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ABSTRACT

Copula function has been widely used in insurance and finance for modeling
inter-dependency between risks. Inspired by the Bernstein copula put forward
by Sancetta and Satchell (2004, Econometric Theory, 20, 535–562), we intro-
duce a new class of multivariate copulas, the composite Bernstein copula, gen-
erated from a composition of two copulas. This new class of copula functions
is able to capture tail dependence, and it has a reproduction property for the
three important dependency structures: comonotonicity, countermonotonicity
and independence. We introduce an estimation procedure based on the empiri-
cal composite Bernstein copula which incorporates both prior information and
data into the estimation. Simulation studies and an empirical study on finan-
cial data illustrate the advantages of the empirical composite Bernstein copula
estimation method, especially in capturing tail dependence.

KEYWORDS

Composite Bernstein copula, copula construction, tail dependence, non-
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1. INTRODUCTION

A copula (or a copula function) is a multivariate distribution function with
uniform [0,1] marginal distributions. Sklar’s Theorem shows that for each joint
distribution function H with marginal distributions F1, . . . , Fn, there exists an
n-dimensional copula C such that

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)),

and the copula C is unique when the marginal distributions F1, . . . , Fn are
continuous. For a detailed introduction of copulas, the readers are referred to
the introductory book Nelsen (2006). Copulas have been widely used in in-
surance and finance during the past few decades, and the related research is
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developing extensively in statistics, probability and other quantitative fields, in-
cluding financial mathematics and actuarial science in particular. The reader is
also referred to the books Cherubini et al. (2004) for copula methods in finance
and McNeil et al. (2005) for copula methods in quantitative risk management.

New constructions of copulas have become an important research direction
for the past few years, including recently introduced copula families such as the
vine copula (Czado, 2009) and the nested copula (Hofert, 2009). In order to
provide a general approach in statistical estimation and to study the proper-
ties of some parametric copulas with complicated forms, Sancetta and Satchell
(2004) introduced a new family of copulas called the Bernstein copula (BC). For
a given copula C, based on the Bernstein polynomials, the BC is defined as

CB(u1, . . . , un) =
m1∑

v1=0

· · ·
mn∑

vn=0

C
(

v1

m1
, . . . ,

vn

mn

)
Pv1,m1(u1) . . . Pvn ,mn (un), (1)

where Pv j ,mj (u j ) := (
mj
v j

)uv j
j (1 − u j )mj−v j and m1, . . . ,mn are positive integers.

More discussions on the motivation of the BC can be found in Sancetta and
Satchell (2004). Among many recent research papers on the BC, the readers are
referred to Janssen et al. (2012), Baker (2008), Dou et al. (2015), Sancetta (2007)
andWeiβ and Scheffer (2012) fromprobabilistic and statistical perspectives, and
Diers et al. (2012) and Tavin (2015) from the perspective of applications in non-
life insurance and finance.

Inspired by the BC, we will construct a new family of copulas. By look-
ing at the BC from another prospective, a new construction will be revealed.
Let FBin(m,u) be the binomial distribution function with parameters (m, u),
m ∈ N, u ∈ [0, 1] and denote by F−1

Bin(m,u) the left-continuous inverse function of
FBin(m,u). Note that Pv j ,mj (u j ) = P(F−1

Bin(m,u j )(U) = v j ) for a random variable
U ∼ U[0, 1], thus the expression (1) can be written in another form as

CB(u1, . . . , un) = E

[
C

(
F−1
Bin(m1,u1)

(U1)

m1
, . . . ,

F−1
Bin(mn ,un)

(Un)

mn

)]
,

where ui ∈ [0, 1], i = 1, . . . , n, and U1, . . . ,Un are independent uniform [0,1]
random variables. Using this representation, a natural generalization would be

Cm1,...,mn (u1, . . . , un|C, D)

:= E

[
C

(
F−1
Bin(m1,u1)(U

D
1 )

m1
, . . . ,

F−1
Bin(mn ,un)(U

D
n )

mn

)]
(2)

for (u1, . . . , un) ∈ [0, 1]n, where D is a copula function, and (UD
1 , . . . ,UD

n ) is a
random vector with distribution D̄, the survival copula of D. The reason why
we use D̄ instead of D will be revealed later in Section 2. When D is chosen as
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the independent copula, i.e.,

D(u1, u2, . . . , un) = D̄(u1, u2, . . . , un) =
n∏
i=1

ui , ui ∈ [0, 1], i = 1, . . . , n,

(2) becomes theBC in (1).Note that the above expression (2) involves two copula
functions C and D. Here the copula function C is called the target copula and
the copula D is called the base copula. (2) can be used to construct new family
of copulas. For example, with a given target copula C, by choosing different
copula functions D one obtains a family of copulas. The generalization (2) leads
to interesting properties that are not shared by the BC, such as capturing tail
dependence, as explained later.

This paper will focus on the function (2). First we will prove that for
each copula function D and given positive integers m1, . . . ,mn, the function
Cm1,...,mn (u1, . . . , un|C, D) is a copula function. The function is called a compos-
ite Bernstein copula (CBC) since it is based on a composition of the target copula
C and the base copula D. The properties of CBC for fixed m1, . . . ,mn and for
mi → ∞, i = 1, . . . , n will be discussed. It will be shown that the CBC con-
verges to the target copula C as mi → ∞, i = 1, . . . , n, regardless of the base
copula D. We will also prove that for finite m1, . . . ,mn the CBC is equal to the
target copula with some special choices of target copulas and base copulas, such
as Fréchet upper copula M(u1, . . . , un) = min{ui , i = 1, . . . , n}, u1, . . . , un ∈
[0, 1], the independent copula �(u1, . . . , un) =∏n

i=1 ui , u1, . . . , un ∈ [0, 1] and
the bivariate Fréchet lower copula W(u, v) = max{u + v − 1, 0}, u, v ∈ [0, 1].
The above reproduction property is very important for application in insurance
and finance, since Fréchet upper copula, the independent copula and the bi-
variate Fréchet lower copula corresponds to the three important dependency
structures in insurance: comonotonicity, independence and countermonotonic-
ity (Dhaene et al., 2002a, 2002b).

As pointed out in Sancetta and Satchell (2004), a limitation of the BC is that
it fails to capture extreme tail behavior, a relevant and challenging issue in insur-
ance and finance (Donnelly and Embrechts, 2010). Fortunately, the CBC allows
us to exhibit the tail dependence by choosing proper base copulas D. We will
show that the tail dependence coefficient of CBC is given by a combination of
the tail dependence coefficient of the base copula and that of the target copula.

Based on CBC, we will also provide a copula estimation method using the
ECBC. The new method is a flexible non-parametric estimation as it incorpo-
rates both prior information and data. A simulation study will show how the
choices of base copula affect the estimation results and an empirical study for
financial data highlights the features of the new method.

The rest of the paper is organized as follows. In Section 2, we define the
CBC and discuss the theoretical properties of CBC, concerning monotonicity,
continuity, symmetry, reproduction and tail dependence. In Section 3, we intro-
duce the ECBC, provide an estimationmethod based on the ECBC and show its
asymptotic properties. Simulation studies and a real data analysis are provided
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to show the advantage of the new estimation method proposed in Section 4. In
Section 5, we draw a conclusion. Some proofs are put in the Appendix.

2. GENERAL THEORY OF COMPOSITE BERNSTEIN COPULAS

Throughout, let FBin(m,u) be the binomial distribution function with parameter
(m, u), m ∈ N, u ∈ [0, 1] and F−1

Bin(m,u) be the left-continuous inverse function
of FBin(m,u), that is, F−1

Bin(m,u)(v) := inf{x ∈ R : FBin(m,u)(x) ≥ v}, v ∈ [0, 1].
Moreover, let Nm,u be a binomial random variable with distribution FBin(m,u).
For any copula C, its survival copula is denoted as C̄

C̄(u1, . . . , un) = P(1 − Vi ≤ ui , i = 1, . . . , n),

where (V1, . . . ,Vn) is a random vector with distribution function C.

2.1. Definition of the composite Bernstein copula

For a given n-copula C, by incorporating the information of another n-copula
D, with the given positive integers mi , i = 1, . . . , n, we can construct a new
function Cm1,...,mn (u1, . . . , un|C, D), ui ∈ [0, 1], i = 1, . . . , n as follows,

Cm1,...,mn (u1, . . . , un|C, D)

= E

[
C
(
F−1
Bin(m1,u1)(U

D
1 )

m1
, . . . ,

F−1
Bin(mn ,un )(U

D
n )

mn

)]

=
m1∑
l1=0

· · ·
mn∑
ln=0

C
(
l1
m1

, . . . ,
ln
mn

)
P(F−1

Bin(m1,u1)(U
D
1 ) = l1, . . . , F

−1
Bin(mn ,un)(U

D
n ) = ln),

(3)

where (UD
1 , . . . ,UD

n ) is a random vector with distribution function D̄. As men-
tioned in the introduction, (3) can be seen as a generalization of the BC, with
possibly different features.

The function Cm1,...,mn (u1, . . . , un|C, D) can also be written in an alternative
form. By letting (V1, . . . ,Vn) be a random vector with distribution function C,
we have

Cm1,...,mn (u1, . . . , un|C, D)

= E

[
P

(
Vi ≤ F−1

Bin(mi ,ui )(U
D
i )

mi
, i = 1, . . . , n|UD

1 , . . . ,UD
n

)]

= E[P(FBin(mi ,ui )(miVi ) ≤ UD
i , i = 1, . . . , n|V1, . . . ,Vn)]

= E[D(1 − FBin(m1,u1)(m1V1), . . . , 1 − FBin(mn ,un)(mnVn))]. (4)
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Note that (3) and (4) are equivalent. Throughout the paper, in different places
we will use either (3) or (4), whichever is more convenient.

Remark 2.1. We can see that as long as C is a distribution function, (3) is properly
defined and (4) holds. Definition (4) will be used in Section 3 for the estimation
purpose, where C is replaced by the empirical copula, which is not a copula function
in general.

We will first show that Cm1,...,mn (u1, . . . , un|C, D) is a copula function with
nice properties as long as C, D are copulas.

Theorem 2.1. Suppose C and D are two n-copulas. Then the following holds:

i. Cm1,...,mn (u1, . . . , un|C, D), u1, . . . , un ∈ [0, 1] is a copula function.
ii. C1,...,1(u1, . . . , un|C, D) = D(u1, . . . , un) for u1, . . . , un ∈ [0, 1].
iii. As m := min{m1, . . . ,mn} → ∞, for u1, . . . , un ∈ [0, 1] we have that

Cm1,...,mn (u1, . . . , un|C, D) → C(u1, . . . , un) (5)

uniformly and the convergence rate is bounded by

|Cm1,...,mn (u1, . . . , un|C, D) − C(u1, . . . , un)| ≤
n∑
i=1

√
ui (1 − ui )

mi
. (6)

iv. Cm1,...,mn (·|C, D) admits a density on [0, 1]n if D admits a density on [0, 1]n.

Proof. i. Let 1 ≥ u2,i ≥ u1,i ≥ 0, i = 1, . . . , n. Then from (4) we know
that for li = 0 or li = 1, i = 1, 2, . . . , n,

Cm1,...,mn (u1,1 + l1(u2,1 − u1,1), . . . , u1,n + ln(u2,n − u1,n)|C, D)

= P(1 −UD
1 ≤ 1 − FBin(m1,u1,1+l1(u2,1−u1,1))(m1V1), . . . ,

1 −UD
n ≤ 1 − FBin(mn ,u1,n+ln(u2,n−u1,n))(mnVn)).

Thus

1∑
l1=0

. . .

1∑
ln=0

(−1)l1+···+ln

Cm1,...,mn (u1,1 + l1(u2,1 − u1,1), . . . , u1,n + ln(u2,n − u1,n)|C, D)

= E

⎡
⎣ 1∑
l1=0

. . .

1∑
ln=0

(−1)l1+···+ln

P(1 −UD
1 ≤ 1 − FBin(m1,u1,1+l1(u2,1−u1,1))(m1V1), . . . ,

1 −UD
n ≤ 1 − FBin(mn ,u1,n+ln(u2,n−u1,n))(mnVn))

⎤
⎦
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= P(1 − FBin(m1,u1,1)(m1V1) ≤ 1 −UD
1 ≤ 1 − FBin(m1,u1,2)(m1V1), . . . ,

1 − FBin(mn ,un,1)(mnVn) ≤ 1 −UD
n ≤ 1 − FBin(mn ,un,2)(mnVn)) ≥ 0,

due to the property that for fixed k the function FBin(mi ,x)(k) is decreasing
about x. Also, we can easily verify that

Cm1,...,mi ,...,mn (1, . . . , 1, ui , 1, . . . , 1|C, D)

= E

[
C(1, . . . , 1,

F−1
Bin(mi ,ui )(U

D
i )

mi
, 1, . . . , 1)

]
= E

[
F−1
Bin(mi ,ui )(U

D
i )

mi

]
= ui .

Thus Cm1,...,mn (u1, . . . , un|C, D) is a copula function.
ii. Using (4) we have

C1,...,1(u1, . . . , un|C, D) = E[D(1 − FBin(1,u1)(V1), . . . , 1 − FBin(1,un)(Vn))]

= D(u1, . . . , un).

iii. Using the definition (3) one can verify that

|Cm1,...,mn (u1, . . . , un|C, D) − C(u1, . . . , un)|

≤ E|C
(
F−1
Bin(m1,u1)(U

D
1 )

m1
, . . . ,

F−1
Bin(mn ,un)(U

D
n )

mn

)
− C(u1, . . . , un)|

≤
n∑
i=1

E

∣∣∣∣∣ F
−1
Bin(mi ,ui )(U

D
i )

mi
− ui

∣∣∣∣∣
≤

n∑
i=1

√
Var(F−1

Bin(mi ,ui )(U
D
i ))

mi
=

n∑
i=1

√
ui (1 − ui )

mi
.

Thus the inequality (6) follows. (5) is implied by (6).
iv. Note that for fixed v ∈ (0, 1) the function FBin(m,u)(mv) is differen-

tiable with respect to u ∈ [0, 1] . Thus, if D admits a bounded den-
sity, then we know that for each v1, . . . , vn ∈ (0, 1), the function
D(1 − FBin(m1,u1)(m1v1), . . . , 1 − FBin(mn ,un)(mnvn)) has a bounded ∂n

∂u1...∂un
derivative for u1, . . . , un ∈ [0, 1]. Thus, by (4) we can see that
Cm1,...,mn (·|C, D) also has a bounded density.

The copula Cm1,...,mn (u1, . . . , un|C, D) defined in (3) becomes the
BC when D is the independent copula. Hence, in this paper, we call
Cm1,...,mn (u1, . . . , un|C, D) a CBC, as a generalization of the BC. By
Theorem 2.1, the copula function Cm1,...,mn (·|C, D) is close to C as
min{mi , i = 1, . . . , n} → ∞, hence the copula Cm1,...,mn (·|C, D) can be
used to approximate the copula C, as mentioned in Sancetta and Satchell
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(2004). On the other hand, when m1, . . . ,mn are close to 1, the defined CBC
Cm1,...,mn (·|C, D) is close to the copula D. For the above reasons, we call C a
target copula and D a base copula.

Remark 2.2. By the proof of Theorem 2.1 we know that even if C is not continuous,
Cm1,...,mn (. . . |C, D) is continuous as long as D is continuous. This would provide a
good tool for density estimation. From the proof of the theorem we can also find
that the marginal density of Cm1,...,mn (·|C, D) exists if the corresponding marginal
density of D exists. On the contrary, since the function F−1

Bin(m,u)(v) in (3) is not
continuous with respect to u, the condition that C admits a density is not sufficient
for Cm1,...,mn (·|C, D) to admit a density.

The following proposition shows that for a CBC with the base copula D
and the target copula C, every marginal distribution of the CBC can also be
expressed as a CBC, where the corresponding base copula and target copula
can be chosen as the marginal distribution of the base copula D and the target
copula C. This simple property is essential to a copula family.

Proposition 2.1. For any n-copulas C, D and each i = 1, . . . , n,

Cm1,...,mn (u1, . . . , ui−1, 1, ui+1, . . . , un|C, D)

= Cm1,...,mi−1,mi+1,...,mn (u1, . . . , ui−1, ui+1, . . . , un|Ci , Di ), u j ∈ [0, 1], j 	= i,

where

Ci (u1, . . . , ui−1, ui+1, . . . , un)

= C(u1, . . . , ui−1, 1, ui+1, . . . , un), u j ∈ [0, 1], j 	= i,

and

Di (u1, . . . , ui−1, ui+1, . . . , un)

= D(u1, . . . , ui−1, 1, ui+1, . . . , un), u j ∈ [0, 1], j 	= i,

are the (n − 1)-marginal copulas of C and D respectively.

Proof. It can be verified directly with (3).

The above proposition states the relationship between the marginal copulas
of a CBC and the marginal distributions of the corresponding target copula and
base copula.

2.2. Properties of the composite Bernstein copula

In this section, we study several properties of CBC concerning continuity, lin-
earity and symmetry.
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Proposition 2.2.

i. If the sequence of copulas Ck converges to a copula C uniformly as k goes to
infinity, then Cm1,...,mn (·|Ck, D) converges to Cm1,...,mn (·|C, D) uniformly.

ii. If the sequence of copulas Dk converges to a copula D uniformly as k goes to
infinity, then Cm1,...,mn (·|C, Dk) converges to Cm1,...,mn (·|C, D) uniformly.

iii. Suppose that two target copulas C1 and C2 satisfy that C1 ≤ C2, then we have
that Cm1,...,mn (·|C1, D) ≤ Cm1,...,mn (·|C2, D).

iv. Suppose that two base copulas D1 and D2 satisfy that D1 ≤ D2, then we have
that Cm1,...,mn (·|C, D1) ≤ Cm1,...,mn (·|C, D2).

Proof. For any two copula functions C1 and C2, applying (3) we have

Cm1,...,mn (u1, . . . , u2|C1, D) − Cm1,...,mn (u1, . . . , u2|C2, D)

= E

[
C1

(
F−1
Bin(m1,u1)(U

D
1 )

m1
, . . . ,

F−1
Bin(mn ,un)(U

D
n )

mn

)]

− E

[
C2

(
F−1
Bin(m1,u1)(U

D
1 )

m1
, . . . ,

F−1
Bin(mn ,un)(U

D
n )

mn

)]
.

Thus part (i) and part (iii) can be proved directly from the above equality. For
any two copula functions D1 and D2, applying (4) we have

Cm1,...,mn (u1, . . . , un|C, D1) − Cm1,...,mn (u1, . . . , un|C, D2)

= E[D1(1 − FBin(m1,u1)(m1V1), . . . , 1 − FBin(mn ,un)(mnVn))]

−E[D2(1 − FBin(m1,u1)(m1V1), . . . , 1 − FBin(mn ,un)(mnVn))].

Thus part (ii) and part (iv) can be proved directly from the above equality.

From the above proposition, we can see that the CBC is quite robust with re-
spect to the target and base copulas. For a given target (base) copula, different
base (target) copulas can be chosen to adjust the value of CBC. Moreover, a
linear combination of base copulas can be chosen to further adjust the value of
CBC conveniently, as shown in the following proposition. It is a straightforward
consequence of (3) and (4), so we omit the proof here.

Proposition 2.3. Suppose λ ∈ [0, 1] is a constant.

i. Suppose C1,C2 are two n-copulas and C = λC1 + (1 − λ)C2, then for any
base copula D,

Cm1,...,mn (·|C, D) = λCm1,...,mn (·|C1, D) + (1 − λ)Cm1,...,mn (·|C2, D).

ii. Suppose D1, D2 are two n-copulas and D = λD1 + (1 − λ)D2, then for any
target copula C,

Cm1,...,mn (·|C, D) = λCm1,...,mn (·|C, D1) + (1 − λ)Cm1,...,mn (·|C, D2).
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Remark 2.3. We can see that Cm1,...,mn is a mapping from Cn×Cn to Cn, where Cn is
the space of n-copulas. The above proposition shows that the CBC admits linearity
in terms of base copulas and target copulas. In summary, Cm1,...,mn : Cn ×Cn → Cn
is a monotone, bi-linear and continuous functional.

The next proposition studies the symmetry of the CBC. An n-copula C is
symmetric, if C(u) = C(σ (u)) for all u ∈ [0, 1]n where σ is any n-permutation.
And an n-copulaC is radially symmetric, ifC(u) = C̄(u) for all u ∈ [0, 1]n where
C̄ is the survival copula of C.

Proposition 2.4. i. If C and D are both symmetric n-copulas, then
Cm,...,m(·|C, D) is also symmetric;

ii. For any n-copulas C and D, we have

C̄m1,...,mn (·|C, D) = Cm1,...,mn (·|C̄, D̄).

In particular, if C and D are both radially symmetric, then Cm1,...,mn (·|C, D)

is also radially symmetric.

Proof. i. We only show the case n = 2 as the general case n ≥ 3 is simi-
lar. Let (UD

1 ,UD
2 ) be a random vector with distribution function D̄. By the

definition of CBC and the symmetry of C and D (and hence D̄) we have
that

Cm,m(u2, u1|C, D) = E

[
C

(
F−1
Bin(m,u2)(U

D
1 )

m
,
F−1
Bin(m,u1)(U

D
2 )

m

)]

= E

[
C

(
F−1
Bin(m,u2)(U

D
2 )

m
,
F−1
Bin(m,u1)(U

D
1 )

m

)]

= E

[
C

(
F−1
Bin(m,u1)

(UD
1 )

m
,
F−1
Bin(m,u2)

(UD
2 )

m

)]

= Cm,m(u1, u2|C, D),

thus Cm,m(u2, u1|C, D) is symmetric.
ii. For n fixed and any n-copula C, we define a linear operator S[C] = 1 +∑n

i=1(−1)i Si (C) where Si (C) is the sum of all i -marginal copulas ofC, that
is,

Si (C)(u1, . . . , un) =
∑

1≤ j1< j2<···< ji≤n
P(Vj1 ≤ u j1, . . . ,Vji ≤ u ji ),

where (V1, . . . ,Vn) follows copula C. Using Poincare Formula it is easy to
check that S[C](1 − u1, . . . , 1 − un) = C̄(u1, . . . , un) holds for any copula
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C. Let (UD
1 , . . . ,UD

n ) follow copula D̄ and denote

gi :=
F−1
Bin(mi ,1−ui )(U

D
i )

mi
, hi :=

F−1
Bin(mi ,ui )(1 −UD

i )

mi
.

Note that it is easy to verify gi + hi = 1 almost surely.
By the definition of CBC we know that

E[C(g1, . . . , gn)] = Cm1,...,mn (1 − u1, . . . , 1 − un|C, D).

We first verify that

E[S[C](g1, . . . , gn)] = S[Cm1,...,mn (·|C, D)](1 − u1, . . . , 1 − un).

This can be seen from Proposition 2.1, by noting that each term of the form

Cm1,...,mn (1 − u1, . . . , 1 − ui−1, 1, 1 − ui+1, . . . , 1 − un|C, D)

in S[Cm1,...,mn (·|C, D)](1 − u1, . . . , 1 − un) is equal to the term

E[Ci (g1, . . . , gi−1, gi+1, . . . , gn)]

= Cm1,...,mi−1,mi+1,...,mn (1 − u1, . . . , 1 − ui−1, 1 − ui+1, . . . , 1 − un|Ci , Di )

in E[S[C](g1, . . . , gn)], where Ci and Di are defined in Proposition 2.1.
Other marginal copula terms are similar. Therefore,

Cm1,...,mn (u1, . . . , un|C̄, D̄)

= E[Ĉ(h1, . . . , hn)] = E[S(C(1 − h1, . . . , 1 − hn))]

= E[S[C](g1, . . . , gn)]

= S[Cm1,...,mn (·|C, D)](1 − u1, . . . , 1 − un) = C̄m1,...,mn (u1, . . . , un|C, D).

A typical radially symmetric family is elliptically contoured distributions
(Fang et al., 1990), including multivariate normal distributions, Student-t dis-
tributions, and multivariate symmetric stable distributions. Sometimes radial
symmetry restricts the use of elliptically contoured distributions in finance or
insurance (Frahm et al., 2003). By Proposition 2.4, choosing different base cop-
ulas leads to a CBC with or without this symmetry.

2.3. Reproduction property

For a given target copula C, it is interesting to see whether there exists base
copula D such that the corresponding CBC can reproduce the target copula C,
i.e.,

Cm1,...,mn (·|C, D) = C

holds for some positive integers m1, . . . ,mn. For the simplest case m1 = · · · =
mn = 1, D = C is equivalent to C1,...,1(·|C, D) = C by Theorem 2.1(ii).
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However, for the other values of m1, . . . ,mn, D = C is not sufficient for
Cm1,...,mn (·|C, D) = C in general.

We find that in the case m1 = · · · = mn = m, for the three
fundamental copula functions: Fréchet upper copula M(u1, . . . , un) =
min{ui , i = 1, . . . , n}, u1, . . . , un ∈ [0, 1], independent copula �(u1, . . . , un) =∏n

i=1 ui , u1, . . . , un ∈ [0, 1] and Fréchet lower copula

W(u, v) = max{u + v − 1, 0}, u, v ∈ [0, 1]

(Fréchet lower copula is a copula only in the bivariate case), the condition
D = C is sufficient.

Proposition 2.5. In (i) and (ii), all copulas are n-copulas. In (iii), all copulas are
2-copulas.

i. Cm,...,m(·|M, D) = Mif D = M;
ii. Cm1,...,mn (·|�, D) = � if D = �;
iii. Cm,m(·|W, D) = W if D = W.

Proof. (ii) can be directly verified and so we only verify that of (i) and (iii).

i. We have

Cm...,m(u1, . . . , un|C, D) = E

[
C(

F−1
Bin(m,u1)(U)

m
, . . . ,

F−1
Bin(m,un)(U)

m
)

]

= E

[
min{ F

−1
Bin(m,ui )

(U)

m
, i = 1, . . . , n}

]

= E

[
F−1
Bin(m,min{u1,...,un})(U)

m

]

= mmin{u1, . . . , un}
m

= min{u1, . . . , un}.

The above proof process uses the fact that F−1
Bin(m,u)(x) is increasing about

u when x is fixed since the function FBin(m,u)(x) is strictly decreasing about
u when x is fixed.

(iii) Consider the case C(u1, u2) = D(u1, u2) = max{u1 + u2 − 1, 0}. Note that
the left-continuous inverse function F−1

Bin(m,u) can be expressed as

F−1
Bin(m,u)(x) = k, FBin(m,u)(k− 1) < x ≤ FBin(m,u)(k), k = 0, 1, 2, . . . ,m,

where FBin(m,u)(−1) ≡ 0. It is easy to see that for k = 0, 1, 2, . . . ,m,

FBin(m,u)(k) + FBin(m,1−u)(m− k− 1) = 1. (7)

So by (7), if FBin(m,u)(k− 1) < x < FBin(m,u)(k), k = 0, 1, 2, . . . ,m, we have
that

FBin(m,1−u)(m− k− 1) < 1 − x < FBin(m,1−u)(m− k),
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and

F−1
Bin(m,1−u)(1 − x) = m− k = m− F−1

Bin(m,u)(x), u ∈ [0, 1]. (8)

Thus for x 	= FBin(m,ui )(k), k = −1, 0, 1, 2, . . . ,m, i = 1, 2,

F−1
Bin(m,u1)(x) + F−1

Bin(m,u2)(1 − x) −m = F−1
Bin(m,u1)(x) − F−1

Bin(m,1−u2)(x),

according to (8). Note that the fact that F−1
Bin(m,u)(x) is increasing about u

when x is fixed, we finally have

Cm,m(u1, u2|C, D)

= E

[
max

{
F−1
Bin(m,u1)(U)

m
+ F−1

Bin(m,u2)(1 −U)

m
− 1, 0

}]

= E

[
max

{
F−1
Bin(m,u1)(U) + F−1

Bin(m,u2)(1 −U) −m

m
, 0

}

×(I{u1≥1−u2} + I{u1<1−u2}
)]

= E

[
F−1
Bin(m,u1)(U) + F−1

Bin(m,u2)(1 −U) −m

m

]
I{u1+u2−1≥0}

= mu1 +mu2 −m
m

I{u1+u2−1≥0} = max{u1 + u2 − 1, 0}.

Remark 2.4. Proposition 2.5 states that CBC has the reproduction property
for Fréchet upper copula, the independent copula and the bivariate Fréchet
lower copula, which correspond to the three important dependency structures in
insurance and finance: comonotonicity, independence and countermonotonicity
(Dhaene et al., 2002a, 2002b). Thus CBC shows its advantage for modeling these
special dependency structures.

2.4. Bivariate tail dependence

Tail dependence (see e.g. Joe, 1997) describes the significance of dependence in
the tail of a bivariate distribution; see also Schmidt (2005). The lower tail depen-
dence coefficient of a copula C is defined as λCL := limu↓0 C(u,u)

u and upper tail

dependence coefficient of a copula C is defined as λCU := limu↓0 C̄(u,u)
u . Gaussian

copula is widely applied in finance due to its relatively simple estimation proce-
dure and computational ease. However, it is often criticized for not being able
to characterize tail dependence between assets because of its tail independence
property. As mentioned in Sancetta and Satchell (2004), the BC is also unable
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to capture tail dependence (note that |Cm −C| → 0 uniformly as m → ∞ does
not imply λ

Cm
L → λCL or λ

Cm
U → λCU).

CBC is able to capture tail dependence by choosing appropriate base copu-
las. We have the following theorem.

Theorem 2.2. Assume that the tail dependence coefficients λDL and λDU of the base
copula D exist.

i. The lower tail dependence coefficient

λ
Cm,m(·|C,D)

L = m× C
(
1
m

,
1
m

)
× λDL .

ii. The upper tail dependence coefficient

λ
Cm,m(·|C,D)

U = m× C̄
(
1
m

,
1
m

)
× λDU .

iii. Assume that the tail dependence coefficients λCL and λCU of the target copula
C also exist. Then, as m → ∞,

λ
Cm,m(·|C,D)

L → λCLλDL , λ
Cm,m(·|C,D)

U → λCUλDU .

Proof. First, write

λ
Cm,m(·|C,D)

L = lim
u↓0

Cm,m(u, u|C, D)

u

= lim
u↓0

1
u

⎡
⎣ m∑
n1=1

m∑
n2=1

C
(n1
m

,
n2
m

)

P(F−1
Bin(m,u)(U

D
1 ) = n1, F

−1
Bin(m,u)(U

D
2 ) = n2)

⎤
⎦ ,

where (UD
1 ,UD

2 ) follows D̄.
If n1 > 1 or n2 > 1, we have

lim
u↓0

1
u

P(F−1
Bin(m,u)(U

D
1 ) = n1, F

−1
Bin(m,u)(U

D
2 ) = n2)

≤ lim
u↓0

[
(mn1)u

n1(1 − u)m−n1

u
+ (mn2)u

n2(1 − u)m−n2

u

]
= 0. (9)

As a result, we have

λ
Cm,m(·|C,D)

L = C
(
1
m

,
1
m

)
lim
u↓0

1
u

P(F−1
Bin(m,u)(U

D
1 ) = 1, F−1

Bin(m,u)(U
D
2 ) = 1)
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Observe that

P(UD
1 > (1 − u)m,UD

2 > (1 − u)m)

−P(F−1
Bin(m,u)(U

D
1 ) = 1, F−1

Bin(m,u)(U
D
2 ) = 1) ≤ 2(1 − FBin(m,u)(1)) = o(u),

and

lim
u↓0

P(UD
1 > (1 − u)m,UD

2 > (1 − u)m)

u

= lim
u↓0

P(UD
1 > 1 −mu + o(u),UD

2 > 1 −mu + o(u))
u

= m× λDL . (10)

Then we obtain λ
Cm,m(·|C,D)

L = m× C( 1
m , 1

m ) × λDL .
For (ii), note that by Proposition 2.4 (ii), C̄m,m(·|C, D) = Cm,m(·|C̄, D̄).Thus

λ
Cm,m(·|C,D)

U = λ
C̄m,m(·|C,D)

L = m× C̄( 1
m , 1

m ) × λD̄L = m× C̄( 1
m , 1

m ) × λDU .

(iii) is directly implies by (i) and (ii).

Remark 2.5. Theorem 2.2 implies the fact that the BC always have zero tail de-
pendence coefficients since the base copula D of a BC is the independent cop-
ula, with λDU = λDL = 0. In the CBC family, we can choose base copulas D with
λDU = λDL = 1 (such as the Fréchet upper copula M) to preserve the tail dependence
coefficients asymptotically.

2.5. Numerical example

In this section, we provide a numerical example for CBC as m → ∞ to ex-
hibit the influence of base copulas on the difference between CBC and its target
copula. Since the expression for CBC is not explicit in general, we use a Monte-
Carlo simulation with sample size 10,000 for the definition (3) to approximate
CBC in this section.

From Theorem 2.1, we know that no matter which base copula we choose,
the CBCCm,m(u1, u2|C, D) will converge toC(u1, u2) asm → ∞. In the follow-
ing, we chooseCρ (ρ denotes Pearson correlation coefficient in this subsection),
a Gaussian copula with correlation parameter ρ, as the target copula, and the
Fréchet upper copula M, the Fréchet lower copula W, the independent copula
� and the target copula Cρ itself are chosen as the base copula to report the
numerical values when m is finite. We would like to see how close CBC is to the
target copula.

The absolute distance is approximated by

T(Cm,m(·|C, D)) = 1
K2

K∑
i=1

K∑
j=1

|C
(
i
K

,
j
K

)
− C∗

m,m

(
i
K

,
j
K

|C, D
)

|, (11)
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TABLE 1

APPROXIMATE DISTANCE MEASURED IN (11).

Target Copula: Gaussian (ρ = 0.7) Target Copula: Gaussian (ρ = −0.7)

Base Copula Base Copula

m M � W C0.7 m M � W C−0.7

10 0.0039 0.0112 0.0252 0.0024 10 0.0238 0.0100 0.0052 0.0025
20 0.0027 0.0059 0.0132 0.0022 20 0.0118 0.0057 0.0033 0.0023
30 0.0025 0.0042 0.0091 0.0021 30 0.0078 0.0042 0.0030 0.0022
40 0.0022 0.0034 0.0071 0.0020 40 0.0058 0.0035 0.0025 0.0021
100 0.0021 0.0023 0.0034 0.0021 100 0.0032 0.0024 0.0022 0.0020
200 0.0020 0.0021 0.0026 0.0020 200 0.0023 0.0020 0.0020 0.0021

here C∗
m,m(·|C, D) is the Monte-Carlo simulation of Cm,m(·|C, D), which we

treat as the true value of Cm,m(·|C, D).
From Table 1, we find that when the target copula has a highly positive cor-

relation, the Fréchet upper copula as a base copula leads to faster convergence
than the independent and the Fréchet lower copula copulas. Opposite observa-
tion can be found in the case of negative correlation. At the same time, it is clear
that the target copula itself as a base copula leads to the fastest convergence.
However, when m is large enough the effect of M or W is similar to that of the
target copula itself.

3. EMPIRICAL COMPOSITE BERNSTEIN COPULA

3.1. Definition of empirical composite Bernstein copula

In this section, we discuss statistical inference using the CBC. An estimation
procedure will be provided below. We propose to estimate a copula C based on
CBC.

As discussed in Sancetta and Satchell (2004), the BCs can be used to esti-
mate unknown copulas by constructing the empirical Bernstein copulas (EBC).
The CBC serves in the same procedure with even more flexibility by allowing
to choose the base copula D. In what follows, we will introduce the empirical
composite Bernstein copula (ECBC).

Let CN(u), u ∈ [0, 1]n be the empirical copula of sample data V1, . . . ,VN ∈
[0, 1]n from a copula C, i.e.,

CN(u) = 1
N

N∑
j=1

1{V j≤u},

where the ‘≤’ is a component-wise inequality.
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Remark 3.1. Here we assume that the data are sampled from a copula, and hence
the marginal distributions are known to be U[0, 1]. If the marginal distributions
are unknown, the empirical copula should be defined as 1

N

∑N
j=1 1{Ṽ j≤u}, where

Ṽi = (Ṽi,1, . . . , Ṽi,n) with Ṽi, j = FNj (Vi, j ) and FNj is the marginal empirical
distribution function of the j th component.

CN is not a copula for finite N; it is only a copula asymptotically (as N →
∞). Note that the empirical copula CN does not have a density. As mentioned
in Remark 2.1, the definition (3) does not require C to be a copula. Hence, the
following ECBC is properly defined as

C̃m1,...,mn (u|N, D) := Cm1,...,mn (u|CN, D), u ∈ [0, 1]n.

Note that this definition only involves the information of CN on the points
( v1
m1

, . . . , vn
mn

) for vi ∈ {0, . . . ,mi }, i = 1, . . . , n.

From (4) we can see that the function C̃m1,...,mn (u|N, D) can be easily calcu-
lated by using

C̃m1,...,mn (u1, . . . , un|N, D)

= 1
N

N∑
j=1

D(1 − FBin(m1,u1)(m1Vj1), . . . , 1 − FBin(mn ,un)(mnVjn)), (12)

where V j = (Vj1, . . . ,Vjn), j = 1, . . . , N are the sample data. Moreover, we
can express C̃m1,...,mn (u1, . . . , un|N, D) as

C̃m1,...,mn (u1, . . . , un|N, D) =
m1∑
l1=0

· · ·
mn∑
ln=0

CN

(
l1
m1

, . . . ,
ln
mn

)

×P
(
F−1
Bin(m1,u1)(U1) = l1, . . . , F

−1
Bin(mn ,un)(Un) = ln

)
.

(13)

Remark 3.2. ECBC defined in this paper is one generalization of the EBC in
Sancetta and Satchell (2004). When the base copula D is chosen as the indepen-
dent copula, ECBC becomes the EBC. As for the density of copula function, by
Theorem 2.1 we know that the ECBC always has a density if D has a density. Thus
the density of C̃m,...,m(u|N, D), denoted as c̃CB, exists whenever D has a density.

3.2. Limit theorems for the empirical composite Bernstein copula

The following asymptotic property holds for ECBC. A proof will be given in the
Appendix.

Theorem 3.1. Denote m = min{mi : i = 1, . . . , n}.
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1. We have

lim
m→∞ lim

N→∞
C̃m1,...,mn (u|N, D) = C(u) a.s., u ∈ [0, 1]n. (14)

2. As m → ∞ and N → ∞,

sup
u∈[0,1]n

|C̃m1,...,mn (u|N, D) − C(u)| = OP

(
1

min{√N,
√
m}

)
. (15)

The above theorem provides the influence of the sample size N and the pa-
rameters mi , i = 1, . . . , n on the convergence rate of ECBC.

In the following, we consider the asymptotic normality of the ECBC. For
simplicity we consider the bivariate case withm1 = m2 = m. For u1, u2 ∈ (0, 1),
we denote

σ 2(u1, u2) = C(u1, u2)(1 − C(u1, u2)),

V(u1, u2) = 2√
π

(
∂C(u1, u2)

∂u1

√
u1(1 − u1) + ∂C(u1, u2)

∂u2

√
u2(1 − u2)

)
,

and

b(u1, u2) = 1
2

[
∂2C(u1, u2)

∂u21
u1(1 − u1) + ∂2C(u1, u2)

∂u22
u2(1 − u2)

]

+∂2C(u1, u2)
∂u1∂u2

√
u1(1 − u1)

√
u2(1 − u2)

∫ ∞

−∞

∫ ∞

−∞
st d D̄(	(s), 	(t)),

where we assume that the corresponding partial derivatives exist.

Theorem 3.2. Assume that C(u1, u2), (u1, u2) ∈ (0, 1)2 has uniformly bounded
third order partial derivatives and N1/2m−1 → a ∈ [0, ∞) as m → ∞. Then for
(u1, u2) ∈ (0, 1)2,

Var(N1/2(C̃m,m(u1, u2|N, D) − C(u1, u2)))

= σ 2(u1, u2) − 1√
m
V(u1, u2) + o

(
1√
m

)
,

as m → ∞. Moreover, for (u1, u2) ∈ (0, 1)2,

N1/2(C̃m,m(u1, u2|N, D) − C(u1, u2))
d→ N(ab(u1, u2), σ 2(u1, u2)), m → ∞.

Remark 3.3. 1. Note that

Var(N1/2(C̃m,m(u1, u2|N, D) − C(u1, u2))) < σ 2(u1, u2),
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if N is large enough. Thus comparing to the empirical copula function we can
reduce the error of the estimator.

2. In the case a = 0, the limiting distribution does not depend on the base copula
D. If a > 0, the mean of the limit distribution depends on D, whereas the
asymptotic variance σ 2(u1, u2) does not depend on D.

3. By comparing with the empirical copula function, ECBC can reduce the esti-
mation error and has the same asymptotic variance. In the case N1/2m−1 →
a > 0, ECBC leads to some bias ab(u1, u2).

Remark 3.4. Similarly to the discussion in Janssen et al. (2012, Remark 4), dif-
ferent choices of m will influence the estimation effect. For instance, the opti-
mal m could be chosen to minimize the following asymptotic mean squared error
(AMSE):

AMSE(C̃m,m) = N−1σ(u1, u2) −m−1/2N−1V(u1, u2) +m−2b2(u1, u2),

leading to an optimal choice

m(N) =
(
4b2(u1, u2)
V(u1, u2)

)2/3

N2/3.

Therefore, one may choose m(N) = cN2/3 for some c > 0.

3.3. Some remarks on ECBC

The most important advantage of the estimation procedure using ECBC is that
we are able to incorporate both prior information and data into estimation by
choosing the base copula D, which allows flexibility in the estimation. For ex-
amples, we can use five scenarios for choosing the base copula D:

i. If we have a good guess of the real copulaC of the data, we can use it as the
base copula.

ii. If we do not have a good guess for the real copula, but we guess the real
copula is in a parametric family, we can first perform maximum likelihood
estimation (MLE) or other classic estimationmethod to find the parametric
estimation, and use it as the base copula.

iii. If we do not have a parametric family, but we observe that each vector of
the data is positively correlated, then we can use M as the base copula. On
the other hand, when n = 2, if we observe that the components of each data
point are negatively correlated, we can useW as the base copula.

iv. If we do not have any information, then we can use the empirical copula as
the base copula, which gives a completely non-parametric estimation.

v. When n = 2, if we want to capture the tail dependence information, we can
choose a copula with a large tail dependence coefficient as the base copula.

An accurate guess or prior information of the real copula, chosen as the base
copula, will enhance the estimation significantly (see Section 4 below). Even if
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the prior guess is wrong, Theorem 3.1 shows that the ECBC still converges to
the real copula as m, N → ∞.

In the above estimation procedure, mi needs to be determined beforehand;
see Sancetta and Satchell (2004) and Janssen et al. (2012). Some suggestions on
choosing the optimal mi are given in Remark 3.4. To simplify the procedure,
as in Sancetta and Satchell (2004) and Janssen et al. (2012), we often assume
that m1 = m2 = · · · = mn = m in our simulation studies. The parameter m
measures the preference between the base copula and the data. Ifm is small, the
base copula is trusted. Asm increases, the data is more trusted (see also Remark
2.3). Thus, it is reasonable to choose m → ∞ as N → ∞. It is worth pointing
out that this logic coincides with the classic Bayesian statistics: the more data
we have, the more we trust the data; the less data we have, the more we trust
the prior. This also provides an explanation for the assumption that m → ∞ as
N → ∞ in the EBC estimation in Sancetta and Satchell (2004). From Theorem
3.2 we can see that as N1/2m−1 → 0, ECBC converges to the target copula C.
Thus in the statistical estimation, the parametersmi , i = 1, . . . , n can be chosen
as a function of the sample N, such as satisfying N = O(m3/2

i ) as suggested in
Remark 3.4.

In summary, one can choose the copula function D first, which shows the
prior opinion about our consideration, and then choose the numbers mi , i =
1, . . . , n based on the size of the sample, and finally the statistical estimation of
the parameters in estimator can be carried out.

4. SIMULATION STUDIES AND REAL DATA ANALYSIS

4.1. Simulation studies

In this section, we carry out some simulation studies in the bivariate case to
compare the empirical copula estimator CN(u1, u2) with the ECBC estimator
C̃m,m(u1, u2|N, D) for different choices of base copula D, parameter m, includ-
ing the EBC estimator (i.e., D = �). Choices of the base copula D and the
parameter m allow flexibility in the estimation.

In the study, the estimation quality is evaluated by empirically calculating
their mean discrete L1-norm between the real copula C and an estimator CE,
denoted by

R(CE,C) = E

⎧⎨
⎩ 1
K2

K∑
i=1

K∑
j=1

∣∣∣∣C
(
i
K

,
j
K

)
− CE

(
i
K

,
j
K

)∣∣∣∣
⎫⎬
⎭ . (16)

Here we take K = 100, the repetition r = 10, 000. The candidates for CE

include

a. The empirical copula CN.
b. The parametric MLE of a Gaussian copula: ĈG .
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c. The ECBC based on M, �, W: C̃m,m(·|N,M), C̃m,m(·|N, �), C̃m,m(·|N,W).
Note that C̃m,m(·|N, �) is the EBC introduced in Sancetta and Satchell
(2004).

d. The ECBC based on the estimated Gaussian copula: C̃m,m(·|N, ĈG).
e. The ECBC based on the real copula C: C̃m,m(·|N,C).
f. The ECBC based on the empirical copula CN: C̃m,m(·|N,CN).

In the first simulation, we focus on the influence of the base copula. We
choose the above estimators CE (a)–(f), and generate N (N = 50, 200) iid ran-
dom vectors from a bivariate Gaussian copula C with θ = 0.7. The Gaussian
copula with parameter θ ∈ (−1, 1) is defined as: for (u, v) ∈ [0, 1]2,

Cθ (u, v) = 	θ(	
−1(u), 	−1(v)),

where 	 is the standard normal distribution function, and 	θ is a two-
dimensional normal distribution function with mean zero and covariance ma-
trix

(
1 θ

θ 1

)
.

In the second simulation, we simulate samples from different copula fam-
ilies. We choose the above estimators CE (a)–(d), and generate N = 50
iid random vectors from Gumbel, t- and Clayton copulas with different
parameters.

• The Clayton copula with parameter θ ∈ [−1, ∞)\{0} is defined as: for
(u, v) ∈ [0, 1]2,

Cθ (u, v) = [max
(
u−θ + v−θ − 1, 0

)]− 1
θ .

• The t-copula with parameters θ ∈ [−1, 1] and ν > 0 is defined as: for (u, v) ∈
[0, 1]2,

C(u, v) =
∫ t−ν (u)

−∞

∫ t−ν (v)

−∞

1
2π(1 − θ2)1/2

{
1 + x2 − 2θxy+ y2

ν(1 − θ2)

}−(ν+2)/2

dydx,

where tν is the distribution function of a t-distribution with ν degrees of free-
dom and t−ν denotes the generalized inverse function of tν .

• The Gumbel copula with parameter θ ∈ [1, ∞) is defined as: for (u, v) ∈
[0, 1]2,

Cθ (u, v) = exp
{
− [(− ln u)θ − (− ln v)

θ
] 1

θ

}
.

The results from the first simulation are reported in Table 2 and the results
from the second simulation are reported in Table 3.

We observe some interesting facts below:

i. The parametric MLE ĈG performs the best for all four samples. This con-
firms that a parametric Gaussian estimation can be a quite good approxi-
mation to the three parametric copula families.
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TABLE 2

R(CE,Cθ ) FOR DIFFERENT CHOICES OF CE . HERE WE OMIT N IN THE ECBC.

N = 50

m C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG) C̃m,m(·|Cθ ) C̃m,m(·|CN)

3 0.0250 0.0374 0.0718 0.0234 0.0227 0.0408
7 0.0304 0.0327 0.0442 0.0301 0.0297 0.0402
14 0.0343 0.0347 0.0383 0.0342 0.0340 0.0407
30 0.0374 0.0373 0.0381 0.0373 0.0372 0.0415
50 0.0387 0.0386 0.0390 0.0387 0.0386 0.0418

R(CN,Cθ ) = 0.0438 R(ĈG ,Cθ ) = 0.0051

N = 200

m C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG) C̃m,m(·|Cθ ) C̃m,m(·|CN)

3 0.0151 0.0337 0.0713 0.0123 0.0120 0.0216
7 0.0166 0.0209 0.0364 0.0157 0.0155 0.0216
14 0.0180 0.0189 0.0243 0.0177 0.0176 0.0217
30 0.0192 0.0193 0.0206 0.0191 0.0190 0.0217
50 0.0198 0.0198 0.0202 0.0197 0.0197 0.0216

R(CN,Cθ ) = 0.0221 R(ĈG ,Cθ ) = 0.0028

ii. Among the non-parametric methods, ECBC and EBC generally perform
better than the empirical copula CN.

iii. FromTable 2, it is clear that C̃m,m(·|N,C) outperforms the other ECBC type
of estimators, and C̃m,m(·|N, ĈG) also preforms quite well. This suggests
that a more accurate base copula leads to a better estimation.

iv. C̃m,m(·|N,W) performs poorly for smallm becauseW is very far away from
the real copula C. C̃m,m(·|N,M) performs pretty well, almost always better
than the EBC C̃m,m(·|N, �) since our choices of real copula all have a posi-
tive Spearman’s ρ (ρ denotes Spearman’s rank correlation coefficient in this
section).

v. Recall thatmmeasures the preference between the data and the base copula.
We observe that when we have a good guess (such as M,C, ĈG) as the base
copula, small m leads to a better estimation. When we have a bad guess as
the base copula (such as W), small m leads to a worse estimation. Based
on this observation, it is reasonable to letm increase as N increases, since a
larger N leads to a more convincing non-parametric estimation.

vi. From Table 3, among the three ECBCs, C̃m,m(·|N, �) performs best when
the Spearman’s ρ is low, C̃m,m(·|N,M) performs best when the Spearman’s
ρ is high. The ECBC based on the Gaussian copula outperforms the other
ECBCs in most cases.

In summary, the ECBC estimation procedure provides a new method which in-
corporates both the prior information and the data, and it shows its advantage
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TABLE 3

R(CE,Cθ ) FOR DIFFERENT CHOICES OF CE . HERE WE OMIT N IN THE ECBC. THE PARAMETERS θ ARE IN
PARENTHESES AND THE SPEARMAN’S ρ ARE ALSO LISTED.

Clayton(1), ρ = 0.479 Clayton(3), ρ = 0.788

R(ĈG ,Cθ ) = 0.0109, R(CN,Cθ ) = 0.0440 R(ĈG ,Cθ ) = 0.0093, R(CN,Cθ ) = 0.0445

m C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG) C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG)

3 0.0309 0.0317 0.0634 0.0263 0.0258 0.0430 0.0771 0.0264
7 0.0338 0.0324 0.0404 0.0326 0.0321 0.0367 0.0489 0.0325
14 0.0361 0.0351 0.0372 0.0356 0.0356 0.0367 0.0408 0.0358
30 0.0382 0.0377 0.0379 0.0381 0.0387 0.0389 0.0400 0.0388
50 0.0396 0.0393 0.0393 0.0395 0.0400 0.0400 0.0405 0.0400

t(0.5,5), ρ = 0.473 t(0.8,5), ρ = 0.777

R(ĈG ,Cθ ) = 0.0096, R(CN,Cθ ) = 0.0437 R(ĈG ,Cθ ) = 0.0052, R(CN,Cθ ) = 0.0474

m C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG) C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG)

3 0.0285 0.0325 0.0662 0.0248 0.0258 0.0443 0.0784 0.0257
7 0.0317 0.0330 0.0441 0.0315 0.0346 0.0389 0.0505 0.0348
14 0.0349 0.0356 0.0394 0.0353 0.0388 0.0400 0.0441 0.0389
30 0.0375 0.0379 0.0390 0.0378 0.0416 0.0419 0.0431 0.0416
50 0.0390 0.0392 0.0398 0.0392 0.0429 0.0431 0.0436 0.0430

Gumbel(1.5), ρ = 0.478 Gumbel(2.5), ρ = 0.789

R(ĈG ,Cθ ) = 0.0078, R(CN,Cθ ) = 0.0420 R(ĈG ,Cθ ) = 0.0052, R(CN,Cθ ) = 0.0477

m C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG) C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|W) C̃m,m(·|ĈG)

3 0.0299 0.0290 0.0631 0.0223 0.0267 0.0465 0.0816 0.0266
7 0.0298 0.0293 0.0399 0.0280 0.0351 0.0404 0.0533 0.0352
14 0.0325 0.0320 0.0354 0.0319 0.0388 0.0405 0.0450 0.0388
30 0.0353 0.0350 0.0358 0.0351 0.0417 0.0423 0.0436 0.0417
50 0.0368 0.0366 0.0370 0.0367 0.0432 0.0434 0.0441 0.0432

by comparing with the above non-parametric methods when an appropriate
base copula is chosen. It is very flexible to choose different base copulas.

4.2. Simulation for different m1,m2

In the next, we study the impact of (m1,m2) for m1 	= m2. Table 4 reports the
L1-error of ECBC with various choices of (m1,m2). The sample is simulated
from a Gumbel copula with parameter θ = 2.5, and the sample size is 500.

We observe that for ECBC with M as the base copula, the estimation er-
ror is minimized when m1 is close to m2, whereas for EBC, such a trend is not
observed. However, optimal choices of m1,m2 are not easy to obtain.
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TABLE 4

L1-ERROR OF ECBC AND EBC WITH DIFFERENT m1,m2.

Empirical composite Bernstein copula with M as the base copula

m1\m2 3 5 10 20 30 40 50 200

3 0.0095 0.0094 0.0111 0.0133 0.0149 0.0161 0.0161 0.0213
5 0.0089 0.0107 0.0106 0.0108 0.0127 0.0116 0.0118 0.0147
10 0.0106 0.0118 0.0107 0.0110 0.0118 0.0118 0.0117 0.0119
20 0.0136 0.0112 0.0113 0.0117 0.0119 0.0117 0.0122 0.0132
30 0.0148 0.0116 0.0119 0.0117 0.0132 0.0126 0.0125 0.0124
40 0.0151 0.0124 0.0119 0.0124 0.0127 0.0128 0.0133 0.0127
50 0.0166 0.0116 0.0118 0.0126 0.0131 0.0124 0.0125 0.0136
200 0.0215 0.0153 0.0126 0.0119 0.0130 0.0117 0.0137 0.0139

Empirical Bernstein copula

m1\m2 3 5 10 20 30 40 50 200

3 0.0371 0.0327 0.0292 0.0282 0.0267 0.0262 0.0256 0.0260
5 0.0341 0.0264 0.0212 0.0204 0.0198 0.0174 0.0179 0.0180
10 0.0300 0.0224 0.0183 0.0151 0.0147 0.0145 0.0149 0.0137
20 0.0280 0.0205 0.0151 0.0129 0.0126 0.0122 0.0128 0.0138
30 0.0270 0.0191 0.0153 0.0124 0.0137 0.0133 0.0132 0.0127
40 0.0258 0.0196 0.0145 0.0135 0.0132 0.0132 0.0135 0.0127
50 0.0262 0.0178 0.0147 0.0131 0.0133 0.0129 0.0129 0.0137
200 0.0263 0.0187 0.0143 0.0124 0.0132 0.0119 0.0138 0.0139

4.3. Financial data analysis

In financial practice, Gaussian copula is often chosen as the benchmark corre-
lation structure. However, it is well-known that Gaussian copula has zero tail
dependence coefficient and the tail property of real financial data cannot be
captured. In this empirical study, we tried to solve this issue by ECBC. From
Proposition 2.2, we understand that if the base copula M is chosen, ECBC has
positive tail dependence coefficient. Thus, we can try to capture the tail property
of financial data by ECBC with base copula M and check the impact on overall
and tail error.

We use SPY 500 and NASDAQ daily return data, from January 29, 1993 to
January 9, 2013.

We first use AR(1) model to filter the return series to avoid auto-correlation.
In the Durbin-Watson test, the DW statistic for filtered SPY and NASDAQ
return is 2.0005 and 2.0001, with a p value of 0.9964 and 0.9862. Based on the
filtered time series, half of the samples are randomly chosen as the test data set.
Parametric MLE of Gaussian copula ĈG , parametric MLE of Gumbel copula
ĈGu , and ECBC with base copula M and � are obtained from the test data.
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TABLE 5

L1-ERROR FOR DIFFERENT ESTIMATORS, INCLUDING PARAMETRIC MLE OF GAUSSIAN COPULA ĈG ,
PARAMETRIC MLE OF GUMBEL COPULA ĈGu , AND ECBC WITH BASE COPULA MAND �. DISTANCE SHOWN

IN THE UNIT OF 10−3.

α = 1 α = 0.05 α = 0.01
R1(ĈG ,CN) = 1.6292 R0.05(ĈG ,CN) = 1.1262 R0.01(ĈG ,CN) = 1.3118
R1(ĈGu,CN) = 4.7681 R0.05(ĈGu,CN) = 3.6895 R0.01(ĈGu,CN) = 1.3997

m C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|M) C̃m,m(·|�) C̃m,m(·|M) C̃m,m(·|�)

3 3.9409 37.8040 2.3443 10.2103 0.3606 2.3568
5 3.3739 24.4224 1.9946 9.4493 0.3079 2.3218
10 2.7408 12.4731 1.3858 8.0679 0.2501 2.2511
20 2.0906 6.0320 0.9791 6.1239 0.2936 2.1234
30 1.8766 3.8730 0.8258 5.0689 0.4261 2.0348
40 1.7323 2.8096 0.7716 4.2333 0.5217 1.9614
50 1.6297 2.2997 0.7702 3.8635 0.6431 1.9114
200 1.5406 1.6491 0.8837 1.6745 0.9355 1.4716

The distance between these estimators and the empirical copula CN based on
the training data are shown in the following Table 5.

L1-error is applied here as the error measure

Rα(CE,CN) = E

⎧⎨
⎩ 1

(K − 1)2

K−1∑
i=1

K−1∑
j=1

∣∣∣∣CE
(
i
K

α,
j
K

α

)
− CN

(
i
K

α,
j
K

α

)∣∣∣∣
⎫⎬
⎭ ,

(17)
where K = 100.

It can be clearly observed that by applying ECBCwithMas base copula, not
only we obtain a smaller overall error compared to EBC but also much better
tail distribution estimation, beating the Gaussian MLE.

5. CONCLUSION

Based on BC presented by Sancetta and Satchell (2004), this paper studied one
new class of copula functions: the CBC. A CBC is constructed by mixing the
information of a base copula and a target copula. The CBC converges to the
target copula as mi → ∞ and the copula has nice theoretical properties. The
CBC can also be used to model tail dependence. The ECBC was introduced
as a non-parametric estimation procedure, and its asymptotic properties were
shown. The ECBC is able to incorporate prior information flexibly with dif-
ferent choices of base copulas and the parameter m. Simulation study and em-
pirical analysis of financial data showed the advantage of the new estimation
method, especially in capturing tail dependence. We remark that in the ECBC
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estimation procedure, the optimal choice of m is still unclear and is a possible
research direction for future study.
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APPENDIX A. PROOF OF THEOREM 3.1

Part (1) is implied by the Law of Large Numbers and Theorem 2.1 (iii). In the
following we show part (2).

Note that

sup
0≤ui≤1,i≤n

|C̃m1,...,mn (u1, . . . , un|N, D) − C(u1, . . . , un)|

≤ sup
0≤ui≤1,i≤n

|C̃m1,...,mn (u1, . . . , un|N, D) − Cm1,...,mn (u1, . . . , un|C, D)|

+ sup
0≤ui≤1,i≤n

|Cm1,...,mn (u1, . . . , un|C, D) − C(u1, . . . , un)|. (18)
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For the first term of the right-hand of the inequality (18), from (3) and (13) we
get

sup
0≤ui≤1,i≤n

|C̃m1,...,mn (u1, . . . , un|N, D) − Cm1,...,mn (u1, . . . , un|C, D)|

= sup
0≤ui≤1,i≤n

∣∣∣∣∣∣
m1∑
l1=0

· · ·
mn∑
ln=0

(
CN

(
l1
m1

, . . . ,
ln
mn

)
− C

(
l1
m1

, . . . ,
ln
mn

))

× P(F−1
Bin(m1,u1)(U

D
1 ) = l1, . . . , F

−1
Bin(mn ,un)(U

D
n ) = ln)

∣∣∣∣∣∣
≤ sup

0≤li≤mi ,i≤n

∣∣∣∣CN

(
l1
m1

, . . . ,
ln
mn

)
− C

(
l1
m1

, . . . ,
ln
mn

)∣∣∣∣
≤ sup

0≤ui≤1,i≤n
|CN(u1, . . . , un) − C(u1, . . . , un)|.

Thus we obtain that

sup
0≤ui≤1,i≤n

|C̃m1,...,mn (u1, . . . , un|N, D) − Cm1,...,mn (u1, . . . , un|C, D)|

≤ sup
0≤ui≤1,i≤n

|CN(u1, . . . , un) − C(u1, . . . , un)|, a.s. (19)

For the second term of the right-hand of the inequality (18), note that

|Cm1,...,mn (u1, . . . , un|C, D) − C(u1, . . . , un)|

=
∣∣∣∣∣E
[
C

(
F−1
Bin(m1,u1)(U1)

m1
, . . . ,

F−1
Bin(mn ,un)(Un)

mn

)
− C(u1, . . . , un)

]∣∣∣∣∣
≤

n∑
i=1

E

∣∣∣∣∣ F
−1
Bin(m1,u1)(U1)

mi
− ui

∣∣∣∣∣
≤

n∑
i=1

√√√√Var

(
F−1
Bin(mi ,ui )(Ui )

mi

)
= O

(
1√
m

)
. (20)

Combining (19) and (20), we can get

sup
0≤ui≤1,i≤n

|C̃m1,...,mn (u1, . . . , un|N, D) − C(u1, . . . , un)|

≤ sup
0≤ui≤1,i≤n

|CN(u1, . . . , un) − C(u1, . . . , un)| + O
(

1√
m

)

= OP

(
1√
N

)
+ O

(
1√
m

)
= OP

(
1

min{√N,
√
m}

)
. (21)
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APPENDIX B. PROOF OF THEOREM 3.2

For i ≤ N, denote

Ymi =
m∑

l1=0

m∑
l2=0

{(
I
(
Vi,1 ≤ l1

m
,Vi,2 ≤ l2

m

)
− C

(
l1
m

,
l2
m

))

P
(
F−1
Bin(m,u1)(U

D
1 ) = l1, F

−1
Bin(m,u2)(U

D
2 ) = l2

)}
.

Then

N1/2(C̃m,m(u1, u2|N, D) − Cm,m(u1, u2|C, D))

= N−1/2
N∑
i=1

m∑
l1=0

m∑
l2=0

{(
I
(
Vi,1 ≤ l1

m
,Vi,2 ≤ l2

m

)
− C

(
l1
m

,
l2
m

))

× P(F−1
Bin(m,u1)(U

D
1 ) = l1, F

−1
Bin(m,u2)(U

D
2 ) = l2)

}

= N−1/2
N∑
i=1

Ymi . (22)

Note that Ymi , i ≤ N are independent and identically distributed random vari-
ables. For simplicity, we denote

N1,1(u1) = F−1
Bin(m,u1)(U

D
1,1), N1,2(u2) = F−1

Bin(m,u2)(U
D
1,2),

N2,1(u1) = F−1
Bin(m,u1)(U

D
2,1), N1,2(u2) = F−1

Bin(m,u2)(U
D
2,2),

where (UD
1,1,U

D
1,2) and (UD

2,1,U
D
2,2) are independent random vectors with distri-

bution D̄. For i = 1, 2 and j = 1, 2,

Ni, j (u j )
m

− u j = Ni, j (u j ) −mu j√
m

1√
m

.

Note that
Ni, j (u j ) −mu j√

m
d→ N(0, u j (1 − u j )),

and as m → ∞,

P

(
Ni,1(u1) −mu1√
mu1(1 − u1)

≤ s,
Ni,2(u2) −mu2√
mu2(1 − u2)

≤ t
)

= D̄
(

P

(
Ni,1(u1) −mu1√
mu1(1 − u1)

≤ s
)

, P

(
Ni,2(u2) −mu2√
mu2(1 − u2)

≤ t
))

→ D̄(	(s), 	(t)).
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Thus we have

Var(Ymi )

= E

[
E

{(
I
(
Vi,1 ≤ N1,1(u1)

m
,Vi,2 ≤ N1,2(u2)

m

)
− C

(
N1,1(u1)

m
,
N1,2(u2)

m

))

×
(
I
(
Vi,1≤N2,1(u1)

m
,Vi,2≤N2,2(u2)

m

)
−C
(
N2,1(u1)

m
,
N2,2(u2)

m

))∣∣∣∣Vi,1,Vi,2
}]

= E

[(
I
(
Vi,1 ≤ N1,1(u1) ∧ N2,1(u1)

m
,Vi,2 ≤ N1,2(u2) ∧ N2,2(u2)

m

)

−I
(
Vi,1 ≤ N1,1(u1)

m
,Vi,2 ≤ N1,2(u2)

m

)
× C

(
N2,1(u1)

m
,
N2,2(u2)

m

)

−C
(
N1,1(u1)

m
,
N1,2(u2)

m

)
I
(
Vi,1 ≤ N2,1(u1)

m
,Vi,2 ≤ N2,2(u2)

m

)

+C
(
N1,1(u1)

m
,
N1,2(u2)

m

)
C(

N2,1(u1)
m

,
N2,2(u2)

m
)

]

= E

[
C
(
N1,1(u1) ∧ N2,1(u1)

m
,
N1,2(u2) ∧ N2,2(u2)

m

)

−C
(
N1,1(u1)

m
,
N1,2(u2)

m

)
C
(
N2,1(u1)

m
,
N2,2(u2)

m

)]

= C(u1, u2) − C(u1, u2)2 + 2√
m

∂C(u1, u2)
∂u1

√
u1(1 − u1)E(Z1 ∧ Z2)

+ 2√
m

∂C(u1, u2)
∂u2

√
u2(1 − u2))E(Z1 ∧ Z2) + o

(
1√
m

)
,

where Z1 and Z2 are independent N(0, 1) random variables. It is easy to verify
that

E(Z1 ∧ Z2) = − 1√
π

.

Finally,

Var(Ymi ) = C(u1, u2) − C(u1, u2)2 − 2√
m

√
π

∂C(u1, u2)
∂u1

√
u1(1 − u1)

− 2√
m

√
π

∂C(u1, u2)
∂u2

√
u2(1 − u2) + o

(
1√
m

)

= σ(u1, u2) − 1√
m
V(u1, u2) + o(

1√
m

).

https://doi.org/10.1017/asb.2015.1 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.1


474 J. YANG, Z. CHEN, F. WANG AND R. WANG

Thus from (22) we know that

N1/2(C̃m,m(u1, u2|N, D) − Cm,m(u1, u2|C, D))
d→ N(0, σ 2(u1, u2)). (23)

On the other-hand, under the condition of Theorem 3.2, we have

Cm,m(u1, u2|C, D) − C(u1, u2)

= E

[
C

(
F−1
Bin(m,u1)(U

D
1 )

m
,
F−1
Bin(m,u2)(U

D
2 )

m

)
− C(u1, u2)

]

= 1
2

∂2C(u1, u2)

∂u21
E

(
F−1
Bin(m,u1)(U

D
1 )

m
− u1

)2

+ 1
2

∂2C(u1, u2)

∂u22
E

(
F−1
Bin(m,u2)(U

D
2 )

m
− u2

)2

+∂2C(u1, u2)
∂u1∂u2

E

[( F−1
Bin(m,u1)(U

D
1 )

m
− u1

)(
F−1
Bin(m,u2)(U

D
2 ))

m
− u2

)]

+ o
(
1
m

)

= 1
2m

{
∂2C(u1, u2)

∂u21
u1(1 − u1) + ∂2C(u1, u2)

∂u22
u2(1 − u2)

}

+ 1
m2

∂2C(u1, u2)
∂u1∂u2

Cov(F−1
Bin(m,u1)(U

D
1 ), F−1

Bin(m,u2)(U
D
2 )) + o(m−1). (24)

Note that(
F−1
Bin(m,u1)(U

D
1 ) −mu1√

mu1(1 − u1)
,
F−1
Bin(m,u2)(U

D
2 ) −mu2√

mu2(1 − u2)

)
d→ D̄(	(s), 	(t)),

thus

Cov

(
F−1
Bin(m,u1)(U

D
1 ) −mu1√

mu1(1 − u1)
,
F−1
Bin(m,u2)(U

D
2 ) −mu2√

mu2(1 − u2)

)

=
∫ ∞

−∞

∫ ∞

−∞
std D̄(	(s), 	(t)) + o(1).

Thus from (24) we get

Cm,m(u1, u2|C, D) − C(u1, u2) = m−1b(u1, u2) + o(m−1). (25)
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Combining (23) and (25), we get

N1/2(C̃m,m(u1, u2|N, D) − C(u1, u2|C, D))

= N1/2(C̃m,m(u1, u2|N, D) − Cm,m(u1, u2|C, D)) + N1/2

m
(b(u1, u2) + o(1))

d→ N(ab(u1, u2), σ 2(u1, u2)).
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