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Abstract Let H be a hyperbolic component of quadratic rational maps possessing two
distinct attracting cycles. We show tt¥dthas compact closure in moduli space if and only
if neither attractor is a fixed point.

1. Introduction
From the perspective of dynamics, the simplest rational magsyaerbolic every critical
point tends under iteration to some attracting periodic cycle. Such maps constitute an
open and conjecturally dense set in parameter sggoetiose components are referred to
ashyperbolic componentsviaps in the same component are quasiconformally conjugate
near the Julia set, and thus have essentially identical dynamics if critical orbit relations are
ignored.

The family P.(z) = z? + ¢ of quadratic polynomials contains one unbounded
component, namel{f — M where

M = {c: J(P,) is connectef

is the much studied Mandelbrot set, and infinitely many bounded components; the latter
are simply connected regions with smooth real-algebraic boundary, and are naturally
parametrized by the eigenvalpes D of the unique attracting cycle. Matters become more
involved when there are at least two free critical points. The two-parameter families of
normalized quadratic rational maps and normalized cubic polynomials are often considered
in parallel, as their hyperbolic components admit similar descriptions: there is a single
component of maps with a totally disconnected Julia set and all other components are
topological 4-cells 12, 1§. One essential difference is that cubic polynomials with a
connected Julia set form a compact set in parameter space; in particular, every hyperbolic
component of maps with two distinct attractors is precompact. By contrast, while many
unbounded hyperbolic components of quadratic rational maps have been ideftifi€q [
bounded components have yet to be exhibited.
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Hyperbolic components may also be discussed in the context of Kleinian groups and
their quotient 3-manifolds. For finitely generated hyperbolic groups with connected limit
set—those whose quotient has incompressible boundary—the corresponding hyperbolic
component is precompact if and only the limit set is a Sierpinski carpet: the complement
of a countable dense union of Jordan domains with disjoint closures whose diameters tend
to zero. Guided by Sullivan’s dictionary between these subjects, McMullen conjectured
that hyperbolic rational maps with a Sierpinski carpet Julia set lie in bounded hyperbolic
componentsy, 1d. Pilgrim has suggested more precisely that a hyperbolic component
is bounded when the Julia setasmosta Sierpinski carpet: for example, if every Fatou
componentis a Jordan domain and no two Fatou components have closures which intersect
in more than one periodic point. Here we establish precompactness for hyperbolic
components of quadratic rational maps with two attracting cycles, provided that neither
attractor is a fixed point. While it is known in this case that every Fatou component is
a Jordan domainl[/], our largely algebraic arguments do not exploit the topology of the
Julia set.

We begin in 82 with a review of the theory of the holomorphic index. The index formula

1,11
1-a ' 1-8 1-y

relating the eigenvalues of the three fixed points is fundamental to Milnor’s description
[13] of the moduli space of quadratic rational maps. We survey this work in 83 and show
in particular that a sequence of maps is bounded in moduli space if and only if there is an
upper bound on the eigenvalues of the fixed points. Moduli space is readily parametrized
through the choice of a normal form. For certain purposes it is convenient to work with the
family

Ql-w)z+a(l-—p8)
Bl—w)z+1-p5)

of maps fixing zeropo and one with eigenvalues 8 andy = (2 — (« + 8))/(1 — apB);
in other settings it is more useful to work with the family

fap@) =2

vZ
Z24+8Z+1

of maps with critical pointst1 and a fixed point at zero with eigenvalue

In 84 we study the limiting dynamics of unbounded sequences in moduli space. Milnor
showed that such sequences accumulate at a restricted set of points on a natural infinity
locus [L3], provided that there are cycles with the same period 1 and uniformly
bounded eigenvalues. We sharpen this and related observations in order to show that
suitably normalized iterates take limits in the family

Fy,é(z) =

1
GT(Z)=Z+T+E

as anticipated by considerations in the thesis of Stim&#h [ Cycles with bounded
eigenvalues tend in the limit to cycles 6fy or to points in the backward orbit of the
parabolic fixed point ato; in the latter case this backward orbit contains a critical point.
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In particular, if the maps in the sequence lie in a hyperbolic component where there are two
non-fixed attractors the@ must have either two non-repelling cycles, one non-repelling
cycle and one preperiodic critical point, or two preperiodic critical points, in addition to
the parabolic fixed point ato. As discussed in 85, this violation of the Fatou—Shishikura
bound on the number of non-repelling cycles yields the desired contradiction.

86 gives an intersection-theoretic re-interpretation based on Milnor’s observation that
Per, (p), the locus of conjugacy classes of maps withragycle of eigenvalue, is an
algebraic curve whose degree depends only: 0T he explicit formulae in 13 yield a
short independent proof of boundedness in the special case of maps with one attracting
cycle of period 2 and another of period 3. These considerations suggest a combinatorial
expression for the intersection cycle at infinity of a pair of such curves.

2. Localinvariants
Let g be analytic oV € C and¢ € U with g(¢) = ¢. Assuming thag is not the identity,
thetopological multiplicityis defined as the positive integer

1 (1-8@

mult, (¢) = %/F PRy 2@) dz
whererl is any sufficiently small, positively-oriented, rectifiable Jordan curve encl@sing
theholomorphic indexs similarly defined as the complex number

. 1 1

ind, (¢) = %/F =20 dz.
One easily checks that these quantities are invariant under a holomorphic change of
coordinates and can thereby be sensibly defined fer oo; moreover, muli(z) = 1
if and only if theeigenvalueo = g’(¢) differs from one, and then

. 1
indg(¢) = i 1)

Furthermore, if p| # 1 or p = 1 then mulf»(¢) = mult, (¢) for everyn > 1.
It follows from Cauchy'’s integral formula that

/
3 multy ) = zi 1-5@,,
t=2@)eV i Jov 2 — g(2)
. 1 1
Z mdg(f) = 271 dz
t=g()eV i Jav 2= 8()

for openV with V. € U < C and with rectifiable boundary containing no fixed points.
These sums evidently depend continuouslyoffor rational mapg : C — C of degree
D, one sees from the residue theorem that

> multy)=D+1; 2)
t=g(£)eC
theholomorphic index formula
Y indy(0) =1 3
r=g({)eC
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follows similarly. We denote by Fig) the unorderedD + 1)-tuple of fixed points listed
with multiplicity. In general, we denote such collections of possibly identical points as
{x1, ..., x,}. We similarly write Cri{g) for the unordered@D — 2)-tuple of critical points;
note that there are at least two distinct critical points when 2.

A fixed point¢ of an analytic mag is said to beattracting, indifferentor repelling
accordingly as the eigenvalyeis less than, equal to, or greater than onep K ¢27ir/4
where(p, g) = 1 andg? is not the identity, thers is parabolic A simple calculation
then shows that myli(¢) = vg + 1 for some positive integer; we refer tov as the
degeneracyand say that is adegenerate parabolifixed point wherv > 2. In view of
(1), if multg(¢) = 1 then¢ is attracting, indifferent or repelling according as the real part
of ind,(¢) is greater than, equal to or less th%m Following [1] we say that a parabolic
fixed point; with eigenvalue?*r/4 is

1
parabolicattracting ~ when®indgs (¢) > vq;

1
parabolicindifferent when® indgq (¢) = Vq2+

1
parabolicrepelling  when®tindg (¢) < vq;

More generally, we say that is periodicunderg wheng”(¢) = ¢ for somen > 1,
the least such being referred to as thgeriod The multiplicity, index and eigenvalue of
the cycle(¢) = {¢, ..., g" 1(¢)} are the corresponding invariants ofas a fixed point
of g". It follows from the definition of multiplicity that a generic perturbationg$plits
ann-cycle with eigenvalug = ¢2"'?/4 and degeneraayinto ann-cycle with eigenvalue
close top and av-tuple ofng-cycles with eigenvalues close to one. Continuity of the local
index sum implies the following.

LEMMA 1. Let g be analytic onU with a parabolicn-cycle (¢) of eigenvalue?™i?/4.
Further letgy be analytic withgy — ¢ locally uniformly ont, and withn-cycles(¢[”') and
ng-cyclesic!My, ..., (/")) converging to¢). If all (¢’!) are attracting fork sufficiently

large then(¢) is parabolic-attracting or parabolic-indifferent.

Assume now thag is rational of degre®. Thebasinof an attracting cycléz) is the
open set consisting of all points e C with g"(z) — (). We refer to the connected
component containing € (¢) as theimmediate basinof £. The basin of a parabolic cycle
(¢) is similarly defined as the open set of alk C - UnZog " (¢) with g"(z) — (¢),
the vg components adjoining € (¢) forming the immediate basin &f. In both cases,
the immediate basin gt ) is taken to be the union of the immediate basins of the points
in the cycle. Fatou established the fundamental fact that each cycle of components of the
immediate basin of an attracting or parabolic cycle always contains at least one critical
value with infinite forward orbit 11]. In particular, counting degeneracy there are at
most 2D — 2 attracting and parabolic cycles. Shishikura extended this bound to the total
count of non-repelling cyclef)], and the author proved a refined inequality where the
contribution of each parabolic-attracting and parabolic-indifferent cycle is augmented by
one [1]; consideration of the return maps on Ecalle cylinders shows in fact that there are at
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FIGURE 1. Bifurcation locus for the familG 7 (z) =z + T + (1/z).

leastv + 1 critical values with infinite forward orbit in the immediate basin of a parabolic-
attracting or parabolic-indifferent cycle of degeneracy
Consider the family

1
GT(Z)=Z+T+E

(see Figure 1) of quadratic rational maps with critical poiits and a degenerate fixed
point at co with eigenvalue one and holomorphic index—1(1/72); by convention,

G~ = oo. The Fatou—Shishikurainequality has the following consequences in this special
case.

LEMMA 2. LetG = Gr whereT € C.

° If T = 0thenoco is a degenerate parabolic fixed point. Neither critical point is
preperiodic and all other cycles are repelling.

° If some(¢) C C is attracting or indifferent thernc is parabolic-repelling, neither
critical point is preperiodic and all other cycles are repelling; if parabolic, thgh
is non-degenerate parabolic-repelling.

. If either critical point is preperiodic theno is parabolic-repelling, the other critical
point has infinite forward orbit and all other cycles are repelling.

3. Normal forms
We naturally identify the space of all quadratic rational maps

Az + A1z + A

RAT, = {g(2) =
& B2z2+ Bi1z + Bo

:degg =2

with the open subvariety of projective spa@®where the resultant

A2 A1 Ao O
0 Ay A1 Ag
B> B By O
0 By B1 Bog

det
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is non-vanishing. Various technical purposes require that we work in the spaces

RAT S = {(g; x*, x™) € RAT2 x C?: Crit(g) = {x ", x 1}
RATS = {(g: a, b, ¢) € RAT2 x C3: Fix(g) = {a. b, c}}
Gt ={x* x7)
RATS =1 (g; x*, x";a,b,c) e RAT, x C°: and
Fix(g) = {a, b, ¢}

where the critical points, fixed points or both have been marked. The quotients under the
conjugation action of the Bbius group are thmoduli spaces

rato = RAT 2/PSL,C
raty = RAT /PSLC
rat; = RAT5/PSLLC
raty = RATS /PSL,C

all varieties of complex dimension 2.
Writing «, 8, y for the eigenvalues of the fixed pointsb, ¢ we see from (3) that

1 1 1

-1
1-a 128 T1=y

solong asy, B8, y # 1, and
afy —(a+B+y)+2=0 4)

always; in particular,

2= (x+B)
 1-ap

Let[(g; x*, x";a,b,c)] be aclass imaty. Provided thaty™ # ¢ # x~, thereis a
unique representative of the for(h, 5; +1, —1; a, b, 0) where

yZ
F,§(Z) = ———— 5
for somey, § € C with y # 0; moreover, every class mat; has a representative of this
form. As
y(1-27%
F (Z)= —F"—"—""—
=22 571

it follows that

1—a2_5a+2

o= 1
y y
1-b2 Sb+2
14 y
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with

{a, b} =

—5+ /52— 41— y)}
5 :

Alternatively, provided that # b # ¢ # a there is a unique representative of the form
(fa.ps T, x7; 0, 00, 1) where

. Ql-—w)z+a(dl—p5)
L TC e pr gy ©

for somew, 8 € C with o, 8, 8 # 1. Writing
Q-w)(z—1) +e€

Jeb @ = g D te "
z|z—v Z e
=— =—11+ , 8
ﬂ[z—u} ﬂ[ Z—M] ®
where
1-a)(1-8)
v v ®)
and
B—-1 €
= =1-—— 10
il ey R T (10)
oaff — €
L _1_1—05’ (11)
we see thaff, g(u1) = oo and f, g(v) = 0. Calculating the derivative
;o BA-?@ -2+ A+ A - )z —De+ (2—a — P
fa,ﬁ(Z) = [,3(1_ C()(Z _ 1) +6]2 (12)
1 wy — p? 1 w2e
=—(1+ =—|1-— 7], 13
ﬁ[ (z—u)z} ﬁ[ (z—u)z} (13)
we find that
Xt Hxo e—(X+_X>2
S S
whence

Xt =nld+Ve)

for the appropriate choice Qfe.
Assuming both restrictions on the marked points, there is a uniqudild”
transformation

_bZ—ab  (uPe —p®+ WZ+ pyfe

PO =7 —ab A—wZ+ pe (1)
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sending+1, —1,a,b5,0to x*, x~, 0, oo, 1. Clearly,
Fys=¢"to fupod

where

@ ﬂ):( Axtxm =2xTxxt+x0) 2t +x ) =4 txo >
’ XTH+ A2 =2~ (Xt +x7) 2t + ) = (Xt x)?
and
(y,8) =1 —ab, —a—b).
Recall that the elementary symmetric functions
X, B,y)=a+B+y
Y(a,B,y) =af +ay + By
Z(a, B,y) =aBy

together determingu, b, ¢}. It follows from (4) that
rat3 3 [f5a,b, cl~ (X(& B, ), Y (@ B, ), Z(a, B, 7)) € C°
descends to a mapt, — C3 with image in the hyperplane
(X,Y,2)eC3:Z=X -2},
and we obtain
j:raty — C?

on composition with the projectiofi® > (X, Y, Z) ~ (X,Y) € C2. Consideration

of the normal forms (5) and (6) shows that an unordered tifiplé, ¢} satisfying (4)
determines a unique class iiaty, and thus;j is an isomorphism. Asoy, Bk, yx} and

{X (ox, Br, vx), Y (e, Bx, i)} are simultaneously bounded or unbounded, we recover
Milnor’s observation 13] as follows.

LEMMA 3. Let g be quadratic rational maps with eigenvalues, Sx, yx at the fixed
pointsa, b, c. Then[g,] is bounded irrat; if and only if {«x, Bk, y«} is bounded irC.

4. Limit dynamics

Ouir first goal follows.

PrROPOSITIONL. Let gx be quadratic rational maps with eigenvalues, gk, v« at the
fixed pointsu, b, ¢, wherea, and g, converge inC andy, — oco. Assume that there are
cycles(zx) with the same period > 1 and uniformly bounded eigenvalues. Then

o =0+ 0We), Bi=a+ 0/ e)

ask — oo, wherew is an¢th root of unity for somd < ¢ < n and

1
€k=1—olk,3k=0(y—).
k
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The proof requires several preliminary lemmas and the elimination of various special
cases. Lety, Bk, yx € C satisfying (4), and suppose that— oco. Inspection of (9), (10)
and (11) shows that:

ar — oo if and only if By — 0, andvice versa

ar — lifandonlyif 8 — 1, andvice versa

e = o(ay — 1) if By is bounded, andy, = o(Br — 1) if o is bounded;

= O(y; Y if both . and By are bounded;

ur — 1 andvy — 1if bothoy, B # 1 are bounded;

bothu; andv, are 14+ O (e) if o, hence als@, is bounded away frorfD, 1, oo}.
Recall from (14) that the choice qf/e;, corresponding to a marking of the critical
points, specifies a Bbius transformatiog, which conjugatesy, g, to someF,, 5. It
follows from these observations that

& (Z) =1+ ZJex +o(Jex) (15)
on compact sets it, provided thaty, andpg; are bounded away frof®, 1, oo}.
Let fx = fop,p. Wherey, — oo anday — oo € C*. It follows from (7) and (8) that
fr(zi)/ze = 1+ o(2) for any sequence of pointg € C with zx — 1 = o(ex), and that
fx(2) = axoz locally uniformly onC — {0, 1, oo}. Moreover, ifas, # 1 then

i@ _ (1+ +o< 6" >+0(ek)) (16)
Zk zr—1 w—1

whene; = o(zx — 1), so that

ax +o(1), if ex =o0(zxk — 1
1 .
Jelz) | <1+ ;ﬁ) +o(Jex), ifzx =141 /& +o( /e ) forT e C*
Zk .
ar + o(/€k ), if Jexk =0(zx — 1)
ar + O(ep), if zx is bounded away from one
(17)
furthermore,
-1 — 1—
Jr(zk) @@= B — o) + & (18)

-1 Bl—a)(z—1) +e
wheneveg;, — 1.

LEMMA 4. Let Fy = Fy, s, Whereyy — oo, with oy — aoe @and gy — Bo for some
oo, Boo ¢ {0, 1, 00}; let Zx e C with ij(Zk) — ¢W eCforo < j < ¢, wheret > 0,

and suppose that©@ ¢ {0, oo} and¢® # co. Thent¢ > 1. Moreover, if ) + 0 for
0 < j < tthenay = 0+ O(/€) andfy = o + O(/ex ), for sometth root of unityw;

if £() = oo for every0 < j < ¢ thenw is a primitive£th root of unity.

Proof. Consider the points; = ¢(Zx). As §(/) # 0for0 < j < ¢ it follows from

(15) that /&x = O(f (z) — 1), hencef{ @0/ f @) = ax + O(J&) by (17);
consequently,

fk (@) _ ]l_[ l+l(Zk)

T = o] + 0(J&)
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for0 < j < £. On the other handf,f(zk)/zk = 1+ 0(/&)/(L+ O(Je&)) =
1+ O(Je) becausez©@ # oo # ¢©, soaf = 1+ O(/e). It follows that

=1= ﬂﬁo, hencexo,, = w andg; = @ for sometth root of unityw # 1, and
thatey =  + O(/&), hencepy = a;t + O(e) = @+ O(Je&). Furthermore,

fl@) = @ + o(JaNu = (@ + O(J_))(1+ 0(Je&)) = o + 0(/&) fOf
0<j<¢ sothatt ) £ oo if w/ # 1.

LEMMA 5. Let Fy = Fy, 5, wherey, — oo, with oy = ane + O( /€ ) for some
oo & {0, 1, 00}, and letZy e C with Z; — 0. If F{ (Z) is bounded for somg > 0 then

Zi = 0(J&).

Proof. Setzy = ¢r(Zy); note thaty = 1+ o( /e ) by (15), becaus&, — 0. Suppose to
the contrary that/ex = o(Zy); thene,/(zx — 1) = o(1), and we claim that

j g €k €k
Ji (@) = g (1+Zk—1>+0<Zk—1> 19)

for j > 0. Indeeduzk = aoo + O (€ ) = oo + 0(e/(zx — 1)), whence

f— Ek
Tilai) = e (1+ Tk — 1) o (Zk - 1)
by (16); as (19) implieg/ex = o(fkj (zx) — 1), it follows by (17) and induction that
@0 = @+ o) f (@) = as (1 +o (Z:f 1)) £ @0
(10 ) ()
ozoo ( +Zk_1 +o w_1)

On the other hand, iFk"(Zk) is bounded thegfkj (zk) = 1+ 0(/ex ) by (15); thusaéo =1
by (19), but ther, /(zx — 1) = O(/<x ) for a contradiction. O

Suppose now that (zx) = zx Wherez; € C - {0,1,c0}andn > 1. As

e -1 T e -1

1= ,
%=1 iso fl@ -1

it follows from (18) thatfkj (zx) is bounded away from one for evefyin some congruence
class modula; as

fi@ e e

1=
Zk j=0 £l @
it similarly follows from (17) that
1+o(1),  if ming |(f k) — D/ex] > o0

" 1+ O0(/ex), if min; |(fkj (zx) — 1)/ J/€x| is bounded away from zero 20)
o, = .
T ato(@), i ming 1(f @) — D/ el — oo
1+ O(er), if (zx) is bounded away from one
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LEMMA 6. Let Fy = Fy, s, Whereyy — oo, with oy — aoe and gy — Bo for some

o, Boo ¢ {0, 1, 00}; let (Zy) be cycles of period > 1, and suppose thdZ;) — I' C C.

Thenoo € I'. Moreover:

° if T # {0, co} thenay = w + O(/ex) and By = v + O (/ek );

° if I' = {oo} thenay = w+o(/ex) and B = @ + o(/€x ), wherew is anfth root of
unity for somel < ¢ < n.

Proof. We may assume without loss of generality thglt(Z;) — ¢’ e T for each
j ez asf,j(zk) is bounded away from one for somjeit follows thatoo = ¢ € T.
If I # {0, oo} then we may further assume thdt) = ¢ (@ ¢ {0, oo}. In this case there
is a leastt > 0 with ¢(© # oo, so it follows by Lemma 4 that, = w + O (/&) and
B = @ + O( /&) Wherew® = 1; necessarily, < ¢ < n. Finally, if ' = {oo} then
Jek = o(fkj(zk) — 1) for everyj, so thaty, = w + o(/€ ), hencesy = a,jl + O(&) =
&+ o(\/ex ), by (20). O

Assume now thaty, hence als@y, is bounded away frorfD, 1, oo}, and letz; be any
sequence of points i@. If zx — 1 = o(,/€x ) then

(2 — ax — Pr)ex + oler)
—
o(€k)

by (12). On the other hand, {fex = O (zx — 1) then (13) implies

, _i B €k €k
f““)‘ﬂkp' @k—bz+”<@k—1ﬂ>}

filze) =

whence

ak<1—i2)+o(1), if zx =141 /ex +o(Jex) fort e C*
filzp) = T
ar +0(1), if Jexk =o0(zx — D).

In particular, if thez; are periodic with perioa& > 1 then the corresponding eigenvalues
are

n—1
pe=[Tr (@)
j=0
_Jo, if min; |(f,'f (zk) — 1)/ /€| is bounded away from zero
of +o(b), if minj [(f (zx) — 1)/ J/ex] = oc.

In view of (15) and (20), these observations prove the following.

LEMMA 7. LetFy = Fy, 5, wherey, — oo. Assume that;y — w, hencefy — @, where
w # 1is a primitivegth root of unity, and letZ;) — T" be cycles of period > 1 and
eigenvaluegy. If 0 ¢ T" theng|n and py is bounded; moreover, i = {oo} thenpy — 1.

On the other hand, if mip|(fkj(zk) —1)/./éx| = 0thenp, — oo, unlessf,f(zk) =
14 /e + o( /e ) for some integey, so (15) implies the following.
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LEMMA 8. LetF; = Fy, s, Wherey, — oo, withoy and gy bounded away frorf0, 1, oo},
and let(Z;) — T be cycles of periogd > 1 and eigenvalueg;. If 0 € T" and py is
boundedtheA-leTor—-1€eT.

Proof of Proposition 1.Let as = liMg_ o0 o @andBoo = liMy_ 0 Br- If @so ¢ {0, 1, 00}
thenBx ¢ {0, 1, co}, SO we may represent each class

[(gk; ak, bk, ck)] € rat‘z’

by a mapF, = F,, 5. Recall that we are givem-cycles(Z;) with uniformly bounded
eigenvaluegy. Passing to a subsequence if necessary, we may assunigghat I' C
C. AsT # {0, 0o} by Lemma 8, it follows by Lemma 6 thaty = « + O(,/€;) and
Bk = @ + O( /€ ), wherew is anfth root of unity for some k £ < n.

Suppose next that.,, hence als@B, is in {0, co}. Permuting the fixed points if
necessary, we may assume on passage to a subsequengethato anday = O ().
Following Milnor [13] we work with the representativefk; 0, 0o, cx) where

fidy =z ;kjj‘kl
and
11—
= 15 = —ay + o(ag).

Calculating the derivative

Bez2 + 27 + oy
(Brz + 1)2

we see thafk/(z) = oy + O (1) onthedisdz| < 4. In particular,fk is univalentonz| < 4
with the image containing the disgl < 3|ck|, and both critical values lie outside the latter
region. Consequently, there are univalent inverse branghesd Cy, fixing zero andy,
defined on the distx| < 3|ck|. AS Dy = {z : |2z — ck| < 2|ck|} lies in the image of the
disc|z| < 4, it follows thatA} (Dy) = 0(01,:1) on Dy andAi(Dy) C Dg. On the other
hand,

fi) =

Ci2) =0y H = 0t h

for |z|] < %|ck| by the compactness of normalized univalent functions; consequently,
ICk(z) — ekl = O(ekyy ™) = OQ) for |z — x| < 3|exl, and in particulacCy (Dy) C Dy.
We deduce thaf(fk) C f,jl(Dk) is a Cantor set containing all periodic points other than
the fixed point ato. Thus,(z¢) C J(f¢) andp, * = O(a; ") whenceo, — .

It remains to treat the case, = 1 = Bo. Now it is advantageous to choose
representative&y; oo, b, cx) where

_ (oyr — D22+ @2y — ad)z + of
@2y — )z

8r(2)

and

Uk 275

bk, cx) = < ) — (00, 0).

o —1 1 — o
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Notice thatg (z) — z + 1 locally uniformly onC — {0}, and thugg} (z) — z + n locally
uniformly onC — {—(n —1),...,0}. As the translation ~» z + 1 has a fixed point of
multiplicity 2 atoo and no other periodic points; andoo are the only fixed points
outside the circléz| = n. We may therefore assume without loss of generality that

gl - ¢V ef-n—1),...,0
with ¢V = ) + 1 whenever ) 2 0. It follows that some; ) = 0, whence
&l () = 0y asgl ™ (zx) is bounded away from one. Calculating the derivative

G = = _

I =———

k ar  (ogyx — Dz?

we see thaﬁ,’((g’;ﬁ (zx)) — oo whenz() = 0, while g,g(g; (zt)) — 1 otherwise, and we
conclude thap;, — oo. O

Now letay = w(1+ t./€;) + o( /€ ), so thatgy = o(1 — t./e; ) + o( /€ ), where
o # 1is a primitivegth root of unity andr € C. ForZ € C* and 0< j < ¢, it follows
from (17) that

R A+ 2@ = |1+ (2 a7+ 5 ) V& +otaD)
whence
1
Vi © fe oV (n(2) > Z+qt + — =Gy (Z+ jT)— jT (21)

Z+jT
locally uniformly onC*, where

Vi ()(Z) = & (L+ ZJer).
Similarly, if oy — o but(ax — w)//eéxk — oo then
1
@' A+ Z &) 1+<Z+§)ﬁ+o(ﬁ), forj=0
q =
% & (1+ Z J&) + o(Je& ), for j # 0

and thus
ity © i 0 V() (Z) = 00
locally uniformly onC*. Applying (15) to the casg¢ = 0, we deduce the following.

PROPOSITION2. Let F; = F, 5, wherey, — oco. Assume that, — w, hencef, — @,
wherew # 1is a primitivegth root of unity, and assume further that, — w)/./ex — or,
hence(Br — @)/ /ex — —at, for somer € C. ThenF! — G, locally uniformly onC*.

Recalling Lemmas 6 and 8, we observe the following.

PROPOSITION3. LetF; = F, 5, wherey, — co. Assume that, — w, hencef, — @,
wherew # 1is a primitivegth root of unity. Assume further th&! — Gr for some
T € C,and let(Z;) — T be cycles of period > 1 and eigenvalueg;y — po € C. Then
Gr(I') CT. Moreover:
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° if ' = {oc}thenT = 0;

e if 0 € I'thenG™(x) = 0, whenceGyr™(x) = o = G’}“rz(x), for some
x € {+1, -1}and1l <m < n/q;

° otherwise,I' = (¢) U {oo} where(¢) c C is a cycle of periodn = n/q and
eigenvalueps,, or possibly a parabolic cycle of lower periodgdf, = 1.

Conversely, given am-cycle (¢) of Gr there existng-cycles of F; converging to
(¢) U {oo}. In particular, forT # 0 there is a unique finite fixed poigt= —1/T with
eigenvalue - T2, hence(Z;) — {¢, oo} for someg-cycles(Z;). As mulig,(¢) = 1,
it follows from Lemma 6 tha(ik) — {0, oo} for every convergent sequenceqtycles
(Zx) # (Zx). In view of Lemma 8, the eigenvalues ;) tend toco, as do those of all
¢-cycles where ¢ {1, 4} dividesq, and thus

1 1 1
1_0[2—}—1_,3]?—)1 72 (22)
by (3). On the other hand, fa@ = 0 there is only the fixed point ab, so every convergent
sequence of-cycles of Fy, tends to{oo} or {0, co}. The validity of (22) in this case is a
particular consequence of the following.

PROPOSITION4. LetF; = F, 5, wherey, — oco. Assume that, — w, hencef, — @,
wherew # 1is a primitiveqth root of unity, and le{Z;) be cycles of period > 1. If
(Zy) — {00} thenn = ¢, and every convergent sequenceefycles(Zy) # (Z;) tends
to {0, oc}.

Proof. In view of Lemma 7, we may assume without loss of generality that mq for
some positive integen. By (15), it is enough to show that ferandk sufficiently large at
most oneng-cycle of f; lies completely inside

qg—1
s =
vi =C- DL
)

whereD,ﬁ’(j) ={z e C:|z—®'| <rlel}, and thatn = 1 if there is such a cycle. It
follows from (17) thatf, "7 (c0) NV, = {oo} for larger andk, and thus all of the’?? — 1
finite poles of ;" lie in UZ;(l) Dy ;- Consequently,

Z multna (2) = 2" + 1~ ZA B multna (2)
=" ()eV] z=f"(2)eC-V}

provided thatf;"? has no fixed points oaV;, whence

q—1 mq.;

1 1-
Z multflznq(z) :2—22—/ M(jz
=RV im0t Jan 2= S (@
by the argument principle.

Observe thaGo(Z) = Z + (1/Z) has a fixed point of multiplicity 3 ato, and thusGy

has 2'7 — 2 finite fixed points and’? — 1 finite poles. It follows as above that
1 / 1-(Gy)(2)

| Z|=r

— dz = -1
2ri Z -Gy (2
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solongas > max|Z|: Z e CandZ — G (Z) € {0, oo}}. In view of (21),

i/ wdz_i/ (wk<,>ofk V)@
27Tl oD’ Z— f]:nq(z) 27Tl Zl=r 7 — (I/Ik ) o fk ° 1//]()(]))(2)

1 1- (G (@)
_%/z_r z-ag ¢

k.(J)

whenk is sufficiently large, and thus

Z mu|tf1:nq (z)=q+2
=" )eV}

We deduce thaf"?(z) = z € V{ implies f{(z) = z for larger andk depending only

onm. If o} = 1then mulqu (0 =g +1and mulqu(oo) = 1, while if 8 = 1 then

mult pma(0) =1 and muI}mq (00) = g + 1; in these caseﬁi”q has no other fixed points in
. Otherwise,

mu|tflznq O =1= mu|tf]:nq (c0)

and it follows from (17) that the remainingfixed points offkq in V[ constitute a-cycle
of f. O

In view of Fatou’s theorem, the second assertion in Proposition 3 is sharpened by
Proposition 5.

PROPOSITIONS. Let Fy = F,, 5 wherey, — oo, and letZ; be attracting points of
periodn > 1 with immediate basinBy. If Z, — 0thenB; — 0.

Proof. In view of Proposition 1 we may assume without loss of generality éhat=
o + O(/€x) wherew # 1 is a root of unity. Ifk is large thenZ, € D, so forj > 0 there
are unique componenwk > Zy of F, i (D). We claim first thath — 0; otherwise, as
Wk is connected there exigt — oo ande( € Wke with Zk( — 0, but, /e, = 0(Zk{),
contradicting Lemma 5. It follows thav! c D, henceW,fJrl C ij forj > 0, if k
is sufficiently large. LetY; be the component q’ﬂ?‘;o ij containingZ, and denote
its interior by Wy; we contend thatVy, = B, and consequentl$, C Wkl — 0. By
definition, if¢ € By there exists opeli > ¢ such thatF,f-j(U) c D whenj is large, while
if £ € X, there exist; — ¢ with F,f-j(gj) € 0D. Thus,By N X, = @ soB; € Wk, as
By > Zi is a connected open set; conversgly, C By asF,f-j is bounded, hence normal,
on the connected open 38t > Z. |

5. Precompactness

Recall that a rational mapig/perbolicif and only if the orbit of every critical point tends to

some attracting cycle. As discussed12] 1§, there are four configurations for quadratics.

B  Both critical points lie in the immediate basin of the same attracting cycle, but in
different components.
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C  Both critical points lie in the basin of the same attracting cycle, but only one lies in
the immediate basin.

D  The critical points lie in the immediate basins of distinct attracting cycles.

E Both critical points lie in the same component of the immediate basin of an attracting
fixed point.

There is in fact a unique hyperbolic component of type E consisting of maps with a

totally disconnected Julia set. This component is unbounded;1&dof details. Our

main result is that components of type D are bounded, so long as neither attractor is a fixed

point.

THEOREM1. Letg, be quadratic rational maps, each having distinct non-repelling cycles
of periodsn® > 1. Then the sequengey] is bounded irrat .

Proof. It follows from the proof of the Fatou—Shishikura inequality that we lose no
generality in assuming that these cycles are attracB0f [Suppose to the contrary that
[g«x] is unbounded imat,. By Lemma 3 we may, passing to a subsequence if necessary,
choose representativés = F,, s, € [gx] With y, — oo. Let (Z,f) be the corresponding
n*-cycles of F;: we may assume without loss of generality thzf) —~T* cC. In

view of Propositions 1 and 2, we may further assume ¢hat> ¢2*?/4 and F,f — Gr

for someg > 2 andT e C; moreover, it follows from Fatou’s theorem that we may label
the critical points so that1 lies in the immediate basin ((JZ,?).

We derive a contradiction by examining the possibilities listed in Proposition 3. If
't = {oco} thenT = O; it follows from Lemma 2 that every finite cycle @y is
repelling and that neither critical point is preperiodic,I30 = {oo} in contradiction to
Proposition 4. On the other hand, if® I'* then Proposition 5 implies that the critical
point+1 is preperiodic; it follows from Lemma 2 that every finite cycle®f is repelling
and that the other critical pointl has infinite forward orbit, contradicting Proposition 3.
Consequently, neither af* contains zero, s6* = (¢*) U {oo} for some non-repelling
cycles(¢*) c C, and in fact(¢ ™) = (¢~) by Lemma 2; it follows from Lemma 1 that this
cycle is parabolic-attracting or parabolic-indifferent, once again contradicting Lemima 2.

The same considerations apply when there is one non-repelling cycle along with a
preperiodic critical point.

THEOREM2. Let g; be quadratic rational maps with non-repellingcycles(z;) where
n > 1. Assume furtherthagt,f()(k) € (zx) for somet > O, critical points x;, andn-cycles
(zZr). Then the sequenggy] is bounded irrat».

The exceptional type D components are known to be unbounded; see Lemma 10 below.
Many, although not all, type D maps arise matingsof pairs of hyperbolic quadratic
polynomials. In this construction, the filled-in Julia sets are glued back-to-back along
complex-conjugate prime ends; s&e 23 for further details. It is tempting to speculate
that our arguments could be refined to establish precompactness for large portions of the
mating locus, but our results in this direction are rather limited at present. Examination
of Figure 2 suggests that the type C components are all bounded. This would follow
immediately from our arguments if it could be shown in this case Bjdt(By) — By — 0
whereB;, is the immediate basin of the unique attracting cycle. There are evidently many
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FIGURE 2. Bifurcation locus in Pex0).

unbounded type B components. Makiengpfas obtained a degree-independent sufficient
condition for unboundedness, loosely speaking the existence of a family of closed Boincar”
geodesics on the basin quotient with lifts linking to separate the Julia set; se&@I0tj

the other hand, there are type B maps which do not admit such a family: Pil]roifes

the example (z) = (iv/3/2)(z + (1/z)) and describes its Julia set asaimost Sierpinski
carpet Such maps presumably lie in bounded hyperbolic components.

A good deal of what is known about hyperbolic quadratic rational maps—that Fatou
components are usually Jordan domaifg],[ that polynomials can be mated if and
only if they do not lie in conjugate limbs of the Mandelbrot s2g][ that mating is
discontinuous due to the existence of type D hyperbolic components whose closures are not
homeomorphic t@ x D [2], that moduli space is isomorphic @—is valid with minor
changes for higher degréxcritical mapspossessing two maximally degenerate critical
points. Much of the discussion here extends similarly, and Milnor has recently generalized
Lemma 3 to this larger setting: [igx] is unbounded then the eigenvalues of all but at most
two fixed points tend to infinity4]. However, it is not immediately apparent how best
to adapt the brute-force calculations of 84, or better yet, how to replace them with a more
conceptual approach applicable to other degenerating families.

6. Intersection theory
The results above yield preliminary information about the intersection theory at infinity
of dynamically defined curves in moduli space. Milnor’s isomorphijsmrat, — C2
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induces a natural compactificaticat , = P2. Following the discussion irLf] we identify

the line at infinity £ with the set of unordered tripler, o1, oo} wherea € @, SO

thate + o1 is the limiting ratio of Y/(X — 2) in the coordinates of §3; se€1] for

a treatment in the language of the geometric invariant theory. With this convention, an

unbounded sequengg;] € rat, converges to the ideal poitd, a1, oo} if and only if

{ak, B, vi} = f{o, @1, 00}, wherewy, B, yi are the eigenvalues of the fixed pointgpf
Recall that acurve in P? may be defined as an equivalence class of non-constant

homogeneous polynomiakse C[W, X, Y], whereh ~ i whenh = Ah for somex € C*,

so that a pointP e P2 with homogeneous coordinatgs : x : y] lies onC = [A] if and

only if A(w, x, y) = 0; in this situation we writeP € C. Thedegreeof C = [h] is the

natural number delg, analgebraic familyof degree/ curves parametrized by a variety

is a regular map\ — Cg4, where the sef; of all degreel curves is naturally regarded as

the projective spacB?“+3/2_ If h has no non-trivial factors the@ = [k is said to be

irreducible An irreducible curveC = [A] with /|h is acomponenbf C, and curve<;

andC» with no common component are saiditersect properly Notice thatC intersects

L properly if and only if dedi (1, X, Y) = degh. CurvesC1, C2 which intersect properly

have finitely many points in common, and each such point can be assigned an appropriate

intersection multiplicityZc, ¢,(P) > 0; by conventionZ¢, c,(P) = 0if P ¢ Cq or

P ¢ Co. Theintersection cyclés the formal sum

Cre(Cor = Z Zcy,c,(P) - P;
PelP?

theintersection cycle at infinitis

Cre C2= Y Tc, c,(P) - P.
PeLl

Bezout's theorem asserts that the total intersection multiplicity is the product of the degrees
d; = degC;, so thatC; e C2 may be regarded as an element of the symmetric product

Saydr, = Syrﬁ’ldz (PZ).
Moreover,(C1, C2) ~ C1 o Cp yields a regular map
Cay % Cap — Edy,dy = Sdy,dy

where&y, 4, is the set of pairs of curves with a common component; 8géof further
details.
Consider the function ~» d(n) defined inductively by the relation

Zd(m) =21

mln

equivalentlyd(n) is the number of period hyperbolic components of the Mandelbrot set
M. Milnor [13] has shown the following.

LEMMA 9. For eachn > 1there is a algebraic family of curves

C > p~ Penp(p) € Cam
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uniquely determined by the condition thai € Per, (o) for p # 1if and only ifg has an
n-cycle with eigenvalug. The curve®er, (1) are reducible fom > 1, indeed

Per,()=Pef(hU | J  Per (/%)
1<qln,(p,9)=1
where the generifg] € Peﬁ(l) has ann-cycle of eigenvalue 1.
Here are the defining polynomials fer= 1, 2, 3:

Pek(p): p°W — p°X + pY — X +2W

Pep(p): pW —-2X-Y

Peg(p): p°W3— p(WX(2X +Y) + 3W2X + 2w?)

+ (X +Y)?2X +Y) — WX(X 4 2Y) + 12W?X 4 28W53.

Note that Per(p) e £ = {p, p~ 1, o0}; the degeneration described in Proposition 2 takes
place in a parameter space where

— {EZHip/q’ e—2nip/q’ oo}

Xp/q = OO(g—-p)/q

has been blown up and replaced by a 2-fold branched cover of the linglPeéoreover,
Peb(p) o L = 0012 (23)

and
Peg(p) @ L = 001/2 4+ 2 001/3. (24)

Recall thatM = {c : P.(z) = z? + ¢ has a connected Julia $&t the disjoint union of
the cardoid? = {c; = 31 — A2 : & € D}, the boundary points,z.iv for 6 € (R — Q)/Z,
and the closetimbs

L,;q = {c: P. has afixed point of combinatorial rotation numpgy}

for p/q € (Q — Z)/Z; see #] for precise definitions and proofs. It follows from standard
deformation considerations][ that each pair(c,«) € M x D determines a unique
class[P..o] € Pen(a) consisting of maps which are quasiconformally conjugatéto
on a neighbourhood of the filled-in Julia s€t P.) through conjugacies with vanishing
dilatation onK (P.). Thus, eaclt € M is the centre of a dis®, = {[P.«] : @ € D};
moreoverD. N D; = @ for ¢ # ¢, provided that at least one of¢ lies in the complement
of ©. Petersen]3, 19 proved the following by a modulus estimate similar to the Yoccoz
inequality.

LEMMA 10. Let P.(z) = z2 + ¢ wherec € M. If o € D converges non-tangentially to
e~ 2TiP/4 o 1 then[ Py, o] — 00,4 € L uniformly forcy € L .

Suppose in particular that belongs to a hyperbolic componeft C L,/,, say
[P.] € Per,(p) for somen > 1 andp € D, and letw = e~27P/4. As

Y ={yeraty:[Pey] — yfor somen; — w}
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is connected, bu} N rats is contained in the finite set P€p) N Pekr(w), it follows
from Proposition 1 thafP. ] — o0,/ for any o € D with ¢y — w, and that
ap — o = 0(/e) whereeg = 1 — o = (2(1 — Rw) + o(1))/ k. It similarly follows
from Propositions 2 and 3 that the connected set

ool —

1
T:{re(C: —>tf0rsomeoek—>a)}

NG
is discrete, whencé& = {z.} for somer, € C*; asi)t(rcz) > 0 by Lemma 2, the image
of D 3« ~ y = (2(1 - Rw)t2 + 0(1))/(@a — 1)? contains some right half-plane.
ConsequentlyD. N Pen(y) # @ for any ¢ in a hyperbolic component a7 and any
sufficiently largey > 0, so that Pgf(p) and Pef(y) have at least

dpqg(n), for p/q = %

Dy, (n) =
pla) {Zd,,/q(n), otherwise

intersections nearo,,,, whered, /, (n) is the number of period hyperbolic components
in L,,,. As the local intersection multiplicities are stable under perturbation, while the
total intersection multiplicity is

dimy= Y dpmn)

1<p<g=n
(p,q)=1

by Bezout's theorem, it follows thallpey, (), £(00p/q) = Dpq(n), atleast forp € D. In
view of Proposition 1 and the continuity pf~» Per,(p) o £, these considerations prove
the following.

PROPOSITIONG. Letn be an integer greater than one, and jet C. Then

Per(p)e L= > dpyy(n) 00,y
l<p<q=n
(p,)=1

The number of branches of Rép) near. is studied in 22]. (It is claimed to bei(n).
This is not, in fact, correct, but the method used apparently gives a formula for the number
of branches: sedp].)

It is not hard to show that the intersection of Rap™*) and Pef-(p™) is generically
proper P], so it is somewhat surprising that there are non-trivial exceptions: for example,

Pep(—3) = Pef(1) (25)

as observed in1[3]. This coincidence yields a short independent proof of Theorem 1 in
the special casé:*, n™) = (2, 3). Recall that a quadratic rational map has precisely two
3-cycles counting multiplicity, whence

Pen(—3) e Per(p™) = Pef(1) e Pes(p™) = 3- 0012

for o~ #£ 1 by (23), (24), (25) and Bezout's theorem; thus, JPeB) and Pes(p™)
are tangent atoy/2. In view of the transversality of distinct lines Bes™), the curves
Peb(p™) and Peg(p~) are transverse ab1/» provided that they intersect properly, so

Peb(p™) eco PEB(p™) = 001/2 (26)
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FIGURE3. J(f) for f € RAT 2 with critical points of periods 2 and 3.

for (pt, p7) # (=3, 1); in particular, for(p™, p~) € D x D the points in
Pep(p™) e Per(p™) — Per(p™) o PeB(p™)

are uniformly bounded away frofy These finite intersection points fill out two hyperbolic
components, a complex-conjugate pair obtained by mating the unique period 2 component
in the Mandelbrot seM with the period 3 components disjoint from the real axis. It is
clear from Figure 3 that the corresponding Julia sets are not Sierpinski carpets, but they are
almost Sierpinski carpets in the sense of Pilgriré] |

Conversely, we may apply Theorem 1 to deduce transversality principles generalizing
(26). Recall that if» > 1 then Pgy(p) intersectsC only at pointsoo,/, with 1 < ¢ < n.
Consequently, ii* > 1 then there are natural numbéys, (n™, n~) such that

Per,+(pT) oo Pef,—(p7) = > I,,(" . n7) 00,
1<p<g<min(n*,n™)
(r.q)=1

for every pair(pt, p~) in some Zariski open subsét(nt,n”) < C2. In view of
Theorem 1, ifat # n—, orif a™ = n~ butp™ # p~, thend(nt,n™) 3 (p+,p7)
for p* e D;if n* =n~ andp™ = p~ e D then this relation remains valid provided that
we interpret the left-hand side as Refp™) oo ENV,+, Where Eny is theenvelopeof the
family p ~» Per,(p). Heuristic considerations supported by calculation2i#) fuggest
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that
Ip/q(n+,n_)= Z l(H+,H_)
(HY,H™)eLp;q(nt)xLy(n™)

where:(H+, H™) measures the mutual combinatorial deptiHof in M the language of
internal addressefbs] may be useful in the formulation and proof of this assertion.
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