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E-mail: micaelcouceiro@isr.uc.pt
‡Department of Electrotechnics Engineering, Coimbra Institute of Engineering Rua Pedro Nunes, 3031-601 Coimbra,
Portugal E-mails: miguel.luz@iol.pt, cfigueiredo@isec.pt, nunomig@isec.pt

(Received in Final Form: March 16, 2011. First published online: April 27, 2011)

SUMMARY
This paper covers a wide knowledge of physical and
dynamical models useful for building flying robots and a
new generation of flying platform developed in the similarity
of flying animals. The goal of this work is to develop a
simulation environment and dynamic control using the high-
level calculation tool MatLab and the modeling, simulation,
and analysis of dynamic systems tool Simulink. Once created
the dynamic models to study, this work involves the study and
understanding of the dynamic stability criteria to be adopted
and their potential use in the control of flying models.

KEYWORDS: Aerodynamics; Control; Robotics; Seagull;
Dragonfly.

1. Introduction
Birds have many similar features to reptiles but they are
distinguished from all the other animals because of their
feathers3 and other unique characteristics studied.10 The
seagull is one of the most well known and studied large
birds. They rely on optimized glide and soar for a long time
taking advantage of upward movements of air, in order to
efficiently use their energy.

The study of dynamic models based on insects has been
extended and shows some results that can be considered very
close to the real model.27,38 The dragonfly has been one of
the models under study31 because it is considered one of
the major challenges in the field of aerodynamics. Recent
studies show that dragonfly’s aerodynamics is unstable, as
they use it to fly in a totally different way than the steady flight
of aircrafts and large birds.17 The unsteady aerodynamics
has not had proper attention due to the level of inherent
complexity.

Robotics evolved from the field of automation in which
there was a desire to emulate the characteristics and
biologically inspired mobility. In the last few years, there
were significant advances in robotics, artificial intelligence,
and other fields allowing the implementation of biologically
inspired robots.6,4 With these new resources, researchers
are increasingly investing in reverse engineering based on
characteristics and behavior of real creatures. The evolution
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in research and technology resulted in machines that can
recognize facial expressions, understand speech, and perform
movements, such as walking, jumping, or swimming, in a
very similar way as living beings.35,29,19,12

However, in order to take full advantage of the desired
agility of a biological inspired flying robot and to achieve
a wide envelope of allowed maneuvers, a control system
capable of dealing with the nonlinearity inherent to the
models is necessary. Such controller should be able to
stabilize and follow the given trajectory in the presence
of input saturation, state constraints, and disturbances (as
presented in Section 4). In this paper, both integer and
fractional order (FO) PID controllers are studied and
implemented in both seagull and dragonfly simulated models.
The controller gains are obtained using both gradient descent
optimization method and biological inspired PSO in order to
obtain minimum error when the model moves between two
points within the workspace.

The paper is organized as follows. In Section 2, the
mathematical modeling of the robotic models is presented
that describes the implemented kinematics and dynamics. In
Section 3, the architecture of the robot control is presented,
and an approach to the optimization methods used to tune
the controllers is given. In Section 4, the performance
of the different controllers is compared. Finally, the main
conclusions are outlined in Section 5.

2. Mathematical Modeling
In this section, it is analyzed the mathematical modeling of
the biomechanical models and this can be made from two
different perspectives. The first is the kinematic perspective
that considers the movement characteristics and studies
the movement from a spatial and temporal perspective. The
second perspective is the dynamics, which analyzes the
forces acting in the system defining the forces that origin
the movements.14

2.1. Kinematics
Two types of flight can be considered: quasi-steady and
unsteady states. For larger birds, the flights can be
approximated by quasi-steady state assumptions because
their wings flap at lower frequency during cruising. This
means the wingtip speed is lower when compared to the
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Table I. Some features from different birds.

Wing Flapping Maximum
Weight (kg) area (m2) frequency (Hz) velocity (m/s)

Common tern 117 × 10−3 50 × 10−3 6.3 7.8
Black-headed gull 235 × 10−3 75 × 10−3 4.0 9.0
Seagull 374 × 10−3 115 × 10−3 3.5 9.2
Royal tern 480 × 10−3 108 × 10−3 4.8 10.7
Herring gull 960 × 10−3 181 × 10−3 3.6 11.7
Great skua 1378 × 10−3 214 × 10−3 3.8 12.9
Great blacked-backed gull 1959 × 10−3 272 × 10−3 3.3 13.6
Sooty albatross 2857 × 10−3 340 × 10−3 2.9 14.7
Wandering albatross 8878 × 10−3 620 × 10−3 2.5 19.2

Table II. Some features from different insects.

Wing Flapping Maximum
Weight (kg) area (m2) frequency (Hz) velocity (m/s)

Bumblebee 0.32 × 10−3 0.19 × 10−3 130.0 3.0
Dragonfly 1.00 × 10−3 1.00 × 10−3 20.0 12.5
Butterfly 3.00 × 10−3 2.80 × 10−3 12.5 2.5

flight speed. Thus, larger birds, such as eagles and seagulls,
tend to have a soaring flight. Their wings behave closely to
fixed wings. On the other hand, smaller birds and insects fly
in an unsteady state regime5 as their wingtip speed is faster
than their flight speed.

In order to choose the appropriate bird model to compare
with the insect flight (i.e., quasi-steady flight versus unsteady
flight), we analyzed several features from real birds (Table I).
The features were extracted both experimentally and through
the analysis of research, such as refs. [24, 34, 25, 18].

The most adequate one to our model was the seagull, which
has the best relation between weight, wing area, maximum
velocity, and flapping frequency, making it one of the most
well-known examples of quasi-steady flying models.15

The insect model was based on a dragonfly, which flight is
considered unsteady with a flapping frequency near 20 Hz.37

Table II compares some of the most studied insect
features.32,40 Besides the tabled features, there are several
unique characteristics of the dragonfly (e.g., two pair of
wings, tail influence, and flying styles), which are the main

reasons that the dragonfly was used as model. Those will be
discussed later on this paper.

The forces and flows around a flapping wing still represent
a challenge in fluid dynamics.38

In order to visualize the models’ behavior, while in
simulation, we developed 3D models in AutoCAD inspired
in a seagull and a dragonfly.

The models are shown in Fig. 1, where each adjacent part
represented with different colors corresponds to individual
elements connected through joints. The used axis system is
shown in Fig. 1, in order to make it easier to understand
the equations and dynamic analysis that follows. This axis
system is relative to the World Coordinate System in which
the model is located, which means that the formulae obtained
for the calculation of the forces are only valid if the model is
in agreement with Fig. 1. The method used to calculate the
forces depending on the rotations arising from the model is
based on the kinematic structures.

With the developed model, we analyzed the seagull flight
movement and its behavior in different stages, such as taking

Fig. 1. (Colour online) Kinematic structure of the (a) seagull and the (b) dragonfly.
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Table III. Kinematic Transformation for each link of the (a) seagull and the (b) dragonfly.

(a) (b)
Link Kinematic transformation Link Kinematic transformation

Body (A) T 0
4 = T 0

1 · T 1
2 · T 2

3 · T 3
4 Body (A) T 0

4 = T 0
1 · T 1

2 · T 2
3 · T 3

4

Tail (B) T 0
6 = T 0

4 · T 4
5 · T 5

6 Tail (B) T 0
6 = T 0

4 · T 4
5 · T 5

6

Left wing no. 1 (C) T 0
10 = T 0

4 · T 4
7 · T 7

9 · T 9
10 Left wing no. 1 (C) T 0

10 = T 0
4 · T 4

7 · T 7
9 · T 9

10

Right wing no. 1 (D) T 0
11 = T 0

4 · T 4
8 · T 8

9 · T 9
11 Right wing no. 1 (D) T 0

11 = T 0
4 · T 4

8 · T 8
9 · T 9

11

Left wing no. 2 (E) T 0
12 = T 0

10 · T 10
12 Left wing no. 2 (E) T 0

15 = T 0
4 · T 4

12 · T 12
14 · T 14

15

Right wing no. 2 (F) T 0
13 = T 0

11 · T 11
13 Right wing no. 2 (F) T 0

16 = T 0
4 · T 4

13 · T 13
14 · T 14

16

off and flying with twists and turns. Through these studies
of flying motion, we obtained valuable initial specifications,
which helped us choose the initial mechanical design.

This allowed estimating the location of every joint in the
robot. When compared with a real bird, the number of joints
has been reduced, but this mechanical structure, with a total
of six controlled joints, still has good mobility.

In order to implement the seagull’s animation in MatLab,
the Denavit–Hartenberg (D-H) notation9 was followed to
represent frame (joint) coordinates for a kinematic chain of
revolute and translational joints.

On the basis of the D-H tables and transformation matrices
of both seagull and dragonfly model presented in Appendix,
we obtained the following kinematic transformation for each
link of the models (Table III).

The dragonfly model is being studied by some researchers
due to the unique juggling maneuvers of this creature. Wang38

developed a set of equations based on a real model of a
dragonfly by watching its flight in laboratory.

On the basis of research already developed in this field
and performing a geometric analysis of the dragonfly, it
was possible to reach a simpler model with a high-quality
response when comparing to what it is seen in nature
(Fig. 1b).

The major difference between the geometry of two-winged
animals (e.g., birds) and the geometry of the dragonfly are
reflected in two pairs of wings.

Similar to birds, the dragonfly also has several movements
and flying styles. The flight capabilities of dragonflies are
prodigious. In addition to the individual states of take-off,
gliding, and flapping, this last one is divided into four
different styles due to the two pairs of wings: counter-
stroking (where the front and rear wings beat with a delay
of 180◦), phased-stroking (in which the wings beat with a
difference of 90◦), synchronized-stroking (in which the four
wings are synchronized as a single pair of wings), and gliding,
such as occurs in large birds (e.g., seagull). We will give
special attention to the most common style in which the two
pairs of wings of the dragonfly beat with a delay of 180◦
(counter-stroking) that will be explained latter in this paper.

The tail and each pair of wings have the same degrees of
freedom (rotational) found in other flying models, such as
birds. The wings will be treated as a flexible link, similarly
to what is seen in the nature, minimizing the area of the
wing when on a downward movement. This structure will
provide a good mobility, making it a total of ten controllable
links.

Fig. 2. (Colour online) Wing aerodynamics.

2.2. The dynamics
In order to establish a methodology and proper strategy to this
project, it is important to study the aerodynamic principles
knowing that those will be crucial to the physics behind the
flight of birds and insects.

Several studies in this field have been made and are focused
on the mathematical modeling of both linear and nonlinear
dynamics.7 The analysis of dynamical linear models is well
established in the current literature.13,30 However, the study
of nonlinear flying models has gained increasing prominence.
For most researchers, this study should be placed in the
estimation of aerodynamic models and nonlinear analysis of
the effects of nonlinearities in the specific aircraft systems.

Historically, the first application of nonlinear analysis of
flight dynamics (i.e., a new technique in this field) was in
1977.21 Since 1977, a large number of researchers from
different countries have applied this new technique to better
understand the dynamics of flight.

It is known that a mathematical model defining the
dynamics of an aircraft is extremely important in both the
study of dynamics and control.

2.2.1. The wings model. A bird’s wing is curved along the
top so that when air passes over the wing and divides, the
curve forces the air on top to travel a greater distance than
the air on the bottom (Fig. 2). Airflow tends to adapt itself in
the presence of solid objects and to return to its original
pattern as quickly as possible. Hence, when the air hits
the front of the wing, the flow rate at the top increases to
counterbalance the bigger distance it has to travel than the
air below the wing, and as shown by Bernoulli’s Principle,
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Fig. 3. (Colour online) Force acting on the wing.

fast-moving fluid exerts less pressure than slow-moving fluid;
therefore, there is a difference in pressure between the air
below and the air above. Whenever such a pressure difference
exists in nature, a force is created in the direction of the lower
pressure, in other words, downward.

Newton’s third law of motion states that for every action
there is an equal and opposite reaction. This is another way
of saying that a force cannot be exerted without something
to push against. So, if a wing deflects air downward, there
must exist an equal and opposite reaction above and below
the wing keeping it aloft.

The study of the airfoil could be enough if the wings of the
models studied were static as is the case of aircraft. However,
the structure of the wings of birds and insects is dynamic: they
are not simple planar objects. The undulations in the wing
change the airfoil around the wing, reducing the friction, and
the wing bends around several axes, responding to both the
actions of muscles and effects of inertia.

For some insects, including dragonfly, the pterostigma
bends the wing during the beat improving the aerodynamic
efficiency.

2.2.2. The gliding flight. The relative wind acting on a wing
produces a certain amount of force, which is called the
total aerodynamic force. This force can be resolved into
components called Lift and Drag (Fig. 3).

The Lift L (1) is the component of aerodynamic force
perpendicular to the relative wind and the Drag D (2) is
the component of aerodynamic force parallel to the relative
wind. Those components can be expressed by the following
formulae:

L = 1
2 · ρ · ν2

∞ · S · Cl(α), (1)

D = 1
2 · ρ · ν2

∞S · Cd (α). (2)

The Lift and Drag on the wing depend on the wing area S,
the density of air ρ, the freestream velocity v∞, and the Lift
and Drag coefficients Cl and Cd , respectively, expressed as
functions of the angle of attack α.

The Lift and Drag coefficients depend on the shape of the
airfoil and will alter with changes in the angle of attack and
other wing trimmings. The characteristics of any particular
airfoil section can conveniently be represented by graphs
showing the amount of lift and drag obtained at various angles
of attack, the lift-drag ratio, and the movement of the center
of pressure.

Similar to ref. [23], we adopted the blade-element theory
representing the Lift (3) and Drag (4) coefficients as functions

of the angle of attack of the local wind.

Cl = Clmax · sin(2 · α), (3)

Cd = Cdo + Cdmax · sin2(α). (4)

Since we are not considering any particular wing
aerodynamics at this point, the wing aerodynamics properties
of maximum lift Cl max and drag Cd max coefficients as well
as zero drag Cd0 coefficient used in simulations for both bird
and insect model are depicted in Eqs. (5–7).

Clmax = 2, (5)

Cdo = 0.05, (6)

Cdmax = 1. (7)

Some birds take advantage of the air currents to remain
aloft for long periods without flapping their wings. Gliding
has a lower metabolic cost than flapping flight.2 The bird’s
aerodynamic characteristics determine how far and for how
long it can glide, and how successfully it can soar in moving
air. Those aerodynamic characteristics can be optimized by
the bird in the flight by changing the wing spans and wing
area. For optimal gliding, a bird’s wing must maximize lift
and minimize drag. As a rule, the smaller the bird, the shorter
the distance it can glide and the faster it sinks. A good glider
travels a long way horizontally with minimum loss of height,
but eventually loses altitude due to the pull of gravity. Both
large birds, such as seagulls or insects as dragonflies, use
this type of methodology to reduce the energy during the
flight. However, dragonflies use this to reduce the speed
or perform maneuvers for a few seconds, while large birds
can take advantage of this technique for much longer, even
minutes. In the case of the dragonfly, and even many of the
insects, gliding can be divided in three types: free flight,
where the dragonfly simply stops flapping its wings in order
to lose altitude for a few seconds; adjusting the shape of
wings, where the dragonfly is adjusting the angle of attack
of the wings to float in the air without the need to flap, in
order to perform a specific operation; gliding with the help
of another insect in which the female usually performs the
control direction without flapping their wings while the male
provides the driving force. The dragonfly and smaller insects
end up unable to enjoy such an optimized gliding as large
birds, such as seagulls, do.

2.2.3. The flapping flight. The aerodynamics involving
flapping wings differs in many ways from conventional
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(6) (5) (4)
(3) (2) (1)

Fig. 4. (Colour online) Flapping flight sequence. Downstroke: 1-2-3; upstroke: 4-5-6.

Fig. 5. (Colour online) Chart obtained through the developed simulator that shows the difference between the trajectory accomplished by a
great skua (very large bird), a seagull (large bird) and a dragonfly. The stability of this last one when compared to the others is undeniable.

aerodynamics, but some conventional rules apply. A
conventional airplane uses a propeller for thrust and fixed
wings for lift while an ornithopter’s and insect’s wing must
provide both of these forces.

The interaction between a flapping wing and the air is very
complex since a bird must flap its wings to generate lift and
thrust to overcome gravity and drag. The forces generated
by this interaction are chaotic and their simulation is often
unstable because of high sensitivity. The net aerodynamic
force vectors acting on the wing36 vary throughout the
flapping cycle as it can be checked in the dynamical analysis
(Fig. 4). On the downstroke, air is displaced in a downward
and backward direction. On the upstroke, the situation is
reversed being the area of the wing smaller than before
in order to make a positive global thrust force. In order
to minimize the wing area, birds use different techniques,
such as manipulating the wings. As a simplification, we
considered the area in the upstroke to be half the area in the
downstroke.

As seen previously, the forces of Lift and Drag will
depend on the angle of attack. However, which will be the
behavior of these forces when flapping wings? As ref. [23],
we considered the existence of an advance angle related with
the flapping velocity and the freestream velocity (8)

δ = a tan

(
wf

v∞

)
. (8)

The advance angle will then be zero when the velocity of
the wings is zero, falling in the previously analyzed situation
in gliding flight. This means that through the angle of attack,
it is possible to control the amplitude of the forces of Lift
and Drag. On the other hand, the angle that these forces
have relatively to the air flow can be controlled through the
flapping velocity.

If the wing is placed into a flow velocity, v∞, a thrust
force will develop due to the horizontal component of the
Lift that appears in the downstroke. So, in order to have a
positive thrust, the wing will have to increase its velocity
to overcome the opposing horizontal force generated in the
aerodynamic Drag.

The horizontal (x-axis) and vertical (z-axis) forces are
related with the Lift, Drag, and advance angle by the
following Eq. (9):{

Fx = L · sinδ − D · cosδ,
Fz = L · cosδ + D · sinδ.

(9)

The dragonfly dynamics is somehow similar to other flying
creatures, such as birds, and consequently, the same equations
may be considered. Nevertheless, when it comes to the
flapping flight, the dragonfly takes a great advantage over
birds and other two-winged creatures (Fig. 5).

The previous simulation was performed using the standard
features (i.e., weight, wing area, and flapping frequency) of
the great skua, the seagull and the dragonfly (Table I and II).
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Fig. 6. (Colour online) Action of seagull tail.

Recent studies reveal that dragonflies use a complex
aerodynamics in order to fly, different from aircrafts and
large birds. A dragonfly flaps its wings to create a whirlwind
of air that is controlled and used to provide lift as
aircrafts depend on good air flow over the top and bottom
surfaces of their wings. For these machines, the turbulence
can be fatal. There are other creatures with a similar
mechanism to the flight of the dragonfly, but with a higher
level of complexity. Creatures, such as the hummingbird,
surprisingly can manipulate the feathers of the wings during
the rapid flapping.

The two pairs of wings of the dragonfly allow different
independent flight techniques (as mentioned above) and the
most common style is the counter-stroking. This type of flight
allows that, when a pair of wings beats down creating a
vortex of air, the other pair, which is still down, captures
the energy of that vortex. Therefore, the air flow over the
surface of the wings of the dragonfly has a much higher
rate along the bottom of the wing creating more lift. In
other words, the different states of flight, downstroke and
upstroke, are indistinguishable creating an almost steady
force positive to the movement and opposite to the weight.
Nevertheless, applying this principle to the development of
flying platforms is complex because the effect has to be
simple and predictable.

2.2.4. Tail influence. Although the majority of avian flight
studies have focused on the wings, the tail also appears
to be crucial to the evolutionary success of birds as flying
organisms.

The precise use of the tail in birds has not been
thoroughly documented.39 The tail feathers are instrumental
in stabilizing the flight, changing the direction of the forward
movement, compensating for the lift force, and acting as a
brake when the bird lands.

We are using the tail in order to cause a drag force changing
the moment of the seagull and, consequently, producing a
rotation around an axis equal to the rotation axis of the tail.
That is, if the tail is bending up, the bird will rotate around
the same joint bending up too. If the tail bends up and twists
right (for example, Fig. 6), the seagull will then rotate around
both the joints of the tail up and right. The angle of rotation
of the tail is always relative to the movement of the bird.

The influence of the tail has relevance in the calculus of
moments.36 The bird will be able to rotate using the tail or
using different angles of attack on each wing (or different
velocities on each wing).

However, in the case of the dragonfly, the tail has an
influence even more relevant than in birds. In addition to

Fig. 7. (Colour online) Approximate decomposition of the body of
a dragonfly in objects.

causing a significant drag force (as in the case of the seagull),
the weight factor provides a more efficient use of the tail.
Figure 7 depicts a simplified object diagram of masses (P) of
the implemented dragonfly model.

As it can be seen, when moving the tail, i.e., the object of
mass m, the global center of mass of the dragonfly will suffer
a strong variation. Consider, for example, Pbody equal to twice
Ptail and Lbody equal to half Ltail, which seams accurate with
real dragonfly anatomy.11 The equilibrium is reached when
the tail is stretched and the force from the resultant Fz forces
of Lift and Drag is zero. When the dragonfly flaps its wings,
it causes a positive force in the z-axis and the center of mass
is modified. In order for the dragonfly to remain parallel to
its horizontal path, it needs to change the rotation of the tail
establishing the following relationship (10):

PtailLtailcos(φtail) = PbodyLbody − (L · cosδ + D · sinδ).

(10)

To change the direction in the xy-plane something similar
can be seen: to generate an imbalance in the overall mass of
the system, the dragonfly will tend to rotate the tail in the x-
axis. This is the principle of the pendulum and the tail of the
dragonfly can be considered as a bidimensional pendulum
(with two degrees of freedom—according to the xy-plane
and xz-plane).

3. The Architecture of the Robot Control
Conventional controllers, such as PID and many other
advanced control methods, are useful to control linear
processes. In practice, most processes are nonlinear. If a
process is just slightly nonlinear, it can be treated as a linear
process. If a process is severely nonlinear, it can be extremely
difficult to control.

Nonlinear control is one of the biggest challenges in
modern control theory. While linear control system theory
has been well developed, it is the nonlinear control problems
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Fig. 8. Control diagram.

that present the most challenges. Nonlinear processes are
difficult to control because there can be so many variations
of the nonlinear behavior.

The first attempt to control our system will be changing
the flapping frequency, angle of attack, and tail rotations
accordingly to the position error (Fig. 8).

In order to analyze the previous control diagram, we need
to understand the behavior of our system for certain variations
of the error (in this case, the position error).

The flapping frequency inevitably depends on the sum
of the position errors in x-, y-, and z-axes being limited
to a minimum and maximum saturation, which, in turn, is
associated to the simulated model. Experimentally, and based
on what is seen in nature, if it is a large bird (e.g., seagulls),
the flapping frequency is limited between 0 Hz (gliding) and
4 Hz. For the dragonfly model, the flapping frequency is
limited between 0 and 20 Hz.

The left (wing) and right (wing) angles of attack are
what will allow the execution of different maneuvers (e.g.,
turn/change direction, spin on its axis) and depends on the
position error in the xy-plane, i.e., the difference between the
position error in x and the position error in y. To this result,
we add two references: a reference value (AAref) being the
value considered to be ideal, so the model can follow a path
without deviation from the xy-plane (straight path) and the
position error in the z-axis error (elevation) to ensure that the
model can follow the desired trajectory (e.g., going up while
changing direction).

The tail azimuth angle will depend on a function f(errorX,
errorY), which depends on the position error in x-axis and in
the y-axis. This angle is only intended to assist the rotation
maneuvers (regardless on the model considered although
the dynamics inherent in the use of the tail is different).
The nonlinear function f(errorX, errorY) will systematically
adjust the angle of azimuth of the tail in order to adjust the
actual position on the xy-plane. For example, if you wish to
turn left (i.e., if the xy-plane error starts to increase), it will
result in an incremental azimuth angle of the tail to the left
(negative spin along the z-axis) until the error decreases.

The tail elevation angle depends only on the position error
in the z-axis (elevation).

In this paper, we will compare the performance of the
integer and fractional PID controllers.

The controller parameters depend on characteristics of the
process and must be tuned accordingly to yield satisfactory
control. Properly tuned PID controllers provide adequate

control for a large number of applications. The response of
the controller can be described in terms of the responsiveness
of the controller to an error, the degree to which the controller
overshoots the setpoint and the degree of system oscillation.
Note that the use of the PID algorithm for control does not
guarantee optimal control of the system or system stability.

This tuning, or optimization, can occur at a number of
levels. At the highest level, the design may be optimized to
make best use of the available resources. The implementation
of this design will benefit from the use of efficient
algorithms.28 Three of the four optimization methods used
to adjust the parameters of the different controllers can be
found in the toolbox of Simulink Response Optimization. The
fourth method of optimization addressed is the well-known
Particle Swarm Optimization (PSO).

The PSO was developed by Kennedy and Eberhart.16 This
optimization technique, based on a population research, is
inspired by the social behavior of birds. An analogy is
established between a particle and an element of a swarm.
These particles fly through the search space by following the
current optimum particles. At each iteration of the algorithm,
a movement of a particle is characterized by two vectors
representing the current position x and velocity v (Fig. 9).

The velocity of a particle is changed according to the
cognitive knowledge b (the best solution found so far by
the particle) and the social knowledge g (the best solution
found by the swarm). The weight of the knowledge acquired
in the refresh rate is different according to the random values
φi, i = {1, 2}. These values are a random factor that follow
a uniform probability function φi ∼ U [0, φi max].

Fig. 9. PSO method.
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where I and t are the inertia and the time of iteration,
respectively.

The PSO is a very attractive technique among many other
algorithms based on population since it has only some few
parameters to adjust. Although recent, it has been widely
studied because it is robust, easy to implement, and has a low
computational cost.

The PSO has been successfully used in many applications,
such as robotics8,33,26 and electric systems.1

In order to evaluate the control architecture, we can use
performance criteria, such as the integral absolute error (IAE)
or the integral time absolute error (ITAE). However, in the
present case, the integral square error (ISE) and the integral
time square error (ITSE) criteria have produced the best
results and are adopted in the study

ISE =
∫ ∞

0
[r(t) − c(t)]2 dt, (11)

ITSE =
∫ ∞

0
t · [r(t) − c(t)]2 dt . (12)

3.1. Integer PID controller
The PID combines the advantages of PI and PD controller.
The integral action is related with the precision of the
system being responsible for the permanent regime error.
The unstable effect of PI controller is counterbalanced by the
derivative action that tends to increase the relative stability of
the system at the same time that makes the system response
faster due to its anticipatory effect.

The PID action is given by

u(t) = Ke(t) + K

Ti

∫
e(t) dt + KTd

de(t)

dt
, (13)

whose Laplace is

Gc(s) = U (s)

E(s)
= K

(
1 + 1

Tis
+ Tds

)
, (14)

where parameters K, Ti , and Td represent, respectively, the
proportional gain, the integral time, and the derivative time.

The control signal u(t) will be applied to the system,
implying a new value for the exit signal being immediately
compared with the reference signal causing a new error signal
e(t). The controller processes this new error signal generating
a new control signal modifying the exit signal.

3.2. Fractional PID controller
The fractional order (FO) controllers are controllers whose
dynamic behavior is described with differential equations
whose order is not an integer number. In other words, the FO
PID controllers have five parameters, and the derivative and
integral orders improve design flexibility.

The mathematical definition of a derivative of fractional
order α has been the subject of several different approaches.
For example, we can mention the Laplace and the

Grünwald–Letnikov definitions

Dα[x(t)] = L−1{sαX(s)}, (15)

Dα[x(t)] = lim
k→0

[
1

hα

∞∑
k=1

(
α

k

)
x(t − kh)

]
, (16a)

(
α

k

)
= (−1)k�(α + 1)

�(k + 1)�(α − k + 1)
, (16b)

where � is the gamma function and h is the time increment.
Grünwald–Letnikov definition is perhaps the best known

one, being more suitable to perform discrete control.
In our case, to implement FO algorithms of the type

Gc(s) = K

(
1 + 1

Tisλ
+ Tds

μ

)
, (17)

we adopt a fourth-order discrete-time Pade approximation
(ai, bi, ci, di ∈ R, k = 4):

Gp(s) ≈ Kp

(
a0z

k + a1z
k−1 + · · · + ak

b0zk + b1zk−1 + · · · + bk

)
, (18)

where KP is the position loop gain.
Fractional PID’s are also known as PIλDμ controllers.

If both λ and μ are 1, the result is a usual PID (henceforth
called integer PID as opposed to a fractional PID). If λ =
0 (Ti = 0), a PDμ controller is obtained. All these types of
controllers are particular cases of the PIλDμ controller.

It can be expected that PIλDμ controller may enhance
the systems control performance due to more tuning knobs
introduced. Actually, in theory, PIλDμ itself is an infinite
dimensional linear filter due to the fractional order in
differentiator or integrator. For controller tuning techniques,
refer to refs. [22, 20].

4. Controller Performance
We will now perform some experiments comparing different
controller architecture in order to achieve the better control
algorithm to use in our model. The simulations were made
using the standard features (i.e., weight, wing area, and
flapping frequency) of both seagull and dragonfly (Table I
and II).

To initially tune the controllers, we used a medium-scale
gradient descent method with 200 maximum iterations.

In order to study the system dynamics, during the contact
we apply, separately, rectangular pulses, at the references.
This kind of input is commonly used to analyze the step
response of a system.

The trajectory used to optimize the controllers is then a
straight-line flight with a seagull velocity of vx = 3.0 m/s
and a dragonfly velocity of vx = 1.0 m/s for 20 s. The seagull
and the dragonfly will then need to instantaneously reach a
velocity of vx = 5.0 m/s and a velocity of vx = 3.0 m/s,
respectively. Finally, 20 s later, they will instantaneously
reduce the velocity to the initial value.

Under the same circumstances, we obtained the integer
and fractional PID parameters from Tables IV and V with
the gradient descent optimization method.
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Table IV. PID and PIλDμ controller parameters tuned with the
gradient descent method for the seagull.

KpX KiX KdX μX λX KpZ KiZ KdZ μZ λZ

PID 5 0.1 7 – – 100 80 12 – –
PIλDμ 13 0.1 3 0.9 1 30 10 6 0.9 0.4

Table V. PID and PIλDμ controller parameters tuned with the
gradient descent method for the dragonfly.

KpX KiX KdX μX λX KpZ KiZ KdZ μZ λZ

PID 60 0 13 – – 125 65 25 – –
PIλDμ 36 0 5 0.85 0.9 106 70 25 0.8 0.6

where Kp, Ki, Kd are, respectively, the proportional,
integral, and derivative gain of the controller while μ and λ

are the integration and differentiation order of the controller,
respectively.

The step response of our system in the current situation
can be analyzed in Figs. 10 and 11.

Time response characteristics of the integer and the
fractional PID controller, namely, the percentage overshoot
PO, the rise time tr , the peak time tp, and the settling time ts ,
are presented in Tables VI and VII.

The advantages of the FO algorithm are clear, having
a lower percentage overshoot and a smaller settling time,
presenting better time response to the step perturbation.

On the basis of the already optimized gains through the
gradient descent method, we will run a PSO algorithm
that will determine the optimal parameters of the controller
in order to obtain minimum error when the model moves
between two points within the workspace.

In the experiments, it is used a φi max = 1.6, I = 2 and a
population of 60 particles with 100 iterations (Tables VIII

Table VI. Time response parameters of the seagull model
under the action of the integer and fractional PID controller

tuned with the gradient descent method.

PO(%) tr (s) tp(s) ts(s)

PID 23.29 1.58 2.58 11.02
PIλDμ 19.04 1.28 4.26 9.00

Table VII. Time response parameters of the dragonfly
model under the action of the integer and fractional PID

controller tuned with the gradient descent method.

PO(%) tr (s) tp(s) ts(s)

PID 18.25 0.74 1.16 5.52
PIλDμ 13.16 0.86 1.26 5.58

Table VIII. PID and PIλDμ controller parameters tuned with the
PSO method for the seagull.

KpX KiX KdX μX λX KpZ KiZ KdZ μZ λZ

PID 10.8 1.3 10.4 – – 54.3 14.5 15.3 – –
PIλDμ 20 1.1 8.1 0.86 0.9 25.6 10.2 5.6 0.9 0.6

Table IX. PID and PIλDμ controller parameters tuned with the
PSO method for the dragonfly.

KpX KiX KdX μX λX KpZ KiZ KdZ μZ λZ

PID 40 0 6.5 – – 117 80 39 – –
PIλDμ 30 0.1 7.5 0.82 0.87 105 65 28 0.8 0.6

and IX). These values were obtained experimentally in order
to attain a solution in the same time frame that would be
necessary if using the gradient descent method from the
MatLab’s toolbox Simulink Response Optimization.

Fig. 10. (Colour online) Time response of the seagull model under the action of the integer and fractional PID controllers tuned with the
gradient descent method.
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Fig. 11. (Colour online) Time response of the dragonfly model under the action of the integer and fractional PID controllers tuned with the
gradient descent method.

Fig. 12. (Colour online) Time response of the seagull model under the action of the integer and fractional PID controllers tuned with the
PSO method.

Figure 12 and Table X show the time response of the
system for the seagull model. The same can be seen for the
dragonfly model in Fig. 13 and Table XI.

The optimization using the PSO technique shows more
favorable results than the optimization using the gradient
descent method. It can also be noticed that the FO algorithm
leads to a reduction of the overshoot, at the cost of a slight
improvement of the algorithm.

We now analyze two indices that measure the response
error, namely, the ISE and the ITSE.

Experiments S1 and S2 correspond to PID and PIλDμ

tuned with the gradient descent optimization method, while

Table X. Time response parameters of the seagull model
under the action of the integer and fractional PID

controller tuned with the PSO method.

PO(%) tr (s) tp(s) ts(s)

PID 22.28 1.20 3.68 7.20
PIλDμ 21.40 1.16 3.74 7.04

experiments S3 and S4 correspond to PID and PIλDμ tuned
with the PSO method, respectively.
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Fig. 13. (Colour online) Time response of the dragonfly model under the action of the integer and fractional PID controllers tuned with the
PSO method.

Fig. 14. (Colour online) Performance criteria of the system using the ISE.

Fig. 15. (Colour online) Performance criteria of the system using the ITSE.
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Fig. 16. (Colour online) Seagull’s kinematics.

Fig. 17. (Colour online) Dragonfly’s kinematics.

Table XI. Time response parameters of the dragonfly
model under the action of the integer and fractional PID

controller tuned with the PSO method.

PO(%) tr (s) tp(s) ts(s)

PID 15.49 0.82 1.24 3.96
PIλDμ 9.02 0.90 1.26 5.76

Analyzing both ISE and ITSE, we can observe that the
system response under the action of the FO controller
is more favorable than the integer controller. Another
clear conclusion is a better system response for the
dragonfly when compared with the seagull proving that

the dragonfly can follow an imposed trajectory in a more
reliable way (as it can be seen in Figs. 14 and 15,
where it presents lower error value in all the performed
experiments).

5. Conclusions
In this paper, we have proposed the design of an accurate
simulation software and implementation for large bird and
dragonfly flight that includes all major components involved:
aerodynamics, kinematics, and external environment.

The obtained results appeared to be satisfactory proving
that the development of the kinematical and dynamic model
can show the behavior of different flying creatures. The
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Table XII. D-H model of the seagull.

X Z

a α (degrees) d θ (degrees)
1 0 0 0 θ1 − 90
2 0 −90 0 θ2

3 0 90 0 90
4 −L1 −90 0 θ3

5 0 0 0 θ4

6 0 90 0 θ5

7 L1 0 L2 θ6

8 L1 0 −L2 −θ7

9 0 90 0 −90
10 0 90 0 θ8

11 0 90 0 −θ9

12 −L3 0 0 θ10

13 L3 0 0 −θ11

information concerning the physical nature of the flapping
flight proved to be important to analyze solutions. Despite
all simplifications, our model is still quite complex, and
further research needs to be conducted to explore additional
abstractions.

The apparent complexity inherent in the dragonfly flight
proved to be more stable and controllable than the flight of the
seagull. It is as if, somehow, we could compare an airplane
to a helicopter: comparing with the aircraft (which has fixed
wing), the helicopters are much more complex, expensive,
and operate with limited speed and capacity. The advantage
is that they can hover, reverse the trend, and achieve a vertical
flight.

Just as we can make that comparison, we could reach a
similar conclusion to that of some scientists who developed
hybrid models of aircraft and helicopters in order to maintain
the strengths of each model, addressing the limitations of the
other.
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Appendix

Seagull Kinematics
The 3D animation of the seagull developed in MatLab
was made following the D-H) notation as it is depicted in
Table XII and consequently represented by the following
transformation matrices (19)–(23):

T 0
1 =

⎡
⎢⎣

s1 c1 0 0
−c1 s1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦, T 1

2 =

⎡
⎢⎣

c2 −s2 0 0
0 0 1 0

−s2 −c2 0 0
0 0 0 1

⎤
⎥⎦,

T 2
3 =

⎡
⎢⎣

0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1

⎤
⎥⎦, (19)

T 3
4 =

⎡
⎢⎣

c3 −s3 0 −L1

0 0 1 0
−s3 −c3 0 0

0 0 0 1

⎤
⎥⎦, T 4

5

⎡
⎢⎣

c4 −s4 0 0
s4 c4 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ ,

T 5
6 =

⎡
⎢⎣

c5 −s5 0 0
0 0 −1 0
s5 c5 0 0
0 0 0 1

⎤
⎥⎦, (20)

Table XIII. D-H model of the dragonfly.

X Z

a α (degrees) d θ (degrees)
1 0 0 0 θ1 − 90
2 0 −90 0 θ2

3 0 90 0 90
4 −L1 −90 0 θ3

5 0 0 0 θ4

6 0 90 0 θ5

7 L1 0 L2 θ6

8 L1 0 −L2 −θ7

9 0 90 0 −90
10 0 90 0 θ8

11 0 90 0 −θ9

12 L1 − L3 0 L2 θ10

13 L1 − L3 0 −L2 −θ11

14 0 90 0 −90
15 0 90 0 θ12

16 0 90 0 −θ13

T 4
7 =

⎡
⎢⎣

c6 −s6 0 L1

s6 c6 0 0
0 0 1 L2

0 0 0 1

⎤
⎥⎦, T 7

9 = T 8
9 =

⎡
⎢⎣

0 1 0 0
0 0 −1 0

−1 0 0 0
0 0 0 1

⎤
⎥⎦,

T 9
10 =

⎡
⎢⎣

c8 −s8 0 0
0 0 −1 0
s8 c8 0 0
0 0 0 1

⎤
⎥⎦, (21)

T 4
8 =

⎡
⎢⎣

c7 s7 0 L1

−s7 c7 0 0
0 0 1 −L2

0 0 0 1

⎤
⎥⎦, T 9

11 =

⎡
⎢⎣

c9 s9 0 0
0 0 −1 0

−s9 c9 0 0
0 0 0 1

⎤
⎥⎦,

T 10
12 =

⎡
⎢⎣

c10 −s10 0 −L3

s10 c10 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, (22)

T 11
13 =

⎡
⎢⎣

c11 s11 0 L3

−s11 c11 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦. (23)

With the D-H transformation matrices, we can calculate the
relationship between the links that compose the kinematic
structure of the seagull (Table IIIa).

Dragonfly Kinematics
Following the same process of the seagull kinematic analysis,
we obtain the following dragonfly D-H model shown in
Table XIII and Eqs. (24)–(29):

T 0
1 =

⎡
⎢⎣

s1 c1 0 0
−c1 s1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦ , T 1

2 =

⎡
⎢⎣

c2 −s2 0 0
0 0 1 0

−s2 −c2 0 0
0 0 0 1

⎤
⎥⎦ ,

T 2
3 =

⎡
⎢⎣

0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1

⎤
⎥⎦, (24)
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T 3
4 =

⎡
⎢⎣

c3 −s3 0 −L1

0 0 1 0
−s3 −c3 0 0

0 0 0 1

⎤
⎥⎦, T 4

5

⎡
⎢⎣

c4 −s4 0 0
s4 c4 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦,

T 5
6 =

⎡
⎢⎣

c5 −s5 0 0
0 0 −1 0
s5 c5 0 0
0 0 0 1

⎤
⎥⎦, (25)

T 4
7 =

⎡
⎢⎣

c6 −s6 0 L1

s6 c6 0 0
0 0 1 L2

0 0 0 1

⎤
⎥⎦ ,

T 7
9 = T 8

9 = T 12
14 = T 13

14 =

⎡
⎢⎣

0 1 0 0
0 0 −1 0

−1 0 0 0
0 0 0 1

⎤
⎥⎦, (26)

T 9
10 =

⎡
⎢⎣

c8 −s8 0 0
0 0 −1 0
s8 c8 0 0
0 0 0 1

⎤
⎥⎦ , T 4

8 =

⎡
⎢⎣

c7 s7 0 L1

−s7 c7 0 0
0 0 1 −L2

0 0 0 1

⎤
⎥⎦ ,

T 9
11 =

⎡
⎢⎣

c9 s9 0 0
0 0 −1 0

−s9 c9 0 0
0 0 0 1

⎤
⎥⎦, (27)

T 4
12 =

⎡
⎢⎣

c10 −s10 0 L1 − L3

s10 c10 0 0
0 0 1 L2

0 0 0 1

⎤
⎥⎦ ,

T 14
15 =

⎡
⎢⎢⎢⎢⎢⎣

c12 −s12 0 0

0 0 −1 0

s12 c12 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦, (28)

T 4
13 =

⎡
⎢⎢⎢⎢⎣

c11 s11 0 L1 − L3

−s11 c11 0 0

0 0 1 −L2

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

T 14
16 =

⎡
⎢⎢⎢⎢⎣

c13 s13 0 0

0 0 −1 0

−s13 c13 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦. (29)

With the D-H transformation matrices, we can calculate the
relationship between the links that compose the kinematic
structure of the dragonfly (Table IIIb).
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