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Continuous valuations have been proposed by several authors as a way of modelling

probabilistic non-determinism in programming language semantics. Let (X,O) be a

topological space. A quasi-simple valuation on X is the sup of a directed family of simple

valuations. We show that quasi-simple valuations are exactly those valuations that extend to

continuous valuations to the Alexandroff topology on the specialisation preordering of the

topology O. A number of applications are presented. In particular, we recover Jones’ result

that every continuous valuation is quasi-simple if X is a continuous dcpo – in this case there

is a least extension to the Alexandroff topology. We show that this can be refined if X is

algebraic, where every continuous valuation is the sup of a directed family of simple

valuations based on finite elements. We exhibit another class of spaces in which every

continuous valuation is quasi-simple, the so-called finitarily coherent spaces – in this case

there is a largest extension to the Alexandroff topology. In general, the extension to the

Alexandroff topology is not unique, unless, for example, the original valuation is

bicontinuous. We also show that other natural spaces of valuations, namely those of discrete

valuations and point-continuous valuations, can be characterised by similar extension

theorems.

1. Introduction

Giving a faithful account of probabilistic non-determinism in denotational semantics has

attracted quite a lot of research since the pioneering work of Saheb-Djahromi, and of

Jones and Plotkin. Mixing domain theory with probabilities seems to require one to use

continuous valuations rather than measures, as justified and studied in Claire Jones’ Ph. D.

thesis (Jones 1990). Amongst all the continuous valuations, those that can be built as

sups of directed families of simple valuations are the most natural, and can be handled

most conveniently. (We will give definitions shortly.) For example, if ν is a continuous

valuation that can be written as the sup of the directed family
 ni∑

j=1

aijδxij




i∈I

,

then the integral
∫
x∈X f(x)dν (as defined in Tix (1995) for example, extending Jones (1990))

can be computed, not just characterised, as the sup of all finite sums
∑ni

j=1 aijf(xij). This

is one of the notable ingredients in Edalat (1995).

We will call those valuations that are sups of directed families of simple valuations

quasi-simple for short. The initial purpose of this paper is to refine our understanding
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of quasi-simple valuations. This will be achieved by proving Theorem 1.1 below, and

exploring some of its applications.

We will begin by giving a few definitions. Let (X,O) be a topological space. A valuation

on X is a map ν : O → (�+ ∪{+∞}) such that ν(∅) = 0 (strictness); U ⊆ V implies ν(U) �
ν(V ) for all opens U,V ∈ O (monotonicity); and ν(U ∪V )+ ν(U ∩V ) = ν(U)+ ν(V ) for all

opens U,V ∈ O (modularity). A continuous valuation also satisfies ν(
⋃

i Ui) = supi ν(Ui)

for every directed family (Ui)i∈I of opens: such a family is directed if and only if I 	= ∅
and for every i, j ∈ I , there is k ∈ I such that Ui,Uj ⊆ Uk . Continuous valuations are a

concept close to that of measure; while measures are defined on σ-algebras, valuations

are naturally defined on topological spaces.

We can build continuous valuations using a number of different means. First, the

Dirac valuation δx maps every open containing x to 1, and every open not containing x

to 0. Second, any finite linear combination
∑n

i=1 aiνi of continuous valuations (νi)1�i�n

(ai ∈ �+) is again a continuous valuation; a linear combination
∑n

i=1 aiδxi of Dirac

valuations is called a simple valuation. Third, ordering valuations pointwise, any sup of

directed families of continuous valuations is again a continuous valuation. We shall call

directed sups of simple valuations quasi-simple valuations. In general, it is not the case

that every bounded continuous valuation is quasi-simple. However, Jones (1990) showed

that every bounded continuous valuation is indeed quasi-simple when X is the topological

space underlying a continuous dcpo.

The main point of this paper is to give an equivalent characterisation of quasi-simple

valuations, as in the following theorem.

Theorem 1.1. Let (X,O) be any topological space. A bounded function ν : O → �+

is a quasi-simple valuation if and only if it extends to a continuous valuation on the

Alexandroff extension of the topology O.

Here ν is bounded just means that the range of ν is included in �+, in particular,

ν(X) < +∞. The major ingredient of the theorem is the Alexandroff extension of a

topology. First, recall that on every topological space (X,O) we may define a specialisation

preordering �s by x �s y if and only if x is in the closure of y; or, equivalently, if

every closed set containing y contains x; or, equivalently, if every open set containing x

contains y. This is an ordering exactly when X is T0. Conversely, given any preordering

�, the set of sets that are upper with respect to � is a topology, called the Alexandroff

topology over �. We call the Alexandroff topology over the specialisation preordering �s

the Alexandroff extension of the topology O. Notice that every U ∈ O is upper in �s, so

all opens are opens of the Alexandroff extension. In the rest of the paper, we shall call

any extension of a continuous valuation ν to the Alexandroff extension of the topology

an A-extension of ν.

Outline of the paper

We prove Theorem 1.1 in Section 2, then explore a number of applications in Section 3.

First, we shall show in Section 3.1 that Jones’ Theorem that every bounded continuous

valuation ν on a continuous dcpo is quasi-simple is an easy corollary of this theorem. In
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fact, ν not only has an A-extension, but also a least one in this case. We shall then refine

this in Section 3.2 to show that every bounded continuous valuation on an algebraic

dcpo is the sup of a directed family of simple valuations based on finite elements, which

fills a gap in Sünderhauf’s argument (Sünderhauf 1997). We note that the space of A-

extensions does not, in general, have any remarkable structure: in particular, A-extensions

need not be unique. However, a case where A-extensions are necessarily unique is that

of bicontinuous valuations à la Bukatin and Shorina, which we briefly touch upon in

Section 3.3. Dually to the continuous dcpo case, we exhibit in Section 3.4 a new class of

topological spaces in which every continuous valuation is quasi-simple, this time because

there is a largest A-extension: the finitarily coherent spaces. We derive other, simpler

extension results for other classes of continuous valuations in Section 4: the discrete and

the point-continuous valuations, respectively. We sprinkle the text liberally with remarks

and examples. We conclude by reviewing related work in Section 5.

2. Proof of Theorem 1.1

2.1. Only if

The only if direction of the Theorem is relatively easy.

First, any simple valuation ν =
∑n

i=1 aiδxi extends to the Alexandroff valuation of O,

namely the valuation ν that is just
∑n

i=1 aiδxi again, only defined on all �s-upper subsets

of X.

Second, we note the well-known fact that any sup ν of a directed family of continuous

valuations νi, i ∈ I , on any topology is a continuous valuation on the same topology. We

leave this to the reader; see Jones (1990, Theorem 4.1) for a possible proof.

We then need the following auxiliary lemma, which slightly extends Jones’ Splitting

Lemma.

Lemma 2.1 (Sünderhauf 1997, Theorem 2.4, Corollary 2.6). Let (X,O) be a topological

space, and �s be its specialisation preordering. Define the following binary relations on

the set of simple valuations on X:

1 ν �1 ν
′ if and only if ν ′ = ν + aδx for some a ∈ �+, and x ∈ X.

2 ν �2 ν ′ if and only if ν is of the form ν0 + aδx, and ν ′ = ν0 + aδy for some simple

valuation ν0, some a ∈ �+, and some pair x, y of elements of x such that x �s y.

The preordering � on simple valuations is exactly the smallest preordering containing

�1 ∪ �2.

An equivalent, but more synthetic characterisation, is to say that
∑n

i=1 aiδxi �
∑n

j=1 bjδxj
if and only if there is a matrix (tij)1�i,j�n of non-negative reals such that ai =

∑n
j=1 tij for

all i, bj =
∑n

i=1 tij for all j, and whenever tij 	= 0, we have xi �s xj .

Lemma 2.1 implies, in particular, that the property
∑

i=1 aiδxi �
∑n

j=1 bjδxj between

simple valuations does not depend on the topology O but only on its specialisation

preordering �s. It follows that, given any directed family (νi)i∈I of simple valuations on

(X,O), the family (νi)i∈I of simple valuations on the Alexandroff extension of O is also

directed. Indeed, O and its Alexandroff extension have the same specialisation preordering.
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Then the sup of the family (νi)i∈I is a continuous valuation on the Alexandroff extension

of O, as a sup of a directed family of continuous valuations on the same Alexandroff

extension. Furthermore, supi∈I νi clearly extends supi∈I νi.

2.2. If

The if direction is more complex, but proceeds along lines very similar to Jones (1990,

Section 5.1). We mimic the latter to draw attention to the similarity.

Fix a set X and a preordering � on X. We write ↑A for {y|∃x ∈ A · x � y}, for

each A ⊆ X, and ↑ x for ↑ {x}. Let X0 be some fixed subset of X, and assume that

the family of sets ↑A, where A ⊆ X0, forms a topology O. (For example, this is the

case if X0 = X, where we recover the Alexandroff topology.) We shall show that every

bounded continuous valuation on (X,O) is a sup of a directed family of simple valuations∑n
i=1 aiδxi , where xi ∈ X0 for every i.

A crescent C is any difference U \V of (Alexandroff) opens U, V . A field of sets is any

family of sets such that every finite union and every complement of elements of the field is

again in the field. This includes ∅ and the whole space X. The field generated by the open

sets is the smallest field containing the opens; this is exactly the set of all finite disjoint

unions of crescents. Any bounded valuation ν extends to a unique finitely additive function

on the field of all crescents, defined by ν(U \ V ) = ν(U) − ν(U ∩ V ) = ν(U ∪ V ) − ν(V ).

(A finitely additive function ν maps any finite disjoint union
⋃

i Ci to
∑

i ν(Ci).) This is the

Smiley–Horn–Tarski Theorem, which is often attributed to Pettis (Alvarez-Manilla 2000,

Section 1.11). We equate continuous valuations on (X,O) with their unique extension to

the field of disjoint unions of crescents.

Notice that, for every continuous valuation ν, for every family (Oi)i∈I of opens,

ν

(⋃
i∈I

Oi

)
= sup

J finite ⊆I

ν


⋃

j∈J
Oj


 .

This is because the family of finite unions of Oi is directed.

Lemma 2.2. Let ν be a continuous valuation, O and Oi, i ∈ I , be open. Then

ν

(⋃
i∈I

Oi

∖
O

)
= sup

J finite ⊆I

ν


⋃

j∈J
Oj

∖
O


. (1)

Proof. This is exactly Lemma 5.1 of Jones (1990), although on a different topology. For

completeness, here is the proof. The left-hand side of (1) is:

ν

(⋃
i∈I

Oi

∖
O

)
= ν

(⋃
i∈I

Oi

)
− ν

(⋃
i∈I

Oi ∩ O

)

= sup
J finite ⊆I

ν


⋃

j∈J
Oj


 − sup

J finite ⊆I

ν


⋃

j∈J
Oj ∩ O




by continuity of ν. Noting that sups of upper bounded directed families of real numbers
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are just their limits, in the sense of Moore–Smith convergence, and since differences of

limits are just limits of differences, this is exactly

sup
J finite ⊆I


ν


⋃

j∈J
Oj


 − ν


⋃

j∈J
Oj ∩ O





 = sup

J finite ⊆I

ν


⋃

j∈J
Oj

∖
O


 .

We define a pre-dissection D to be any finite set of pairs (xi, Ui), 1 � i � n, where

xi ∈ X0 and Ui is open in O: that is, Ui is of the form ↑Ai for Ai ⊆ X0. By convention,

we write Ci = ↑ xi \ Ui. D is a dissection if, additionally, C1, . . . , Cn are pairwise disjoint.

Given a dissection D and a continuous valuation ν, we define

ν[D] =

n∑
i=1

ν(Ci)δxi . (2)

It is clear that ν[D] � ν, since for every open U we have

ν[D](U) =
∑
xi∈U

ν(Ci) = ν


 ⋃

i/xi∈U

Ci




(since ν is finitely additive and the Cis are pairwise disjoint), and⋃
i/xi∈U

Ci ⊆
⋃

i/xi∈U

↑ xi ⊆ U

(because U is upper). In fact we have the following lemma.

Lemma 2.3. Let X0 be some fixed subset of X, and assume that the family of sets ↑A,

A ⊆ X0, forms a topology O. Every bounded continuous valuation ν on O is the sup of

(ν[D])D dissection.

Proof. Let U be any open of the form ↑ {x1, . . . , xn}: we call this a finitary open. Let

Ui be the open ↑ {x1, . . . , xi−1} for each i, 1 � i � n. The set D of all pairs (xi, Ui) is a

pre-dissection. We claim that it is a dissection. Indeed, for any i < j, we know Cj does

not intersect Uj by construction; but Uj contains ↑ xi (since i < j), which contains Ci, so

Cj cannot intersect Ci.

On the other hand,
⋃n

i=1 Ci = U. Indeed, by induction on k,
⋃k

i=1 Ci = ↑ {x1, . . . , xk}. So

ν[D](U) =
∑

i/xi∈U ν(Ci) =
∑n

i=1 ν(Ci) = ν(
⋃n

i=1 Ci) = ν(U).

Fix an arbitrary open U, and an arbitrary ε > 0. Since every open is the union of

the directed family of all finitary opens contained in it, and since ν is continuous, there

is a finitary open U0 ⊆ U such that ν(U) � ν(U0) + ε. Now, by the above, there is a

dissection D such that ν(U0) = ν[D](U0). Since U0 ⊆ U, we obtain ν[D](U0) � ν[D](U),

so ν(U) � ν[D](U) + ε. As ε > 0 is arbitrary, ν(U) � supD ν[D](U). Since U is arbitrary,

ν � supD ν[D]. This completes the proof since ν[D] � ν for all dissections D.

However, the family of all ν[D], where D ranges over all dissections, is not necessarily

directed. Lemma 2.3 clearly entails the following corollary.

Corollary 2.4. Under the assumptions of Lemma 2.3, ν is the sup of all valuations r · ν[D],

where D ranges over all dissections, and 0 < r < 1.
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We shall show that the family (r · ν[D])D dissection,0<r<1 is directed. The key observation

is the following lemma, which is roughly similar to Jones’ Lemma 5.3.

Lemma 2.5. Let X0 be some fixed subset of X, and assume that the family of sets ↑A,

A ⊆ X0, forms a topology O.

For any open sets O1, . . . , On in O, for every 0 � s < 1, there is a dissection D such

that, for any B ⊆ {1, . . . , n},

s · ν
(⋃

i∈B
Oi

)
� ν[D]

(⋃
i∈B

Oi

)
. (3)

Proof. For every J ⊆ {1, . . . , n}, let CJ be the crescent
⋂

j∈J Oj \
⋃

j 	∈J Oj; in the rest of

the proof we exclude the case where J = ∅. Clearly the CJs are pairwise disjoint, and their

union is
⋃n

i=1 Oi. In fact, for every B ⊆ {1, . . . , n},
⋃

i∈B Oi =
⋃

J/J∩B 	=∅ CJ , where the union

on the right is a disjoint union. In particular,

ν

(⋃
i∈B

Oi

)
=

∑
J/J∩B 	=∅

ν(CJ). (4)

We now extract a dissection from each CJ , whose measure approximates that of CJ , using

the continuity Lemma 2.2. Observe that since
⋂

i∈J Oi is open, it is a union of basic opens

↑ x with x ∈ X0, and hence it is the union of all ↑ x with x ∈
⋂

i∈J Oi ∩ X0. We claim that

CJ =

( ⋃
x∈CJ∩X0

↑ x
)∖ ⋃

j 	∈J
Oj (5)

for every J . Indeed, let y be an arbitrary element of CJ . Then

y ∈
⋂
i∈J

Oi =
⋃

x∈
⋂

i∈J Oi∩X0

↑ x,

so let x be some element of
⋂

i∈J Oi ∩ X0 such that x � y. Since y ∈ CJ , we obtain

y 	∈
⋃

j 	∈J Oj , and since
⋃

j 	∈J Oj is open, and hence upper, x is not in
⋃

j 	∈J Oj either. So x

is in (⋂
i∈J

Oi ∩ X0

)∖ ⋃
j 	∈J

Oj = CJ ∩ X0.

Since x � y, in particular, y is in
⋃

x∈CJ∩X0
↑ x. So y is in the right-hand side of (5).

Conversely, let y be arbitrary in the right-hand side of (5). In particular, x � y for some

x ∈ CJ ∩ X0. Since x ∈ CJ , in particular, x ∈
⋂

j∈J Oj . Since the open
⋂

j∈J Oj is upper,

y ∈
⋂

j∈J Oj . Since, on the other hand, y 	∈
⋃

j 	∈J Oj , we obtain y ∈ CJ .

Let εJ = (1 − s)ν(CJ). From (5) and Lemma 2.2 we infer that, when εJ > 0, there is a

finite set of points xJ1, . . . , xJmJ
in CJ ∩ X0 such that

ν(CJ) � ν

(
mJ⋃
i=1

↑ xJi

∖ ⋃
j 	∈J

Oj


 + εJ . (6)

This also holds when εJ = 0, since in this case ν(CJ) = 0, and therefore (6) is trivial.
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Let DJ be the dissection {(xJi, UJi)|1 � i � mJ}, with

UJi = ↑ {xJ1, . . . , xJ(i−1)} ∪
⋃
j 	∈J

Oj

(compare with the proof of Lemma 2.3). Note, in particular, that since every xJi is in X0,

UJi is indeed open. Let CJi be the pairwise disjoint sets ↑ xJi \ UJi, 1 � i � mJ . Then⋃mJ

i=1 CJi =
⋃mJ

i=1 ↑ xJi \
⋃

j 	∈J Oj , so, by (6),

ν(CJ) �
mJ∑
i=1

ν(CJi) + εJ . (7)

Let D be the union of all DJ , J ⊆ {1, . . . , n}. This is a pre-dissection. To show that it

is a dissection, it remains to show that CJi does not intersect CJ ′i′ when J 	= J ′. This is

straightforward, since CJi ⊆
⋃mJ

i=1 CJi ⊆ CJ , and, similarly, CJ ′i′ ⊆ CJ ′ , and CJ and CJ ′ do

not intersect.

For every J, J ′ ⊆ {1, . . . , n}, xJ ′i ∈ CJ if and only if J = J ′. Indeed, remember that xJ ′i

is in CJ ′ , and the CJs are pairwise disjoint. So

ν[D](CJ) =
∑

J ′⊆{1,...,n}

mJ′∑
i=1

ν(CJ ′i)δxJ′ i (CJ) =
∑

1�i�mJ

ν(CJi) � ν(CJ) − εJ using (7)

Summing over all J ⊆ {1, . . . , n} such that J ∩ B 	= ∅, we obtain

ν[D]

(⋃
i∈B

Oi

)
� ν

(⋃
i∈B

Oi

)
−

∑
J/J∩B 	=∅

εJ

= ν

(⋃
i∈B

Oi

)
− (1 − s)

∑
J/J∩B 	=∅

ν(CJ)

= ν

(⋃
i∈B

Oi

)
− (1 − s)ν

(⋃
i∈B

Oi

)

= s · ν
(⋃

i∈B
Oi

)
.

We claim that the family (r · ν[D])D dissection,0<r<1 is directed. Indeed, consider r1 · ν[D1]

and r2 · ν[D2], where 0 < r1, r2 < 1 and D1 and D2 are two dissections. Let Di be written

as the set of all (xij , Uij), 1 � j � ni, i ∈ {1, 2}. Write Cij for ↑ xij \ Uij . Let

O1 = ↑ x11 . . . On1
= ↑ x1n1

On1+1 = ↑ x21 . . . On2
= ↑ x2n2

and n = n1 + n2. Let 0 � s < 1. By Lemma 2.5 there is a dissection D such that, for any

B ⊆ {1, . . . , n},

s · ν
(⋃

i∈B
Oi

)
� ν[D]

(⋃
i∈B

Oi

)
.
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Let O be any open. Let B1 be the set of indices j such that x1j ∈ O. In particular, O

contains
⋃

j∈B1
↑ xj , so

s · ν
(⋃

i∈B1

Oi

)
� ν[D](O).

On the other hand,

ν[D1](O) =

n1∑
i=1

ν(C1i)δx1i
(O)

=
∑
i∈B1

ν(C1i)

= ν

(⋃
i∈B1

C1i

)

� ν

(⋃
i∈B1

↑ x1i

)

= ν

(⋃
i∈B1

Oi

)
.

So s ·ν[D1](O) � ν[D](O). Similarly, we prove that s ·ν[D2] � ν[D](O). Since O is arbitrary,

s · ν[D1] � ν[D] and s · ν[D2] � ν[D]. Recall that s is arbitrary. We may choose s and

some r such that 0 < s, r < 1 and r1, r2 � rs. It follows that r1 · ν[D1] � r · ν[D] and

r2 · ν[D2] � r · ν[D]. So (r · ν[D])D dissection,0<r<1 is indeed directed. We then conclude by

Corollary 2.4. We have proved the following proposition.

Proposition 2.6. Let X0 be some fixed subset of X, and assume that the family of sets

↑A, A ⊆ X0, forms a topology O. Then every bounded continuous valuation on (X,O) is

a sup of a directed family of simple valuations
∑n

i=1 aiδxi , where xi ∈ X0 for every i.

The if direction of Theorem 1.1 follows by taking X0 = X.

3. Applications

Given any continuous valuation ν on a topological space (X,O), there are two extreme

ways of attempting to extend ν to the Alexandroff extension of O, that is, to build an

A-extension of ν. None of these yields a continuous valuation in general, but in particular

cases they will.

First, we may approximate ν from below: define ν∗ by

ν∗(U) = ν

(
◦
U

)

for each upper set U, where
◦
U is the interior of U for the topology O. We may also

approximate ν from above: define ν∗ by

ν∗(U) = inf
O∈O,O⊇U

ν(O).
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Both ν∗ and ν∗ are strict and monotonic. Clearly, ν∗ and ν∗ bound all A-extensions of ν,

as in the following lemma.

Lemma 3.1. Let (X,O) be a topological space. For every valuation ν on (X,O), for every

A-extension ν of ν,

ν∗ � ν � ν∗.

Proof. For every Alexandroff open U, we have ν(U) � ν(O) = ν(O) for every open

O ∈ O such that U ⊆ O. So ν(U) � infO∈O,O⊇U ν(O) = ν∗(U). On the other hand,
◦
U ⊆U,

so ν∗(U) = ν(
◦
U) = ν(

◦
U) � ν(U).

We shall refine the upper bound in Section 3.4, Fact 2.

We shall be particularly interested in topological spaces arising from directed complete

partial orders. Recall that a directed complete partial order, or dcpo, is a partial order

(X,�) such that every directed subset of X has a least upper bound supX. A subset A of

X is directed provided A is non-empty and any two elements in A have an upper bound

in A. The Scott topology on X has as opens all upper subsets O such that, if supD ∈ O

for some directed subset D of X, then D contains some element of O. The specialisation

ordering of the Scott topology is �, just as for the Alexandroff topology.

Remark 3.1. There is no reason why ν∗ or ν∗ should be modular. Let X be �× (�∪ {ω})
with the ordering (j, k) � (m, n) if and only if either j = m and k � n, or n = ω and

k � m. This is a dcpo, which we shall study more closely in Remark 3.6. Its non-empty

Scott opens contain all but finitely many points of the form (m,ω). In particular, every

finite intersection of non-empty Scott opens is non-empty. This implies that the function

ν mapping ∅ to 0 and each non-empty Scott open to 1 is modular, hence a continuous

valuation. But ν∗ maps every non-empty upper set to 1: let U = {(2i, ω)|i ∈ �}, V =

{(2i+1, ω)|i ∈ �}, then ν∗(U∪V )+ν∗(U∩V ) = 1+0 = 1 while ν∗(U)+ν∗(V ) = 1+1 = 2.

Similarly,

ν∗(U ∪ V ) + ν∗(U ∩ V ) = ν∗{(i, ω)|i ∈ �} + ν∗(∅) = ν{(i, ω)|i ∈ �} = 1,

while ν∗(U) + ν∗(V ) = 0 + 0 = 0.

There is no reason why ν∗ should be continuous either. Take ν and X again as in

Remark 3.1, and let Un = {(i, ω)|0 � i � n}. Then ν∗(Un) = ν(∅) = 0, so supn∈� ν∗(Un) = 0,

while ν∗(supn∈� Un) = ν∗{(i, ω)|i ∈ �} = ν{(i, ω)|i ∈ �} = 1.

Remark 3.2. In general, ν∗ is not continuous either. Let X be [0, 1] with its usual, metric

topology. Its specialisation preordering is just equality, since X is Hausdorff, hence T1.

Let ν be the Lebesgue measure on the Borel σ-algebra built on top of this topology. By

restriction to the open sets, ν yields a strict, monotonic and modular function. It is also

continuous, which means that, as a measure, it is τ-smooth: every measure on a fully

Lindelöf space, in particular, on a second countable space, is τ-smooth (Alvarez-Manilla

2000, page 35). So ν defines a continuous valuation on X.

However, ν∗ is not continuous. Indeed, let O be any open subset of X. Then O is

the directed union of its finite subsets � ⊆ O. But it is clear that ν∗(�) = 0. If ν∗
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was continuous, therefore, ν∗ would be identically zero, which is absurd: for example,

ν∗(X) = ν(X) = 1.

3.1. Continuous dcpos, and Erné’s C-spaces

We first prove Jones’ result again (Corollary 3.5 below). Let (X,�) be a partially ordered

set. The relation � is defined by x � y if and only if for every directed subset D of

X such that supD exists and y � supD, then x � z for some z ∈ D; � is called the

way-below relation, and we write ↑↑ x = {y ∈ X|x � y}. We say (X,�) is a continuous

partially ordered set if and only if, for every y ∈ X, the set D = {x ∈ X|x � y} is directed,

supD exists, and y = supD. A continuous dcpo is a dcpo that is continuous as a partially

ordered set. The definition of Scott topology extends to partially ordered sets by: O is

Scott open if and only if O is upper and for every directed subset D of X such that supD

exists and is in O, we have D and O intersect. If X is a continuous partially ordered set,

then ↑↑ x is Scott open for every x. In fact, the sets ↑↑ x, x ∈ X, form a basis of the Scott

topology: that is, every Scott open O is the union of all ↑↑ x, x ∈ O.

In any topological space, the interior operator distributes over intersection: the interior

of A∩B is always
◦
A∩

◦
B. In general, interior does not distribute over union: take X to be

� with its usual topology, A = �, and B = � \ �, then the interior of A ∪ B is �, while

both
◦
A and

◦
B are empty. However, interior does distribute over unions of upper subsets

in continuous dcpos, as we see next.

The correct generalisation of dcpos in this case is given by the following definition.

Definition 3.2 (Erné 1991). A C-space is a topological space where every point has a

neighbourhood basis of upper sets, that is, for every point y in some open U, there is a

point x in U such that y is in the interior of ↑ x.

Every continuous dcpo is a C-space: given y and U, y is the sup of all x � y; since U is

Scott open, some x � y must be in U; then y is in ↑↑ x, which is an open subset of ↑ x.

The same argument shows that, more generally, every continuous partially ordered set is

a C-space when equipped with the Scott topology. Slightly specialising Proposition 2.2.C

of Erné (1991), we get the following lemma.

Lemma 3.3 (Erné). Let (X,O) be a topological space. (X,O) is a C-space if and only if

interior distributes over unions of upper subsets in the specialisation order, that is, if and

only if, for any family (Ui)i∈I of upper subsets of X,

◦︷ ︸︸ ︷⋃
i∈I

Ui =
⋃
i∈I

◦
Ui.

Proposition 2.2.C of Erné (1991) actually states a more general result on so-called

closure spaces. The same proposition also shows that C-spaces are exactly the locally

supercompact spaces, or, equivalently, the spaces whose set of closed subsets is a

completely distributive lattice.

https://doi.org/10.1017/S096012950400461X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950400461X


Extensions of valuations 281

Lemma 3.4. Let (X,O) be any C-space. Every bounded continuous valuation on (X,O) is

quasi-simple.

Proof. By Theorem 1.1, it suffices to show that every bounded valuation ν extends to the

Alexandroff topology over �. Define the extension ν as ν∗; in other words, ν(U) = ν(
◦
U)

for every upper subset U. Clearly, ν is strict and monotonic. It is also modular:

ν(U ∪ V ) + ν(U ∩ V ) = ν
( ◦︷ ︸︸ ︷
U ∪ V

)
+ ν

( ◦︷ ︸︸ ︷
U ∩ V

)
= ν(

◦
U ∪

◦
V ) + ν(

◦
U ∩

◦
V ) (since interior distributes over ∪, ∩)

= ν(
◦
U) + ν(

◦
V ) (since ν is modular)

= ν(U) + ν(V ).

Finally, ν is continuous. Indeed, if (Ui)i∈I is a directed family of upper subsets,

ν

(⋃
i∈I

Ui

)
= ν




◦︷ ︸︸ ︷⋃
i∈I

Ui




= ν

(⋃
i∈I

◦
Ui

)
(interior distributes over directed unions)

= sup
i∈I

ν(
◦
Ui) (ν is continuous)

= sup
i∈I

ν(Ui).

In fact, this proof says something more.

Fact 1. On any C-space, every bounded continuous valuation ν has a least A-extension.

Namely ν = ν∗: see Lemma 3.1. In particular, by Lemma 3.3, this is the case for continuous

dcpos. Also, the following corollary is an immediate consequence.

Corollary 3.5 (Jones). Every bounded continuous valuation on a continuous dcpo (with

the Scott topology) is quasi-simple.

Observe that, without any extra effort, Lemma 3.4 implies that every bounded continuous

valuation on a continuous partial ordered set, which is not necessarily a dcpo, is quasi-

simple.

Remark 3.3 (Non-uniqueness of extensions). A natural question is whether every bounded

continuous valuation extends to a unique continuous valuation on the Alexandroff

topology, when it extends at all. This is not true, even when X is a continuous dcpo. Indeed,

take X = � ∪ {ω}, with the natural ordering on � and n < ω for all n ∈ �. This is a

continuous dcpo, and the non-empty Scott opens are all sets [k, ω] = {k, k+1, k+2, . . . , ω},
k ∈ �. Note that {ω} is upper but not Scott open. Now define ν([k, ω]) = (ak+1)/(k+1),

where a is some real number between 0 and 1. This is a continuous probability valuation

https://doi.org/10.1017/S096012950400461X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950400461X


J. Goubault-Larrecq 282

on X, which can be extended by letting ν{ω} be any real number b between 0 and a. If

a > 0, we therefore get uncountably many distinct A-extensions of ν. Correspondingly,

there are uncountably many distinct ways of writing ν as sups of directed families of

simple valuations, for example, as supn∈� νn, where νn is the increasing (hence directed)

sequence of valuations

νn =

n−1∑
k=0

1 − a

(k + 1)(k + 2)
δk +

(
an + 1

n + 1
− b

)
δn + bδω

for all n ∈ �. Note that νn is just ν[D] where D is the dissection obtained from the finitary

open ↑ {ω, n, n − 1, . . . , 1, 0} as we did in the proof of Lemma 2.3.

Remark 3.4 (On extensions to measures). Recall that the Borel σ-field σ(O) generated

by a given topology O on X is the least collection of sets containing O and such that

every complement and every countable union of sets in σ(O) is again in σ(O). The sets in

σ(O) are called the Borel subsets of X when O is understood. Theorem 2.16 of Alvarez-

Manilla (2000) states that on monotone convergence spaces every bounded quasi-simple

valuation extends to a unique measure on the Borel subsets. (A monotone convergence

space is a T0 topological space (X,O) whose specialisation ordering �s induces a dcpo

structure whose Scott topology is finer than O. Every dcpo is a monotone convergence

space.) In the example of Remark 3.3, every subset of � ∪ {ω} is a Borel subset, and the

unique measure µ that extends ν maps each subset A of � ∪ {ω} to
∑

k∈A
1−a

(k+1)(k+2)
, to

which we must add a if ω ∈ A. So, among the A-extensions of ν, only the one that is

obtained by letting b be exactly a extends to a measure. In particular the assumption that

X be a monotone convergence space in Theorem 2.16 of op.cit. is essential: as the example

above illustrates, continuous valuations do not, in general, extend to measures, when X

is equipped with an Alexandroff topology; a space with the Alexandroff topology is a

monotone convergence space only when its topology coincides with the Scott topology.

Remark 3.5 (Extensions on non-continuous dcpos). Another natural question is whether a

form of converse to Corollary 3.5 holds: assume (X,�) is a dcpo on which every bounded

continuous valuation is quasi-simple; is X a continuous dcpo? Again, the answer is no.

Consider the dcpo X given by the Hasse diagram:

*

*

*

0

1

2 2

1

0

ω
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We invite the reader to check that every bounded continuous valuation on X is quasi-

simple. The simplest way to show this is to note that the dcpo on the right has a finitarily

coherent Scott topology, and to apply the results of Section 3.4.

This can also be shown by direct calculation. While this is instructive, it is also tedious;

the Scott open subsets are ∅ and the sets Am,n of all points at or above m or n∗ (m, n ∈ �),

and it can be shown that any continuous valuation ν satisfies ν(Am,n) = ν(X) − αm − α∗
n for

some fixed non-decreasing sequences (αm)m∈� and (α∗
n)n∈� of real numbers; A-extensions

ν of ν can be found by letting ν{ω} = 0, and mapping the set of all points at or above m

to a − αm, and the set of all points at or above n∗ to a∗ − α∗
n, for some arbitrary constants

a and a′ such that a + a∗ = 1, we have a � supm∈� αm, and a∗ � supn∈� α∗
n. In particular,

ν has uncountably many A-extensions.

We might then ask whether there are any cases at all of a continuous valuation on a

topological space that is not quasi-simple. Indeed there are; it is well-known (and a simple

exercise, to prove it) that the continuous valuation obtained from the Lebesgue measure

(see Remark 3.2) cannot be the sup of directed families of simple valuations.

Remark 3.6 (Non-existence of extensions on dcpos). We may refine the observation that

there are continuous, non-quasi-simple valuations, even when X is a dcpo. The simplest

known example uses Johnstone’s famous example of a non-sober dcpo (Alvarez-Manilla

2000, Section 2.7, page 73). At this point, we should warn the reader that non-sobriety is

a red herring here; we shall return to this example in Remark 3.10.

The space X is the example we used in Remark 3.1: let X be � × (� ∪ {ω}) with the

ordering (j, k) � (m, n) if and only if either j = m and k � n, or n = ω and k � m. Recall

that this is a dcpo, and that the function ν mapping ∅ to 0 and each non-empty Scott

open to 1 is modular, and hence a continuous valuation. However, it cannot be extended

to all upper sets; Alvarez-Manilla relies on two theorems to show this, one saying that

any quasi-simple valuation extends uniquely to a measure on the Borel subsets of the

topology (Theorem 2.16 in op.cit.), and the other stating that for every measure µ, for

every decreasing sequence of measurable sets An, n ∈ �, whose intersection is empty, we

have limn→+∞ µ(An) = 0 (Proposition 1.14 in op.cit.). We rely on Theorem 1.1 instead,

avoiding the need to introduce measures.

Assume ν has an A-extension ν, and fix ε � 0 such that ε < 1/4. For each subset

S of �, let ΩS be the upper, but not, in general, Scott open, set {(i, ω)|i ∈ S}. Let On

be the Scott open {(i, j)|i, j � n} ∪ Ω[n,+∞). For every m � n, let Unm be the upper set

{(i, j)|i, j � n, i � m} ∪ Ω[n,+∞); this is not Scott open. (See Figure 1 to see what these

subsets look like in the plane.) However, On is the directed union of all Unm, m � n. Since

ν is continuous and ν(On) = ν(On) = 1, there is an m � n such that ν(Unm) � 1 − ε. By

modularity,

ν(Unm) + ν(Om+1) = ν(Unm ∪ Om+1) + ν(Unm ∩ Om+1).

The left-hand side is greater than or equal to 2 − ε, while ν(Unm ∪ Om+1) � ν(On) = 1 by

monotonicity. Since Unm ∩ Om+1 = Ω[m+1,+∞), it follows that ν(Ω[m+1,+∞)) � 1 − ε. Since

Ω[m+1,+∞) is the directed union of all Ω[m+1,p], p � m + 1, by continuity again, there is
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Fig. 1. The various sets used in Remark 3.6.

p � m + 1 such that ν(Ω[m+1,p]) � 1 − 2ε. Remember that n was arbitrary, so we have

proved:

For every n ∈ �, there are p > m � n such that ν(Ω[m+1,p]) � 1 − 2ε. (∗)

Now use (∗) twice. First take n = 0, giving p > m such that ν(Ω[m+1,p]) � 1 − 2ε. Then

take n = p + 1, yielding p′ > m′ � p + 1 such that ν(Ω[m′+1,p′]) � 1 − 2ε. By modularity, it

then follows that ν(Ω[m,p]∪[m′+1,p′]) � 2 − 4ε > 1 since ε < 1/4. But this is impossible, since

ν(Ω[m,p]∪[m′+1,p′]) � ν(X) = ν(X) = 1.

Remark 3.7 (Sups of undirected families). Defining quasi-simple valuations as sups of

directed families of simple valuations is important. First and foremost, the sup of an

undirected family of (simple) valuations need not be a valuation, because it need not

be modular: take ν as the sup of δa and δb on the two-element set {a, b} with = as

ordering, then ν({a} ∪ {b}) + ν({a} ∩ {b}) = 1 but ν({a}) + ν({b}) = 2. More subtly, there

are continuous valuations that are sups of simple valuations but are not quasi-simple: for

example, the valuation ν of Remark 3.1 and Remark 3.6 is the sup of all δx, x ∈ X, but

is not quasi-simple. Clearly, the family (δx)x∈X is not directed.

3.2. Algebraic dcpos

An element x of a dcpo (X,�) is finite if and only if x � x. Let X0 be the set

of finite elements in X. X itself is algebraic if and only if, for every y ∈ X, the set

D = {x ∈ X0|x � y} is directed and y = supD. Every algebraic dcpo is continuous.

Furthermore, if X is algebraic, ↑ x is Scott open for every x ∈ X0, and, in fact, every Scott

open O is
⋃

x∈O∩X0
↑ x. Proposition 2.6 immediately entails the following corollary.

Corollary 3.6. Let (X,�) be an algebraic dcpo, and X0 be its subset of finite elements.

Then every bounded continuous valuation on X, equipped with its Scott topology, is the

sup of a directed family of simple valuations based on finite elements, that is, of simple

valuations
∑n

i=1 aiδxi such that x1, . . . , xn ∈ X0.
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Remark 3.8. This was first claimed by Sünderhauf (Sünderhauf 1997), whose Theorem 3.4

states the corollary above, in particular, although the fact that we can choose the

family of simple valuations to be directed is stated without justification. Theorem 3.4

of Sünderhauf (1997) also states that each simple valuation based on finite elements is

finite, but this is wrong: as already observed in Jones (1990, page 84), δx � δy holds for

no pair of elements x and y such that x � y; in particular, δx is never finite, even when x

is finite. In fact, it is easy to see that the only finite valuation ν (in the sense that ν � ν) is

the everywhere zero valuation: if ν 	= 0, the directed family (rν)0�r<1 has ν as supremum,

but rν � ν is false for all r < 1.

Corollaries 3.5 and 3.6 apply to bounded continuous valuations: in particular, they

apply to sub-probability valuations ν, such that ν(X) � 1. However, the construction of

Section 2.1 requires valuations rν[D] such that rν[D](X) may be strictly less than 1.

These results extend, as in the following corollary, to probability valuations ν (such that

ν(X) = 1) in the case where X has a least element ⊥.

Corollary 3.7. Let (X,�) be a continuous dcpo with bottom ⊥.

Every bounded continuous probability valuation ν on X, with its Scott topology, is the

sup of a directed family of simple probability valuations
∑n

i=1 aiδxi on X.

If X is algebraic, we may additionally require that xi is finite, 1 � i � n.

Proof. We use Edalat’s trick (Edalat 1995): apply Corollaries 3.5 and 3.6 to the

restriction ν ′ of ν to the dcpo X ′ = X \ {⊥}. Then ν ′ is the sup of a directed family of

simple sub-probability valuations (ν ′
i )i∈I on X ′, where ν ′

i =
∑

j aijδxij , and
∑

j aij � 1. Let

νi be
∑

j aijδxij + (
∑

j aij)δ⊥, that is, add the missing mass at ⊥. Then (νi)i∈I is directed

and supi∈I νi = ν.

3.3. Bicontinuous valuations

Before we turn to other kinds of spaces in Section 3.4, we will take a quick look at

bicontinuous valuations, as introduced in Bukatin and Shorina (1998). Let (X,O) be a

topological space, �s be its specialisation preordering, and ↓ x be {y ∈ X|y �s x}. Note

that ↓ x is always closed. In fact, ↓ x is just the closure of x. Also, it is well known (Jones

1990, page 81) that every upper subset U is the intersection of all opens that contain it.

A valuation ν is said to be cocontinuous (Bukatin and Shorina 1998; Alvarez-

Manilla 2000, Section 1.10, page 41) if and only if, for every filtered family F of opens,

ν




◦︷ ︸︸ ︷⋂
O∈F

O


 = inf

O∈F
ν(O).

The family F is filtered if and only if F is non-empty, and for every O1, O2 ∈ F , there is

O ∈ F such that O ⊆ O1, O2. The valuation ν is bicontinuous (Keimel 1997) if and only if

it is both continuous and cocontinuous.

Recall that we have defined two approximations of continuous valuations (Lemma 3.1).

Lemma 3.8. For every cocontinuous valuation ν, ν∗ = ν∗.
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Proof. Assume that ν is cocontinuous. Let U be any Alexandroff open. Since U is

upper, U is the intersection of all opens O that contain U. The family of such opens O is

clearly filtered. Since ν is cocontinuous, ν(
◦
U) = infO∈O,O⊇U ν(O). That is, ν∗ = ν∗.

It follows that every bicontinuous valuation has at most one A-extension.

The sup of any directed family of continuous valuations is again a continuous valuation

(Jones 1990, Theorem 4.1, page 65). It is not clear whether the sup of a directed family

of quasi-simple valuations should be again a quasi-simple valuation (although it is a

continuous valuation). However, due to Lemma 3.8, we obtain the following lemma.

Lemma 3.9. On any topological space (X,O), the sup of any directed family of quasi-

simple bicontinuous valuations is quasi-simple.

Proof. Let (νi)i∈I be a directed family of quasi-simple bicontinuous valuations, with sup

ν. By Theorem 1.1, Lemma 3.1 and Lemma 3.8, νi has a unique A-extension νi. Moreover,

since the map ν �→ ν∗ (or ν �→ ν∗) is monotonic, so is νi �→ νi. It follows that the family

(νi)i∈I is a directed family of continuous valuations on the Alexandroff extension of O. So

it has a sup ν, which is indeed an extension of ν to the Alexandroff extension of O. By

Theorem 1.1, ν is quasi-simple.

3.4. Finitarily coherent spaces

Let (X,O) be a topological space. Recall that K ⊆ X is compact if and only if for every

family of opens Oi ∈ O, i ∈ I , such that K ⊆
⋃

i∈I Oi, there is a finite sub-family Ifin ⊆ I

such that K ⊆
⋃

i∈Ifin Oi. A subset A of X is saturated if and only if A =
⋂

O∈O⊇A O; recall

that the saturated sets are exactly those that are upper in the specialisation preordering.

We use Q to denote the set of compact saturated subsets of X.

A topological space is locally compact if and only if every neighbourhood of any point

contains a compact neighbourhood. In other words, for every open O, for every x ∈ O,

there is a compact K such that x ∈
◦
K ⊆ K ⊆ O.

A topological space (X,O) is sober if and only if every irreducible closed subset is the

closure of a unique point x. A closed set F is irreducible if and only if it is non-empty

and, for any two closed subsets F1 and F2 such that F ⊆ F1 ∪F2, either F ⊆ F1 or F ⊆ F2.

Given the specialisation preordering �s, the closure of a point x is ↓ x. That x should be

unique means that �s should be an ordering, that is, X should be T0. In a sober space,

in addition, every irreducible closed subset should be of the form ↓ x for some x. In the

example of Remark 3.1 and Remark 3.6, X is not sober: X itself is irreducible, but is not

of the form ↓ x.

The most important property of sober spaces is the Hofmann–Mislove theorem

(Abramsky and Jung 1994, Proposition 7.2.9): the sets NQ = {O ∈ O|O ⊇ Q}, where

Q is compact saturated, are exactly the Scott open filters of opens in O. It follows

(Abramsky and Jung 1994, Propositions 7.2.12, 7.2.13) that if (X,O) is sober, then (X,�s)

is a dcpo, and O is order-consistent, meaning that it is finer than the upper topology, which

is generated by all complements of sets of the form ↓ x, x ∈ X, and it is coarser than

the Scott topology on �s. Also, every filtered intersection of compact saturated sets is
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again compact saturated, and if (Qi)i∈I is a filtered family of compact saturated sets, and⋂
i∈I Qi ⊆ O for some open O ∈ O, then Qi ∈ O for some i. (A family is filtered for ⊆ if

and only if it is directed for ⊇.)

While the union of compact saturated subsets is again compact saturated, their

intersection need not be. A topological space that is sober, locally compact, and such

that the intersection of any two compact saturated sets is again compact saturated is

called a coherent space (Tix 1995, Definition 3.1, page 17; Abramsky and Jung 1994,

Definition 7.2.17). Some authors use different definitions. For example, Alvarez-Manilla

(Alvarez-Manilla 2000, Definition 1.11, page 31) drops local compactness from the

definition of coherent spaces. By Alvarez-Manilla (2000, Proposition 1.12, page 32),

coherent spaces are also exactly the so-called stably locally compact spaces, as well as the

locally compact supersober spaces.

A result by Tix, also discovered by Norberg and Vervaat (Tix 1995, Satz 3.4, page 19;

Alvarez-Manilla 2000, Proposition 3.33, page 88) is that, on a coherent space (X,O),

given any continuous valuation ν on O, the restriction of ν∗ to compact saturated

subsets is strict, monotonic, modular, inf-continuous (that is, for every filtered family

of compact saturated subsets (Qi)i∈I , ν
∗(

⋂
i∈I Qi) = inf i∈I ν

∗(Qi)), and for every O ∈ O,

ν(O) = supQ compact saturated ⊆O ν∗(Q).

Earlier, we called subsets of the form ↑ {x1, . . . , xn} the finitary opens of the Alexandroff

topology of a preorder (X,�). When � is the specialisation preordering �s of a topological

space, such subsets are compact saturated. Indeed, by the remark above, they are saturated.

Furthermore, if ↑ {x1, . . . , xn} ⊆
⋃

i∈I Oi, where each Oi is open, choose Oi1 containing x1,

. . . , Oin containing xn, then ↑ {x1, . . . , xn} ⊆
⋃n

k=1 Oik , so ↑ {x1, . . . , xn} is compact. Note

that this is true whatever the topology O, as soon as it has � as specialisation preordering.

We call such subsets ↑ {x1, . . . , xn} finitary compacts.

While there may be more compact saturated subsets than just the finitary ones in

general, the compact saturated subsets of an Alexandroff topology are exactly the finitary

compacts (and, therefore, every compact saturated subset is also open). Indeed, given any

compact saturated set Q, we have Q =
⋃

x∈Q ↑ x since Q is saturated, hence upper; since

Q is compact, Q is in fact equal to a finite union of sets of the form ↑ x, x ∈ Q, so Q is a

finitary compact.

Following Heckmann (1996), we say a topological space is locally finitary if and

only if, for every open O, for every x ∈ O, there is a finitary compact � such that

x ∈
◦
� ⊆ � ⊆ O. In other words, if each point has a fundamental system of finitary

compact neighbourhoods. In particular, every locally finitary space is locally compact.

This notion appears earlier in the literature, in the case of partially ordered sets, under

the name of quasicontinuous posets (Gierz et al. 1983).

We shall now concentrate on topological spaces that look like coherent spaces. The

main role will, however, be played not by compact saturated subsets but by finitary

compacts: instead of local compactness, we require locally finitary spaces; instead of

requiring that the intersection of two compacts saturated subsets be compact, we require

that the intersection of two finitary compacts be finitary compact; finally, we replace

sobriety by the weaker property given by the following definition.
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Definition 3.10. A topological space (X,O) is called finitarily sober if and only if, for every

open O and every filtered family (�i)i∈I of finitary compacts such that
⋂

i∈I �i ⊆ O, we

have �i ⊆ O for some i ∈ I .

(X,O) is finitarily coherent if and only if it is finitarily sober, locally finitary, and the

intersection of any two finitary compacts is finitary compact.

Remark 3.9. Every sober space is clearly finitarily sober. The converse does not hold. For

instance, a finitarily sober space need not even be T0. On the other hand, a finitarily sober

topology is coarser than the Scott topology with respect to its specialisation preorder

�s: if (xi)i∈I is a directed family in (X,�s), then (↑ xi)i∈I is a filtered family of finitary

compacts, so for any open O, if (xi)i∈I has a sup x in O, then
⋂

i∈I ↑ xi = ↑ x ⊆ O, so

↑ xi ∈ O, therefore xi ∈ O for some i ∈ I . (This discussion requires one to generalise slightly

the definition of Scott topology to non-dcpos, see, for example, Alvarez-Manilla (2000,

Section 1.6, page 30).)

Conversely, if (X,�) is a dcpo, the Scott topology on X is always finitarily sober: this

is Lemma 3.9.4 of Heckmann’s Ph. D. thesis (Heckmann 1990). In particular, if (X,O) is

a monotone convergence space (see Remark 3.4 for the definition), it is finitarily sober.

That the intersection of any two finitary compacts is finitary compact is a purely-order

theoretic property: it is equivalent to requiring that for any two points x, y of X, there is

a finite set {x1, . . . , xn} such that x � z and y � z is equivalent to xi � z for some i. In

particular, this is the case when x and y have no common upper bound, or when x and

y have a least upper bound.

We do not claim that finitarily coherent spaces are the right kind of topological space

here. This notion is the one that enabled us to produce Theorem 3.12 below, but it

might be that this theorem still holds for a larger class of topological spaces. While

we need the intersection of two finitary compacts to be finitary compact again, such a

condition is not a standard one in the literature. It was suggested by one referee that

Lawson-compact quasicontinuous posets might be the right framework in which to try

and establish Theorem 3.12. We leave this as an open problem.

For readability, we write �, possibly subscripted or primed, for finitary compacts, and

O for opens. Tix’s Satz 3.4 can be adapted to the finitarily coherent case, as follows.

Proposition 3.11. Let (X,O) be a finitarily coherent space. For every continuous valuation

ν on O:

1 For every open O, ν(O) = sup�⊆O ν∗(�).

2 ν∗ is strict on the finitary compacts, that is, ν∗(∅) = 0.

3 ν∗ is monotonic on the finitary compacts, that is, ν∗(�1) � ν∗(�2) if �1 ⊆ �2.

4 ν∗ is modular on the finitary compacts, that is, ν∗(�1 ∪ �2) + ν∗(�1 ∩ �2) = ν∗(�1) +

ν∗(�2) for every �1,�2.

5 ν∗ is inf-continuous, that is, for every filtered family (�i)i∈I ,

ν∗

(⋂
i∈I

�i

)
= inf

i∈I
ν∗(�i).
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Proof.

1 Clearly ν∗(�) � ν(O) for every � ⊆ O, so sup�⊆O ν∗(�) � ν(O). Conversely, for every

open O, since X is locally finitary, O is the directed union of all
◦
�, for � ⊆ O. Indeed,

for each x ∈ O, let �x be such that x ∈
◦

�x ⊆ �x ⊆ O, then O ⊆
⋃

x∈O
◦

�x ⊆
⋃

�⊆O

◦
�;

the converse inclusion is obvious. So ν(O) = sup�⊆O ν(
◦
�) � sup�⊆O ν∗(�).

2 This part is obvious, since ∅ is finitary compact.

3 This part is also straightforward.

4 We begin with a few observations:

(a) For every � ⊆ O, we have � ⊆
◦

�′ ⊆ �′ ⊆ O for some finitary compact �′.

Indeed, write � = ↑ {x1, . . . , xn}. Since X is locally finitary, for every i with

1 � i � n, there is a finitary compact �i such that xi ∈
◦

�i ⊆ �i ⊆ O. So we may

take �′ =
⋃n

i=1 �i, noting that
⋃n

i=1

◦
�i ⊆

◦
�′.

(b) Every finitary compact � is the filtered intersection of all �′ such that � ⊆
◦

�′.

Since � is saturated, � is the intersection of all opens O ⊇ �: on the one hand,

every �′ such that
◦

�′ ⊇ � contains some open O ⊇ �, trivially; on the other

hand, every open O ⊇ � contains some finitary compact �′ such that
◦

�′ ⊇ �
by (a); so � is the claimed intersection. This intersection is filtered because the

intersection of two finitary compacts is finitary compact, and interior distributes

over intersection.

(c) If �1 ∩�2 ⊆ O, there are two opens O1 and O2 such that �1 ⊆ O1, �2 ⊆ O2, and

O1 ∩ O2 ⊆ O. Indeed, by (b), �i is the filtered intersection of its finitary compact

neighbourhoods, i = 1, 2. So �1 ∩ �2 is the intersection of all �′
1 ∩ �′

2, where

�′
i ranges over the finitary compact neighbourhoods of �i, i = 1, 2. Moreover,

this intersection is filtered. Since the intersection of any pair of finitary compacts

is finitary compact, each such �′
1 ∩ �′

2 is finitary compact. Since X is finitarily

sober, some such �′
1 ∩ �′

2 is included in O, so we let Oi be the interior of �′
i,

i = 1, 2.

(d) ν∗(�1 ∩ �2) = infO1⊇�1 ,O2⊇�2
ν(O1 ∩ O2). Indeed, by (c), the two filtered families

{O|O ⊇ �1 ∩ �2} and {O1 ∩O2|O1 ⊇ �1, O2 ⊇ �2} are coinitial, that is, for every

element of one there is a smaller element in the other.

(e) ν∗(�1 ∪ �2) = infO1⊇�1 ,O2⊇�2
ν(O1 ∪ O2). Indeed the two filtered families {O|O ⊇

�1 ∪ �2} and {O1 ∪ O2|O1 ⊇ �1, O2 ⊇ �2} are clearly coinitial.

So:

ν∗(�1 ∪ �2) + ν∗(�1 ∩ �2) = inf
O1⊇�1 ,O2⊇�2

ν(O1 ∪ O2) + inf
O1⊇�1 ,O2⊇�2

ν(O1 ∩ O2)

(by (d), (e))

= inf
O1⊇�1 ,O2⊇�2

(ν(O1 ∪ O2) + ν(O1 ∩ O2))

= inf
O1⊇�1 ,O2⊇�2

(ν(O1) + ν(O2)) (by modularity)
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= inf
O1⊇�1

ν(O1) + inf
O2⊇�2

ν(O2)

= ν∗(�1) + ν∗(�2)

5 We observe that ν∗ (⋂
i∈I �i

)
= infO⊇

⋂
i∈I �i

ν(O) = inf∃i∈I·O⊇�i
ν(O) (since X is finitarily

coherent, O ⊇
⋂

i∈I �i is equivalent to ∃i ∈ I · O ⊇ �i) = inf i∈I ν
∗(�i).

There is a subtle point in the inf-continuity property 5, insofar as
⋂

i∈I �i need not be

finitarily compact, although each �i is. Therefore item 5 is not a property of inf-continuity

of ν∗ on the finitary compacts.

As an example of a space where the filtered intersection of finitary compacts is not

necessarily finitary compact, let (X,�) be the set of finite and infinite words over a

two-letter alphabet � = {0, 1}, ordered by the prefix ordering �, seen as a dcpo. Let �i,

i ∈ � be the set of finite words of length at least i: this is finitarily compact, since there

are only finitely many words of length exactly i. However, the filtered intersection
⋂

i∈� �i

is the infinite set of all infinite words �ω , which is not finitary compact. (It is compact,

however.)

In spite of this, X is finitarily coherent. It is finitarily sober, since it is a dcpo

(Remark 3.9). In fact, since X is algebraic, it is also continuous, and hence sober.

Note that every Scott open O of X is such that if some infinite word w is in O, then some
prefix of it is in O already. It follows that X is locally finitary: if x ∈ O, then there is

a finite prefix y of x in O, so x ∈
◦
� = � ⊆ O, where � = ↑ y. Finally, the intersection

of any two finitary compacts is finitary compact, since any two words have no common

upper bound, or they have a sup (when they are comparable).

Theorem 3.12. Let (X,O) be a finitarily coherent space. Every bounded continuous

valuation on (X,O) is quasi-simple.

Proof. Define ν on the Alexandroff extension of O by ν(U) = sup�⊆U ν∗(�), for each

upper set U. We claim that ν is a continuous valuation extending ν. It is clear that ν is

strict and monotonic. It is continuous, because for any directed family (Ui)i∈I of upper

sets, for any finitary compact �, we have � ⊆
⋃

i∈I Ui if and only if � ⊆ Ui for some

i ∈ I . Indeed, the if direction is clear; for the only if direction, since � is Alexandroff

compact, � ⊆
⋃

i∈I Ui implies that � is included in some finite union of Uis, and hence

in some Ui, since (Ui)i∈I is directed. It follows that

ν

(⋃
i∈I

Ui

)
= sup

�⊆
⋃

i∈I Ui

ν∗(�) = sup
i∈I,�⊆Ui

ν∗(�) = sup
i∈I

sup
�⊆Ui

ν∗(�) = sup
i∈I

ν(Ui).

Next, Proposition 3.11, item 1, implies that ν extends ν.

Let us show finally that ν is modular. Fix two arbitrary upper subsets U and V . For

any two finitary compacts �1 ⊆ U and �2 ⊆ V , there is a finitary compact � ⊆ U ∩ V

such that �1 ∩ �2 ⊆ �, namely � = �1 ∩ �2: this is finitary compact by assumption.

Conversely, for every finitary compact � ⊆ U∩V , there are two finitary compacts �1 ⊆ U
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and �2 ⊆ V such that � ⊆ �1 ∩ �2: take �1 = �2 = �. Therefore

ν(U ∩ V ) = sup
�⊆U∩V

ν∗(�) = sup
�1⊆U,�2⊆V

ν∗(�1 ∩ �2).

A similar argument, using the fact that the union of two finitary compacts is always

finitary compact, implies

ν(U ∪ V ) = sup
�⊆U∪V

ν∗(�) = sup
�1⊆U,�2⊆V

ν∗(�1 ∪ �2).

It follows that

ν(U ∪ V ) + ν(U ∩ V ) = sup
�1⊆U,�2⊆V

ν∗(�1 ∪ �2) + ν∗(�1 ∩ �2)

= sup
�1⊆U,�2⊆V

ν∗(�1) + ν∗(�2) (by Proposition 3.11, item 4)

= sup
�1⊆U

ν∗(�1) + sup
�2⊆V

ν∗(�2) = ν(U) + ν(V )

The conclusion follows by Theorem 1.1.

Conversely to Fact 1, the construction in the proof of Theorem 3.12 entails the following

fact.

Fact 2. On a finitarily coherent space, every bounded continuous valuation has a largest

A-extension.

Proof. By Lemma 3.1, every A-extension ν ′ of ν is such that ν ′ � ν∗. In particular,

ν ′(�) � ν∗(�) for every finitary compact �. For every upper set U, we then have

ν ′(U) = sup�⊆U ν ′(�) (since ν ′ is continuous) � sup�⊆U ν∗(�) = ν(U), where ν was

constructed in the proof of Theorem 3.12.

Remark. Every bounded continuous valuation on the dcpo X of Remark 3.5 is quasi-

simple, although X is not a continuous dcpo. This can be shown by hand (as we did in

Remark 3.5), or using Theorem 3.12.

X is a dcpo, and hence is finitarily sober (Remark 3.9). Closer examination shows that

X is even sober. The Scott closed subsets are X and the complement of Ai,j , i, j ∈ �. X

is irreducible, as the closure of ω. The other irreducible closed subsets are of the form

F = X \ Ai,j . So F ⊆ (X \ Ai,0) ∪ (X \ A0,j), and irreducibility implies that i = 0 or j = 0

(but not both, since F is irreducible, hence non-empty). However, X \ Ai,0 is the closure

of i − 1, and X \ A0,j is the closure of (j − 1)∗. Therefore X is sober.

Observe that every upper subset is finitary compact:

∅ = ↑ ∅ {ω} = ↑ {ω} [n, ω] = ↑ {n} [n∗, ω] = ↑ {n∗} Ai,j = ↑ {i, j∗}.

In particular, X is locally finitary: for every open x ∈ O, we have x ∈
◦
� ⊆ � ⊆ O where

we take the finitary compact � to be just O.

Since every upper subset is finitary compact, the compact saturated subsets are exactly

the upper subsets, and are exactly the finitary compacts. In particular, the intersection of

any two compact saturated subsets are compact saturated (hence X is a coherent space),

and the intersection of any two finitary compacts is finitary compact (hence X is finitarily
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coherent too). So Theorem 3.12 applies: every bounded continuous valuation on X is

quasi-simple.

Note that Corollary 3.5 does not apply here, since X is not continuous. So Corollary 3.5

does not subsume Theorem 3.12. We may show that the latter does not subsume the former,

as follows.

Every continuous dcpo (X,�) is sober (Abramsky and Jung 1994, Proposition 7.2.27).

X is also locally compact, in fact locally finitary: for any open O and x ∈ O, x is the sup

of all elements y � x since X is continuous; since O is open, some y � x must then be

in X, which entails that x ∈ ↑↑ y ⊆ ↑ y ⊆ O. Note that ↑ y is finitary compact and ↑↑ y is its

interior.

However, the interior of two finitary compacts may fail to be finitary compact. Let

X be the space consisting of � union two fresh elements a and b with the smallest

ordering such that a � n and b � n for every n ∈ �. This is a continuous dcpo, even

an algebraic one: all elements are finite. As such, the Scott topology (which coincides

with the Alexandroff topology here) is sober, locally compact and locally finitary, but the

intersection of the two finitary compacts ↑ a and ↑ b is �, which is not finitary, and not

even compact. So X is not finitarily coherent, and not coherent either.

Therefore Theorem 3.12 does not apply, but Corollary 3.5 does: every bounded con-

tinuous valuation on X is quasi-simple. So Theorem 3.12 does not subsume Corollary 3.5

either.

Remark 3.10. The space X of Remark 3.6 is often taken as the prime example of a

non-sober dcpo. However, the reason the continuous valuation ν of Remark 3.6 is not

quasi-simple does not lie in non-sobriety. Recall that every non-empty Scott open O

contains all but finitely many points of the form (m,ω). Moreover, if O contains (m,ω), it

must also contain every (m, j) for large enough j. It follows that no finitary compact can

contain any non-empty Scott open, that is, the interior of any finitary compact is empty.

So X is not locally finitary. Also, in X the intersection of two finitary compacts need not

be finitary compact: if i 	= i′, and j, j ′ ∈ �, then ↑ (i, j) ∩ ↑ (i′, j ′) = {(n, ω)|n � max(j, j ′)},
which is compact but not finitary compact. These are the two assumptions of Theorem 3.12

that fail. Observe that the third is satisfied: X is finitarily sober, as a dcpo, although it is

not sober.

4. Other extension results

Theorem 1.1 is one characterisation of a class of continuous valuations by existence of

extensions. We will now present two other similar theorems, which are much easier to

prove.

4.1. Discrete valuations

We use discrete valuation to mean any valuation of the form
∑+∞

i=0 aiδxi , where (ai)i∈� is a

summable family of non-negative reals, that is,
∑+∞

i=0 ai < +∞. Recall that such a family is

also commutatively summable, that is, for any permutation σ of �,
∑+∞

i=0 aσ(i) =
∑+∞

i=0 ai <

+∞.
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Similarly to Theorem 1.1, we may show the following proposition.

Proposition 4.1. Let (X,O) be a topological space. The bounded function ν : O → �+ is

a discrete valuation if and only if ν extends to a continuous valuation on the discrete

topology.

Proof.

— Only if : Define ν as mapping every subset Y of X to
∑

i∈�,xi∈Y ai. Then ν extends ν

to the discrete topology, is strict and monotonic. It is continuous and modular because

(ai)i∈� is commutatively summable.

— If : Assume ν extends to a continuous valuation ν on the discrete topology. For every

x ∈ X, let ax be ν({x}). Then, for every Y ⊆ X, we get ν(Y ) =
∑

x∈Y ax. We claim that

ax 	= 0 for only countably many x ∈ X. Let B be ν(X). Since ν is bounded, B ∈ �+.

For every N ∈ � \ {0}, there can be at most B/N points x such that ν({x}) � 1/N.

So {x|ax � 1/N} is finite. Therefore {x|ax 	= 0} =
⋃

N�1{x|ax � 1/N} is countable.

Let i �→ xi be a bijection from � to {x|ax 	= 0}. Then ν coincides with
∑+∞

i=0 axiδxi
on O.

Although every discrete valuation is quasi-simple, the converse does not hold: on [0, 1]

with the Scott topology on �, the Scott opens are [0, 1], ∅, and (a, 1] for each a ∈ [0, 1).

The Lebesgue valuation ν maps [0, 1] to 1, ∅ to 0, and (a, 1] to 1 − a. It extends to all

upper sets by ν[a, 1] = 1 − a. So, by Jones’ Theorem (Corollary 3.5), this is a quasi-simple

valuation; but it is not discrete, otherwise, by Proposition 4.1, ν extends to a continuous

valuation ν on the discrete topology. Then ν{0} = ν[0, 1] − ν(0, 1] = 0. And for every

a ∈ (0, 1], we have ν{a} � ν(a−ε, 1]−ν(a, 1] for every sufficiently small ε > 0, so ν{a} � ε.

Therefore ν must be the everywhere zero valuation, hence also ν, which is impossible.

(The purpose of this discussion is not to show that the Lebesgue measure is not discrete,

which is well-known, but to illustrate the use of Proposition 4.1.)

Although every simple valuation is discrete, the converse fails. For example, on the

dcpo [0, 1] again,
∑+∞

i=0 1/(n + 1)2δ1/n is clearly discrete, but takes infinitely many values,

so it cannot be simple.

4.2. Point-continuous valuations

A valuation ν is point-continuous (Heckmann 1996) if and only if, for every open O, for

every r ∈ �+ such that ν(O) > r, there is a finitary compact � ⊆ O such that ν(O′) > r

for every open O′ ⊇ �.

Lemma 4.2. Let (X,O) be a topological space. Given a function ν : O → �+, the following

propositions are equivalent:

1 ν is a point-continuous valuation.

2 ν is a valuation, and there is a function f mapping each finitary compact � to a

non-negative real such that, for every open O, ν(O) = sup�⊆O f(�).

3 ν is a valuation, and for every open O, ν(O) = sup�⊆O ν∗(�).

4 ν is modular on O, and extends to a strict, monotonic and continuous function ν on

the Alexandroff extension of O.
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Proof. The implication 3 ⇒ 2 is clear.

Let us show 2 ⇒ 1, and assume ν(O) = sup�⊆O f(�). If ν(O) > r, there is a

finitary compact � ⊆ O such that f(�) > r. But then, for every open O′ ⊇ �,

ν(O′) � f(�) > r. Let us show 1 ⇒ 3. Assume that ν is point-continuous. Recall that

ν∗(�) = infO′ open⊇� ν(O′). In particular (take O′ = O), sup�⊆O ν∗(�) � ν(O). Conversely,

sup�⊆O ν∗(�) � ν(O) is equivalent to the property that for every r < ν(O), there is a

finitary compact � ⊆ O such that ν∗(�) � r: this is a direct consequence of 1.

To show the equivalence between 4 and 1–3, we prove 4 ⇒ 2 and 3 ⇒ 4.

— 4 ⇒ 2: Let f be ν, then:

sup
�⊆O

f(�) = sup
�⊆O

ν(�)

= ν(O) (since ν is continuous)

= ν(O) (since ν extends ν).

— 3 ⇒ 4: let ν be defined by ν(U) = sup�⊆U ν∗(�). This clearly extends ν to the

Alexandroff extension of O, and is strict and monotonic. It is continuous because �
is compact in the Alexandroff topology: see the proof of Theorem 3.12 for a similar

argument.

Item 4 of the previous lemma shows, in particular, that point-continuous valuations

can be characterised by the fact that they are exactly the valuations that can be extended

to some specific kind of function (strict, monotonic, continuous) on some topology

(Alexandroff). In contrast with Theorem 1.1, we allow the extension to be non-modular

here.

Every point-continuous valuation is a continuous valuation, but the converse fails:

the example of Remark 3.2 yields a continuous valuation ν such that ν(O) is in general

different from sup�⊆O ν∗(�), showing that item 3 of the previous lemma fails.

Every quasi-simple valuation is point-continuous, but the converse fails: the example

of Remark 3.6 is not quasi-simple but is point-continuous. Indeed, for every open O, if

ν(O) > r, then O is non-empty and r < 1. Take x ∈ O, then the finitary compact ↑ x is

included in O, and for every open O′ containing it, O′ is non-empty, hence ν(O′) = 1 > r.

Item 4 of Lemma 4.2 shows that quasi-simple and point-continuous valuations are

rather similar, although the two notions differ. There are more puzzling similarities. In

particular, Heckmann shows that every bounded point-continuous valuation is the sup

of a family of simple valuations (Heckmann 1996, Lemma 5.3). This may appear to

be a claim that point-continuous valuations are quasi-simple. However, every bounded

point-continuous valuation is the sup of a family, but not necessarily a directed family

of simple valuations. This actually makes a difference: as shown in Remark 3.7, the

valuation ν of Remark 3.1 is a sup of simple valuations but is not quasi-simple, although

it is point-continuous (see above).

The set of point-continuous valuations is always a dcpo. Indeed, the point of Heck-

mann (1996) is precisely that this set is the soberification of the set of simple valuations, and

its specialisation preordering is just the ordinary ordering of valuations. That this is a dcpo

can also be proved directly using Lemma 4.2. We have to show that any sup ν of a directed
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family (νi)i∈I of point-continuous valuations is again point-continuous. By Lemma 4.2,

item 3, νi(O) = sup�⊆O ν∗
i (�), so ν(O) = supi∈I sup�⊆Oν

∗
i (�) = sup�⊆O supi∈I ν

∗
i (�). So ν

is point-continuous by Lemma 4.2, item 2, taking f(�) = supi∈I ν
∗
i (�).

On the other hand, it is not known whether the set of quasi-simple valuations is a dcpo,

except in special cases (when all continuous valuations are quasi-simple for example, see

Corollary 3.5, Theorem 3.12, or when the given quasi-simple valuations are bicontinuous,

see Proposition 3.9).

5. Related work and conclusion

Claire Jones’ Ph. D. thesis (Jones 1990) was a milestone, and contains a wealth of

fundamental results on continuous valuations. She also cites previous work by Graham,

Saheb-Djahromi, Plotkin and Frutos Escrig, who were the first to study continuous

valuations as models of probabilistic non-determinism. Among other results, Jones shows

that every bounded continuous valuation on a continuous dcpo is quasi-simple. This is one

of the necessary steps for showing that the dcpo of all continuous subprobability valuations

on a continuous dcpo is again a continuous dcpo, one of Jones’ major achievements.

A classical theme in continuous valuation theory is to look for conditions under which

continuous valuations extend to a (unique) measure on the Borel σ-algebra generated by

the topology. This was initiated by Saheb-Djahromi, pursued by Jones, and corrected and

extended by several authors (Alvarez-Manilla 2000; Alvarez-Manilla et al. 1997; Keimel

and Lawson submitted). We will not list the many results obtained in this field, as this

would side-track us from the theme of this paper, namely extensions of valuations to

larger topologies. Perhaps closest to our concerns is Keimel and Lawson’s result that any

quasi-simple valuation extends to a finitely additive function on the algebra generated

by the Alexandroff extension of the original topology (Keimel and Lawson submitted,

Proposition 4.3). In general, there are certainly many intriguing connections between

valuation and measure theory. However, as we noted in Remark 3.3, one difference is

that when extensions to measures exist, they seem to be unique (at least when they are

bounded): this is not the case with extensions of valuations to Alexandroff extensions of

topologies.

Sünderhauf studied spaces of valuations from the quasi-metric point of view (Sünderhauf

1997). Our Corollary 3.6, stating that on algebraic dcpos, every bounded continuous

valuation is the sup of a directed family of simple valuations based on finite elements, is

part of his Theorem 3.4. We have noted in Remark 3.8 that there remained a gap in his

proof, which we filled.

Section 3.4 owes a lot to Tix’s Diplomarbeit (Tix 1995). Alvarez-Manilla (Alvarez-

Manilla 2000) notes that Tix’s results were independently discovered by Norberg and

Vervaat.

Finally, we have discussed the subtle relationship between quasi-simple and point-

continuous valuations in Section 4.2. The latter were introduced in Heckmann (1996),

where it was proved that the space of point-continuous valuations is exactly the soberi-

fication of the set of simple valuations. Heckmann also shows (Theorem 4.1 in op.cit.)

that every continuous valuation on a locally finitary space is point-continuous. We have
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shown (Theorem 3.12) that every continuous valuation is even quasi-simple (a stronger

property) if X is finitarily coherent (a stronger requirement).

To finish, we can sum up the main results of this paper in the following table, where

classes of valuations above the double line are equivalent to extension conditions below

the double line:

valuation: simple � discrete � quasi-simple � point-continuous � continuous

extends to: continuous continuous strict, monotonic,

valuation valuation continuous

function

on: discrete Alexandroff Alexandroff

topology extension extension

In particular, it is remarkable that several classes of valuations can be characterised by

the existence of extensions.
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