|{ji | 1≤ i ≤ n}| ≤ k.

Write J for the set {ji | 1≤ i ≤ n}.
Now note that we have ∑

j∈J

|{i | ji = j}| = n.
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Note that if l ∈N is such that l < ⌈ nk ⌉, then l <
n
k . To show this, see that we can find

p,q ∈ N with 0 ≤ q < k such that n = pk+ q by Euclid’s algorithm. We can then
split into cases depending on whether or not q = 0, by decidability of equality for
N. If q = 0, then l < ⌈ nk ⌉=

n
k . If q > 0, then l ≤ ⌈

n
k ⌉ – 1<

n
k . So in either case l <

n
k .

Hence, if we had |{i | ji = j}|< ⌈
n
k ⌉ for all j ∈ J , this would imply

∑
j∈J |{i | ji =

j}|< nk ·k = n, giving a contradiction. Hence, for some j ∈ J wemust have |{i | ji =
j}| ≥ ⌈ nk ⌉. Choose such a j, and I ⊆ {i | ji = j} with |I |= ⌈

n
k ⌉ and an enumeration

of I. Then let S be the ⌈ nk ⌉-tree Tr((αi)i∈I ; (Si)i∈I ). Since T is good and Si is good
when αi = 1, Smust also be good. Now suppose 0 ∈Cover(S). This implies that for
some i ∈ I , αi = 1 and 0 ∈ Si . But then also 0 ∈ pj . So Cover(S)⊆ pj as required. ⊣

Remark 6.11. Note that in the above lemma we do not have 0◁pj relative to
Ln, because we require a good n-tree S, such that Cover(S) ⊆ pj , but have only a
good ⌈ nk ⌉-tree. We do however have ¬¬0 ∈ pj .

Lemma 6.12 (CZF+MP+ IPFn,NN). Suppose that for each j ∈ N, pj is a subset
of {0} such that 0◁

⋃
j∈N
pj and that for all j 6= j

′ ∈ N we have pj ∩pj′ = ∅. Then

for some (necessarily unique) j ∈ N we have 0 ∈ pj .

Proof. This is a special case of Lemma 6.10 with k = 1. ⊣

Lemma 6.13 (CZF+MP+ IPFn,NN). Suppose that V (Ln) |= f ∈ NN. Then for

some g : N→ N, V (Ln) |= f = ĝ.

Proof. We define g : N→ N as follows. Let l ∈ N. For each m ∈ N, set pm :=

[[f(l̂) = m̂]]. Note that for m 6=m′, we have pm ∩pm′ = ∅, so we can apply Lemma

6.12 to find m such that 0 ∈ [[f(l̂) = m̂]]. We take g(l) to be this m.
Note that by construction we have V (Ln) |= (∀l ∈N) ĝ(l) =f(l), and so V (Ln) |=

ĝ = f. ⊣

Lemma 6.14 (CZF+MP+IPFn,NN). Suppose thatV (Ln) |= F :NN→N. Then for

some G : NN→ N, V (Ln) |= F = Ĝ .

Proof. First note that by Lemma 6.13 we can show that NN is absolute, in the

sense that in V (Ln) we can show that N̂N is the set of functions N→N. However, we
can now apply the same proof as in Lemma 6.13 to get the result. ⊣

Lemma 6.15 (CZF+MP+ IPFn,NN).

V (Ln) |=MP

Proof. Suppose that f ∈ V (Ln) is such that V (Ln) |= f ∈ 2N ∧ ¬¬(∃x ∈
N)f(x) = 1. Then by Lemma 6.13 there is g :N→ 2 such thatV (Ln) |= ĝ =f. Note
that ¬¬(∃x ∈ N) ĝ(x) = 1 is equivalent to ¬(∀x ∈ N) ĝ(x) = 0 and so is absolute.
Hence we can applyMP in the background to find m ∈ N such that g(m) = 1. But
then V (Ln) |= (∃x ∈ N)f(x) = 1. ThereforeMP holds in V (Ln). ⊣

6.3. LLPOn in V
(Ln). The motivation for the definition of Ln was to try to write

down the simplest topology where LLPOn holds in the topological model. We now
check that in fact it really is the case that LLPOn holds in V

(Ln). Note that we don’t
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need to assume LLPOn holds in the background for this to work, although we did
need IPFn,NN , even just to construct the topological model.

Lemma 6.16 (CZF+MP+ IPFn,NN).

V (Ln) |= LLPOn.

Proof. Suppose that f ∈ V (Ln) is such that internally in V (Ln), f is a function
N→ 2 such thatf(i) = 1 for at most one i. Then by Lemma 6.13 there must be some
(unique) g :N→ 2 such that V (Ln) |= ĝ =f. Then by Lemma 3.8 we must have that
also g(i) = 1 for at most one i. We now define a tree by setting for 1≤ k ≤ n,

αk(i) := 1 – max
i′≤i
(g(ni ′+(k – 1)))

and then define

T := Tr(nil, ...,nil;α1, ...,αn).

We clearly have that T is a good tree and by Lemma 3.8 we know

Cover(T )⊆
⋃

1≤k≤n

[[(∀x ∈ N)f(xn+(k̂ – 1)) = 0]].

Hence

V (Ln) |=
∨

1≤k≤n

(∀x ∈ N)f(xn+(k – 1)) = 0.

But we now have that V (Ln) |= LLPOn as required. ⊣

6.4. Bounded existential formulas and countable choice in V (Ln). Although
countable choice fails in each V (Ln), there are weaker variants that we define below
that do hold. To formulate them, we first define some notation for certain bounded
existential formulas.

Definition 6.17. Let φ be a formula. We write (∃≤nx)φ as shorthand for the
following formula.

(∃x ∈ N)φ ∧ (∀x1, ...,xn+1 ∈ N)


∧

i 6=j

(xi 6= xj) →¬
∧

i

φ(xi)


 .

Informally, this says that there exists a witness of φ(x) in N, but given any X ⊆ N

with |X | = n+1 it is false that every element of X is a witness of φ(x). In other
words φ(x) has at least one, but at most n witnesses.

Definition 6.18. We define the following variants of the axiom of choice. Let X
be any set.

1. Write ACX,k for the following principle. Let φ(x,y) be a bounded formula

(that may have parameters). Suppose that we have (∀x ∈ X )(∃≤ky)φ(x,y).
Then there is a function f : X → N such that for every x ∈ X , φ(x,f(x)).

2. Write ACmX,k for the following principle. Let φ(x,y) be a bounded formula

(that may have parameters). Suppose that we have (∀x ∈ X )(∃≤ky)φ(x,y).
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Then there is a function f : X → N such that for every x ∈ X , there is a good
m-tree, T such that if T is very good then φ(x,f(x)).

3. Write AC¬¬
X,k for the following principle. Let φ(x,y) be a bounded formula.

Suppose that we have (∀x ∈ X )(∃≤ky)φ(x,y). Then there is a function f :
X → N such that for all x ∈ X , ¬¬φ(x,f(x)).

Proposition 6.19 (CZF+MP). Let X be any set. For all m,k ∈ N with m,k ≥ 2,
and all m′ ≤m,

ACX,k ⇒ AC
m
X,k ⇒ AC

m′

X,k ⇒ AC
¬¬
X,k .

Proof. For (ACX,k ⇒ AC
m
X,k), note that AC

m
X,k is easily a special case of ACX,k .

For (ACmX,k ⇒ AC
m′

X,k), given any good m-tree T, we can generate a good m
′-tree

by “choosing m′ branches at each level.”

For (ACm
′

X,k ⇒ AC
¬¬
X,k), we just apply Corollary 4.21. ⊣

Lemma 6.20 (CZF+MP+ IPFn,NN +ACN,N). Let n,k ∈ N and 2≤ k < n. Then

V (Ln) |= AC
⌈ n
k
⌉

N,k .

Proof. Let x ∈ N and suppose that 0 ∈ [[(∃≤ky)φ(x̂,y)]]. Then we have by
unfolding the interpretation of formulas in V (Ln) and the definition of ∃≤k that,

0◁
⋃

i∈N

[[φ(x̂,î)]]

and for every list i1, ...,ik+1
⋂

1≤j≤k+1

[[φ(x̂,îj)]] = ∅.

Hence, applying Lemma 6.10 with pi := [[φ(x̂,î)]], we have that for every x ∈ N

there exists y ∈N and a good ⌈ nk ⌉-treeS such that ifS is very good then 0∈ [[φ(x̂,ŷ)]].
Now applyingACN,N we get a choice functionf :N→N. That is, for every x ∈N,

there exists a good ⌈ nk ⌉-tree S such that if S is very good then 0 ∈ [[φ(x̂,
ˆf(x))]]. For

each x ∈ N, let g ∈ NN be a code for the tree S as above. Then the statement that g
codes a good tree is absolute by Theorem 4.19, so also holds internally.
Also, the statement that g codes a very good tree is equivalent to a formula of

the form (∃x ∈ N)ø(x), where ø is negative by Lemma 4.20. Hence by Lemma

3.9 the statement “ ĝ codes a very good tree implies φ(x̂, ˆf(x))” must also hold
internally. ⊣

Finally, we define another variant of choice that will also hold in our model. This
will be denotedHerbrand choice, since it also holds in theHerbrand topos developed
by Van den Berg in [20].

Definition 6.21. We refer to the following principle as HACX,N or Herbrand
choice. Let φ(x,y) be a bounded formula (that may have parameters). Suppose that
we have (∀x ∈ X )(∃y ∈ N)φ(x,y). Then there exists a function f from X to the set
of finite subsets of N, Pfin(N), such that for all x ∈ X there exists m ∈ f(x) such
that φ(x,m).
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One can easily show HACX,N can be alternatively formulated as follows.

Proposition6.22 (CZF). HACX,N is true if and only if the following holds. Suppose
that we have (∀x ∈ X )(∃y ∈ N)φ(x,y). Then there exists a function f : X → N such

that for all x ∈ X there exists m<f(x) such that φ(x,m).

Lemma 6.23 (CZF+MP+ IPFn,NN +ACN,N).

V (Ln) |=HACN,N.

Proof. Suppose that V (Ln) |= (∀x ∈ N)(∃y ∈ N)φ(x,y). Then for every n ∈ N,
we have V (Ln) |= (∃y ∈N)φ(n̂,y). By Lemma 6.9 there exists a finite set J ⊆N such

that V (Ln) |= (∃y ∈ Ĵ )φ(n̂,y). Hence also there exists N ∈ N such that V (Ln) |=

(∃y < N̂ )φ(n̂,y). By ACN,N, we deduce that there is a function f : N→ N such

that for all n ∈ N, V (Ln) |= (∃y < f̂(n))φ(n̂,y). Finally by absoluteness, we deduce

V (Ln) |= (∀x ∈ N)(∃y < f̂(x))φ(x,y), and thereby V (Ln) |=HACN,N. ⊣

§7. Applications.

7.1. Consistency of Church’s thesis with LLPOn . A hallmark of Lifschitz
realizability, from Lifschitz’s original model for arithmetic in [12] onwards is that
it satisfies both Church’s thesis and LLPO. We will recover the result from [5]
that Church’s thesis and LLPO are compatible over IZF. Moreover, we will show
something even stronger. Certain variants of the axiom of countable choice are
compatible with Church’s thesis and LLPO, and as n increases, we can show that
successively stronger forms of countable choice are compatible with Church’s thesis
and LLPOn.

Lemma 7.1 (CZF+MP+CT!).

V (Ln) |= CT!.

Proof. By Lemma 6.13 it suffices to show that for every f ∈ NN, the statement
that f is computable holds in V (Ln). For any f, we have by applying CT! in the
background that there exists e ∈N such thatf = {e}. For every i ∈N, the statement
that f(i) = {e}(i) is of the form (∃x ∈ N)φ(x) where φ is primitive recursive.
Since this holds in the background universe we must also have for each i, V (Ln) |=

f̂(î) = {ê}(î). Therefore V (Ln) |= (∀x ∈ N) f̂(x) = {ê}(x). Therefore V (Ln) |= CT!
as required. ⊣

Theorem 7.2. Assume that CZF is consistent. Then for each n ∈ N, the following

theory is consistent.

CZF+MP+LLPOn+
∧

2≤k<n

AC
⌈ n
k
⌉

N,k +HACN,N+CT!.

Assume that IZF is consistent. Then for each n ∈N, the following theory is consistent.

IZF+MP+LLPOn+
∧

2≤k<n

AC
⌈ n
k
⌉

N,k +HACN,N+CT!.
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Proof. Let T be either CZF or IZF and assume that T is consistent. It is already
known that in both cases MP does not change the consistency strength. (IZF is
the same consistency strength as ZF by the main result in [6] and CZF is the same
consistency strength as CZF+LPO by [17])
So we have that T +MP is consistent. Then so is the theory T +MP+CT0+

IPFn,NN by working in the McCarty realizability model V (K1) and using the main
results in [14] and [18] together with Lemma 5.6.
However we now get the result by building the model V (Ln) in T +MP+CT0+

IPFn,NN and applying Lemmas 6.15, 6.16, 6.20, 6.23 and 7.1. ⊣

In [19], Richman gave a proof in Bishop style constructive mathematics that for
each n, LLPOn is inconsistent with the statement that all functions are computable
(that in fact this is even true for LLPO∞). Richman’s argument does not hold in
CZF or even IZF, as is already clear from the earlier Lifschitz realizability model
in [5]. However, it turns out that the only obstacle is an implicit use of countable
choice, and one can use AC¬¬

N,n to carry out Richman’s argument, as follows.

Theorem 7.3. For each n ∈ N, the following theory is inconsistent.

CZF+LLPOn+CT!+AC
¬¬
N,n.

Proof. For each i,j ∈ N with j < n, we define αi,j ∈ N∞ as follows. αi,j(k) is
equal to 0 if the ith Turing machine with input i has halted by stage k with output j,
and αi,j(k) is equal to 1 otherwise.
Note that for any i and for any j,j′ < n with j 6= j′ we have αi,j ∨αi,j′ = 1 (since

the ith Turing machine on input i can have at most 1 output). Hence we can apply
LLPOn to show that for some j < n, αi,j = 1.
Now we can apply AC¬¬

N,n to find a function f : N→ n such that for each i,
¬¬αi,f(i) = 1. (In fact this implies that αi,f(i) = 1, but we don’t need this.)
Now apply CT! to find e ∈ N such that for all i, {e}(i) = f(i). In particular,

the eth Turing machine with input e halts with output f(e). Hence, for sufficiently
large k we have αe,f(e)(k) = 0 and so αe,f(e) 6= 1. However, f(e) was chosen so that
¬¬αe,f(e) = 1. Therefore we get a contradiction, as required. ⊣

Hendtlass and Lubarsky showed in [9] that LLPOn+1 is independent of LLPOn
over IZF+DC using topological models. We obtain here a similar separation result.

Corollary 7.4. For each nLLPOn+1 does not imply LLPOn over IZF+MP+
CT!+AC

¬¬
N,n+HACN,N.

Proof. IZF+MP+CT!+AC
¬¬
N,n +HACN,N+LLPOn+1 is consistent by The-

orem 7.2 and proposition 6.19 but IZF+MP+CT!+AC
¬¬
N,n +LLPOn is not by

Theorem 7.3. ⊣

In addition we get the following corollary by the same argument.

Corollary 7.5. AC¬¬
N,n does not imply AC

¬¬
N,n+1 over IZF +MP + CT! +

LLPOn+1+HACN,N.

Proof. IZF+MP+CT!+LLPOn+1+HACN,N+AC
¬¬
N,n is consistent by Theo-

rem 7.2 and proposition 6.19 but IZF+MP+CT!+LLPOn+1+AC
¬¬
N,n+1 is not by

Theorem 7.3. ⊣
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7.2. Existence properties.

Theorem 7.6. Let T be one of CZF or IZF. Let φ(x) be a formula with one free
variable, x. Suppose that

T +MP+LLPOn ⊢ (∃j ∈ N)φ(j).

Then there is a finite set J ⊆ N such that

T +MP+LLPOn ⊢
∨

j∈J

φ(j).

Proof. Suppose that

T +MP+LLPOn ⊢ (∃j ∈ N)φ(j).

Then we have by lemma 6.16 that

T +MP+ IPFn,NN ⊢ V (Ln) |= (∃j ∈ N)φ(j).

Fix a primitive recursive encoding of finite sets of naturals as naturals. Then by
Lemma 6.9, working in T +MP+ IPFn,NN we can prove that there exists a natural

number encoding a finite set J such that V (Ln) |= (∃j ∈ Ĵ )φ(j). Now applying
Theorem 5.8 and absoluteness for primitive recursive formulas we have a finite set
J ⊆ N such that

T +MP+ IPFn,NN ⊢ V (Ln) |=
∨

j∈J

φ(ĵ).

By Lemma 5.5 we have in particular that,

T +MP+LLPOn ⊢ V (Ln) |=
∨

j∈J

φ(ĵ).

Finally we apply Lemma 6.7 to get

T +MP+LLPOn ⊢
∨

j∈J

φ(j). ⊣

Theorem 7.7. Let T be one of CZF or IZF. Let n,k ∈ N and k < n, and let φ(x)
be a formula with one free variable, x. Suppose that

T +MP+LLPOn ⊢ (∃
≤kx)φ(x).

Then for some j ∈ N we have

T +MP+LLPOn ⊢ ¬¬φ(j). (7)

T +MP+LLPO⌈ n
k
⌉ ⊢ φ(j). (8)

Proof. Suppose that T +MP + LLPOn ⊢ (∃
≤kx)φ(x). Then we have by

Lemma 6.16 that

T +MP+ IPFn,NN ⊢ V (Ln) |= (∃≤kx)φ(x).
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Hence, applying Lemma 6.10 with pj := [[φ(ĵ)]], and writing Good(T ) to mean T
is a good ⌈ nk ⌉ tree and VeryGood(T ) to mean T is a very good tree,

T +MP+ IPFn,NN ⊢ (∃j ∈ N)(∃T ) Good(T ) ∧ (9)

VeryGood(T )→
(
V (Ln) |= φ(ĵ)

)
.

We now apply lemma 5.8 to find j ∈ N such that

T +MP+ IPFn,NN ⊢ (∃T ) Good(T ) ∧ (10)

VeryGood(T )→
(
V (Ln) |= φ(ĵ)

)
.

By Lemma 5.5 we have in particular that,

T +MP+LLPOn ⊢ (∃T ) Good(T ) ∧ (11)

VeryGood(T )→
(
V (Ln) |= φ(ĵ)

)
.

However, we also have by Lemma 6.7 that

T +MP+LLPOn ⊢ (∀j ∈ N)
(
V (Ln) |= φ(j)

)
→ φ(j).

Finally, we deduce (7) by Corollary 4.21 and deduce (8) by Theorem 4.14. ⊣

Corollary 7.8. Let T be one of CZF or IZF. Let n,k ∈ N and k < n, and let
φ1, ...,φk be sentences. Suppose that

T +MP+LLPOn ⊢
k∨

i=1

φi .

Then for some 1≤ i ≤ k we have

T +MP+LLPOn ⊢ ¬¬φi,

T +MP+LLPO⌈ n
k
⌉ ⊢ φi .

Corollary 7.9. Let T be one of CZF or IZF. Let n ∈N and let φ(x) be a formula
with one free variable, x. Suppose that

T +MP+LLPOn ⊢ (∃!x ∈ N)φ(x).

Then for some j ∈ N we have

T +MP+LLPOn ⊢ φ(j).

Proof. This is a special case of (8) in Theorem 7.7 taking k := 1. ⊣

By contrast, we see below that none of these theories can have the full numerical
existence property.

Theorem 7.10. The numerical existence property does not hold for any consistent,

recursively axiomatisable extension of CZF+LLPO∞.

Proof. Let T be a consistent recursively axiomatisable extension of CZF+
LLPO∞. In fact, a similar proof works for any theory T that interprets enough
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first order arithmetic to state LLPO∞ and carry out the constructions used in
Gödel’s incompleteness theorem. However, for convenience we will use definitions
and notation from set theory.
Assume that we are given a bijective pairing on N with primitive recursive pairing

and projection functions, which we write as (,), ()0 and ()1 respectively, and let Pr
be a primitive recursive provability predicate.
Construct by diagonalisation a formula φ(n), where n is the only free variable and

such that

T ⊢ (∀n ∈ N)(φ(n) ↔ ((∀m ∈ N)((m)0 = n∧Pr((m)1,pφ(n)q) → (12)

(∃m′ <m) Pr((m′)1,pφ((m
′)0)q)))).

Write ø(n,m) for the formula

ø(n,m) := ((m)0 = n∧Pr((m)1,pφ(n)q) → (13)

(∃m′ <m) Pr((m′)1,pφ((m
′)0)q))).

Now define for each n ∈ N, αn ∈ N∞ as follows

αn(l) :=

{
1 for all m ≤ l,ø(n,m),

0 otherwise.

So thatwe can applyLLPO∞, we first show that for all n 6= n
′ wehaveαn∨αn′ =1.

For any l ∈ N, assume for a contradiction that αn ∨αn′(l) = 0. Without loss of
generality we may assume l is the least such number (since ø(n,m) is primitive
recursive and so decidable). By the minimality of l we must have either ¬ø(n,l) or
¬ø(n′,l). However, we cannot have both of these since this would imply (l)0 = n
and (l)0 = n

′. Hence we have without loss of generality (l)0 = n and since αn′(l) =
0 and ø(n′,l), there must be some l ′ < l such that ¬ø(n′,l ′). In particular we
have Pr((l ′)1,pφ((l

′)0)q) but also for all m < l , ¬Pr((m)1,pφ((m)0)q), giving us a
contradiction. Therefore, αn ∨αn′ = 1 as required.
We can now apply LLPO∞ to show that T ⊢ (∃n ∈ N)αn = 1. Note that this

implies T ⊢ (∃n ∈ N)φ(n).
Now if we assume that the numerical existence property holds for T then there

must be some n ∈ N such that T ⊢ φ(n). So there must be m such that (m)1 codes a
proof for φ((m)0) (by taking (m)0 = n). Since the provability predicate is decidable,

without loss of generality we can take m to be the least number such that (m)1
codes a proof for φ((m)0). By the minimality of m we have that for all m

′ < m,

¬Pr((m′)1,φ((m
′)0)). But this is a ∆0 sentence, so by absoluteness for ∆0 sentences

we have

T ⊢ ¬(∃m′ <m) Pr((m′)1,φ((m
′)0)).

Again by absoluteness of ∆0 sentences, we also have

T ⊢ (m)0 = (m)0 ∧ Pr((m)1,pφ((m)0)q).

Hence we have T ⊢ ¬φ((m)0), contradicting that T ⊢ φ((m)0) and the consistency
of T. Therefore the numerical existence property must fail for T. ⊣
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Corollary 7.11. For every n, there is a formula with one free variable, φ(x),
such that IZF+LLPOn +MP ⊢ (∃x ∈ N)φ(x) but for every formula ø(x), IZF+
LLPOn+MP 0 (∃!x ∈ N)φ(x)∧ø(x).

Proof. Let φ(x) be the formula from the proof of Theorem 7.10. If IZF+
LLPOn +MP ⊢ (∃!x ∈ N)φ(x)∧ø(x) was provable, then by Corollary 7.9 there
would be some j such that IZF+LLPOn+MP ⊢ φ(j)∧ø(j). But in particular this

gives IZF+LLPOn+MP ⊢ φ(j) contradicting Theorem 7.10. ⊣

In [7], Friedman showed that for every recursively axiomatisable extension
of Heyting arithmetic the disjunction property implies the numerical existence
property. He further remarks, without proof, that there is a ∆02 extension that satisfies
the disjunction property but not the numerical existence property. As a corollary of
the above results, we obtain a reasonably natural example of a Π02 theory with the
disjunction property but not the numerical existence property.

Corollary 7.12. Assume classical logic in the meta theory. The theory T :=⋂
n IZF+MP+LLPOn (i.e., the set of formulas provable in IZF+MP+LLPOn
for every n) has the disjunction property.

Proof. Suppose that T ⊢ φ∨ø. Then, for each n, IZF+MP+LLPO2n ⊢ φ∨ø.
Hence either IZF+MP+LLPOn ⊢ φ or IZF+MP+LLPOn ⊢ ø. Let X := {n ∈
N | IZF+MP+LLPOn ⊢ φ} and Y := {n ∈ N | IZF+MP+LLPOn ⊢ φ}. X and
Y are downwards closed subsets of N such that X ∪Y = N. By classical logic we
therefore have either X = N or Y = N. Without loss of generality, say X = N. Then
we have that for every n,

IZF+MP+LLPOn ⊢ φ.

But we have now shown the disjunction property for this theory. ⊣

Theorem 7.13. The theory T :=
⋂
n IZF+MP+LLPOn (i.e., the set of formulas

provable in IZF+MP+LLPOn for every n) does not have the numerical existence
property.

Proof. Note that the statement (∃n ∈N)LLPOn can be formalised in set theory
and holds in each IZF+MP+LLPOn for each n. However, for each n, we have seen
that IZF+MP+LLPOn+1 does not prove LLPOn, so it is not provable in T. Hence
T proves (∃n ∈ N)LLPOn but does not prove LLPOn for any n, so the numerical
existence property fails. ⊣

7.3. Consistency of Brouwerian continuity principles. Recall that the fan theorem
and bar induction are defined as below.

Definition 7.14. Write 2∗ for the set of finite binary sequences. If α : N→ 2 is
an infinite binary sequence, write ᾱ(n) for the finite binary sequence of length n
obtained by restricting α.
A subset R of 2∗ is a bar if for every α : N→ 2, there exists some n ∈ N such that
¯α(n) ∈R.
A bar, R, is uniform if there exists n ∈ N such that for all α : N→ 2, there exists

m ≤ n such that ᾱ(m) ∈R.
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The fan theorem, Fan is the axiom that every bar is uniform.
A subset R of N∗ is a bar if for every α :N→N, there exists some n ∈N such that
¯α(n) ∈R.
A bar,R, ismonotone if whenever s ∈R and s ′ is a finite binary sequence extending

s, then also s ′ ∈R.
If s and t are finite binary sequences, write s ∗ t for the concatenation of s and t.
Monotone bar induction, BIM , is the following axiom. Let Q ⊂ N∗ be such that

there is a monotone bar R with R ⊆ Q and Q has the property that whenever
s ∗ 〈n〉 ∈Q for all n also s ∈Q. Then 〈〉 ∈Q.

Proposition 7.15 (CZF+MP). Let V P be the function realizability model from

[15]. ThenMP holds in V P.

Proof. This can easily be checked by applyingMP in the background and noting
that there is a continuous functional that takes as input α : N→ 2 such that there
exists n with α(n) = 1 and returns the first n such that α(n) = 1. ⊣

Lemma 7.16 (CZF+MP+ IPFn,NN +Fan).

V (Ln) |= Fan.

Proof. Let R ∈ V (Ln) be such that the statement that R is a bar holds in V (Ln).
We first construct a set R′ in the background universe and check that R′ is a bar.
Let R′ be the set of ó ∈ 2∗ such that V (Ln) |= (∃ó′ ∈R)ó′ ≤ ó̂.

To show that R′ is a bar, let α ∈ 2N. Then V (Ln) |= (∃j ∈ N) ¯̂α(j) ∈R, since R is
internally a bar in V (Ln). Hence by lemma 6.9, there is a finite set J ⊆N such that
V (Ln) |= (∃j ∈ J ) ¯̂α(j) ∈ R. Then set N := maxJ . We clearly have ᾱ(N ) ∈ R′, and
so R′ is a bar.
We can now apply Fan in the background universe to find m such that for every

α ∈ 2N there exists l ≤ m such that ᾱ(l) ∈ R′. But we now have V (Ln) |= (∃x ≤
m̂) ᾱ(x) ∈R as required. ⊣

Lemma 7.17 (CZF+MP+ IPFn,NN +BIM ).

V (Ln) |= BIM .

Proof. Suppose that R,Q ∈ V (Ln) are such that in V (Ln) the following holds:
R ⊆ Q ⊆ N∗, R is a monotone bar and whenever Q contains every immediate
successor of ó ∈ N∗, it also contains ó. We first define external versions of R and Q
as follows:

R′ := {ó ∈ N∗ | V (Ln) |= ó̂ ∈R},

Q′ := {ó ∈ N∗ | V (Ln) |= ó̂ ∈Q}.

Note that we can easily show R′ ⊆ Q′ ⊆ N∗ and that R′ is monotone. To apply
BIM in the background, it only remains to check that R

′ is a bar and that for any
ó ∈ N∗ if Q′ contains every immediate successor of ó it also contains ó.

To check thatR′ is a bar, let f :N→N. Then V (Ln) |= (∃x ∈N)
¯̂
f(x) ∈R. Hence

by Lemma 6.9, there is a finite set J ⊆N such that V (Ln) |=
∨
j∈J

¯̂
f(j) ∈ R. Then

setN := maxJ . By monotonicity we have that for each j ∈ J , V (Ln) |=
¯̂
f(j) ∈R→
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¯̂
f(N ) ∈R. So we deduce that V (Ln) |=

¯̂
f(N ) ∈R and so f̄(N ) ∈R′. Therefore R′

is a bar as required.
Now let ó ∈ N∗ be such that for all m ∈ N, ó ∗ 〈m〉 ∈ Q′. Then by absoluteness,

we have V (Ln) |= (∀x ∈ N) ó̂ ∗ 〈x〉 ∈Q. Therefore, V (Ln) |= ó̂ ∈Q and so ó ∈Q′.
We can now apply BIM in the background to deduce that 〈〉 ∈ Q

′. Therefore
V (Ln) |= 〈〉 ∈Q. So we have confirmed BIM holds in V

(Ln) as required. ⊣

Lemma 7.18 (CZF+MP+ IPFn,NN +Cont(NN,N)).

V (Ln) |= Cont(NN,N).

Proof. Suppose V (Ln) |= F :NN→N. Then by Lemma 6.14 there is G :NN→N

such that V (Ln) |= F = Ĝ . Let α ∈ NN. By Cont(NN,N) in the background, there
exists j such that for any â ∈ NN, ᾱ(j) = â̄(j) implies G(α) = G(â). However, by
absoluteness we then haveV (Ln) |= (∀â ∈NN) ᾱ(j) = â̄(j)→G(α) =G(â). But we

now have that in V (Ln), Ĝ and so also F are continuous. We deduce Cont(NN,N) in
V (Ln). ⊣

Lemma 7.19 (CZF+MP+ IPFn,NN +AC2). Let n,k ∈ N and 2≤ k < n. Then

V (Ln) |= AC
⌈ n
k
⌉

NN,k
.

Proof. By adapting the proof of lemma 6.20 and applying AC2 in the
background. ⊣

Lemma 7.20 (CZF+MP+ IPFn,NN +AC2).

V (Ln) |=HAC
NN,N.

Proof. By adapting the proof of Lemma 6.23 and applying AC2 in the
background. ⊣

Theorem 7.21. Assume CZF is consistent. Then for each n, so is the following
theory.

CZF+CC+Fan+AC2+RDC+MP+ IPFn,NN . (14)

AssumeCZF+MP+REA is consistent. Then for each n, so is the following theory.

CZF+REA+CC+BIM +AC2+RDC+MP+ IPFn,NN . (15)

Proof. Using Proposition 7.15 and Lemma 5.10 one can easily adapt the proof
of [15, Theorem 9.10] to show this. ⊣

Theorem 7.22. If CZF is consistent then for each n, the following theory is also
consistent.

CZF+MP+
∧

2≤k<n

AC
⌈ n
k
⌉

NN,k
+HAC

NN,N+LLPOn+Cont(N
N,N)+Fan. (16)
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If CZF+REA is consistent then for each n, the following theory is also consistent.

CZF+MP+
∧

2≤k<n

AC
⌈ n
k
⌉

NN,k
+HAC

NN,N+LLPOn+Cont(N
N,N)+BIM . (17)

Proof. We build V (Ln) in the theory (14), which is consistent by Theorem 7.21.
We then have that V (Ln) models (16) by Lemmas 6.15, 7.19, 7.20, 6.16, 7.18 and
7.16. To add monotone bar induction we also apply Lemma 7.17. ⊣

(There is already a similar result for LLPO over second order arithmetic due to
Van Oosten in [21, Section 5].)

Corollary 7.23. CZF + MP +
∧
2≤k<nAC

⌈ n
k
⌉

NN,k
+ HAC

NN,N + LLPOn +

Cont(NN,N)+BIM does not prove LCP or ACNN,2.

Proof. CZF+MP+
∧
2≤k<nAC

⌈ n
k
⌉

NN,k
+HAC

NN,N+LLPOn+Cont(N
N,N)+BIM

is consistent, so it suffices to show CZF+LLPOn +LCP and CZF+LLPOn +
Cont(NN,N)+AC

NN,2 are not.
In both cases, we show the theories are inconsistent by first noting that there is a

surjection F : NN
։ {〈α1, ...,αn〉 ∈ Nn∞ | αi ∨αj = 1, for i 6= j}, defined as follows.

(F (α))i(k) =

{
0 α(k′)≡ i mod n+1 where k′ ≤ k least s.t. α(k′) 6= 0,

1 otherwise.

By LLPOn, there is 1 ≤ i ≤ n for each α ∈ NN such that (F (α))i = 1. Let α be
such that (F (α))i = 1 for all i. By LCP there is some i,k ∈ N such that whenever
â̄(k) = ᾱ(k), (F (â))i = 1. However, we can now easily find â such that â̄(k) = ᾱ(k)
but (F (â))i 6=1 to get a contradiction. Similarly, we can useACNN,2 to get a function

G : NN→ N such that for all α, (F (α))G(α) = 1, contradicting Cont(N
N,N). ⊣

§8. Connections to other formal systems.

8.1. Connections to topos theory. The Ln considered in this paper appear to be
strongly related to the local operators in the effective topos previously considered
by Lee and Van Oosten in [11], specifically to the local operators corresponding
to finitary sights. We expect that in fact these local operators can be obtained by
carrying out the construction ofLn in the effective topos. The realizability modelV

P

corresponds to the topos RT(K2) (as described, for example, in [23, Section 4.3]).
Since we only require computable functions, one might expect our constructions to
work also in the relative realizability topos RT(KREC2 ,K2) (see [23, Section 4.5]). The
realizability with truth model is related to the topos (Eff ↓ ∆) obtained by gluing
along the inclusion functor from Set to Eff. Putting this all together, we make the
following conjecture.

Conjecture 8.1. Some of the local operators in Eff considered in [11] have
counterparts in the toposes RT(K2), RT(K

REC
2 ,K2) and (Eff ↓ ∆).
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(We again point out that VanOosten has already shown that the original Lifschitz
realizability model has a counterpart in RT(K2) (see [23, Section 4.3]) and for q-
realizability (an ancestor of realizability with truth) (see [21, Proposition 3.5])).

8.2. Connections to type theory. A form of Lifschitz realizability for homotopy
type theory has been developed by Koutsoulis [10] based on a preprint of this paper
together with other techniques.
We also expect that some of the results of §7.2 manifest in extensional type theory

as follows.

Definition 8.2. Let Γ be a context in type theory.We say that Γ has propositional
canonicity for N if whenever Γ ⊢ t : N, there is some n ∈ N and a term p such that
Γ ⊢ p : IdN(t,n).

Suppose we are working in a variant of type theory that has a propositional
truncation operator (such as type theory with brackets, as in [4]). In such theories
there are two different ways of formalising LLPO depending on whether or not we
use the propositional truncation operator ‖ – ‖. We call these LLPO+ and LLPO∨

and define them as follows.

LLPO+ :=
∏

α:N→2


∏

m,n:N

(α(m) = 1+α(n) = 1 → m = n)


 →

((∏

n:N

α(2n) = 0

)
+

(∏

n:N

α(2n+1) = 0

))

LLPO∨ :=
∏

α:N→2


∏

m,n:N

(α(m) = 1+α(n) = 1 → m = n)


 →

∥∥∥∥∥

(∏

n:N

α(2n) = 0

)
+

(∏

n:N

α(2n+1) = 0

)∥∥∥∥∥ .

By adapting the proof of Theorem 7.10, we have,

Theorem 8.3. The context (x : LLPO+) does not have propositional canonicity
for N over any variant of type theory for which it is consistent (that is, there is no term
of type ⊥ in context (x : LLPO+)) and such that the set of judgements is computably
enumerable.

However, we expect by analogy with the results in this paper that the following
holds.

Conjecture 8.4. The context (x : LLPO∨) has propositional canonicity for N
over type theory with bracket types, as studied by Awodey and Bauer in [4], or similar
systems studied by Maietti in [13].
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