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SUMMARY
The use of large groups of robots in the execution of complex tasks has received much attention
in recent years. Generally called robotic swarms, these systems employ a large number of simple
agents to perform different types of tasks. A basic requirement for most robotic swarms is the ability
for safe navigation in shared environments. Particularly, two desired behaviors are to keep robots
close to their kin and to avoid merging with distinct groups. These are respectively called cohesion
and segregation, which are observed in several biological systems. In this paper, we investigate
two different approaches that allow swarms of robots to navigate in a cohesive fashion while being
segregated from other groups of agents. Our first approach is based on artificial potential fields
and hierarchical abstractions. However, this method has one drawback: It needs a central entity
which is able to communicate with all robots. To cope with this problem, we introduce a distributed
mechanism that combines hierarchical abstractions, flocking behaviors, and an efficient collision
avoidance mechanism. We perform simulated and real experiments to study the feasibility and
effectiveness of our methods. Results show that both approaches ensure cohesion and segregation
during swarm navigation.
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1. Introduction
Swarm systems generally employ a large number of simple agents to perform complex tasks. Specially
in robotics, tasks such as surveillance, transportation, and exploration and mapping of unknown
environments can benefit from the use of large groups of robots. In recent years, such systems have
been receiving much attention because of current advances in technology, which have been allowing
the mass production of increasingly smaller robots.

Basic requirements for most robotic swarms include the ability for safe and efficient navigation. In
other words, robots must be able to reach specific goals in a minimum amount of time while avoiding
collisions with obstacles, teammates, and other groups of agents. One possible strategy is to keep
robots close to their kin and avoid merging with other groups, since this behavior may reduce possible
interferences among distinct groups during navigation.37, 44 Two related and important properties of
this strategy are cohesion and segregation. The former leads groups of robots to behave as a team,
whereas the latter prevents them from mingling with different groups. These properties are naturally
observed in several biological systems such as flocks of birds and schools of fishes.

In this paper, we investigate two different approaches that allow swarms of robots to navigate
in a cohesive fashion while being segregated from other groups. The first one is based on artificial
potential fields and hierarchical abstractions, being originally applied in ref. [44] to avoid congestion
in robot navigation. We revisit this method focusing on cohesion and segregation in a more general
setting. In spite of being able to successfully keep groups segregated, the controller relies on a central
unit that oversees the swarm, which may compromise the scalability of the system. To cope with this
problem, we investigate a second approach based on velocity obstacles and flocking behaviors. We
introduce the Virtual Group Velocity Obstacle (VGVO): a set of forbidden velocities that can lead

* Corresponding author. E-mail: vgs@dcc.ufmg.br

https://doi.org/10.1017/S0263574714000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000563


210 Cohesion and segregation in swarm navigation

an agent of a particular cluster to mingle with other clusters. Furthermore, we present a series of
simulated and real experiments to show the robustness of both approaches, and we analyze the results
using a metric that measures the segregative behavior of the system along its execution.32

This paper is organized as follows: Section 2 reviews related works in the fields of collision
avoidance, swarm control, and hierarchical abstractions. Sections 3 and 4 present our two
methodologies on cohesion and segregation. Finally, Section 5 discusses our experiments and results,
and Section 6 concludes the work, providing suggestions for future work.

2. Related Works
Reynolds42 was one of the first researchers who tackled the problem of realistically simulating the
movement of a swarm of agents; more specifically, a flock of birds known as boids. Basically,
his approach relies on local interactions among agents within a neighboring area, which define an
emergent behavior for the whole flock. Such interactions can be modeled as a special case of the social
potential field method,41 an extension of the artificial potential field technique29 that specifically deals
with multi-agent systems.

Several works have focused on using artificial potential fields in conjunction with flocking rules
in order to obtain specific behaviors, such as moving in formation,4 converging into shapes,11, 25 area
coverage,24 shepherding,34 etc. However, it is known that methods based on potential fields are not
oscillation-free and suffer from local minima problems,31 which is an intrinsic property that can arise
from the combination of potentials, especially in unknown environments.

Alternative techniques have been developed that are guaranteed to be collision- and oscillation-
free,8, 21, 45 even under nonholonomic constraints.2, 3 They rely on the concept of Velocity Obstacles,17

an extension of the Configuration Space Obstacle35 to a time-varying system. A Velocity Obstacle
defines the set of velocities that would result in a collision between an agent and an obstacle moving at
a given velocity. Thus, the robot can perform an avoidance maneuver by selecting velocities that do not
belong to this set. Such approach has been widely used and extended for multi-agent navigation,1, 8, 21

even when considering uncertainties in position, shape, and velocity of the obstacles.14, 18, 45 An
important extension was the development of the Reciprocal Velocity Obstacle (RVO) by van den
Berg et al.,9 who acknowledged that most works on collision avoidance had not taken into account
the reciprocity that arises when obstacles are in fact other agents that can also react according to the
robot’s behavior. Another extension was recently proposed for the case in which a single agent should
avoid a group as a whole.22 In spite of relying on a virtual obstacle in a similar manner as our VGVO,
which will be explained in Section 4, the method does not focus on segregation since it is restricted
to a single agent instead of a group of robots.

A different paradigm considers the whole group as a single entity in a hierarchical fashion. These
entities are sometimes called virtual structures as they embody the pose and shape of a team of
robots.46 In this case, steering control laws are applied to the virtual structure to maneuver the robotic
swarm. For instance, Egerstedt and Hu16 and Tan and Lewis46 define controllers that converge and
maintain a group of robots in a rigid formation according to a known structure. Nevertheless, such
methods are not easily scalable to large groups because each distance constraint among a pair of
robots must be explicitly stated in order to achieve a desired formation, and these fixed geometric
relations may hinder formation changes during navigation.

To address these problems, deformable structures were presented in Barnes et al.5 and Kamphuis
and Overmars26 together with artificial potential fields to group and control swarms of robots. In the
former, controllers were designed to converge the swarm into a known elliptical region, which was
used to escort a vehicle convoy, whereas in the latter, Probabilistic Roadmaps28 were used to plan
paths for the structure in an environment with obstacles. Instead of considering a single deformable
structure, some studies employed a set of structures to increase group cohesion and to simplify the
path planning problem. For instance, in Li and Chou33 a hierarchical sphere tree was proposed to
control “crowds of robots,” and in Kamphuis and Overmars27 the path planned for a single agent is
extended to a corridor using the clearance along the path. Hence, it is possible to control a swarm
that navigates through the corridor by changing its characteristics in a desired way.

Belta and Kumar6 proposed a formal abstraction that allows decoupled control of the pose and
shape of a team of robots. It is based on a mapping of the swarm’s configuration space to a lower
dimensional manifold, whose dimension is independent of the number of robots. This work was
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extended in ref. [39] to account for three-dimensional swarms, and in Hou et al.23 a dynamic control
model was introduced for similar abstractions. Another extension was developed by Chaimowicz
and Kumar,10 who studied cooperation mechanisms between multiple unmanned aerial and ground
vehicles. In their work, unmanned aerial vehicles (UAVs) estimated the configuration of ground robots
and sent control messages to them. Furthermore, merging and splitting behaviors were studied, since
sometimes these maneuvers are necessary to overcome obstacles. Nevertheless, interactions among
groups with different goals were not addressed.

Some works have specifically tackled segregation in robotic swarms: Kumar et al.32 proposed a
distributed controller that is based on the Differential Adhesion Hypothesis from cellular biology,
and introduced a metric that measured segregation quantitatively. Another segregation algorithm,
presented in Groß et al.,20 allowed mobile robots to self-organize into annular structures. A distributed
controller considered robots as having different virtual sizes, and local interactions made the “larger”
robots move outwards. The procedure was inspired by a granular convection phenomenon known
as the Brazil Nut Effect. This work was later extended to consider real e-puck robots.12 In spite of
the interesting results, these works did not focus on the cohesion and segregation of different groups
during navigation, which is the main topic of this paper. Furthermore, to the best of our knowledge,
there are no other approaches that solely focus in this topic.

3. Cohesion and Segregation Using Hierarchical Abstractions
We consider a set of fully actuated individual robots with dynamic model given by ṗi = vi , v̇i = ui ,
in which pi = [xi, yi]T is the position of robot i, vi is its velocity, and ui is its control input. Different
groups of robots are assembled into a set �, in which a group j ∈ � is modeled by a pair (Pj ,Sj ) that
comprises its pose and shape, respectively. For each group, this pair constitutes a control abstraction
Aj that we parametrize as

Aj = (Pj ,Sj ),

Pj = (
μx

j , μ
y

j , θj

) ∈ SE(2), (1)

Sj = (
sx
j , s

y

j

) ∈ R
2.

This abstraction can be implicitly defined by the level set CAj
(x, y) = 0, which is an ellipse centered

at (μx
j , μ

y

j ) with orientation θj whose principal axes have length sx
j and s

y

j . Note that these superscripts
relate a specific parameter with its corresponding axis. Thus, we specify a group j ∈ � as the set of
all robots which satisfy the constraint CAj

(pi) < 0. Therefore, the curve CAj
(x, y) = 0 can be seen

as a border that limits and defines a group.
In the following paragraphs, we will define two distinct control laws: the first is used by each

individual robot to stay on the inside of its group and avoid collisions with nearby teammates, and
the second controls the parameters of abstraction Aj , such as its position while maneuvering to avoid
other groups. We start by explaining the former, and then we move the discussion on to the latter.

3.1. Robot’s control law
Given a function φ(pi ,Aj ) that maps pi to its radial distance from the border of group j , the normal
function

f (pi ,Aj ) = e−γφ2(pi ,Aj ) (2)

produces the artificial potential field, shown in Fig. 1, whose maxima are located at the curve
CAj

(x, y) = 0. In other words, it forms a bowl-like surface, with γ being inversely proportional to
the thickness of its walls. Based on this potential, we define the following control law for each robot:

ui = −k1

∑
j∈�

∇f (pi ,Aj ) − k2ṗi +
∑
k∈Ni

Fr (pi , pk). (3)
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Fig. 1. (Colour online) Artificial potential field f (pi ,Aj ) with sx
j = 5 and s

y

j = 8 for distinct values of γ .

Constants k1 and k2 are positive. The first term in (3) is a summation of forces that repels robots from
the border of all groups. The second term is a damping force which improves stability, and the third
represents a local repulsive force that prevents collisions among robots in a given neighborhood.13

The set Ni consists of every robot k that is within a certain distance limit δ from robot i. Note that
the first summation can be restricted to a subset of �, since robot i may not be influenced by the
potentials of distant groups.

3.2. Abstraction’s control law
In order to move, rotate, and reshape groups, simple linear controllers can be applied to each
component of Aj . These controllers along with the ones defined by (3) establish a hierarchy in which
robots are implicitly controlled according to the high-level abstractions. In the following discussion,
we present a hierarchical controller that maintains distinct groups segregated during navigation.

In the beginning, it is important to note that controller (3) forces agents to avoid any intersection
areas among groups, given that robots do not initially lie in these areas. For example, this behavior
can be better understood when a collision between two groups takes place: the robots within a group
will be repelled by the border of the other group. Thus, we exploit this feature in order to keep robots
segregated.

The general idea of the segregation algorithm is to take advantage of the geometric features of the
virtual structure CAj

(x, y) = 0 to create repulsive forces among groups in order to divert them from
possible areas where merging may happen.

Given two groups m, n ∈ �, let c be the centroid of the intersection points between the curves
CAm

(x, y) = 0 and CAn
(x, y) = 0. The repulsive force Frep among groups should be directly

proportional to the penetration depth of c in relation to each group. For Am, this depth is simply
given by the radial distance φ(c,Am), and the force acting on this group can be written as

Frep(Am,An) =
⎧⎨
⎩

0, if there are no intersection points;

φ(c,Am)
(μm − c)∥∥μm − c

∥∥ , otherwise;
(4)

in which μm = [μx
m, μ

y
m]T .

Equation (4) tries to minimize the intersection area between the two groups. However, if they are
moving in opposite directions, it is possible that these forces may cancel out the force that drives
abstraction Aj toward its goal. Therefore, we employ an artificial vortex field38 to steer them away
during a collision, i.e., a rotational force Frot is defined such that it is perpendicular to Frep. Since
(4) defines a vector field Frep = (Fx, Fy), we simply set Frot = (−Fy, Fx) to satisfy the orthogonality
constraint. Thus, we express the force that deviates group Am from An as

D(Am,An) = Frep(Am,An) + Frot(Am,An). (5)

https://doi.org/10.1017/S0263574714000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000563


Cohesion and segregation in swarm navigation 213

(a) (b) (c)

Fig. 2. (Colour online) Execution steps of the segregation algorithm using hierarchical abstractions.

We also consider a simple dynamic model for each abstraction, in which we control only its position
μ. In other words, orientations and scalings remain constant throughout all time steps,

μ̈m = k3

∑
n∈�

D(Am,An) − k4μ̇m + Fgoal(μm). (6)

Equation 6 requires an attractive force Fgoal(μm) that drives the group toward its goal position, such
as the usual quadratic potential.13 In Fig. 2, we show the overall behavior of controllers (3) and (6)
when coupled together. Note that the norm of Frot must be set to zero when group m is near its goal,
otherwise an endless loop of circular motion can occur if another group tries to stop at the same place
simultaneously.

This approach requires a central unit that controls and broadcasts the virtual abstractions’
parameters to all robots. This can be obtained, for instance, through the use of a small group of
aerial robots that control these abstractions and communicate with ground agents, as it was proposed
in ref. [10]. Although this type of architecture was shown to be feasible,7 a distributed approach would
be a better suited solution in order to avoid errors in the central unit that could lead to a complete
system failure.

4. Cohesion and Segregation Using Velocity Obstacles
As an alternative to the centralized hierarchical abstraction method, we propose a distributed approach
that relies on velocity obstacles. We start by briefly reviewing its core concepts and then introduce
our methodology.

4.1. Velocity obstacles
Let A and B be two robots moving on the plane. The velocity obstacle VOA

B(vB) of B to A is defined
in the velocity space of A as the set of all velocities that will result in a collision between robots A

and B at some instant in time.17 To formally define it, we specify λ(p, v) as a ray starting at p heading
in the direction of v and B ⊕ −A as the Minkowski sum of B and −A, in which −A represents robot
A reflected about its reference point,

λ(p, v) = {p + tv | t ≥ 0}. (7)

With these definitions, we can say that a velocity vA ∈ VOA
B(vB) if and only if the ray starting at pA

heading in the direction vA − vB intersects B ⊕ −A. Therefore, the full set of velocities that specifies
a velocity obstacle can be denoted as

VOA
B(vB) = {v | λ(pA, v − vB) ∩ (B ⊕ −A) �= ∅}. (8)

This set has an interesting property: If A selects a velocity outside VOA
B(vB) and B maintains its

current velocity, it is guaranteed that a collision will not occur between them.17 We show in Fig. 3(a)
a diagram of the velocity obstacle in a system with two circular mobile robots. As it can be seen,
VOA

B(vB) is a cone with its apex at (vB).
The use of velocity obstacles can lead to oscillation issues when dealing with multi-robot systems.

To address this problem, the RVO was developed.9 Essentially, the RVO comprises all velocities that
are the average of the robot’s current velocity and a velocity within its velocity obstacle. Formally,
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(a) (b)

Fig. 3. (a) Velocity obstacle VOA
B (vB ). (b) Reciprocal velocity obstacle RVOA

B (vB, vA). (Adapted from van den
Berg et al.9)

we have
RVOA

B(vB, vA) = {
v | 2v − vA ∈ VOA

B(vB)
}
, (9)

which can be seen as the cone VOA
B(vB) translated such that its apex lies at the mean of vA and

vB , as shown in Fig. 3(b). Assuming that B behaves reciprocally if A selects a velocity outside
the set RVOA

B(vB, vA), which is the closest to its prior velocity, then navigation is guaranteed to be
collision-free and oscillation-free.9

4.2. Virtual group velocity obstacle
Our main objective is to safely navigate large groups of robots in a shared environment while
maintaining cohesion and segregation among groups. In this section, we extend the velocity obstacle
framework with flocking behaviors and hierarchical abstractions to achieve our goal.

At first, we need to redefine what we mean by a group. In Section 3, we specified it as a set of
robots that lie inside the closed curve CAj

(x, y) = 0. Generally, this means that an agent may belong
to more than one group if it is located in areas where these curves overlap. In this section, we consider
that robots are assembled together into a set of disjoint groups � = �1 ∪ �2 ∪ ... ∪ �N , in which
∀j, k : j �= k → �j ∩ �k = ∅. Furthermore, we assume that a robot can infer the respective group
of any other agent. This can be done by using onboard sensors, such as cameras, or by broadcasting
identifiers. Alternatively, groups can be formed by any kind of clustering algorithm.

Let �k ⊆ τk be the set of robots belonging to group τk that are within the neighborhood Ni

such that i �∈ τk , i.e., all agents of a particular group that are inside the sensing radius of robot i.
Furthermore, we declare p(�k) and v(�k) as the average position and the average velocity of group
�k , respectively. In order to achieve segregation, we introduce a virtual velocity obstacle responsible
for blocking velocities that may lead groups to merge. Specifically, we denote this virtual obstacle as
VGVO, which is shown in Fig. 4.

The VGVO is a simple concept: Robot i senses the presence of every robot j within the
neighborhood Ni and builds the shape of each group of robots with the exception of its own. These
shapes are considered as virtual obstacles in the workspace of robot i that move with the respective
average velocity of the group that has been used during the building process. Thus, a virtual velocity
obstacle can be built for each shape in order to define the set of velocities that will lead the robot to
merge with a different group, assuming that the latter maintains its current average velocity.

The VGVO of robot i induced by group �k can be written as

VGVOi
�k

(v(�k)) = {v | λ(pi , v − v(�k)) ∩ C(pi , �k) �= ∅}, (10)

C(pi , �k) = Shape

⎛
⎝ ⋃

j∈�k

R(pj )

⎞
⎠ ⊕ −R(pi), (11)
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Fig. 4. The virtual group velocity obstacle, VGVOi
�k

(v(�k)).

in which Shape(Q) is the shape of the set of points Q, and R(pi) denotes a set of points that represent
robot i in its workspace. The former can be represented as the smallest enclosing disc, the convex
hull, or the more general class of α-shapes.15

Equation (11) refers to the idea of the hierarchical abstraction paradigm (Sections 2 and 3), in
which the whole group is considered as a single entity. In this case, we abstract a whole group as
a single entity that moves according to the average velocities of its underlying robots. Thus, single
robots navigate using the RVO in conjunction with the VGVO. The former guarantees a collision-free
navigation, and the latter maintains the segregative behavior. However, these two mechanisms cannot
ensure cohesion, i.e., the ability of agents to stay together as a team. We will account for this using
flocking rules during the velocity selection phase, as we will discuss in the next section.

4.3. Velocity selection
An optimization problem must be solved to select inputs when dealing with velocity obstacles, and
several distinct approaches have been developed.8, 9, 17, 21, 45 In this work, we achieve cohesion by
extending the velocity selection process presented in ref. [9] to account for flocking rules. Basically,
the method fast samples the set of admissible velocities and selects the best one according to a utility
function. Although other methods have been developed to improve cohesion,30 flocking rules are
widely employed in swarm systems, and it is interesting to couple them with the velocity obstacle
framework.

Let vpref
i be the preferred velocity of robot i, such as the vector pointing in the direction of its goal

with magnitude equal to the maximum allowed speed. In each iteration, velocities are sampled using
a uniform distribution from the set of admissible velocities,

AV i(vi) = {(
v | ‖v‖ < vmax

i

) ∧ (‖v − vi‖ < amax
i �t

)}
, (12)

in which vmax
i and amax

i are the maximum speed and maximum acceleration of robot i, respectively,
and �t is the time step of the system. This set comprises all reachable velocities from vi given by the
robot’s kinematic and dynamic constraints.

Among the sampled set of admissible velocities, robot i should be able to select a velocity vnew
i

that lies outside the union of all VGVOs and RVOs, as shown in Fig. 5. However, as the environment
may become crowded to the point that no admissible velocities exist, the robot is allowed to select
a velocity that belongs to a velocity obstacle, but the choice is penalized according to the following
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Fig. 5. Sampling-based velocity selection. Admissible velocities that were sampled are represented by small
circles. The highlighted sample is chosen as it minimizes the penalty function.

function:

vflock
i = vpref

i + α(v(�k) − vi) + β(p(�k) − pi), (13)

Pi(v) = w

Ti(v)
+ ∥∥vflock

i − v
∥∥ , (14)

with i ∈ �k . In the above equation, α weighs the alignment of the new velocity to the average velocity
of teammates, β weighs convergence of robot i to the centroid of its group, and w regulates the
avoidance behavior between sluggishness and aggressiveness. Function Ti(v) is the expected time
to collision, which is computed by minimizing the solutions of the set of ray intersection equations
induced by (8) and (9). Thus, robot i selects the velocity vnew

i that minimizes the penalty function Pi

over the sampled set S ⊆ AV i(vi),

vnew
i = argmin

v∈S

Pi(v). (15)

5. Experiments
In this section, we compare the hierarchical abstraction (Section 3) with the VGVO (Section 4) in
terms of their segregative behavior as well as the time taken by each group to reach their destination.
We evaluate both of these using a metric that compares the average distances among robots in different
groups of the swarm.32

In addition, we present experiments with two other methodologies for swarm navigation: basic
attractive/repulsive potential fields29 and RVOs.9 The basic artificial potential field approach consists
in each robot being attracted toward its goal while being repelled by nearby robots. In our
implementation, we have employed potential functions such as the ones presented in ref. [13].
Furthermore, we implemented the RVO algorithm according to its description in Section 4.1, in
which the mechanism of Section 4.3 was used to select velocities at each iteration, and flocking
behaviors were inhibited by setting constants α and β to zero. We use these methods in order to show
how the chosen metric reflects the behavior of controllers that do not consider segregation. More
detailed comparisons of these two with our proposed controllers can be found in refs. [43] and [44].

5.1. Simulations
Each simulation consists of a scenario where robots are evenly partitioned into distinct groups.
Initially, agents are randomly positioned according to a normal distribution into a circular area
around the initial position of their group. Afterwards, groups are commanded to swap their positions.
All robots have a limited sensing range as well as restrictions concerning their maximum speeds
and accelerations. Although our hierarchical controller requires a centralized unit that broadcasts
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(a) Attractive/repulsive artificial potential field.

(b) Reciprocal velocity obstacle.

(c) Hierarchical abstraction.

(d) Virtual group velocity obstacle.

Fig. 6. (Colour online) Behavioral comparison among controllers with 200 robots evenly distributed into two
groups using local sensing.

the abstraction’s parameters, robots avoid collisions among themselves by solely relying on local
sensing. Moreover, in order to properly reflect the mathematical definition of the VGVO, we have
used α-shapes15 as a shape descriptor of each group. However, the aperture of the VGVO can be
completely described by the positions of the two agents that maximize their radial distance from each
other in the frame of reference of robot i. This can be easily seen in Fig. 4, in which the VGVO
would have the same aperture if the middle agent was removed from the depicted group. Therefore,
this characteristic can be used to optimize the implementation.

Figure 6 shows two groups of 100 robots swapping their positions using all four presented
methods. As can be seen, the hierarchical abstraction (Fig. 6(c)) and the VGVO (Fig. 6(d)) are
capable of maintaining cohesion and segregation. On the other hand, neither potential fields (Fig.
6(a)) nor RVOs (Fig. 6(b)) achieve segregation since these methods were not developed with this
intent. In this specific scenario, we can observe that navigation based on the RVO tends to form lines
of robots, whereas the VGVO, in conjunction with flocking behaviors, stretches groups into elongated
formations. Similarly, the use of repulsive/attractive potential fields leads groups to directly crash into
each other, while the hierarchical abstraction, in spite of moving a group toward another, prevents
agents from mingling with distinct groups as a result of the avoidance behavior of its virtual structure.

As mentioned, a formal way of measuring segregation among groups of agents has recently been
proposed.32 Two groups �A and �B are said to be segregated if the average distance among robots in
the same group is less than the average distance among robots in distinct groups. In other words, the
following restriction must hold

(
dAA

avg < dAB
avg

)
∧

(
dBB

avg < dAB
avg

)
, (16)

in which dAB
avg is the average distance among robots in groups �A and �B .

https://doi.org/10.1017/S0263574714000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000563


218 Cohesion and segregation in swarm navigation

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  1000  2000  3000  4000  5000  6000  7000  8000

A
ve

ra
ge

 d
is

ta
nc

e 
(m

)

Iteration

AB
AA
BB

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  1000  2000  3000  4000  5000  6000  7000  8000

A
ve

ra
ge

 d
is

ta
nc

e 
(m

)

Iteration

AB
AA
BB

(b)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  1000  2000  3000  4000  5000  6000  7000  8000

A
ve

ra
ge

 d
is

ta
nc

e 
(m

)

Iteration

AB
AA
BB

(c)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  1000  2000  3000  4000  5000  6000  7000  8000

A
ve

ra
ge

 d
is

ta
nc

e 
(m

)

Iteration

AB
AA
BB

(d)

Fig. 7. (Colour online) Segregative behavior analysis for 200 robots evenly distributed into two groups that swap
positions. (a) Attractive/repulsive artificial potential field. (b) Reciprocal velocity obstacle. (c) Hierarchical
abstraction. (d) Virtual group velocity obstacle.

In Fig. 7, we depict these average distances with regard to the presented simulations. As can be
seen in Figs. 7(c) and (d), our controllers have successfully achieved the segregative property in the
sense of constraint (16). On the other hand, in Figs. 7(a) and (b) segregation is not achieved: the
constraint is violated since there are intersection points between the curves dAB

avg and dBB
avg .

Another important piece of information that can be extracted from Fig. 7 is the total amount of
time required to complete the task. When curve dAB

avg returns to its initial value, it means that both
groups have swapped their average positions. In other words, the total navigation time is related to the
concavity of this curve. Hence, we can consider that robots complete their task when the latter is met
instead of requiring that all goals are reached. This condition is interesting because, in its terms, the
convergence to the goal does not interfere with cohesion and segregation during navigation, which are
the focus of our analysis. With this in mind, we can see that the RVO is the fastest approach, followed
by the hierarchical abstraction, artificial potential fields, and the VGVO. The performance loss of the
VGVO happens because the second and third terms of (13) play a damping role. In addition, robots
have a tendency to select safer velocities when maintaining the flock, i.e., they prioritize slower
speeds during the velocity selection specified by (15).

We complement these results by presenting another set of simulations in a similar scenario, where
we partitioned 200 robots into four groups. Figure 8 illustrates these experiments. In Fig. 8(a) a
large cluster is formed in the center of the environment, which slowly dissipates as robots reach their
target. We observe the same behavior in the use of RVO, but its cluster tends to move around. A
symmetrical avoidance behavior was achieved in the experiment of Fig. 8(c) because we have used
circles as the shapes of the virtual structures. Both simulations (Figs. 8(c) and (d)) have achieved
cohesion and segregation in the sense of (16). We do not show the average distance plots for these
experiments since the combination of all groups would result in an excessive 10 curves per figure.
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(a) Attractive/repulsive artificial potential field.

(b) Reciprocal velocity obstacle.

(c) Hierarchical abstraction.

(d) Virtual group velocity obstacle.

Fig. 8. (Colour online) Behavioral comparison among controllers with 200 robots evenly distributed into four
groups using local sensing.

Nevertheless, results were similar to the ones obtained in Fig. 7, i.e., both the hierarchical abstraction
and the VGVO achieved segregation, and robots took a longer time to finish the task with the latter
than with the former.

5.2. Real robots
We have also validated our results in proof-of-concept experiments with real robots. Such experiments
are important in order to show the feasibility of the algorithms in real scenarios, where all uncertainties
caused by sensing and actuation errors may have an important role on results. We used a set of 12
e-puck robots,40 which are small-sized differential robots equipped with a ring of 8 IR sensors for
proximity sensing and a set of LEDs for displaying status. A bluetooth wireless interface allows local
communication among robots and also with a remote computer. We controlled these robots through
Player,19 a well-known framework for robot simulation and programming.

In order to estimate the configuration of all robots, we used a swarm localization architecture
based on fiduciary markers and overhead cameras. Computers process the captured images from
these cameras and determine the position of all robots in a common frame of reference. Afterwards,
control inputs are calculated according to our approaches and broadcast to the swarm. In addition, we
implemented a virtual sensor to detect neighboring agents because the e-puck’s infrared (IR) sensors
have a very small range. Furthermore, to account for nonholonomic constraints, we transformed input
velocities according to the approach presented in ref. [36].

Figures 9 and 10 show snapshots from executions of the hierarchical abstraction and VGVO
approaches, respectively. We can visually inspect that the experimental results are similar to the
simulations, i.e., robots maintain cohesion and segregation during navigation. We observed that
average distances follow the trend shown in Fig. 7: The average distance between robots of the
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(a) Two robotic groups.

(b) Four robotic groups.

Fig. 9. (Colour online) Real execution of the hierarchical abstraction algorithm with different group sizes.

(a) Two robotic groups.

(b) Four robotic groups.

Fig. 10. (Colour online) Real execution of the VGVO algorithm with different group sizes.

same groups is always less than the average distance among robots of distinct groups. Although
these experiments indicate that our controllers may work reasonably well to ensure cohesion and
segregation, we emphasize that they are proof-of-concepts only, and more experiments are needed to
fully evaluate the proposed approach in real swarm systems.

5.3. Discussion
Both of our algorithms require careful tuning of constants. Regarding the hierarchical abstraction,
values must be adjusted so that the virtual ellipses respect the speed and velocity constraints of the
ground robots. Also, constants k1 and γ must be adjusted according to the repulsion forces among
agents in a way that their summation will not cause robot i to leave its group. In addition, the φ

function explicitly defines the shape of the group, so it can be changed to account for other structures,
such as a triangle or a rectangle. Finally, constants k3 and k4 must be tuned in order to ensure that the
abstraction does not surpass robots during its movement.

The velocity obstacle framework is known for allowing high-speed navigation in multi-robot
scenarios, but, when trying to ensure cohesion using flocking rules, we have seen that robots tend to
select slower speeds with our method, as evidenced in Fig. 7(d). Thus, this result directly impacts
the tuning process of all constants in our approach. For example, given a high value for α in (13),
robots will quickly align their velocities to the average velocity of their neighbors, which in turn
can lead to overshoot goal positions as well as increase the chances of collisions with single agents
moving in high speeds. Similarly, a high value for β can lead robots into tightly aggregated groups,
which makes agents prefer slower speeds because most higher speeds will be inside the velocity
obstacles. Moreover, by setting α = β = 0, the velocity selection scheme is reduced to the original
RVO method,9 as the flocking behavior is discarded.

We can see evidence of these discussed problems in Fig. 7(b), in which there is a noticeable
overshoot of the average distance among robots in different groups. The same has happened in the
experiment of Fig. 7(d), but it is not shown since this could visually skew the total navigation time
comparison, which is one of our main concerns besides segregation. For both algorithms, this issue
arises because there is no damping over the robot’s input. Moreover, the velocity matching term of
(13) actually worsens the problem, and it is easy to see that agents may leave the goal when trying
to match their velocities. Therefore, parameters α and β must be chosen with care, since higher
values can compromise the swarm behavior over the individual behavior, i.e., matching velocities
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Table I. Constants used in the experiments shown in Fig. 6.

α β w vmax
i amax

i �t

1 0.2 35 6 120 0.01

k1 k2 k3 k4 γ δ vmax
i amax

i �t

5000 0.8 0.01 0.8 0.8 20 6 120 0.01

over convergence to the goal. An interesting approach would be to completely dismiss the group
behavior as soon as a robot is close to its goal.

Finally, for reference value, we present in Table I the values of all constants used in the simulated
experiments shown in Fig. 6.

6. Conclusions
In this work, we have proposed two different methods that allow swarms of robots to navigate
in a cohesive fashion while maintaining segregation. We based our first method on a high-level
abstraction that groups robots using artificial potential fields. In this manner, individual robots are
implicitly controlled by changing the parameters of this abstraction. By considering its geometrical
features, which define a virtual structure, we maintained robot segregation by relying on virtual forces
generated from the intersection points between a pair of structures. In our second technique, we have
introduced a novel concept: the VGVO, a virtual obstacle that prevents single agents from mingling
into other robotic groups, which in turn ensures segregation. Particularly, the VGVO resembles ideas
from the hierarchical abstraction paradigm, in which groups are abstracted into single entities. We
have maintained group cohesion by coupling the velocity obstacle framework with flocking behaviors.
More specifically, we biased the robot’s preferred velocity to account for flocking rules by choosing
a proper utility function during the velocity selection phase.

We performed several experiments in simulated and real scenarios, and the results demonstrate
the effectiveness of the proposed approaches. In spite of this evidence, there are still opportunities
for improvements. For instance, abstractions could employ complex avoidance behaviors, such as
expansions, contractions, and rotations, as these maneuvers may decrease the total navigation time
and possibly allow us to deal with static obstacles. Furthermore, one of the downsides of our second
approach is its performance in relation to time. This may be improved by properly balancing the shared
effort among groups, in the same manner as the optimal reciprocal collision avoidance (ORCA)8

algorithm does for a single pair of robots, or by relying on different methods for preferred velocity
biasing22 or achieving cohesion.30 Further investigation along these lines may lead to interesting
results that could further extend the velocity obstacle framework.
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