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Abstract

This article is devoted to the study of methods to change defeasible logic programs (de.l.p.s)

which are the knowledge bases used by the Defeasible Logic Programming (DeLP) interpreter.

DeLP is an argumentation formalism that allows to reason over potentially inconsistent

de.l.p.s. Argument Theory Change (ATC) studies certain aspects of belief revision in order to

make them suitable for abstract argumentation systems. In this article, abstract arguments are

rendered concrete by using the particular rule-based defeasible logic adopted by DeLP. The

objective of our proposal is to define prioritized argument revision operators à la ATC for

de.l.p.s, in such a way that the newly inserted argument ends up undefeated after the revision,

thus warranting its conclusion. In order to ensure this warrant, the de.l.p. has to be changed

in concordance with a minimal change principle. To this end, we discuss different minimal

change criteria that could be adopted. Finally, an algorithm is presented, implementing the

argument revision operations.

KEYWORDS: Knowledge Representation and Reasoning, Logic Programming, Belief

revision, Argumentation, Non-monotonic reasoning

1 Introduction and background

The integration of Logic programming and defeasible reasoning has produced

several knowledge representation and reasoning tools (Garcı́a et al. 2009). Among

them, Defeasible Logic Programming (DeLP) (Garcı́a and Simari 2004) has been

extensively studied and developed in several applications like (Chesñevar et al. 2007;

Garcı́a et al. 2007; Rotstein et al. 2007; Thimm and Kern-Isberner 2008; Black and

Hunter 2009; Gómez et al. 2010), among others. DeLP combines an extended Logic

Programming representation language with a dialectical procedure applied to the

relevant arguments to obtain the supported conclusions (see Section 3.2).

By choosing DeLP as our formalism, we follow a defeasible form of reasoning

over potentially inconsistent knowledge bases (KBs). Here, the notion of warrant

in argumentation plays the role of the consequence relation: the warranting process
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evaluates conflicting pieces of knowledge deciding which ones prevail despite the

existence of beliefs in opposition. A warrant is also identified as an argument’s

acceptance criterion corresponding to the adopted argumentative semantics. Among

the most influential works on argumentation semantics, we may refer to those over

graphs of arguments (Dung 1995), and more recently (Baroni and Giacomin 2007).

However, the argumentation semantics, we adopt, follows the idea of dialectical

argumentation (Chesñevar et al. 2000; Prakken and Vreeswijk 2001): arguments

trees, namely dialectical trees, are built from the argumentation framework with

nodes as arguments and edges as attacks, which stand for sources of inconsistency

obtained from the KB. The use of dialectical trees allows to concentrate only

on a specific query to build “on demand” only those arguments that are somehow

related to the query. This kind of semantics allows to construct practical approaches,

avoiding the analysis of the complete graph of arguments.

Belief revision (Alchourrón et al. 1985; Hansson 1999) studies the dynamics of

knowledge, coping with the problem of how to change the information standing for

the conceptualization of a modeled world, to reflect its evolution. Revisions, as the

most important change operations, concentrate on the incorporation of new beliefs

and their interaction with older ones. A basic set of postulates is usually specified to

characterize a rational behavior of the proposed change operations. Among them,

minimal change and success have concentrated much research. Success specifies the

main objective of the change operation (in the case of revisions, the inference of the

new belief to incorporate). On the other hand, minimal change ensures that the least

possible amount of information is modified in order to achieve success.

Argument Theory Change (ATC) (Rotstein et al. 2008) applies belief revision

concepts to the field of abstract argumentation (Dung 1995). (In abstract argumen-

tation, the logic for arguments and their inner structure is abstracted away.) The main

contribution provided by ATC is a revision operator at argument level that revises

a theory by an argument seeking for its warrant. To such end, the theory – and thus

the set of arguments obtained from it – is modified in order to guarantee success: the

new argument should be accepted by the argumentation semantics. Consequently,

different criteria of minimal change should be considered to guarantee a rational

behavior of the operator proposed. Among the most relevant uses of ATC, we

may refer to hypothetical reasoning, dynamics in negotiation, persuasion, dialogues,

strategies, planning, judicial contexts in law, and more.

In this article, we apply ATC to handle KBs’ dynamics. More specifically, we rely

on ATC to make evolve potentially inconsistent KBs without consistency restoration.

To such end, we reify the abstract theory of ATC into a particular sort of KBs:

defeasible logic programs (de.l.p.s), which are managed by the DeLPformalism1

(Garcı́a and Simari 2004). DeLP is a rule-based argumentation formalism in which

arguments are built from a subset of rules to infer claims. A preliminary approach

on the matter of revising de.l.p.s through ATC was introduced in (Moguillansky

et al. 2008).

1 The DeLP interpreter is available online at http://lidia.cs.uns.edu.ar/delp client
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The definition of a revision operator over a KB within the classic theory of belief

revision usually involves the removal of beliefs from the KB in such a way that

a new belief could be consistently incorporated afterwards. Consequently, the new

belief ends up inferred by the resulting KB in a consistent manner. In some cases, it

is necessary to reverse the order in which the revision operator is defined (Hansson

1993). That is, the new belief is incorporated possibly introducing an inconsistent

intermediate state to the KB, restoring the consistency afterwards by a series of

belief removals. Such reversion is used to define the ATC’s argument revision. This is

necessary, given that in order to pursue warrant of the new argument, its interaction

with other arguments from the worked argumentation system needs to be analyzed.

Thus, we firstly incorporate the new argument into the worked set of arguments.

However, we are not concerned about the appearance of an intermediate inconsistent

state – as is the case in classic belief revision – but on an intermediate state in which

the acceptance of the new argument is not provided. In such a case, ATC provides

the necessary elements to change the theory to finally accept the new argument.

Analogously to the usual definition of a revision operator, in which a belief is

added to the KB, in the argumentative model of change that we propose, a belief is

added to a de.l.p. along with the argument that supports it. (An argument is said to

support a belief, namely the claim, by considering a minimal set of beliefs inferring

it.) In order to accept the new belief by the argumentation semantics, we pursue

warrant of the argument supporting such belief. In consequence, the revision theory

proposes additional modifications to the program (if necessary) altering the set of

arguments that originally interfered with the warrant of the new argument.

The theory of change here proposed is inspired from the AGM model (Alchourrón

et al. 1985). Due to the usage of argumentation as the base formalism, ATC has

to deal with additional, inherent complications arising from the interaction of

arguments throughout the warrant process. Chained removal of arguments and un-

desirable side effects bring about even more difficulty. Moreover, considering warrant

as a notion of consequence, ATC also has to take into account non-monotonicity,

which is not present when revision is performed over classical logic. Throughout the

paper, it will be clear that this fact implies a greater amount of theoretical elements,

hence the conceptual and notational difficulty is consequently increased.

This article provides a practical approach towards implementing ATC through

DeLP. To this end, a prolog-like algorithm is given, which manipulates rules from

a de.l.p. following ATC definitions. The reader should be aware that this article does

not pursue a full formalization according to the classical theory of belief revision.

Thus, no representation theorems are to be defined here. Instead, we look at the

process of change from the argumentation standpoint taking into account the usual

principles of minimal change and success. The full axiomatic characterization of

ATC exceeds the scope of this article, however, the interested reader could refer

to (Moguillansky et al. 2011) for ATC’s full characterization applied for handling

dynamics of knowledge/arguments in propositional bases/argumentation.

This article is organized as follows: Section 2 discusses some real examples

in which ATC may bring a novel alternative to handle dynamics of knowledge

in inconsistent bases. Section 3 introduces the necessary background upon which
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our theory relies. Section 3.1, gives a very brief intuition about belief revision, and

Section 3.2 describes in a slightly deeper way the DeLP formalism. Section 4 provides

a detailed study on the adopted argumentation semantics, i.e., dialectical trees, and

their characteristics regarding non-acceptance (rejection) of arguments. Section 5

details the complete ATC theory concentrating on its basic elements (Section 5.1),

identifying the portions of dialectical trees to be changed and putting particular

attention on the minimal change principle (Sections 5.2 and 5.3), and providing the

argument change operators (Section 5.4). In Section 6, some algorithms are given

towards a full implementation of this theory upon DeLP. Related work is discussed

in Section 7, and finally, Section 8 points out some final remarks.

2 Motivation

Dealing with inconsistencies is of utmost importance in areas like medicine and

law. For instance, in law trials, two parties to a dispute present contradictory

information in a tribunal, standing in favor or against the dispute (in criminal

trials this is normally the presumption of innocence). The tribunal decision resolves

afterwards the dispute upon presented evidence. This shows the need to consider

some kind of paraconsistent semantics in order to appropriately reason over KBs

containing contradictory information.

For some settings, it will be also necessary to provide services for handling

dynamics of knowledge with capabilities to tolerate inconsistencies from the KB

under consideration. An interesting one arises in promulgation of laws. This usually

involves a long process in which articles and principles from previous laws, and even

evidence taken from the current state of affairs, may enter in conflict with articles

composing the new law. Imagine a base containing knowledge about the complete

legal system of a nation, including the National Constitution, the international law,

and other political fundamental principles – such as the civil and penal codes, and

other minor local laws. Such KB is required to evolve in a way that it incorporates

the information conforming the new law, ensuring it to be constitutional. To this

end, it is necessary to identify a set of articles and/or principles to be derogated, or

amended, as part of the process of promulgation.

As an example, we will refer in a very brief manner to the Argentinean broadcast-

ing media law reformed during 2009. The previous media law, promulgated by the

latter de facto regime, empowered the government to regulate the different media

allowing total control of news. When democracy was restituted, the regulation of

media was extended to private investment groups. As years went by, these groups

took over majorities of types of media, conforming monopolies in some cases. This

brought excessive power to groups with partial interests, allowing them to manipulate

the social opinion about the actual government, and even to condition politicians,

thus striking to national sovereignty. Article 161 of the new media law became one of

the most controversial points, since it forces monopolistic enterprises to get rid of part

of their assets in a maximum period of one year. Some enterprises warned that they

would be forced to sell off their assets at very low prices. This violates Article 17 of the

National Constitution which speaks about private property rights. Moreover, some

members of the Supreme Court think that Article 161 recalls the control over the
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media exercised by totalitarian regimes, which would violate Article 1 of the National

Constitution. In fact, such situation could evolve to a distrust state on the principle of

legal security. These are just some of the controversial points for which the new media

law keeps being studied by the Argentinean parliament at the time of this submission.

Belief revision studies the dynamics of knowledge relying upon consistency

restoration. That is, change is applied through change operations like revisions, by

ensuring a consistent resulting base. Observe however, that for the aforementioned

case of promulgation of laws, it is mandatory to keep most inconsistencies from

the original KB to make it evolve appropriately. This led us to investigate new

approaches of belief revision which operate over paraconsistent semantics in order

to avoid consistency restoration. Argument Theory Change (ATC) arises with such

objective, applying belief revision to argumentation systems.

Among the most relevant uses of ATC, we may refer to hypothetical reasoning,

dynamics in negotiation, persuasion, dialogues, strategies, planning, and more. For

instance, in scheduling, consider the development of a company’s task scheduler.

Assume employee assignments are managed by an agent interpreting a KB. The

central authority incorporates new tasks to the KB. An agent uses this information to

decide to which employees should the new requirements be assigned. Argumentation

could deal with such a problem since it would be necessary to reason over

inconsistency: conflicts would appear between the relevance of tasks and employees

availability. A new task with a high level of relevance could be sent to a specific

employee for a matter of trust, provoking the reallocation of his previous tasks

to other employees. ATC can be useful to implement the re-scheduling process by

recognizing how new assignments are in conflict with pre-existing ones.

It is important to mention that, unlike typical KB revision models in which a

base is revised by a sentence, here, we are concerned with the operation of revising

a de.l.p. by a given argument. This could be a good alternative to revise a KB by a

piece of information of higher conceptual complexity. For instance, considering the

example given before on promulgation of laws, an ATC model could revise the legal

system by including an argument standing for the new law to be promulgated. In

this case, arguments to be removed from the original argumentation system would

contain different articles from preexisting laws. Thus, the new law is ensured to be

constitutional by proposing to derogate other laws or amend them by removing

specific articles which are part of arguments to be removed. Naturally, removals

from the base are expected to be of less importance than the one for the new law.

That is, laws to be amended should never correspond to the National Constitution

unless the promulgation of the new law is expected to reform it. In case no minor

laws arise to be amended, it is clear that the new one cannot be included as it is

and thus, it necessarily needs to be modified to be accepted by the legal system.

3 Overviews

In this section, we give an overview of the necessary theoretical background for

the ATC machinery. Firstly, some elements of the classic belief revision theory are

introduced, and afterwards we present the main definitions of DeLP.
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3.1 Belief revision overview

Belief revision studies the process of changing beliefs from an epistemic state to accept

new information. An epistemic state – to which change operations are applicable –

accounts for knowledge in the form of either a belief base or a belief set. A belief

base (knowledge base) is an epistemic state represented by a set of sentences not

necessarily closed under logical consequence. On the other hand, a belief set is a

set of sentences closed under logical consequence. In general, a belief set is infinite,

being this the main reason of the impossibility to deal with this kind of sets in

a computer. Instead, it is possible to characterize the properties that each change

operation should satisfy on any finite representation of an epistemic state.

The classic change operations as seen in the AGM model of theory change

(Alchourrón et al. 1985) – named after their proponents Alchourrón, Gärdenfors,

and Makinson – are known as expansions, contractions, and revisions. An expansion

incorporates a new belief without guaranteeing a consistent resulting epistemic state.

A contraction eliminates a belief α, and other beliefs making possible its inference,

from the epistemic state. Finally, a revision adds a new belief α to the epistemic state

guaranteeing a consistent outcome always that α is consistent as well. This means

that the revision includes a new belief and possibly eliminates others in order to

avoid inconsistencies. Revisions are usually defined by means of contractions and

expansions: assuming a revision operator “∗”, a new belief α, and an epistemic

state K; the resulting epistemic state K ∗ α is ensured to be consistent (unless

α is inconsistent) through a contraction “−” by the complement of the new belief

(i.e., ∼α) and an expansion “+” by α. If the epistemic state does not imply ∼α, then α

can be incorporated without loss of consistency. This composition of sub-operations

defines a revision operator through the Levi identity: K ∗ α = (K − ∼α) + α (Levi

1977; Gärdenfors 1981). In (Hansson 1993), the reverse of this identity was studied.

This will be helpful for the definition of the model of change proposed here.

The changes applied to the epistemic state might conform to the minimal change

principle. This notion is one of the rationality principles of change. Furthermore, these

principles are formalized through a set of rationality postulates which are used to

guarantee that a change operation behaves in a rational manner. In this paper, we

concentrate on the specification of the model of change, and only two principles will

be taken into account: minimal change and success – a successful revision operation

refers to the primacy of new information.

The AGM model of change specifies an array of theoretical tools to perform

revision over belief sets. Nonetheless, since in this work we aim at performing

change over defeasible logic programs – which can be seen as a kind of belief bases –

we preferred to rely on Hansson’s kernel sets (Hansson 1994) which were proposed

to deal with practical approaches. A kernel set is a minimal set of beliefs inferring α

(namely, an α-kernel) from the epistemic state. The kernel contraction (Hansson 1994)

– applicable both to belief bases and belief sets – specifies an operator capable of

selecting and eliminating beliefs from each α-kernel in K , in order to avoid inferring

α. The relation between the notions of kernel sets and arguments will be clear in the

following section.
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3.2 Defeasible logic programming overview

DeLPcombines results of logic programming and defeasible argumentation. A brief

description of DeLP is included below – for a detailed presentation see (Garcı́a

and Simari 2004). A defeasible logic program (or de.l.p. for short) is a finite set of

facts, strict rules and defeasible rules. Facts are ground literals representing atomic

information or the negation of atomic information using the strong negation “∼”.

Strict rules represent non-defeasible information noted as β0← β1, . . . , βn, where βi
for i � 0 is a ground literal. Defeasible rules represent tentative information noted

as β0 –≺β1, . . . , βn, where βi for i � 0 is a ground literal.2 The particular case of a

defeasible rule with empty body is called a presumption. A query is a ground literal

that can be posed to a de.l.p. to find out whether it is warranted. The domain of all

defeasible rules is denoted as Ld, and that containing all the strict rules and facts,

as Ls.

When required, a de.l.p. P is denoted (Π,Δ), distinguishing the subset Π of facts

and strict rules, and the subset Δ of defeasible rules (see Example 1), however, such

a distinction is not mandatory for representing de.l.p.s, being also correct the use of

a common set of facts, strict rules, and defeasible rules.

Example 1

Consider the de.l.p. P1 = (Π1,Δ1):

Π1=

{
t, z,

(p← t)

}
Δ1=

⎧⎨⎩
(∼a –≺y), (y –≺x), (x –≺z),

(y –≺p), (a –≺w), (w –≺y),

(∼w –≺ t), (∼x –≺ t), (x –≺p)

⎫⎬⎭
In DeLP, literals can be derived from rules and facts, being a defeasible derivation

one that uses, at least, a single defeasible rule; and a strict derivation one that only

uses strict rules or facts. Strong negation is allowed in the head of program rules,

and hence may be used to represent contradictory knowledge. We say that two

literals are contradictory if they are complementary with respect to strong negation

(e.g., a and ∼a). Hence, a set of rules and facts is contradictory if two contradictory

literals can be derived from it. It is important to note that the set Π (which is used

to represent non-defeasible information) must possess certain internal coherence,

and therefore, Π must be a non-contradictory set. However, from a program (Π,Δ),

contradictory literals could be derived by using both kinds of rules, e.g., from

(Π1,Δ1) of Example 1, it is possible to defeasibly derive a and ∼a.
DeLP incorporates an argumentation formalism for the treatment of contradictory

knowledge that can be defeasibly derived. This formalism allows the identification

of contradictory pieces of knowledge, where a dialectical process decides which

information prevails as warranted. This dialectical process involves the construction

and evaluation of arguments that either support or interfere with the query under

analysis. From a de.l.p. P = (Π,Δ), an argument 〈A, α〉 is conformed by a minimal

set A ⊆ Δ of defeasible rules that, along with the set Π of strict rules and facts

from P, is not contradictory and derives a certain conclusion α.

2 text
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Definition 1 (Argument Structure)

Let P = (Π,Δ) be a de.l.p., 〈A, α〉 is an argument structure for a ground literal α

from P, if A is a minimal set of defeasible rules (A ⊆ Δ) such that:

(1) there exists a derivation for α from Π ∪ A, and

(2) the set Π ∪ A is non-contradictory.

The domain of all argument structures from P is denoted ArgsP. If 〈A, α〉 is an

argument structure we will also say that A is an argument, and that A supports α.

Example 2

From P1 in Example 1, we can build the following arguments:

〈B1,∼a〉 = 〈{∼a –≺y,y –≺x,x –≺z},∼a〉
〈B2,∼a〉 = 〈{∼a –≺y,y –≺p},∼a〉
〈B3, a〉 = 〈{a –≺w,w –≺y,y –≺p}, a〉
〈B4,∼w〉 = 〈{∼w –≺ t},∼w〉
〈B5,∼x〉 = 〈{∼x –≺ t},∼x〉
〈B6, x〉 = 〈{x –≺p}, x〉

A DeLP-query α succeeds, i.e., it is warranted from a program P, if it is possible

to build an argument A that supports α and A is found to be undefeated by

the warrant procedure. This process implements an exhaustive dialectical analysis

that involves the construction and evaluation of arguments that either support or

interfere with the query under analysis. That is, given an argument A that supports

α, the warrant procedure will evaluate if there are other arguments that counter-

argue or attack A or a sub-argument of A (C is a sub-argument of A if C ⊆ A).

An argument 〈B, β〉 is a defeater (or counter-argument) for 〈A, α〉 at literal β if

A∪B∪Π is contradictory; that is, if there exists a sub-argument 〈A′, α′〉 of 〈A, α〉
such that α′ and β disagree. Two literals disagree when there exist two contradictory

literals that have a strict derivation from Π ∪ {α′, β}. The literal α′ is referred to as

the counter-argument point and 〈A′, α′〉 as the disagreement sub-argument.

Proposition 1

For any de.l.p. P and any argument 〈A, α〉 ∈ ArgsP, if A = ∅ then 〈A, α〉 has no

defeaters from P.

Proof

Since 〈A, α〉 ∈ ArgsP and A = ∅, from Definition 1 we have that Π derives α.

By reductio ad absurdum, let us assume that there is an argument 〈B, β〉 ∈ ArgsP
such that B defeats A, hence A∪B ∪Π is contradictory (see counter-argument).

Afterwards, since A = ∅, we have A ∪ B ∪ Π = B ∪ Π. This is absurd, since

B is not compliant with cond. 1 in Definition 1. Finally, 〈A, α〉 has no defeaters

from P. �

To establish if A is a non-defeated argument, defeaters for A are considered.

A counter-argument D is a proper defeater for A if D is preferred to A, or it

is a blocking defeater if they either have the same strength or are incomparable

with respect to the preference criterion used. It is important to note that in DeLP

the argument comparison criterion is modular and thus, the most appropriate

https://doi.org/10.1017/S1471068411000603 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000603


Dynamics of knowledge in DeLP through Argument Theory Change 901

criterion for the domain that is being represented can be selected. Nevertheless, in

the examples given in this paper, we will abstract away from this criterion, since

it introduces unnecessary complexity. Thus, preference between counter-arguments

will be given explicitly by enumerating defeats between arguments.

Since defeaters are arguments, there may exist defeaters for them, and defeaters

for these defeaters, and so on. This will determine sequences of arguments which

are referred to as argumentation lines.

Definition 2 (Argumentation Line)

Given a de.l.p. P, and arguments B1, . . . , Bn from ArgsP, an argumentation line λ is

any (non-empty) finite sequence [B1, . . . ,Bn] such that Bi is a defeater of Bi−1, for

1 < i � n. We will say that λ is rooted in B1, and that Bn is the leaf of λ.

Since argumentation lines are an exchange of opposing arguments, we could think

of it as two parties engaged in a dispute, which we call pro and con.

Definition 3 (Set of Con (Pro) Arguments)

Given an argumentation line λ, the set of con (resp., pro) arguments λ− (resp., λ+)

of λ is the set containing all the arguments placed on even (resp., odd) positions

in λ.

To avoid undesirable sequences that may represent circular or fallacious reasoning

chains, in DeLP an argumentation line has to be acceptable: it has to be finite, an

argument cannot appear twice, there cannot be two consecutive blocking defeaters,

and the set of pro (resp., con) arguments has to be non-contradictory, i.e., the

set of defeasible rules from the union of arguments inside the set of pro (resp.,

con), along with Π, does not yield a contradiction. The domain of all acceptable

argumentation lines in P is denoted as LinesP. An acceptable argumentation line

in a program P is called exhaustive if no more arguments from P can be added to

the sequence without compromising the acceptability of the line. For more details

on acceptability of argumentation lines, refer to (Garcı́a and Simari 2004). The

domain of all acceptable and exhaustive argumentation lines in P is denoted as

ALinesP.

Remark 1

Given a de.l.p. P, ALinesP ⊆ LinesP holds.

Example 3

Consider the arguments from example 2 and the following defeat relations: B3 is a

proper defeater for B2, and B4 properly defeats B3. From these three arguments,

we can build the sequence [B2,B3,B4], which is an acceptable and exhaustive

argumentation line: it is non-circular, finite, it does not include blocking defeats,

B2 ∪B4 ∪Π1 is non-contradictory, and no more defeaters can be attached to it.

Next, we introduce the notion of upper segment, which identifies subsequences of an

argumentation line, from the root to a specific argument in it, determining new (non-

exhaustive) argumentation lines. This notion will be central in the argumentative

model of change presented in this article.
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Definition 4 (Upper Segment)

Given a de.l.p. P, and an acceptable argumentation line λ ∈ LinesP such that

λ = [B1, . . . ,Bn]; the upper segment of λ wrt. Bi (1 � i � n) is defined as λ↑[Bi] =

[B1, . . . ,Bi], while the proper upper segment of λ wrt. Bi is defined as λ↑(Bi) =

[B1, . . . ,Bi−1]. The proper upper segment of λ wrt. B1 is undefined, noted as

λ↑(B1) = ε.

In the sequel, we refer to both proper and non-proper upper segments simply as

“upper segment” and either usage is distinguishable through its notation (round or

square brackets, respectively). As stated next, the upper segment of an argument in

a line constitutes a (possibly non-exhaustive) argumentation line by itself. Besides,

given a line λ = [B1, . . . ,Bj , . . . ,Bn], we will say that an argument Bi is below

(respectively, above) Bj iff j > i (respectively, i > j).

Proposition 2

For any λ ∈ LinesP and B ∈ λ, it holds that λ↑[B] ∈ LinesP.

Proof

Straightforward from Definitions 2 and 4, and the notion of acceptable argumenta-

tion line. �

Many argumentation lines could arise from one argument, leading to a tree

structure. In a dialectical tree, each node (except the root) represents a defeater of

its parent, and leaves correspond to arguments with no defeaters in the line.

Definition 5 (Dialectical Tree)

Given a de.l.p. P, a dialectical treeTP(A) rooted inA is built by a set X ⊆ LinesP
of lines rooted in an argument A ∈ ArgsP, such that an argument C in TP(A) is:

(1) a node iff C ∈ λ, for any λ ∈ X; (2) a child of a node B in TP(A) iff C ∈ λ,

B ∈ λ′, for any {λ, λ′} ⊆ X, and λ′↑[B] = λ↑(C). A leaf of any line in X is a leaf in

TP(A). The domain of all dialectical trees from P is noted as TreesP.

The set containing all the acceptable and exhaustive argumentation lines rooted

in a common argument A will determine the bundle set for A.

Definition 6 (Bundle Set)

Given a de.l.p. P, a set SP(A) is the bundle set for A from P iff SP(A) contains

all the lines rooted in A from ALinesP.

The objective of a dialectical tree is to evaluate all the information that could

determine the warrant status of the root argument. In addition to this, the ar-

gumentation lines included in a dialectical tree should be acceptable in order to

ensure the exchange of arguments is performed in a sensible manner. This gives

place to a restricted version of dialectical tree, called acceptable. An acceptable

dialectical tree provides a structure for considering all the possible acceptable

argumentation lines that can be generated for deciding whether its root argument is

defeated.
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Definition 7 (Acceptable Dialectical Tree)

Given a de.l.p. P, an acceptable dialectical tree TP(A) rooted in an argument

A ∈ ArgsP is a dialectical tree whose argumentation lines belong to the bundle set

SP(A). We will say that TP(A) is determined by SP(A), and identify the domain

of all acceptable dialectical trees from P as ATreesP.

Proposition 3

Given a de.l.p. P, ATreesP ⊆ TreesP holds.

Proof

Let TP(A) ∈ ATreesP. From Definitions 6 and 7, we know that every λ ∈
TP(A) is an acceptable and exhaustive line from ALinesP. Since ALinesP ⊆ LinesP,

every such λ also belongs to LinesP and therefore, from Definition 5, TP(A) ∈
TreesP. �

From now on, every dialectical tree will be assumed acceptable unless stated

otherwise. Observe that arguments in dialectical trees will be depicted as triangles

(labeled with their names) and edges will denote defeat relations. Defeated arguments

will be painted in gray, whereas undefeated ones will be white.

Example 4

The dialectical tree determined by the bundle set {[A,B1,B2], [A,B1,B3], [A,B1,B5],

[A,B4,B5,B1,B3]} is depicted on the right. We assume that every defeat is proper

excepting for B5 and B1 which are blocking defeaters, as well as B1 and B2. Observe

that [A,B1,B5,B1] is not acceptable and thus, B1 cannot be child of B5 since it

was already introduced in that line. However, nothing prevents B1 being child of

B5 in the rightmost line. Note also that, since line [A,B4,B5,B1,B2] contains two

consecutive blocking defeaters, it is not acceptable and therefore, it does not belong

to the bundle set.

Given an argument structure 〈A, α〉, to decide whether α is warranted, DeLP

follows a specific marking criterion applied over the dialectical tree TP(A). This

criterion assigns a mark from the domain {D,U} to each node in the tree, where D

stands for defeated and U for undefeated.

(1) all leaves in TP(A) are marked as U; and

(2) every inner node B of TP(A) will be marked as U iff every child of B is

marked as D; otherwise, B is marked D.

Thus, an argument B will be marked as D iff it has at least one child marked

as U. Finally, if the root argument A is marked as U then we say that TP(A)

warrants α and that α is warranted from P. When no confusion arises, we will refer
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to A instead of α, saying that A is warranted. We call TP(A) a warranting tree if

it warrantsA, otherwise we call it a non-warranting tree. For instance, in example 4,

argument A is warranted given that it ends up undefeated from its dialectical tree.

Example 5

From the de.l.p. (Π1,Δ1) of example. 1, we can consider a new program P5 =

(Π1,Δ1 ∪ {a –≺x}), from which we can build the arguments in example 2 along with

a new argument 〈A, a〉 = 〈{(a –≺x), (x –≺z)}, a〉. The defeat relations are: B1, B2

and B5 defeat A; B3 defeats B2; B4 defeats B3; and B6 defeats B5. The non-

warranting tree TP5
(A) is depicted on the right. For simplicity, those arguments

that can be built from P5 but do not appear in the tree TP5
(A) are assumed to be

defeated by the corresponding arguments that do appear. For instance, we assume

arguments A and B3 to be preferred over argument 〈{∼a –≺y,y –≺x,x –≺p},∼a〉,
which in consequence is not a defeater of A nor B3.

4 About argumentation lines and marking

Dialectical trees are composed by argumentation lines. In particular, we are inter-

ested in distinguishing those lines that determine the defeat of the root argument,

which we call attacking lines. In (Rotstein et al. 2009), a characterization of the

marking criteria has introduced the possibility of abstracting away from any specific

marking. In that article, different specific marking criteria have been also studied,

allowing the full characterization of argumentation lines, and specially attacking

lines have been defined on top of their marking sequence. There, the specific case of

the DeLP marking criterion, and the morphology of the DeLP attacking lines, were

analyzed in detail.

Definition 8 (Marking Sequence)

Given a de.l.p. P, and an argumentation line λ = [B1, . . . ,Bn] belonging to the

marked dialectical tree TP(B1); the marking function m : LinesP × TreesP −→
{U,D}n determines a sequence m(λ,TP(B1)) = [m1, . . . , mn] such that each mi is the

mark of the corresponding argument Bi according to TP(B1).

Observe that the marking of a line is not considered individually, but in concor-

dance with the context provided by the tree it belongs to. For instance, in example 5

the line [A,B5,B6] does not have the marking sequence [U,D,U] but the sequence

[D,D,U], since B1 (from line [A,B1]) is an undefeated defeater forA, which is thus

defeated (marked as D). Observe that the marking sequence of a line can be simply

a U (never a single D), or begin with a U or a D and then include an arbitrarily

long alternation of Ds and Us, and even at some point it could repeat any number

of Ds (never a U). Finally, any marking sequence always ends with a U.
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Proposition 4

Given a de.l.p. P, and a dialectical tree TP(B1) ∈ TreesP, the following conditions

are met:

(1) No argumentation line has a repetition of Us in its marking sequence. That

is, there is no λ ∈ TP(B1) such that m(λ,TP(B1)) = [. . . , U,U, . . .].

(2) Argumentation lines may repeat Ds in their marking sequence. That is, it may

be the case that there is λ ∈ TP(B1) such that m(λ,TP(B1)) = [. . . , D, D, . . .].

(3) The marking sequence of every argumentation line ends in a U. That is, for

every λ ∈ TP(B1), it holds that m(λ,TP(B1)) = [. . . , U].

(4) In the marking sequence of every argumentation line, a U is followed by a

D unless the U stands for the leaf argument. That is, for every λ ∈ TP(B1) if

m(λ,TP(B1)) = [. . . , U, m, . . .] then m = D.

Proof

The corresponding proof for each item follows straightforwardly from the definition

of the marking criterion given in Section 3.2. That is the case of items (3) and (4).

For items (1) and (2), the following sketches may clarify this assertion.

(1) From the adopted marking criterion, an inner node B is marked U iff every

child of B is marked D. This condition makes impossible to have a mark U for

both a node and some of its children.

(2) From the adopted marking criterion, an inner node B is marked D iff there

is at least one child marked U. However, other children of B may be marked as D,

thus determining marking sequences with repetitions of Ds. �

From the proposition above, argumentation lines may be classified through regular

expressions, which typify the lines according to their marking sequence. Depending

on the dialectical tree being warranting or not, we will distinguish two main different

sorts of regular expressions.

Definition 9 (Warranting and Non-warranting Lines)

Given a de.l.p. P and the treeTP(A) ∈ TreesP; for any λ ∈ TP(A), if the marking

sequence m(λ,TP(A)) conforms to the regular expression U(D+U)∗ (resp., (D+U)+)

then line λ is referred to as warranting (resp., non-warranting).

Proposition 5

Given the de.l.p. P and TP(A) ∈ TreesP; for any λ ∈ TP(A), λ is warranting

(according to m(λ,TP(A))) iff TP(A) is warranting.

Proof

To prove that those regular expressions corresponding to warranting/non-warranting

lines are obtained from the DeLP marking criterion, we should obtain a finite

automaton equivalent to the regular expression at issue. From such automaton a

regular grammar can be defined. Afterwards, by induction, this grammar has to be

shown to conform a given regular language which should be proved to be obtained

from the marking criterion specified on page 903, Section 3.2. The complete formal

proof was left out from this article due to space reasons.
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The proof for λ ∈ TP(A) being a warranting line iff TP(A) is warranting

follows straightforwardly from the definition of warranting trees on page 903 and

Definition 9. �

Two different sorts of regular expressions were given in the proposition above

depending on whether the dialectical tree upon consideration is warranting or not.

In addition, we can go further in each case, and analyze particular configurations

to isolate the relevant situations for the specification of this model of change.

Regarding a warranting tree, we will make no distinction among its argumentation

lines, since the objective of the change method we propose is to achieve warrant,

and in such a tree there is nothing to be done. On the other hand, when we consider

a non-warranting tree, as said before, we are interested in the characterization of

those lines that are somehow responsible for the root argument to be defeated,

i.e., attacking lines. The following proposition distinguishes the two different types

of non-warranting lines according to their marking sequence: those that have at least

one repetition of D, which we call D-rep lines, and those having a perfect alternation

of Ds and Us, which we call alternating lines. Moreover, this characterization will

be shown to be complete afterwards in Proposition 6.

Definition 10 (D-rep and Alternating Lines)

Given a de.l.p. P and a non-warranting tree TP(A) ∈ TreesP; for any λ ∈
TP(A), if the marking sequence m(λ,TP(A)) conforms to the regular expres-

sion (DU)∗(D+(DU)+)+ (resp., (DU)+) then line λ is referred to as D-rep (resp.,

alternating).

Definition 11 (D-rep Sequence)

Given a de.l.p. P and a non-warranting tree TP(A) ∈ TreesP; for any D-rep

line λ ∈ TP(A) where λ = [A, . . . ,B1, . . . ,Bk, . . .], any subsequence B1, . . . ,Bk of

arguments whose marking is a consecutive subsequence of D nodes in m(λ,TP(A))

is referred to as D-rep sequence if it holds that either B1’s parent in λ is marked as

U or B1 =A and that Bk ’s defeater in λ is marked as U. Argument B1 is referred

to as the head of the D-rep sequence. The D-rep sequence in λ which is closer to

the root argument A is referred to as the uppermost D-rep sequence.

Proposition 6

Given a de.l.p. P, and the non-warranting tree TP(A) ∈ TreesP; for any λ ∈
TP(A), m(λ,TP(A)) conforms either to a D-rep or an alternating line.

Proof

The proof showing that the regular expressions corresponding to D-rep/ alternating

lines are obtained from the DeLP marking criterion, follows similarly to the proof

given for Proposition 5.

On the other hand, for the proof showing that this characterization of non-

warranting lines is complete, we will assume a non-warranting dialectical tree rooted

in an argument A, thus we have that A is marked as D. From Proposition 4.3,

leaves are marked as U, hence, A has at least one child. Any child of an argument

marked as D is (*) either marked (1) U, or (2) D. In the latter case, the node is not
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a leaf (see Proposition 4.3), and the line would be a D-rep. Regarding (1), if it is the

case of a leaf, then we have an alternating line, whereas if it is an inner node, the

only option for its child is to be marked as D (see Property 4, items 1 and 4). In

this case, its child might be marked as either Uor D. By recursively following this

construction from (*), we have only alternating lines or D-rep lines. �

In order to finally identify attacking lines, it is necessary to study the relation

between these two sorts of non-warranting lines. D-rep and alternating lines are

interrelated in Lemma 1, as shown below. But firstly, let us introduce the notion

of adjacency among lines to provide appropriate theoretic terminology. Two (or

more) argumentation lines are referred to as adjacent if they share a common upper

segment containing one or more arguments. Finally, we refer as adjacency point to

the last argument in the common upper segment of two (or more) adjacent lines.

Definition 12 (Adjacency)

Given a de.l.p. P, two acceptable argumentation lines λ1 ∈ LinesP and λ2 ∈ LinesP
are said to be adjacent at B iff λ

↑
1(B1) = λ

↑
2(B2) = [A, . . . ,B]; where B1 ∈ λ1,

B2 ∈ λ2, and B1 �= B2. Argument B is said to be the adjacency point between λ1

and λ2.

Example 6

Consider the dialectical tree depicted on the right. Argumentation lines λ1 and λ2

are adjacent at argument B1 since both upper segments λ
↑
1(B2) and λ

↑
2(B4) are

equal [A,B1]. Argument B1 is the adjacency point between λ1 and λ2. Regarding

example 5, the three Lines in the tree are adjacent at the root argument A. From

example 4, four lines appear: λ1 = [A,B1,B2], λ2 = [A,B1,B3], λ3 = [A,B1,B5],

and λ4 = [A,B4,B5,B1,B3]. Note that line λ4 is adjacent to lines λ1, λ2, and λ3, at the

root argumentA. However, lines λ1, λ2, and λ3, are pairwise adjacent at argumentB1.

Lemma 1

Every D-rep line has an adjacent alternating line whose adjacency point is the head

of its uppermost D-rep sequence.

Proof

Consider a de.l.p. P, a non-warranting tree TP(A) ∈ TreesP, and a D-rep line

λ = [A, . . . ,B1,B2, . . . ,Bk−1,Bk, . . .]. For the marking sequence m(λ,TP(A)), let

us assume, without loss of generality, that for every 1 � i < k, arguments Bi are

marked as D, Bk as U, and from the root argument A down to B1 (both marked

as D), we have a perfect alternation of Ds and Us (see Property 6). In the rest of the

proof, we will refer to the sequences of Ds such as B1, . . . ,Bk−1 as a D-rep sequence
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(see Definition 11). In a D-rep sequence, the last D argument (Bk−1) is defeated

because it has a child (Bk) that is undefeated. On the other hand, for its parent

(Bk−2) the situation is different: since Bk−2 is also marked as D the only option we

have for Bk−2 is to be the adjacency point with another line λ′ ∈ TP(A) such that

λ↑(Bk−1) = λ′↑(B′) and the mark of B′ ∈ λ′ is U. Hence, since B′ is a child of Bk−2

in TP(A), the adjacency point Bk−2 ends up marked as D.

The same reasoning follows for each one of the Bi arguments (1 � i < k), i.e., for

each argument in the D-rep sequence. In particular, when considering the uppermost

D in the uppermost D-rep sequence (i.e., B1) since its child B2 is marked as D, we

necessarily have an adjacent line λ′′ ∈ TP(A) turning the adjacency point B1 to

D. There is an argument B′′ ∈ λ′′ marked as U which is a child of B1 in TP(A).

Note that the marking sequence of λ′′ in its upper segment λ′′↑[B′′] has a perfect

alternation of Ds and Us.

BelowB′′, λ′′’s marking sequence may contain a D-rep sequence, but in that case λ′′

would be a D-rep and by following the same reasoning we necessarily have adjacent

lines with adjacency points in each one of the Ds of λ′′’s D-rep sequence. Since

dialectical trees have a finite number of argumentation lines, this process necessarily

ends with a line that is not D-rep. Thus, from Definition 10 and Proposition 6,

an alternating line λn ∈ TP(A) appears, adjacent to λ′′ below B′′ with adjacency

point at the first D of the D-rep sequence. But note that λn is also adjacent to λ

at B1. Hence, for every D-rep line there is an adjacent line with adjacency point D

(the first D corresponding to the head of the uppermost D-rep sequence) that is an

alternating line. �

Observe that reversing the Lemma 1 does not hold since, for instance, an even-

length single-line tree has one alternating line and no D-rep.

Lemma 2

The adjacency point between an alternating and a D-rep line is a pro argument.

Proof

From Lemma 1, we know that the adjacency point between an alternating and a

D-rep line is the head of the D-rep sequence. This means that the adjacency point is

marked as D. Afterwards, it is easy to see that the adjacency point is a pro argument

given that according to Definition 10, only pro arguments are marked as D in the

alternating lines. �

Theorem 1

Given the dialectical tree TP(A) ∈ TreesP, TP(A) is warranting iff there is no

alternating line λ ∈ TP(A).

Proof

⇒) According to Proposition 5, a warranting tree has no alternating line, which is a

kind of non-warranting line (see Definitions 9 and 10). On the other hand, if the tree

is non-warranting, only two different kinds of line may appear (see Proposition 6):

alternating and D-rep. If we have some alternating line, then we are done. On the

other hand, if we assume to have some D-rep, according to Lemma 1, we necessarily

have an alternating line to which the D-rep is adjacent.
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⇐) Assuming we have no alternating lines, the root argument is marked either as D

or U. For the latter case, it is clear that the tree is warranting. For the former, the tree

is non-warranting. Thus, from Definiton 10 and Proposition 6, if no alternating lines

exist, only D-rep lines could appear. However, this is not possible, from Lemma 1.

Hence, we reach an absurdity by assuming possible to have a non-warranting tree

without alternating lines. On the other hand, if we have at least one alternating line,

then the root argument is marked as D, and the tree is non-warranting. �

From Theorem 1, we can finally ensure that alternating lines are the ones

threatening the warrant status of dialectical trees. Thus, from now on, alternating

lines will be referred to as attacking lines.

Definition 13 (Attacking Line)

Given a de.l.p. P and an argumentation line λ inTP(A) ∈ TreesP, for any argument

A ∈ ArgsP; λ is an attacking line in TP(A) iff m(λ,TP(A)) corresponds to an

alternating line.

Corollary 1

Given the dialectical tree TP(A) ∈ TreesP, TP(A) is warranting iff there is no

attacking line λ ∈ TP(A).

Example 7

Consider the dialectical tree in Example 5 with lines λ1 = [A,B1], λ2 = [A,B2,B3,B4],

and λ3 = [A,B5,B6]. Two attacking lines appear: λ1 and λ2. Note that the tree

containing only line λ3 warrants A, since its marking sequence would be [U,D,U].

However, by considering trees with either λ1 or λ2 (or both), none would end up

warranting.

Clearly, this definition for an attacking line is totally dependent on the marking

criterion adopted. An intuitive notion of attacking lines may be given through a

minimal set Λ ⊆ X of argumentation lines in a dialectical tree (built with lines from

X) such that a new dialectical tree built with lines from X \ Λ ends up warranting.

However, when analyzing the warrant status of a tree, we necessarily need to apply

the marking procedure, and thus the recognition of attacking lines would again

depend on their marking sequences.

Note that the specific definition of attacking lines in DeLP is quite natural: an

argumentation line is attacking if its pro (resp., con) arguments are defeated (resp.,

undefeated). Recall that pro (resp., con) arguments are in favor (resp., against) of the

main issue being disputed: the root argument. Thus, such a line provides a reasoning

chain which is entirely against the root argument, and therefore, it is sensible to

consider the dialectical tree to be non-warranting.

We pursue a theory that recognizes the changes to be applied to a de.l.p. P in order

to turn a non-warranting tree TP(A) into warranting. The study of argumentation

lines along with their marking sequences, and the notion of attacking lines, aids the

definition of our argumentative model of change. These models handle the dynamics

of argumentative knowledge through the variation of the set of available arguments.

In ATC, dynamics in the argumentation theory is handled through the alteration of
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some argumentation lines. Alterations could be carried out in a variety of ways: a

kind of alteration of a line λ is the removal (deactivation) of an argument from λ,

whereas a more complex choice is to add (activate) a defeater to some argument in

λ. In this article, we assume only the former alternative.

The main intuition behind the deactivating method for argument revision is to

alter each attacking line by deactivating an argument in it. When this alteration

turns the line to non-attacking, we refer to it as an effective alteration. As was

shown in Corollary 1, a dialectical tree free of attacking lines is a warranting tree.

Hence, after the revision, no argumentation lines will threaten the warrant of the

root argument since no attacking lines will be left unaltered.

Definition 14 (Line Alteration)

Given a de.l.p. P, a set Γ ⊆ P, and a line λ ∈ ALinesP; the removal P\Γ provokes

the alteration of λ on B iff there is some Γ′ ⊆ Γ such that Γ′ ⊆ B, with B ∈ λ, and

for every C ∈ λ↑(B), it holds that Γ ∩ C = ∅.

The definition for a line alteration individualizes, the argument B that will

disappear once rules in Γ are removed. This argument is such that no other

argument in B’s upper segment disappears. Hence, the proper upper segment of B
would be the resulting argumentation line from such an alteration. The following

example illustrates the notion of line alteration presented in Definition 14.

Example 8

Let us assume that the dialectical tree TP(A) ∈ ATreesP, depicted on the right

in Figure (a), is built from a given de.l.p. P. If we consider the de.l.p. P′ resulting

from the removal P \ Γ, for some non-empty Γ ⊆ B3; we obtain the dialectical tree

TP′ (A) ∈ ATreesP′ depicted in Figure (b). It is important to note that the removal

P\Γ provokes the alteration of line λ1 yielding the altered line λ
↑
1(B3) = [A,B1,B2]

which is exhaustive in P′ but not in P.

As a different example, if we consider P′ = P \ Γ, where Γ ⊆ B2; the resulting

dialectical tree will only contain a single argumentation line: λ2. This is so, given

that λ
↑
1(B2) = [A,B1] is not exhaustive in P′ since it is an upper segment of λ2,

i.e., λ↑1(B2) = λ
↑
2(B4).

(a) (b)

Given a de.l.p. P and a line λ ∈ ALinesP, if Γ = ∅, then according to Definition 14,

λ might be considered altered on any of its arguments from P\Γ. Observe however

that λ does not modify its configuration. Let us see the particular case, according to

Definiton 14, with more detail: if Γ = ∅, then P\Γ (i.e., P) provokes the alteration

of λ on B iff there is some Γ′ ⊆ Γ (i.e., Γ′ = ∅) such that Γ′ ⊆ B, with B ∈ λ, and
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for every C ∈ λ↑(B), it holds that Γ ∩ C = ∅ (given that Γ = ∅). This kind of line

alterations (in which Γ = ∅) will be allowed just for theoretical matters, and will be

referred to as null line alterations.

Recall that the objective of altering lines is to turn (potential) attacking lines

into non-attacking. When this happens, the alteration is referred to as effective.

However, further considerations have to be taken into account for an alteration to

be considered effective.

Definition 15 (Effective Alteration)

Given two de.l.p.s P and P′, and two lines λ ∈ ALinesP and λ′ ∈ ALinesP′ such

that λ′ is the line alteration of λ on an argument B; λ is effectively altered on B iff

λ′ = λ↑(B) and if λ′ ∈ TP′ (A), with TP′(A) ∈ ATreesP′ , then λ′ is not attacking in

TP′(A).

This definition takes a line alteration λ′ and provides the necessary conditions for

it to be effective. Checking that λ′ is not an attacking line in the resulting de.l.p.

depends on λ′ being an argumentation line in said program. This ensures that λ′

is exhaustive, i.e., that it is not totally included in another argumentation line.

Whenever this happens, however, an alteration can still be effective, and ATC would

take care of the argumentation line including λ′.

An interesting question remains: given an attacking line, which is the right position

in it to perform an effective alteration? Observe that every attacking line ends with a

con argument. This implies that an argumentation line ending with a pro argument

could never be an attacking line. However, not every line ending with a con argument

is an attacking line. Finally, the removal of a con argument in an attacking line

turns it into non-attacking, and the removal of a pro argument in such a line yields

an upper segment that is an attacking line. That is, the only way to effectively

alter an attacking line is by the removal of a con argument; removing a pro would

potentially augment the threat to the root. These intuitions are formalized through

the following propositions. Finally, Lemma 3 shows that any alteration necessarily

needs to be applied over a con argument in order to be effective.

Proposition 7

If λ is an attacking line in TP(A) ∈ TreesP then λ has even length.

Proof

By reductio ad absurdum, if we assume an attacking line λ to be of odd length, its leaf

argument is a pro argument. From Proposition 4.3, we know that the leaf is marked

as U. From Definition 13, we know that an attacking line has its pro arguments

marked as D. This means that λ is not attacking, contrary to the hypothesis. �

Corollary 2

A line ending with a pro argument can never be an attacking line.

For the following corollary, observe that the upper segment of a con argument in

any line renders a line whose leaf is a pro argument. Thus, according to Corollary 2

it cannot be attacking.
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Corollary 3

The upper segment of a con argument in any line is a non-attacking line. That is,

for any λ ∈ TP(A) and any B ∈ λ−, the upper segment λ↑(B) is non-attacking.

Proposition 8

The upper segment of a pro argument in an attacking line is also an attacking line.

That is, if λ ∈ TP(A) is attacking then for any B ∈ λ+, the upper segment λ↑(B)

keeps being attacking.

Proof

Line λ being attacking means that its marking sequence corresponds to the regular

expression (DU)+ (see Definition 10 and Proposition 6). When cutting the line on

a pro argument, the resulting upper segment λ↑(B) still conforms to the regular

expression (DU)+, since removing a D placed below a U does not change the latter

U mark. (Note that since λ↑(B) ends in a con argument, from Proposition 4.3, the

leaf is marked as U.) Hence, λ↑(B) keeps being attacking. �

Lemma 3

Given a non-warranting treeTP(A) ∈ TreesP, a line λ ∈ TP(A), and an argument

B ∈ λ; if λ is altered on B and B ∈ λ− then λ is effectively altered.

Proof

Assuming λ is altered on B and B ∈ λ−, we have to prove that λ is effectively

altered on B. From Definition 14, we know that λ↑(B) is the resulting altered line,

and since we know that B is a con argument in λ, we also know that λ↑(B) cannot

be attacking (see Corollary 3). Finally, since the conditions on Definition 15 are

fulfilled, we know that λ is effectively altered on B. �

Proposition 9

Given a non-warranting tree, if there is a D-rep line λ, then either λ’s length is odd

or there is some D-rep λ′ such that λ′ is adjacent to λ and λ′’s length is odd.

Proof

Since λ is a D-rep, we know that it is adjacent to an attacking line λa (see Lemma. 1).

We also know λ has some D-rep sequence (repeated sequence of D nodes) (see

Definitions 10 and 11). Observe that the first D from such a sequence is the

adjacency point, say B, between λ and λa (see Definition 12 and Lemma. 1). Since

λa is attacking we know that this node (B) corresponds to a pro argument (see

Definition 13). Therefore, we know that the second D in the D-rep sequence in λ

corresponds to a con argument, say C, and since the leaf of a line is always marked

as U (see Proposition 4.3) we necessarily have that C is not λ’s leaf.

Afterwards, we know that there is an extra argument defeating C which is pro.

If such an argument is λ’s leaf, then we have that λ ends in a pro argument and

therefore it is easy to see that λ’s length is odd.

On the other hand, if it is not λ’s leaf, we necessarily have that either λ eventually

ends in a pro argument, being odd its length in such a case; or that there is some

other adjacent D-rep λ′ whose adjacency point is C and λ′’s length is odd. This is

so, given that there is some U node defeating C (given that C is marked as D), and
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since such a node corresponds to a pro argument, λ′ is necessarily an odd-length

D-rep line. �

Proposition 10

The upper segment of a pro argument in a D-rep line is an attacking line if there is

no other odd-length D-rep line adjacent to it. That is, if λ ∈ TP(A) is a D-rep line

then for any B ∈ λ+, the upper segment λ↑(B) is an attacking line if it holds that

for any λ′ ∈ TP(A), if λ′ is adjacent to λ↑[B] then λ′ is not an odd-length D-rep.

Proof

Given a D-rep line λ ∈ TP(A) and some B ∈ λ+, we will assume there is no

other odd-length D-rep λ′ ∈ TP(A), such that λ′ is adjacent to λ↑[B]. By reductio

ad absurdum, we will assume that altering λ over the pro argument B ends in a

non-attacking upper segment λ↑(B).

Let us assume argument C to be the adjacency point between λ and the adjacent

attacking line, say λa (in accordance to Lemma 1). From Lemma 2, we know that C
is a pro argument, i.e., C ∈ λ+ and C ∈ λ+

a . The following alternatives arise:

(1) If B = C or B ∈ λ↑(C) then the alteration affects not only to λ but also to λa
(since in such a case, it holds that B ∈ λa). Afterwards, since B is a pro argument

and B ∈ λa, from Property 8, we know that λ↑(B) ends up being attacking, reaching

the absurdity.

(2) On the other hand, if C ∈ λ↑(B) then the alteration affects only to λ (since

B /∈ λa). Afterwards, since C is defeated in the adjacent attacking line λa by an

undefeated argument, the alteration of λ over B will not change λa’s attacking status.

This means that the dialectical tree will keep being non-warranting, and therefore,

the alteration of λ will render an upper segment which will be either D-rep or

attacking. For the former case, we will assume λ↑(B) as D-rep. By hypothesis, we

also know that there is no odd-length D-rep adjacent to λ↑[B], and afterwards, from

Proposition 9, we know that λ↑(B) necessarily ends being of odd length. Finally, we

reach the absurdity given that B is a pro argument and therefore, we know that

λ↑(B)’s length is even.

Hence, the only option for λ↑(B) is to be attacking. �

The need to avoid alternating lines over pro arguments is highlighted through the

following remark, which appears from the results shown by Propositions 10 and 8.

Remark 2

The alteration of a non-warranting line over a pro argument can render an attacking

upper segment.

It is clear that any effective alteration of an attacking line needs to be performed

over a con argument in it. However, not necessarily every attacking line in a tree

has to be altered in order to obtain a tree free of attacking lines. This situation is

illustrated next and formalized afterwards by Lemma 4.

Example 9

Consider the non-warranting tree depicted in Figure (a). The three argumentation

lines λ1, λ2, and λ3 are attacking. Note that λ1 and λ2 are adjacent at B1 which is
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marked as U, and the same situation occurs regarding λ1 and λ3. However, λ2 and λ3

are adjacent at B4 which is placed below B1. To warrant the root argument, we need

to alter every attacking line from the tree. Nonetheless, two different alternatives

arise, either to alter both λ2 and λ3 and turning in consequence λ1 to non-attacking

[see Figure (b) on the right], or to alter only λ1 which ends up turning both λ2 and

λ3 to non-attacking [see Figure (c)]. Note that in both cases the resulting dialectical

trees end up as warranting.

This example shows a particular configuration in which we can reduce the number

of attacking lines to be altered: attacking lines that are adjacent at an argument

marked as U. This requirement comes from the following analysis: if the adjacency

point is marked as U, the next argument in each of the (attacking) lines is necessarily

marked as D, and an effective alteration on any of these lines would turn it into a

U argument, consequently changing the marking of the adjacency point.

Lemma 4

Given TP(A) ∈ TreesP and two attacking lines λ1 ∈ TP(A) and λ2 ∈ TP(A)

adjacent at an argument B marked as U. Effectively altering λ1 and every attacking

line adjacent to it at any argument below B, turns λ2 to non-attacking.

Proof

For the particular case in which B is λ1’s leaf, this proof results trivial since λ1 = λ2.

Consequently, let us assume λ1 = [A, . . . ,B,C, . . .]. Since λ1 is attacking and B is

marked as U, we know that C is marked as D. To achieve the effective alteration

of λ1 and that of every attacking line adjacent to it at any argument below B, two

options arise: either changes are done (1) below C or (2) above C. Note that C should

not be deactivated (removed) since it is a pro argument and an effective alteration

is only ensured when applied over a con argument (see Lemma 3), and moreover,

since λ1 is attacking, from Property 8, we know that altering it over C will result in

a still-attacking upper segment. For (2) it is clear that not only λ1 results effectively

altered but also λ2 since both share the common upper segment [A, . . . ,B]. On the

other hand, for (1), the effective alteration of λ1 and every attacking line adjacent to

it at any argument below B provokes C to be marked as U. This turns B’s mark to

D independently from the existence of λ2. Hence, λ2 results unaltered in form but

its marking sequence turns to D-rep, i.e., non-attacking. �

Now, we know that, for certain sets of attacking lines, just some of them have

to be altered in order to render every line in the set into non-attacking. Consider a

situation similar to the one expressed through Lemma 4, but with λ1 and λ2 adjacent
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at an argument B marked as D. In this case, the effective alteration of λ1 (along

with the attacking lines adjacent to it below B) would not turn λ2 to non-attacking,

since B’s mark D can only turn to U by changing the mark of all of its children to

D. Hence, λ2 would need to be altered as well.

Consequently, we should identify a subset of attacking lines, named attacking set,

in a tree such that altering only the lines it contains (no more, no less) would yield a

tree free of attacking lines. For instance, in order to turn to warranting the dialectical

tree depicted in Figure (a) from Example 9, two possible subsets of attacking lines

appear: X1 = {λ1} and X2 = {λ2, λ3}. Ideally, we would prefer the attacking set of

smallest cardinality. However, this restriction is left as a minimal change criterion.

That is, it is not ensured that altering only λ1 instead of both λ2 and λ3, provokes

less change in the de.l.p. Thus, to introduce the formal definition of attacking set, we

will rely upon an alteration criterion identified as ≺[TP(A)] to recognize among the

subsets of lines fromSP(A) – the bundle set determiningTP(A) (see Definition 6) –

that set whose effective alteration of every line contained in it would provoke as less

change as possible in P with the objective to turn TP(A) into warranting.

Definition 16 (Alteration Criterion)

Given a de.l.p. P and an argument A ∈ ArgsP, the alteration criterion ≺[TP(A)] ⊆
(LinesP × LinesP) over the dialectical tree TP(A) ∈ TreesP, is the set of pairs

(X1, X2) stating that the effective alteration of every line in X1 ⊆ SP(A) is assumed

to provoke less change than the effective alteration of every line in X2 ⊆ SP(A).

The infix notation X1≺[TP(A)]X2 will be used to refer to (X1, X2) ∈ ≺[TP(A)].

Note that the alteration criterion defined above can be concretized by pursuing

minimality according to set cardinality, such that for any pair of sets X1 and X2 of

attacking lines fromTP(A), X1≺[TP(A)]X2 holds iff |X1| < |X2| holds. Nevertheless,

we keep this criterion abstract in order to render a theory without unnecessary

restrictions. This decision benefits the pursuit of a model of change that allows to

guarantee different sorts of minimal change.3 The notion of attacking set relying

upon the alteration criterion, as is formalized next in Definition 17, favors this

objective by choosing minimal sets of lines to be altered from a dialectical tree (see

Theorem 3) in order to render an altered dialectical tree which ends up warranting

its root argument (see Theorem 2).

Definition 17 (Attacking Set)

Given a de.l.p. P, and the dialectical tree TP(A) ∈ TreesP; the attacking set

Att(TP(A)) is the set of lines satisfying:

(1) Att(TP(A)) ⊆ {λ ∈ TP(A) | λ is an attacking line in TP(A)};
(2) there is no pair of lines λ and λ′ in Att(TP(A)) such that λ is adjacent to λ′ at

an argument marked as U;

(3) there is no set X satisfying (1) and (2) such that Att(TP(A)) � X or

X≺[TP(A)]Att(TP(A)).

3 Different perspectives on minimal change will be discussed later, in Section 6.
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The recognition of the attacking set Att(TP(A)) from a given dialectical tree

TP(A) involves the verification of three conditions: firstly, Att(TP(A)) is a subset

of the set of attacking lines from TP(A); secondly, as stated in Lemma 4, if several

adjacent attacking lines with adjacency point Uappear, to provoke the effective

alteration of every one of them it is sufficient to alter only one of them; for the

twofold third condition, we have that the attacking set is maximal in the sense that

every line included in it must be effectively altered in order to render a warranting

tree (see also Theorems 2 and 3) and minimal in the sense that no attacking line

excluded from it needs to be explicitly altered (since it will be effectively altered as

a result of the alteration of the lines in Att(TP(A))) (see also Theorem 2). Finally,

the attacking set will be that which provokes as less change as possible according

to the alteration criterion ≺[TP(A)] (see Definition 16).

Clearly, the empty attacking set implies a warrating dialectical tree.

Proposition 11

If Att(TP(A)) = ∅, then TP(A) is warranting.

Proof

Straightforward from Definition 17 and Corollary 1. �

Theorem 2

Given the non-warranting tree TP(A) ∈ TreesP built from a set X ⊆ LinesP of

argumentation lines in the context of a de.l.p. P; the dialectical tree resulting from

the effective alteration of every line in Att(TP(A)) ends up warranting.

Proof

Let us assume the existence of a de.l.p. P′ ⊆ P which is obtained from P by

effectively altering every line λ ∈ Att(TP(A)) according to Definition 15. From

Corollary 1, we know that any dialectical tree free of attacking lines is warranting.

From Definition 17, we know that Att(TP(A)) contains all the attacking lines

in TP(A) excepting the ones that have some attacking line within Att(TP(A))

adjacent at an argument marked as U. Hence, we need to show that every attacking

line λ′ ∈ TP(A) such that λ′ �∈ Att(TP(A)) is not an attacking line in TP′(A) ∈
TreesP′ , which follows from Lemma 4. �

Theorem 3

Given the non-warranting tree TP(A) ∈ TreesP built from a subset of LinesP of

argumentation lines in the context of a de.l.p. P; the dialectical tree resulting from

the effective alteration of every line in any proper subset of Att(TP(A)) ends up

non-warranting.

Proof

From Definition 17, every line in Att(TP(A)) is attacking, hence if a line λ ∈
Att(TP(A)) is left unaltered, the resulting dialectical tree will contain an attacking

line, and from Corollary 1, it will be non-warranting. �
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5 Argument theory change

We apply to DeLP the deactivating revision operator (Rotstein et al. 2008), that

is part of ATC. In the dynamic abstract argumentation framework (Rotstein et al.

2010), only active arguments are considered by the argumentative reasoner. Thus,

by deactivation of an argument, we refer to the reasoner no longer considering

that argument. In its abstract form, the ATC argument revision operator revises an

argumentation theory by an argument seeking for its warrant. In this article, we

propose a concrete approach, from the abstract logic for arguments in past papers

to the logics used for de.l.p.s. These programs constitute the KBs from where the

argumentation framework is built. The deactivating ATC approach reified to DeLP

was preliminary introduced in (Moguillansky et al. 2008) and is extended here.

For specifying the ATC argument revision upon DeLP, we firstly describe how

to expand a de.l.p. by an argument A, to afterward modify it (if necessary) by

analyzing the dialectical tree rooted in A, aiming at warranting A. To this end, we

follow the abstract deactivating approach to ATC which identifies the arguments to

be deactivated from the tree. Deactivation of arguments in DeLP involves removal

of rules from the worked de.l.p. Conversely, the modification of the program aims

at altering the tree, turning it to warranting. Doing this provokes change, not

only regarding the de.l.p. and the dialectical tree rooted in A but also regarding

the set of warrants: some arguments could now be warranted, while some others

could consequently lose such condition. Alternatives to control change according to

different standpoints will be discussed in Section 6.

Besides removing rules (arguments deactivation), alteration of trees could be

performed through addition of rules (argument activation), in order to generate new

arguments to be incorporated to the tree, in order to turn it to warranting. This

approach, referred to as activating, falls beyond the scope of this article and was

treated in the context of an abstract argumentation framework in (Moguillansky

et al. 2010). Its reification to concrete logics like DeLP’s is part of future work.

The main idea towards the alteration of the tree is to effectively alter each

(attacking) line from the attacking set. This will be done through two main

mechanisms: a selection function which maps the appropriate argument to be

deactivated from each line, and an incision function which maps the appropriate

defeasible rules inside the argument to be deleted from the de.l.p. To decide which

con argument is selected in a given line, we will assume a selection criterion through

which the set of con arguments – from each argumentation line – could be ordered.

A similar situation occurs among the defeasible rules inside arguments which will

be addressed through a rule-based criterion.

Deactivating a con argument from an attacking line λ ∈ TP(A) always ends

up yielding a non-attacking upper segment (see Corollary 3) and thus, the line

ends up effectively altered (see Lemma 3). However, a major drawback appears:

since deactivating an argument B means the deletion of some defeasible rules from

the de.l.p., other arguments containing some of these rules would also disappear.

Particularly, a line λ′ ∈ TP(A) containing some of those disappearing arguments

will be collaterally altered. This is referred to as a collateral incision provoked by the
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original incision over B. Observe that a collaterally incised non-attacking line might

be turned to attacking. Hence, the revision process should consider to alter not only

attacking lines, but also other lines that may turn to attacking from a collateral

incision. The alteration set is identified as the set of every line in TP(A) to be

altered by the revision process. Note that this new set would contain the attacking

lines contained in the attacking set, while possibly adding more lines. The general

outline of the revision process is given in Schema 1.

Schema 1 The Revision Process
Input: A de.l.p. P = (Π,Δ) and an argument A
Output: A revised de.l.p. P ∗A

1: Expand the program P by A to obtain the program P′ = (Π,Δ ∪A)

2: Obtain the dialectical tree TP′ (A) ∈ TreesP′

3: Define a selection function γ : LinesP′ → ArgsP′ mapping each λ ∈ TP′ (A)

to the con argument B ∈ λ− whose deactivation would provoke less change

according to a selection criterion “≺λ”.

4: Define an incision function σ : ArgsP′ → 2L
d

to map the selected argument γ(λ)

from each line λ to some defeasible rules inside γ(λ) according to a rule-based

ordering criterion “≺”.

5: Define the alteration set Λ containing every line from the attacking set

Att(TP′(A)) along with those lines from TP′(A) that would be turned into

attacking by a collateral incision.

6: P ∗A = (Π,Δ′), where Δ′ = (Δ ∪A) \
⋃

λ∈Λ σ(γ(λ))

Regarding minimal change, it is natural to look for changing a program by deleting

as few rules as possible from it. However, each defeasible rule that is deleted has a

direct impact in the resulting dialectical tree analyzed to give warrant to the new

argument. Consequently, we can identify three different axes of change:

(1) how to decide among the con arguments in each line to be altered, which will

be controlled by the selection criterion;

(2) how to decide among the defeasible rules inside each selected argument to be

deactivated, that will be controlled through the rule-based criterion;

(3) how to deal with the problem of collateral incisions.

We will study in detail the first and third axes of change, whereas the second

axis is abstracted away by assuming it to be given in advance. Regarding the latter

axis, an unanswered question is left to be addressed throughout this section: is it

necessarily mandatory to avoid collateral incisions, or is it possible to take advantage

of a collateral incision to alter several lines at once? Moreover, for cases in which

the latter question is true, how such pursuit would affect the first two axes? The

reader should keep in mind that the need to manage different criteria of change is

related to the inherently complex nature of the problem; furthermore, each criteria

is meant to interact with the others in order to achieve an appropriate solution.

Note that this solution would involve a compromise, since the main challenge in

this model of change is to achieve a balance among the three axes of change. In
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consequence, sometimes it will be necessary to update some of the initial orderings

towards this balance. This discussion will be attended later in this section.

5.1 Basic elements of the change machinery

The argument revision operation will be performed over a de.l.p. P = (Π,Δ) by

a new argument 〈A, α〉. This argument will end up being warranted from the

program resulting from the revision. However, 〈A, α〉 is required to constitute a

proper argument structure after the addition of A to P. Thus, A∪Π should have

a defeasible derivation for α. Since the set Π of strict rules and facts represents

(in a way) the current state of the world (which is indisputable), it is clear that

A does not stand by itself, but in conjunction with Π. Argument 〈A, α〉 could be

brought up, for instance, by an agent sensing the environment. In such a case, 〈A, α〉
is going to be called P-external, since it may contain defeasible rules external to

the program P. However, if we consider the external information in A along with

the set Δ of defeasible rules in P, then A should be an argument compliant with

Definition 1.

Definition 18 (External Argument Structure)

Let P = (Π,Δ) be a de.l.p., 〈A, α〉 is a P-external argument structure (or simply,

external argument) for a literal α from P iff A �⊆ Δ and 〈A, α〉 is an argument

structure from (Π,Δ∪A). The domain of P-external arguments is identified through

the set XargsP.

Once the external argument 〈A, α〉 is added, the dialectical tree rooted in it has

to be built in order to check its warrant status. The change machinery alters this

tree only whenever it does not warrant 〈A, α〉. Therefore, such tree rooted in A is

referred to as temporary dialectical tree, since it will (in general) be an intermediate

state during the revision process.

Although it would be interesting to provoke 〈A, α〉 to end up warranted only

when α is not already warranted from another argument, it is desirable to always

achieve warrant for 〈A, α〉 in order to support the new external information brought

by it. Therefore, since warrant for α could be easily checked beforehand, the stress

is put on the complications arising of ensuring A to end up undefeated.

Given the temporary dialectical tree, for every line λ in it, a con argument is

selected over λ− on behalf of the selection criterion “≺λ”, by means of an argument

selection function γ. This criterion codifies one of the axes of change, setting an

ordering among the con arguments in a given line. Afterwards, we present an

example illustrating a reasonable initial setting of the set “≺λ”. Later in this section

it will be clear why the proposed ordering is just “initial”, and not definitive.

Definition 19 (Selection Criterion (Set))

Given a de.l.p. P and the dialectical tree TP(A) ∈ TreesP, for any line λ ∈ TP(A),

the selection criterion ≺λ ⊆ (ArgsP ×ArgsP) is the set of pairs (B1,B2) stating that

the deactivation of B1 ∈ λ− is assumed to provoke less change than that of B2 ∈ λ−.

The infix notation B1≺λB2 will be used to refer to (B1,B2) ∈ ≺λ.
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Example 10

Assuming the root argument A as the main issue being disputed, it is natural to

think that the lower we go in an argumentation line in the tree, the most we move

away from the main issue. Therefore, when looking for an argument in a line to be

incised, the lowest the argument we deactivate is, the least change we provoke to the

program in relation to the main issue in dispute. This intuition is used to initialize

the selection criterion (different postures are discussed in Section 6):

Initial setting: Given a line λ ∈ SP(A) where SP(A) determines TP(A),

≺λ = {(B1,B2) | B1 ∈ λ−,B2 ∈ λ−, and B2 ∈ λ↑(B1)}

The selection criterion will allow us to univocally determine which argument is

the right one to be deactivated in order to effectively alter any argumentation line.

Recall that the choice of selecting just con arguments comes from Lemma 3. In

addition, we assume the existence of a special kind of argument, referred to as

escape argument and noted as ε, such that ε ∈ ArgsP for any de.l.p. P. The escape

argument is used for theoretical matters only. Finally, no argument from ArgsP
defeats ε and ε does not defeat any argument from ArgsP.

Definition 20 (Argument Selection Function “γ”)

Given a de.l.p. P, the argument selection function γ : LinesP → ArgsP is defined as:

γ(λ) =

{
ε if λ− = ∅
B ∈ λ− otherwise

such that if ≺λ �= ∅, then there is some C ∈ λ− where (B,C) ∈ ≺λ and for any other

C′ ∈ λ− such that (C′,B) ∈ ≺λ it holds that (B,C′) ∈ ≺λ.

After an argument was selected for incision, a decision should be made according

to which portion of the argument is going to be cut off. Since arguments are

formed by defeasible rules, we provide a mechanism to set a preference over sets

of defeasible rules: the rule-based criterion. This criterion addresses the second axis

of change stated before. Rules in de.l.p.s can be ordered in a wide variety of

ways, e.g., dynamically through a lexicographic ordering method. This discussion

exceeds the scope of the article. Although incisions are going to rely on the rule-

based criterion, we will abstract away from it and will assume an order is given

beforehand.

Definition 21 (Rule-Based Criterion)

Given a de.l.p. (Π,Δ), the rule-based criterion ≺ ⊆ 2L
d × 2L

d

defines a total order

between pairs of subsets of Δ.

Definition 22 (Argument Incision Function “σ”)

Given a de.l.p. P, a function σ : ArgsP → 2L
d

is an argument incision function such

that:

σ(B) =

{
∅ if B = ε

Γ otherwise

where ∅ ⊂ Γ ⊆ B such that Γ≺Γ′ holds for any Γ′ ⊆ B, where Γ �= Γ′.
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An argument incision function σ is applied to the selected argument, identifying a

non-empty subset of defeasible rules to be cut off from the de.l.p. Once the incision

over a con argument is performed, the line it belonged to ends up effectively altered.

Lemma 5

Given a de.l.p. P and TP(A) ∈ ATreesP, if “σ” is an incision function then for any

λ ∈ TP(A), P \ σ(γ(λ)) determines an effective alteration of λ.

Proof

Considering γ(λ), from Definition 20, two options arise: either λ− = ∅, in which case

γ(λ) = ε, or otherwise we know γ(λ) ∈ λ−. Considering σ(γ(λ)), from Definition 22,

again we have two options: either (1) γ(λ) = ε, in which case σ(γ(λ)) = ∅, or

otherwise, (2) σ(γ(λ)) = Γ, where Γ ⊆ γ(λ). For (1), P \ σ(γ(λ)) = P determines a

null alteration of λ (see Definition 14). However, since λ− = ∅, we know λ contains

only the root argument which means that λ has odd length, and from Proposition 7

(contrapositive), we know thatλ is not attacking. Hence, the alteration of λ is

effective (see Definition 15). On the other hand, for (2), P\σ(γ(λ)) alters λ rendering

a non-attacking upper segment λ↑(B) of λ. Hence, λ is altered by deactivating one

of its con arguments. From Lemma 3, we know that this ends up in an effective

alteration of λ which means that it turns to non-attacking (independently of λ being

previously attacking). Finally, P \ σ(γ(λ)) determines an effective alteration of λ

(Definition 15). �

To deactivate an argument, we need to delete defeasible rules from the de.l.p. at

issue. These rules are mapped by the incision function applied over that argument.

Moreover, the incised defeasible rules are considered to provoke the least possible

change in concordance with the minimal change principle. Regretfully, sometimes

incisions will affect more arguments than the one being incised. In order to identify

this situation, we introduce the notion of collateral incision.

Definition 23 (Collateral Incision)

Given a de.l.p. P, an incision over an argument D provokes a collateral incision over

an argument B iff σ(D) ∩ B �= ∅. For any λ ∈ LinesP, if B ∈ λ and σ(D) ∩ C = ∅
for every C ∈ λ↑(B), we say σ(D)(B) is the uppermost collateral incision over λ where

σ(D)(B) = σ(D) ∩B.

When a collateral incision occurs over more than one argument in the same

line, we will be interested in the uppermost collaterally incised argument, since its

deactivation will make the arguments below it in the line to disappear from the

resulting tree. Hence, non-uppermost collateral incisions will not be affecting the

status of the root argument in the temporary tree.

From now on, we will make reference only to uppermost collateral incisions

(though sometimes we will omit the word “uppermost”) through the notation

introduced in the above definition. Collateral incisions represent the main difficulty

to overcome: the involuntary deactivation of pro arguments in non-attacking lines

might turn them into attacking lines. In the case of the pro argument belonging to

an attacking line, as analyzed before, its deactivation would not change the line’s
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status (see Proposition 8). Moreover, although a collaterally incised con argument

does not turn lines into attacking, it would also be a source of possibly unnecessary

change. Therefore, it is desirable to select arguments in which there is a possibility

of incision that never results in a collateral incision to other arguments. This is

captured by the cautiousness principle.

(Cautiousness) γ(λ) \
⋃
{B in TP(A) | B �= γ(λ)} �= ∅, for every λ ∈ TP(A)

Definition 24 (Cautious Selections)

A selection function γ is identified as cautious iff it satisfies cautiousness.

A cautious selection function γ ensures that there is some incision function σ such

that for any λ ∈ TP(A), it follows σ(γ(λ)) does not collaterally incise any other

argument B in the tree; namely σ(γ(λ))(B) = ∅. Nonetheless, it is important to remark

that the possibility for an incision function to cut rules avoiding collateral incisions

will be highly dependent on the rule-based criterion. That is, an incision may apply

for the best option given by the criterion, but this might not be the best one to

avoid a collateral incision. In such cases, a possible alternative is to relax the order

given by the rule-based criterion. This matter speaks about the relation between the

second and third axes of change. The appropriate analysis of this subject is similar

to the selection criterion’s which motivates the inclusion of an update rule. This will

be made clear later in this section.

Example 11

From the tree of Example 5, the only possible selection in the attacking line [A,B1]

is B1, whereas for the attacking line [A,B2,B3,B4], the selection function could

return either B2 or B4, depending on the selection criterion. Regarding the selection

ofB4, it satisfies cautiousness because it has no intersection with any other argument.

In contrast, the selection of B2 would be non-cautious, since its two rules ∼a –≺y

and y –≺p belong to B1 and B3, respectively. Finally, considering B1 in the other

attacking line, we have that B1 ∩A = {x –≺z} and B1 ∩ B2 = {∼a –≺y}. However,

the remaining portion of B1 is non-empty: B1 \
⋃
{A,B2,B3,B4,B5,B6} = {y –≺x};

hence, the selection of B1 satisfies cautiousness.

Sometimes cautiousness may not be satisfied. In such a case, when a non-

cautious selection is unavoidable, the incision inevitably provokes collateral incisions.

Sometimes collateral incisions could be harmful: assume a line λ is collaterally incised

over B ∈ λ, thus provoking the involuntary deactivation of B. If B is placed above

the selection in that line, i.e., B ∈ λ↑(γ(λ)), then the regular (non-collateral) alteration

of λ – performed through the deactivation of γ(λ)– is left without effect. That is,

the effective alteration of λ, leaving a non-attacking line λ′, cannot be completely

trusted since collateral incisions might turn λ′ to attacking afterwards.

These situations need to be appropriately addressed to ensure the correctness

of the revision operation. Hence, an additional condition should be provided in

order to preserve every effective alteration from being collaterally altered. Next we

introduce the preservation principle, which avoids collateral incisions over any line to

occur over arguments placed above the selected argument in that line. In addition,
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preservation also ensures no collateral incision to occur over the root argument.

This is necessary to keep A active which is paramount to pursue its warrant. It is

important to note that the preservation principle is given as a logical formula to

restrict the respective images of the selection and incision functions. Note that this

principle does not intend to provide any specific procedure nor algorithm.

(Preservation) If σ(γ(λ′))(B) �= ∅, then B �=A and γ(λ) ∈ λ↑[B],

for every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ

This principle is illustrated in the figure depicted on the right and exemplified

in Example 12. When an incision in line λ′ (the left branch in the figure) results

in an uppermost collateral incision σ(γ(λ′))(B) over an argument B in line λ (right

branch), it must be ensured that the selection γ(λ) in line λ is performed on the

upper segment of B. Finally, note that if B is the root node A then the consequent

of the preservation principle is false (B = A), which forces the antecedent to be

false in order for the principle to hold. Hence, preservation requires σ(γ(λ′))(A) = ∅
to be satisfied. We refer to this individual condition as root preservation.

(Root preservation) σ(γ(λ))(A) = ∅, for every λ ∈ TP(A)

Example 12

Let us consider the dialectical tree on the right, upon which selections and incisions

are applied. Assuming the selections γ(λ1) = B5 and γ(λ2) = B6, and that the

incision over B5 provokes a collateral incision over B4, i.e., σ(γ(λ1))
(B4) �= ∅, we have

that, in order for preservation to hold, the selection over λ2 should be placed on or

above B4, i.e., γ(λ2) ∈ λ
↑
2[B4]. The alternative would be to find a different selection

function mapping to B2 from λ2, and thus the alteration of λ2 would finally result

from the incision over B2. Note that, if the old selection were kept, the collateral

incision over B4 would have yielded the attacking line [A,B2].
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When preservation is satisfied given that every collateral incision σ(γ(λ′))(B) occurs

solely over the selection B = γ(λ′) (and therefore, λ = λ′), the principle holds for

each line in the dialectical tree, since γ(λ) ∈ λ↑[B] is always satisfied. We refer to

this particular case as strict preservation.

(Strict preservation) If σ(γ(λ′))(B) �= ∅ then λ = λ′ and γ(λ) = B,

for every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ

An incision function satisfying strict preservation ensures no argument is collat-

erally incised by any incision in the tree excepting for the incision over the selected

argument itself. However, this principle is too restrictive and thus, it may sometimes

be impossible to satisfy. Observe that there exists a relation between cautiousness

and strict preservation: a selection function satisfying cautiousness ensures there

exists some incision function free of collateral incisions, while an incision function

satisfying strict preservation ensures that, with the actual configuration of incisions,

no collateral incisions over an argument different from the selected one will occur.

The following two propositions address such a relation between cautiousness and

strict preservation.

Proposition 12

Given a de.l.p. P, a dialectical tree TP(A), and a selection function “γ”, if

cautiousness is satisfied then there is some rule-based criterion which leads to a

strict-preserving incision function “σ”.

Proof

If γ is cautious, then for any line λ ∈ TP(A) there exists a set of rules Xλ ⊆ γ(λ)

that does not overlap with any other argument in TP(A), i.e., Xλ ∩ B = ∅,
for every λ ∈ TP(A), every B ∈ λ′, and every λ′ ∈ TP(A), such that γ(λ) �=
B. Let us assume a rule-based criterion such that for any Γ ⊆

⋃
λ∈TP(A) Xλ

and any Γ′ ⊆ Δ satisfying Γ ∩ Γ′ = ∅, it holds that Γ≺Γ′. Such rule-based

criterion leads to an incision function satisfying σ(γ(λ)) ⊆ Xλ, and then the

deactivation of each selected argument γ(λ), would not provoke any other argument

to be deactivated. That is, σ(γ(λ))(B) = ∅, for every λ ∈ TP(A) and any B �=
γ(λ). Observe that this condition leads to the verification of strict preservation.

Therefore, there exists a rule-based criterion leading to a strict-preserving incision

function. �

Proposition 13

Given a de.l.p. P, a dialectical tree TP(A), a selection function “γ”, and an incision

function “σ”, if strict preservation is satisfied then cautiousness is also satisfied.
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Proof

If σ is strict-preserving then no incision provokes collateralities. That is, if σ(γ(λ′))(B) �=
∅ then λ = λ′ and γ(λ) = B, for every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ. Thus,

σ(γ(λ′))(B) = ∅ holds always when B �= γ(λ) is ensured. This means that, in each λ,

there is a subset of γ(λ) that does not belong to any argument B �= γ(λ) in TP(A).

Therefore, γ is cautious. �

Proposition 12 states that, when a selection is cautious, even though it overlaps

with some argument, the incision over that selection might be performed outside

this overlapping. In this case, there is no collateral incision and strict preservation

holds. Finally, by Proposition 13, it is clear that a strict-preserving incision function

may be achieved only through cautious selections.

The three preservation principles are interrelated through the following propo-

sition. Afterwards, given a dialectical tree, we show the utmost importance of the

preservation principle regarding the controlled alteration of lines and any arising

collateralities towards achieving a warranting condition for the root argument.

Proposition 14

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and an argument incision

function “σ”,

(1) if preservation is satisfied, then root preservation is also satisfied.

(2) if strict preservation is satisfied, then preservation is also satisfied.

Proof

(1) Assume preservation is satisfied and consider B = A, if σ(γ(λ′))(A) �= ∅
then we know A �= A, which is absurd. Hence, σ(γ(λ′))(A) = ∅, and therefore,

root-preservation holds.

(2) Assuming strict preservation is satisfied, we know that if σ(γ(λ′))(B) �= ∅
then λ = λ′ and γ(λ) = B, for every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ. In

particular, this means that B �= A, given that from Definition 20, a selection is

necessarily a con argument, and thus it cannot be the root argument which is pro.

Besides, since γ(λ) = B it also holds that γ(λ) ∈ λ↑[B]. Finally, preservation is

satisfied. �

Definition 25 (Warranting Incision Function)

An argument incision function “σ” is said to be warranting iff it satisfies preservation.

The fact that an incision function satisfies the preservation principle ensures that

it will handle collateral incisions in a proper manner. Then, any arising attacking

line will be correspondingly effectively altered. For the following definition, recall

that SP(A) refers to the bundle set of argumentation lines in the dialectical tree

rooted in A from the de.l.p. P (see Definition 6).

Lemma 6

Given a de.l.p. P and a dialectical tree TP(A) ∈ ATreesP, if “σ” is a warranting

incision function, then for any set X ⊆ SP(A), P \
⋃

λ∈X σ(γ(λ)) determines the

effective alteration of each λ ∈ X.

https://doi.org/10.1017/S1471068411000603 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000603


926 M. O. Moguillansky et al.

Proof

If |X| = 1, let X = {λ} be effectively altered from P \
⋃

λ∈X σ(γ(λ)) (see Lemma 5).

We need to show that this property also holds when |X| > 1. Suppose now X

also contains a line λ′ ∈ X and assume its effective alteration provokes a collateral

alteration over argument B ∈ λ. By reductio ad absurdum, assume the effective

alteration of λ is affected by the collateral alteration provoked by λ′, this means

that the upper segment λ↑(γ(λ)) turns to attacking from the collateral incision over

B. This implies that γ(λ) /∈ λ↑[B]. However, since σ is known to be warranted,

from Definition 25, it satisfies preservation, hence since σ(γ(λ′))(B) �= ∅, we know

that γ(λ) ∈ λ↑[B], which is absurd. Afterwards, no line λ′ ∈ X affects the effective

alteration of any λ ∈ X. Observe that this also holds for any X ⊆ SP(A). Finally,

P \
⋃

λ∈X σ(γ(λ)) determines the effective alteration of each λ ∈ X. �

Sometimes, the ordering among con arguments established by the selection

criterion could make the incision function fail to be warranting. That is, since

incisions are determined by selections, the only solution to this issue is for the

selection criterion to propose another candidate. This involves an update of the initial

order. Such an update will provoke the selections to reassign some of the original

mappings. Thereafter, the incisions over the new mappings will also be reassigned,

and finally preservation would be satisfied, thus obtaining a warranting incision. For

instance, in order to guarantee preservation, in Example 12 it is suggested that the

selection over λ2 be reassigned from B6 to B2. Since Definition 20 determines the

mapping γ(λ2) to the “best” argument (i.e., B6) according to the selection criterion,

the alternative to provoke the selection to determine a different mapping (i.e., B2) is

to update (or change) the ordering among con arguments.

Note that the selection order is being re-accommodated to the detriment of the

first axis of change but favoring the other two, bringing balance among the three

axes. This is quite natural since the initial order is just a general posture but the

updated order would finally suit the particular domain in which the line is immersed:

the dialectical tree. The set determined by the selection criterion is updated through:

(Update rule) For every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ, where preservation

does not hold for σ(γ(λ′))(B), then the new selection order is

≺λ \ {(B1,B2) ∈ ≺λ | B1 /∈ λ↑[B] or B2 /∈ λ↑[B]}.

Observe that the update rule forces a set ≺λ to be replaced by ≺λ↑[B]. This will

prevent an argument placed below B to be mapped by the selection function γ(λ),

and therefore, preservation will now be satisfied for the case σ(γ(λ′))(B), which failed

beforehand.

Theorem 4

There is always a selection criterion leading to a warranting incision.

Proof

To this end, it is sufficient to show one selection criterion that always allows for a

warranting incision function: the selection of the root’s direct defeaters. Hence, given

a de.l.p. P = (Π,Δ) and a dialectical tree TP(A) ∈ ATreesP, for every λ ∈ TP(A),
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it follows γ(λ) defeats A, thus λ = [A, γ(λ), . . .]. By reductio ad absurdum, let us

assume that such selection criterion does not lead to a warranting incision function.

This means that at least one incision is not compliant with the preservation principle,

i.e., an incision of a selected argument over λ′ ∈ TP(A) triggers a collateral incision

over an argument B ∈ λ, where λ ∈ TP(A), namely σ(γ(λ′))(B) �= ∅, in a way that

(a) γ(λ) /∈ λ↑[B], and/or (b) B =A.

For a), the only option we have is A = B, hence case a) is resolved in b).

Afterwards, for b), we would necessarily have a collateral incision over the root

argument. Thus, for some λ′ ∈ TP(A), it follows σ(γ(λ′))(A) �= ∅. Note that there

cannot be an argument C in TP(A) such that C ⊆ A and C is a direct defeater

for A. For this to take place, A∪C∪Π =A∪Π would have to be contradictory.

Therefore, for any λ ∈ TP(A), it is never the case that γ(λ) ⊆ A, and thus there

is some set Xλ ⊆ γ(λ) that could be incised without provoking a collateral incision

over A, i.e., Xλ ∩ A = ∅. Besides, since we want to warrant A, it is natural to

assume that any rule-based criterion should preserve A from being incised, and

therefore, for any Γ′ ⊆ (Δ \A) and any Γ ⊆ A, it holds that Γ′≺Γ. Hence, for any

λ ∈ TP(A), σ(γ(λ)) ⊆ Xλ and therefore σ(γ(λ))(A) = ∅ hold, which is absurd.

Finally, it is absurd to assume that selecting the root’s direct defeaters does

not lead to an incision function satisfying preservation, and therefore by effect

of the update rule, there is always a selection criterion leading to a warranting

incision. �

The alteration of every line in a dialectical tree through a given warranting incision

function, renders a warranting tree as is shown next.

Theorem 5

Given a de.l.p. P and a dialectical tree TP(A) ∈ ATreesP, for any warranting

incision function “σ”, A ends up warranted from P \
⋃

λ∈SP(A) σ(γ(λ)).

Proof

Straightforward from Theorem 4, Lemma 6, Definition 15, and Corollary 1. �

Regarding the amount of change provoked to a de.l.p., following the theorem

above, no minimality is pursued so far. In the rest of the article, we will provide

additional theoretical elements towards minimal change. To this end, we will study

how to bring balance among the three axes of change introduced on page 918.

As suggested before, when collateral incisions are unavoidable, we could still

take advantage of them. That is, a collateral incision could be “forced” to provoke

an attacking line to turn into non-attacking by collaterally incising its selected

argument. Such a side-effect would be profitable, and it is described by the following

principle. (Example 13 illustrates the verification of this principle.)

(Profitability) If σ(γ(λ′))(B) �= ∅, then λ ∈ Att(TP(A)) and γ(λ) = B,

for every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ6.

The profitability principle validates only those cases in which every collateral

incision occurs over an attacking line and coincides with the selection in that line.

Therefore, by updating the selection criterion (applying the update rule) towards
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profitability verification, we have the chance to take advantage of collateral incisions

and to effectively alter several attacking lines at once, thus reducing the amount of

deleted rules in the de.l.p. However, this principle is not always possible to satisfy.

For such cases, a weak profitability principle is proposed.

(Weak Profitability) If σ(γ(λ′))(B) �= ∅, then γ(λ) = B,

for every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ.

Weak profitability skips checking whether the collaterally altered line is contained

by the attacking set or not. However, it still satisfies that the collaterally incised

argument is the selection in that line, i.e., satisfying this principle would still help

to reduce the deletion of rules from the de.l.p.

Example 13

Consider the tree TP(A) on the right, with three argumentation lines: λ1 =

[A,B1,B3,B5], λ2 = [A,B2,B4], and λ3 = [A,B6], of which λ1 and λ3 are attacking

lines. Assume the selections γ(λ1) = B5, γ(λ2) = B2, and γ(λ3) = B6. The following

table shows potential configurations of incisions and collateral incisions, along

with their compliance with the principles of profitability and weak profitability:

Incision Coll. Inc. Profitability Weak Profitability

B5 B4 No, γ(λ2) �= B4 and λ2 /∈ Att(TP(A)) No, γ(λ2) �= B4

B5 B2 No, λ2 /∈ Att(TP(A)) Yes

B5 B6 Yes Yes

Proposition 15

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and an argument incision

function “σ”:

(1) if profitability is satisfied, then weak profitability is satisfied;

(2) if weak profitability is satisfied, then preservation is satisfied.

Proof

(1) Straightforward from profitability and weak-profitability.

(2) For any λ ∈ TP(A) and any B ∈ λ, B = γ(λ) holds. Afterwards, B ∈ λ↑[B]

and A �= B hold given that B ∈ λ− (see Definition 22). Finally, preservation is

satisfied. �

https://doi.org/10.1017/S1471068411000603 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000603


Dynamics of knowledge in DeLP through Argument Theory Change 929

5.2 Alteration set recognition

Given TP(A) ∈ ATreesP, the warrant for A may be obtained by effectively

altering a subset X ⊆ SP(A) of its lines via incisions. This would render a (altered)

warranting tree. Collateral incisions may appear as the main drawback, hence the

analysis will require to identify hypothetical trees HP(A,Ψ): dialectical trees that

would result by removing the defeasible rules contained in a given set Ψ ⊆ P from

the de.l.p. P.

Definition 26 (Hypothetical Tree)

Given a de.l.p. P = (Π,Δ), an argument A ∈ ArgsP, the tree TP(A) ∈ ATreesP,

and a set Ψ ⊆ Δ of defeasible rules; the hypothetical treeHP(A,Ψ) is the dialectical

tree built from the set X1 ∪X2 of lines, where X1 and X2 are defined as follows:

X1 = {λ ∈ TP(A) | ∀B ∈ λ : Ψ ∩B = ∅}
X2 = {λ↑(B) | λ ∈ TP(A) such that ∃B ∈ λ, ∀B′ ∈ λ↑(B) :

Ψ ∩B �= ∅ and Ψ ∩B′ = ∅}.

Observe that hypothetical trees are built from sets of lines which may be considered

as non-exhaustive lines, and therefore, HP(A,Ψ) for any Ψ, is contained in the set

TreesP of (non-acceptable) dialectical trees from P.

Proposition 16

Given a de.l.p. P = (Π,Δ) and an argument A ∈ ArgsP, for any set Ψ ⊆ Δ of

defeasible rules, it holds that HP(A,Ψ) ∈ TreesP.

Proof

From Definition 26, a hypothetical treeHP(A,Ψ) is built by a set X1 ∪X2 of lines.

If Ψ = ∅, it is easy to see that X1 = SP(A), where SP(A) is the bundle set of the

tree TP(A) ∈ ATreesP, and X2 = ∅. Hence, HP(A,Ψ) = TP(A) and therefore

HP(A,Ψ) ∈ TreesP. The same situation occurs when Ψ is such that there is no

defeasible rule β ∈ Ψ such that β ∈ B, where B ∈ λ for any λ ∈ TP(A). When

any of these alternatives hold, we know X2 �= ∅, and therefore,HP(A,Ψ) is known

to consider some non-exhaustive lines. This is so, given that X2 will contain upper

segments λ↑(B) of lines λ ∈ TP(A) for some B ∈ λ. Since TP(A) ∈ ATreesP,

we know it is composed of acceptable and exhaustive lines from ALinesP. From

Remark 1, we have that λ ∈ LinesP, and from Proposition 2 and Definition 4, we

have that λ↑(B) ∈ LinesP for any B ∈ λ. Finally, HP(A,Ψ) ∈ TreesP holds for

any Ψ. �

As being (informally) introduced before, the alteration set of a dialectical tree

TP(A), is a subset of lines from SP(A) such that their effective alteration will

determine a resulting warranting tree for A. Ideally, the attacking set Att(TP(A))

will be included within this set, however, other lines could arise to be altered:

those that may collaterally turn to attacking, introducing a new source of threat for

the root’s status of warrant. Based on the notion of hypothetical tree, collaterality

functions bring a tool for accounting on collateralities which are determined by the

effective alteration of lines. The formalization of alteration set (given in Definition 28)

will rely on the notion of collaterality functions introduced next.
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Definition 27 (Collaterality Functions)

Given a de.l.p. P, an argument A ∈ ArgsP, and a warranting incision function

“σ”. Functions �[P,A] : ALinesP → 2ALinesP and �[P,A] : ALinesP → 2ALinesP , are

referred to as collaterality functions iff for any λ ∈ ALinesP, if λ /∈ TP(A) then both

functions map to ∅, otherwise:

�[P,A](λ) = {λ′ | λ′ ∈ TP(A), σ(γ(λ)) ∩ γ(λ′) �= ∅}
�[P,A](λ) = {λ′ | λ′ ∈ TP(A), λ′↑(B) ∈ Att(HP(A, σ(γ(λ)))) for some B ∈ λ′}
We refer to �[P,A] as open, and to �[P,A] as closed.

The effective alteration of a line λ ∈ TP(A) renders three different types of

collateral alterations: those that turn effective the alteration of a line λ′ ∈ TP(A)

being collaterally incised over its selected argument – included in �[P,A] –, those that

turn to attacking – included in �[P,A]–, and those that are effective, but collaterally

incised over an argument placed below its selection. Collateral incisions over an

argument placed above the selection of a line cannot occur given that “σ” is ensured

to be warranting, thus satisfying preservation. We will refer to lines in �[P,A] as

open given that they represent a still open problem: they are attacking or may

collaterally turn to attacking. These lines need to be incised in order to be effectively

altered. On the other hand, we refer to lines in �[P,A] as closed since they were

already (collaterally) effectively altered: they no longer threaten the root’s warrant

status.

Example 14

Consider the dialectical tree TP(A) ∈ ATreesP depicted below, on the right, with

an attacking set Att(TP(A)) = {λ1, λ2, λ3}. Let us assume the selection criterion to

determine the following mappings: γ(λ1) = B1, γ(λ2) = B2, γ(λ3) = B3, γ(λ4) = B4,

γ(λ5) = B5, γ(λ6) = B6, and γ(λ7) = B7. Let ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, and ϕ6 be defeasible

rules in the de.l.p. P such that {ϕ1} ⊆ B1, {ϕ1, ϕ2} ⊆ B2, {ϕ2, ϕ3} ⊆ B3, {ϕ2} ⊆ C4,

{ϕ4} ⊆ B4, {ϕ4} ⊆ C5, {ϕ3} ⊆ B5, {ϕ2} ⊆ C6, {ϕ4, ϕ6} ⊆ B6, {ϕ6} ⊆ C7, {ϕ5} ⊆ B7.

Assume also the rule-based criterion:

{ϕ6}≺{ϕ5}≺ {ϕ4}≺{ϕ3}≺{ϕ2}≺{ϕ1},
and the incision function mappings:

σ(γ(λ1)) = {ϕ1}, σ(γ(λ2)) = {ϕ2}, σ(γ(λ3)) = {ϕ3}, σ(γ(λ4)) = {ϕ4}, σ(γ(λ5)) = {ϕ3},
σ(γ(λ6)) = {ϕ6}, and σ(γ(λ7)) = {ϕ5}.
Observe that “σ” is a warranting incision function since it satisfies preservation. The

collaterality functions are defined as follows:
�[P,A](λ1) = {} �[P,A](λ1) = {λ1, λ2}
�[P,A](λ2) = {λ4, λ6} �[P,A](λ2) = {λ2, λ3}
�[P,A](λ3) = {} �[P,A](λ3) = {λ3, λ5}
�[P,A](λ4) = {λ5} �[P,A](λ4) = {λ4, λ6}
�[P,A](λ5) = {} �[P,A](λ5) = {λ3, λ5}
�[P,A](λ6) = {λ7} �[P,A](λ6) = {λ6}
�[P,A](λ7) = {} �[P,A](λ7) = {λ7}
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The open set for λ1 is empty because the incision over the selection in λ1 does

not “open” any line, i.e., it does not collaterally turn any line into attacking in the

context of the hypothetical treeHP(A, σ(γ(λ1))). The closed set for λ1 includes lines

λ1 and λ2, as the incision over the selection in λ1 “closes” both lines, i.e., turns them

into non-attacking. On the other hand, if we look at λ2, its open set is {λ4, λ6}, as

the incision over the selection in λ2 is ϕ2 which collaterally incises C4 and C6, thus

turning both λ4 and λ6 into attacking. According to Definition 27, this turns out

from the analysis of the hypothetical treeHP(A, σ(γ(λ2))) =HP(A, {ϕ2}). That is,

since λ
↑
4(C4) ∈ Att(HP(A, {ϕ2})) and λ

↑
6(C6) ∈ Att(HP(A, {ϕ2})) hold, we obtain

�[P,A](λ2) = {λ4, λ6}. All collaterality functions are obtained in a similar way.

The following properties for open and closed sets interrelate the collaterality

functions presented in Definition 27.

Proposition 17

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and a warranting incision

function “σ”, for any λ ∈ TP(A), it holds that λ ∈ �[P,A](λ).

Proof

From Definition 27, the set �[P,A](λ) contains every line λ′ ∈ TP(A) whose selected

argument γ(λ′) contains at least a rule ϕ such that ϕ ∈ σ(γ(λ)). This holds in

particular when λ = λ′. �

Proposition 18

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and a warranting incision

function “σ”, for any λ ∈ TP(A), it holds that λ /∈ �[P,A](λ).

Proof

By reductio ad absurdum, assuming λ ∈ �[P,A](λ), from Definition 27, we have

λ↑(B) ∈ Att(HP(A, σ(γ(λ)))), for some B ∈ λ. However, since σ is warranting, we

know preservation is satisfied which means that any collateral incision in a line will

occur over some argument placed below the selected argument in that line (or over

the selection itself). In this proof, we are interested in the case in which such a line is

λ itself (given that we assumed λ ∈ �[P,A](λ)). Hence, for any B ∈ λ, if σ(γ(λ))(B) �= ∅
then γ(λ) ∈ λ↑[B] holds. Afterwards, since λ↑(B) ∈ Att(HP(A, σ(γ(λ)))), for some

B ∈ λ; we know that σ(γ(λ))(B) �= ∅ and also γ(λ) ∈ λ↑[B] hold. Thus, the only

alternative is B = γ(λ) to be held (recall that the collateral incision over B is the

uppermost one in λ).
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Finally, since λ is effectively altered through σ(γ(λ)) (see Lemma 6), we know that

λ↑(B) /∈ Att(HP(A, σ(γ(λ)))) holds reaching the absurdity. �

Corollary 4

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and a warranting incision

function “σ”, for any λ ∈ TP(A), it holds that �[P,A](λ) ∩ �[P,A](λ) = ∅.

Now, we are able to formalize the definition of alteration set by relying upon the

open collaterality function as mentioned before.

Definition 28 (Alteration Set)

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and a warranting incision

function “σ”; the alteration set ΛP(A) of TP(A) is the least fixed point of the

operator 	P(A) defined as follows:

	P(A)0 = Att(TP(A)), and

	P(A)k+1 = 	P(A)k ∪
⋃

λ∈	P(A)k �[P,A](λ)

Example 15 (Continues from Example 14)

The alteration set ΛP(A) is constructed as follows: 	P(A)0 = {λ1, λ2, λ3}, coin-

ciding with Att(TP(A)); 	P(A)1 = {λ1, λ2, λ3, λ4, λ6}, given that both λ4 and

λ6 are collaterally open (turned to attacking) from the effective alteration of λ2,

that is λ
↑
4(C4) and λ

↑
6(C6) are contained in Att(HP(A, {ϕ2})); and analogously

	P(A)2 = {λ1, λ2, λ3, λ4, λ5, λ6, λ7} is calculated. Observe that 	P(A)2 = 	P(A)3

and hence 	P(A)2 = ΛP(A), determining the least fixed point of the operator

	P(A). Finally, ΛP(A) = {λ1, λ2, λ3, λ4, λ5, λ6, λ7}.

Remark 3

Given a de.l.p. P and a dialectical tree TP(A) ∈ ATreesP, the following conditions

for an alteration set ΛP(A) with a warranting incision “σ”, are met:

(1) Att(TP(A)) ⊆ ΛP(A), and

(2)
⋃

λ∈ΛP(A) �[P,A](λ) ⊆ ΛP(A).

From now on, just for simplicity, we will rely on the operator Σσ : 2ALinesP → 2L
d

such that Σσ(X) =
⋃

λ∈X σ(γ(λ)) for any X ⊆ SP(A) and any A ∈ ArgsP, to refer

to the composition of selections and incisions over lines included in the set X.

Lemma 7

Given the alteration set ΛP(A) and a warranting incision function “σ”; if Ψ =

Σσ(ΛP(A)) then HP(A,Ψ) is warranting.

Proof

Since σ is a warranting incision function and considering the dialectical tree

TP(A) ∈ ATreesP, from Lemma 6, we know that P \ σ(γ(λ)) effectively alters

any λ ∈ TP(A). The set Ψ contains every incision σ(γ(λ)) for every λ ∈ ΛP(A).

Then, the following properties arise:

(1) for any λ ∈ TP(A) such that λ ∈ Att(TP(A)), λ ∈ ΛP(A), (this follows from

3 in Remark 3)
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(2) for any λ ∈ TP(A) such that λ ∈ ΛP(A) and λ /∈ Att(TP(A)), λ is collaterally

turned to attacking by an incision σ(γ(λ′)), of some λ′ ∈ ΛP(A), (this follows

from 3 in Remark 3 and from Definition 27)

(3) for any λ ∈ TP(A) such that λ /∈ ΛP(A), if λ is attacking then λ /∈ Att(TP(A)).

That is, there is λ′ ∈ Att(TP(A)) such that λ and λ′ are adjacent at an argument

marked as U (see Definition 17 and Definition 28), and

(4) for any λ ∈ TP(A) such that λ /∈ ΛP(A), λ is not collaterally turned to

attacking (see Definition 28 and Definition 27).

Consequently, we have that ΛP(A) contains every line in Att(TP(A)) (Property

5.2) along with every line that collaterally turns to attacking (Property 5.2). Only

from Property 5.2, a line λ can be attacking but not contained in ΛP(A). In this

case, λ will be (collaterally) effectively altered by the alteration of its adjacent line

λ′ (see Lemma 4). From Property 5.2, we know that any other line outside ΛP(A)

does not threaten the warrant status of the root argument. Afterwards, it is easy to

see thatHP(A,Ψ) contains no attacking lines. Finally, from Theorem 1,HP(A,Ψ)

is known to be a warranting tree. �

By effectively altering every line in the alteration set, through Lemma 7 we ensure

that the resulting hypothetical tree HP(A,Ψ) ends up warranting. However, if we

consider minimal change to force the set Ψ of incisions to be minimal, an additional

condition is required to restrict the notion of alteration set given so far.

Example 16 (Continues from Example 15)

According to Lemma 7, the hypothetical tree HP(A,Ψ) (leftmost tree depicted on

the right), where Ψ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6}, ends up warranting A. However,

removing its subset Ψ′ = {ϕ1, ϕ3} fromP is enough to alter every line in Att(TP(A)),

rendering the warranting hypothetical tree HP(A,Ψ′) (rightmost tree depicted on

the right).

Collaterality functions are not aware of the context in which incisions are applied.

That is, when a line λ′ is closed from �[P,A](λ), we know it is effectively altered in a

collateral way through the incision of λ. That means that the collateral incision of

λ′ occurs over its selected argument, say B. However, imagine that the collaterality

occurs over a con argument C placed below B. In this case, although λ′ is not altered

over its selected argument, it should be anyway considered closed (see Example 17),

if it could be ensured that no other line will collaterally alter λ′ between B and C
(we know there is no collateral alteration over an argument placed above B given

that we only consider a warranting incision function). In order to ensure this latter
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condition, we need keep track of all those lines that are going to be altered by

inlcuding them in a set X ⊆ SP(A), for which set X is identified as the context at

issue. In Example 17, we illustrate a case in which a line (λ3 in the example) could

be ensured to be closed without deactivating its selected argument, if the rest of the

lines to be altered are taken into consideration, i.e., if we consider the context.

Example 17

Consider the dialectical tree TP(A) ∈ ATreesP depicted on the right, with an

attacking set Att(TP(A)) = {λ1, λ2}. Let us assume the selection criterion to

determine the following mappings: γ(λ1) = B1, γ(λ2) = B2, and γ(λ3) = B3.

Let ϕ1, ϕ2, and ϕ3 be defeasible rules in the de.l.p. P such that {ϕ1} ⊆ B1,

{ϕ2} ⊆ B2, {ϕ3} ⊆ B3, {ϕ2} ⊆ C4, and {ϕ1} ⊆ B4. Assuming the rule-based criterion

{ϕ3}≺{ϕ2}≺{ϕ1}, the incision function would map as follows: σ(γ(λ1)) = {ϕ1},
σ(γ(λ2)) = {ϕ2}, and σ(γ(λ3)) = {ϕ3}. Observe that “σ” is a warranting incision func-

tion since it satisfies preservation. The collaterality functions are defined as follows:
�[P,A](λ1) = {} �[P,A](λ1) = {λ1}
�[P,A](λ2) = {λ3} �[P,A](λ2) = {λ2}
�[P,A](λ3) = {} �[P,A](λ3) = {λ3}

Regarding open lines, when a line λ′ is included in �[P,A](λ), we know it collaterally

ends up being attacking from the incision over λ. However, attacking lines are not

considered open so far. Next, we define the context-sensitive collaterality functions

over a context set X ⊆ SP(A) of lines. As for its general version, the context-

sensitive collaterality functions will include two inner functions: one for open lines

and another one for closed lines. The context-sensitive open version will include the

lines that are open from lines in the context X (following Definition 27), along with

lines in the attacking set. On the other hand, the context-sensitive closed version

will include every line being effectively altered as detailed before (in Example 17,

λ3’s collateral alteration from the alteration of λ1 should close λ3), but taking into

account the context. That is, lines which are closed by other lines contained in the

context set X, along with those lines λ′ that are closed by being collaterally altered

over a con argument B ∈ λ′− placed below the selected argument in λ′, if it is the

case that no other line in X collaterally alters λ′ over an argument placed above B.

Definition 29 (Context-sensitive Collaterality Functions)

Given a de.l.p.P, a treeTP(A) ∈ ATreesP, and a warranting incision “σ”. Functions

�̂[P,A] : 2ALinesP → 2ALinesP and �̂[P,A] : 2ALinesP → 2ALinesP , are referred to as

context-sensitive collaterality functions iff for any set of lines X ⊆ ALinesP, if
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X �⊆ SP(A) (where SP(A) is the bundle set) then both functions map to ∅,
otherwise:

�̂[P,A](X) = {λ′ | λ′ ∈ TP(A) ∧ ∃C ∈ λ′− : (∃λ ∈ X : σ(γ(λ)) ∩ C �= ∅) ∧
(∀λ′′ ∈ X : if σ(γ(λ′′)) ∩B �= ∅ where B ∈ λ′ then C ∈ λ′↑[B])}

�̂[P,A](X) = Att(TP(A)) ∪
⋃

λ∈X �[P,A](λ)

We call context-sensitive open to �̂[P,A], and closed to �̂[P,A].

Example 18 (Continues from Example 17)

Note that if we consider a set of lines X = {λ1, λ2} to be altered, the collaterality func-

tions would determine �[P,A](λ1) ∪�[P,A](λ2) = {λ3} and �[P,A](λ1) ∪ �[P,A](λ2) =

{λ1, λ2}, meaning that λ3 is left unaltered. However, by following the notion

of context-sensitive collaterality functions, we have �̂[P,A](X) = {λ1, λ2, λ3}, and

�̂[P,A](X) = {λ1, λ2, λ3}.

Proposition 19

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and a warranting incision

function “σ”; for any λ ∈ TP(A), and any X ⊆ SP(A) (where SP(A) is the

bundle set of TP(A)), if λ ∈ X then �[P,A](λ) ⊆ �̂[P,A](X).

Proof

Assuming λ ∈ X we need to show that for any λ′ ∈ �[P,A](λ) it holds that

λ′ ∈ �̂[P,A](X). From Definition 27, we know that any λ′ ∈ �[P,A](λ) is such that

σ(γ(λ)) ∩ γ(λ′) �= ∅. Assume γ(λ′) = C. Observe that C ∈ λ′− (see Definition 20).

Finally, ∀λ′′ ∈ X : if σ(γ(λ′′)) ∩ B �= ∅ where B ∈ λ′ then C ∈ λ′↑[B], is trivially

satisfied given that σ is a warranting incision function and C is the selected

argument in λ′ (see preservation on page 923). Finally, since all the conditions

in Definition 29 for a context-sensitive closed function are satisfied, it holds that

λ′ ∈ �̂[P,A](X). �

Proposition 20

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and a warranting incision

function “σ”; for any X ⊆ SP(A) (where SP(A) is the bundle set of TP(A)), it

holds that X ⊆ �̂[P,A](X).

Proof

Directly from Property 17 and Property 19. �

Note that, contrary to �[P,A], the operation �̂[P,A] is non-monotonic: given two

sets X and Y , of lines, if X ⊆ Y then �̂[P,A](X) ⊆ �̂[P,A](Y ) is in general not

satisfied. For space reasons, we will not go further into this subject.

Lemma 8

Given a de.l.p. P, a dialectical tree TP(A) ∈ ATreesP, and a warranting incision

function “σ”; for any λ ∈ TP(A), and any X ⊆ SP(A) (where SP(A) is the

bundle set of TP(A)), if every λ′ ∈ X is altered through σ(γ(λ′)) and λ ∈ �̂[P,A](X),

then λ is effectively altered.
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Proof

From Property 20, we know that X ⊆ �̂[P,A](X). From Lemma 6, the alteration

of every λ′ ∈ X rendering a new de.l.p. P′ = P \ Σσ(X), effectively alters every λ′

conforming to Definition. 15, i.e., every λ′ ∈ X turns to non-attacking in P′. For

the rest of the lines in �̂[P,A](X), from Definition 29, if λ ∈ �̂[P,A](X) then we know

that there is some λ′ ∈ X such that σ(γ(λ′)) ∩ C �= ∅, where C ∈ λ−, and for any

λ′′ ∈ X, if σ(γ(λ′′)) ∩ B �= ∅, where B ∈ λ then C ∈ λ↑[B]. This means that there is

no line in X whose incision could collaterally alter λ in an argument placed above

C. Hence, C is the uppermost collateral incision over λ taking into account only

the lines included in X. Finally, from Lemma 3, since C is a con argument in λ, we

know that λ is effectively altered on C. �

We finally restrict the definition of alteration set into the notion of incision-aware

alteration set to deal with situations as the ones described above. For this reduced

alteration set, we will rely upon context-sensitive collaterality functions. Afterwards

in Section 6, an algorithm will be studied for future implementations.

Definition 30 (Incision-Aware Alteration Set)

Given a dialectical treeTP(A) and a warranting incision function “σ”, the incision-

aware alteration set of TP(A) is the set ΘP(A) simultaneously satisfying:

(1) ΘP(A) ⊆ ΛP(A),

(2) �̂[P,A](ΘP(A)) ⊆ �̂[P,A](ΘP(A)),

(3) there is no proper subset of ΘP(A) satisfying 1 and 2, and

(4) for any X �= ΘP(A) satisfying conditions 1 to 3, it is not the case that Ψ′≺Ψ,

where Ψ = Σσ(ΘP(A)) and Ψ′ = Σσ(X).

Following the four conditions of Definition 30, the incision-aware alteration set

ΘP(A) is (1) a subset of the alteration set ΛP(A) such that (2) every line that was

open was finally closed under the same context, which is ΘP(A) itself, and (3) is

the minimal set of lines – with regards to set inclusion – that (4) provokes the least

amount of change – according to the rule-based criterion ≺.

Corollary 5

Given the incision-aware alteration set ΘP(A) and a warranting incision function

“σ”; if every λ ∈ ΘP(A) is effectively altered through σ(γ(λ)) then every line in

�̂[P,A](ΘP(A)) is effectively altered.

Proposition 21

Att(TP(A)) ⊆ �̂[P,A](ΘP(A)).

Proof

From Definition 29, Att(TP(A)) ⊆ �̂[P,A](ΘP(A)) and from condition 2 in

Definition 30, �̂[P,A](ΘP(A)) ⊆ �̂[P,A](ΘP(A)) holds. Thus, Att(TP(A)) ⊆ �̂[P,A]

(ΘP(A)). �

Theorem 6

Given the incision-aware alteration set ΘP(A) and a warranting incision function

“σ”; if Ψ = Σσ(ΘP(A)), then HP(A,Ψ) is warranting.
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Proof

Since σ is a warranting incision function and considering the dialectical tree

TP(A) ∈ ATreesP, from Corollary 5, we know that the effective alteration of every

line in ΘP(A) determines the effective alteration of every line in �̂[P,A](ΘP(A)).

Since Att(TP(A)) ⊆ �̂[P,A](ΘP(A)) (see Proposition 21) hold, we know that

every line in Att(TP(A)) is effectively altered. This means that no attacking lines

appear in HP(A,Ψ). Finally, from Corollary 1, the hypothetical tree HP(A,Ψ) is

warranting. �

While the regular alteration set looks for the “minimal” set of lines that has

to be altered (without accounting on the incisions needed), the incision-aware

alteration set pursues the same objective while looking for a minimum amount of

incisions. For instance, in Example 16, the incision-aware alteration set ends up

as ΘP(A) = {λ1, λ3}. Observe that the set {λ1, λ2, λ4, λ5} satisfies conditions 30 to

30 from Definition 30, but not condition 30: the effective alteration of its lines

determines a set of defeasible rules {ϕ1, ϕ2, ϕ3, ϕ4} which naturally provokes more

change (according to the rule-based criterion) than the set {ϕ1, ϕ3} determined by

the set ΘP(A).

However, being aware of the incisions to be made, determines a set of lines to

be altered that could actually end up being smaller than the one determined by the

regular alteration set. Such a situation occurs, given that the incision-aware alteration

set considers contextual information, and thus, the alteration of some lines included

in the regular alteration set (and excluded from the incision-aware one) are achieved

by taking into account advantageous collateralities, i.e., those collateral incisions that

end up in effective alterations. Nevertheless, although the incision-aware alteration

set can be smaller, it ends up altering each of the lines contained in the regular

alteration set, either in a direct way – through the application of the incision function

in a line – or by effect of a collateral incision. For instance, in Example 19, although

the incision-aware alteration set (which ends up as ΘP(A) = {λ1, λ2}) does not

contain λ3 (which is contained in the regular alteration set ΛP(A) = {λ1, λ2, λ3}), it

ends up effectively altering λ3 by effect of the collaterality produced by the incision

of λ1 ∈ ΘP(A). Thus, the incision-aware alteration set ends up altering (directly or

through collateralities) every line included in the regular alteration set, however, the

incision-aware alteration set does it by removing (occasionally) less rules from the

de.l.p.

Example 19 (Continues from Example 17)

The alteration set would be ΛP(A) = {λ1, λ2, λ3} determining a warranting tree

HP(A,Ψ) (leftmost tree depicted on the right), where Ψ = {ϕ1, ϕ2, ϕ3}. However, the

incision-aware alteration set would be ΘP(A) = {λ1, λ2} determining a warranting

tree HP(A,Ψ′) (rightmost tree depicted on the right), where Ψ′ = {ϕ1, ϕ2}.
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Assuming a warranting incision function “σ” whose image maps only to sets

of singletons, we can preserve a kind of minimality: any rule to be removed from

a de.l.p. is individually necessary to provide warrant to the root argument. This

assertion aims at avoiding unnecessary removals from a de.l.p., and is required by

the postulate of core-retainment, on page 943. Such a function is referred to as a

minimally-warranting incision function, and is defined next.

Definition 31 (Minimally-warranting Incision Function)

An argument incision function “σ” is said to be minimally-warranting iff it is a

warranting incision function and for all B ∈ ArgsP such that σ(B) �= ∅ it holds that

|σ(B)| = 1.

Theorem 7

Given a de.l.p. P and a warranting incision function “σ”, if σ is minimally-

warranting, then HP(A,Ψ \ {ϕ}) is non-warranting, for any ϕ ∈ Ψ, where Ψ =

Σσ(ΘP(A)).

Proof

From the hypothesis we know that, ϕ ∈ σ(γ(λ)), for some λ ∈ ΘP(A); and since

|σ(γ(λ))| = 1 (see Definition 31), it holds that σ(γ(λ)) = {ϕ}. Since ΘP(A) is

minimal (see condition 30 in Definition 30), it includes λ necessarily because it is

the unique line which through σ(γ(λ)) closes another line λ′ ∈ �̂[P,A](ΘP(A)). Thus,

λ′ ∈ �[P,A](λ) and hence, λ′ /∈ �̂[P,A](X), where X = ΘP(A) \ {λ}. (If another line

λ′′ ∈ X were closing λ′, this would determine λ′ ∈ �̂[P,A](X), and thus minimality

of ΘP(A) would be violated.) It is clear that λ′ ∈ �̂[P,A](X), since λ closes λ′, thus

λ′ cannot be simultaneously open by λ. Afterwards, �̂[P,A](X) �⊆ �̂[P,A](X). This

means that λ′ has not been effectively altered inHP(A,Ψ \ {ϕ}). And thus, since it

contains an attacking line, HP(A,Ψ \ {ϕ}) is non-warranting. �

Corollary 6

Given a de.l.p. P and a warranting incision function “σ”, if σ is minimally-

warranting, then HP(A,Ψ) is non-warranting, where Ψ = Σσ(X), for any X ⊂
ΘP(A).

The theorem above ensures “some kind of” minimality regarding the set of rules to

be removed from a de.l.p. However, real minimality regarding removals from a de.l.p.

cannot be achieved without compromising the first axis of change (selection criterion)

as being described on page 918. Moreover, by concretizing the alteration criterion

≺[TP(A)] (see Definition 16) considering that minimality is determined according

to set cardinality (see example given on page 915), the attacking set Att(TP(A))

ends up being the smallest possible set satisfying Definition 17, i.e., there is no

set X �= Att(TP(A)) satisfying Definition 17 such that |X| < |Att(TP(A))|. By

ensuring such a concretization for the alteration criterion, we still cannot ensure

that there is no set Ψ′ ⊆ P such that HP(A,Ψ′) is warranting and |Ψ′| < |Ψ|,
where Ψ = Σσ(ΘP(A)). A set like Ψ′ can be obtained by deactivating only direct

defeaters of the root argument (this option will be discussed in Section 6), excluding

any possible selection criterion from consideration and thus compromising the first
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axis of change. This is illustrated in Example 20. A fourth axis of change could

take into account the amount of rules to be removed from a de.l.p. Nonetheless,

this decision would complicate even more our theory. In this paper, we abstracted

away from such consideration, and concentrated only on the analysis of the impact

of change over the original dialectical tree by proposing three axes of change as

aforementioned.

Example 20
Consider the tree TP(A) ∈ ATreesP depicted on the right, where P is a de.l.p. Let

us assume a selection criterion such that B3≺λ1
B1, B4≺λ2

B1, and B5≺λ3
B1; and the

support of arguments B1, B3, B4, and B5 to be singletons where ϕ1 ∈ B1, ϕ3 ∈ B3,

ϕ4 ∈ B4, and ϕ5 ∈ B5. Clearly, ΘP(A) = {λ1, λ2, λ3}, σ(λ1) = ϕ3, σ(λ2) = ϕ4,

and σ(λ3) = ϕ5. Hence, the hypothetical tree HP(A,Ψ), with Ψ = {ϕ3, ϕ4, ϕ5}, is

warranting. Note however that a model of change disregarding not only the selection

criterion but also the three axes of change, could choose a set Ψ′ = {ϕ1} rendering

a warranting hypothetical tree HP(A,Ψ′), and moreover, satisfying |Ψ′| < |Ψ|. By

taking into account Ψ′, the resulting de.l.p. would only lose a single defeasible rule.

Nonetheless, the resulting dialectical tree would be smaller than the one resulting

from our model of change. This is important when considering dialectical trees as

explanations for the status of the root argument, as analyzed in (Garcı́a et al. 2007).

5.3 Interrelating attacking and alteration sets

In the rest of this section, we will study the relation among the attacking set,

and the regular and incision-aware versions of the alteration set. In general,

the studied properties pose restrictions upon the worked incision function such

that, when satisfied they ensure Att(TP(A)) = ΛP(A) (Theorem 8, Corollary 7,

and Theorem 9), ΛP(A) = ΘP(A) (Theorem 10), or even Σσ(Att(TP(A))) =

Σσ(ΛP(A)) = Σσ(ΘP(A)) (Theorem 11). These properties are important in the

development of the optimized algorithms given in Section 6 for constructing the

proposed argumentative model of change.

We firstly state under which conditions the attacking set and the regular alteration

set, coincide. Theorem 8 shows that this happens when the lines in Att(TP(A)) only

provoke collateral alterations (if any) over lines within Att(TP(A)). Since the same

condition is part of the requirements of the profitability principle, Corollary 7

follows afterwards. On the other hand, if every collaterality incises only selected

arguments from other lines, then no new lines will be open. This property fulfills the

requirements of an incision function satisfying weak profitability. Thus, Theorem 9,

shows Att(TP(A)) = ΛP(A) holds if weak profitability is satisfied.

https://doi.org/10.1017/S1471068411000603 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000603


940 M. O. Moguillansky et al.

Theorem 8

Given a warranting incision function “σ”, for any λ′ ∈ Att(TP(A)), any λ ∈ TP(A),

and any B ∈ λ; [if σ(γ(λ′))(B) �= ∅, then λ ∈ Att(TP(A))] iff Att(TP(A)) =

ΛP(A).

Proof

⇒) From Remark 3, we know that Att(TP(A)) ⊆ ΛP(A), hence we need to

show that ΛP(A) ⊆ Att(TP(A)). This is equivalent to show 	P(A)0 = 	P(A)1

from Definition 28, which is equivalent to show �[P,A](λ
′) ⊆ Att(TP(A)), for any

λ′ ∈ Att(TP(A)). Observe that this follows straightforwardly from the hypothesis.

Hence, Att(TP(A)) = ΛP(A) holds.

⇐) Analogously, assuming Att(TP(A)) = ΛP(A) holds, implies 	P(A)0 = 	P(A)1

from Definition 28, and thus also �[P,A](λ
′) ⊆ Att(TP(A)), for any λ′ ∈ Att(TP(A)).

This means that the effective alteration of any attacking line will not open a

non-attacking line, i.e., no non-attacking line is turned into attacking. Finally,

it is easy to see that the condition if σ(γ(λ′))(B) �= ∅ then λ ∈ Att(TP(A))

holds. �

Corollary 7

If profitability is satisfied, then Att(TP(A)) = ΛP(A).

Theorem 9

If weak-profitability is satisfied, then Att(TP(A)) = ΛP(A).

Proof

Since weak-profitability holds, we have that, if σ(γ(λ′))(B) �= ∅, then γ(λ) = B, for

every λ ∈ TP(A), λ′ ∈ TP(A), and B ∈ λ. This means that no collaterality will

open any line, i.e., for every λ′ ∈ TP(A), it follows �[P,A](λ
′) = ∅ holds – meaning

that no collaterality will turn a non-attacking line into attacking. Hence, it also

holds 	P(A)0 = 	P(A)1, from Definition 28. Finally, Att(TP(A)) = ΛP(A). �

Remark 4

If Att(TP(A)) = ΛP(A), then ΘP(A) ⊆ Att(TP(A)).

Proposition 22

Given a de.l.p. P, a warranting incision function “σ”, and the sets of defeasible rules

Ψ1 = Σσ(ΛP(A)) and Ψ2 = Σσ(ΘP(A)), it holds that Ψ2 ⊆ Ψ1

Proof

Straightforward from condition 30 in Definition 30. �

The construction of the incision-aware alteration set ΘP(A) may be skipped if

the preconditions of Theorem 10 are satisfied in the construction of the regular

alteration set ΛP(A). That is, ΛP(A) = ΘP(A) holds whenever no line in ΛP(A)

is closed by another line in the set.

Theorem 10

ΛP(A) = ΘP(A) iff �λ ∈ ΛP(A) such that λ ∈ �̂[P,A](ΛP(A) \ {λ}).
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Proof

⇒) By reductio ad absurdum assume that there is some λ ∈ ΛP(A) such that

λ ∈ �̂[P,A](ΛP(A) \ {λ}). Since ΛP(A) = ΘP(A), from Definition 30, it is clear

that λ ∈ �̂[P,A](ΘP(A)). From Propositon 18 and Definition 29, we know that

λ ∈ �̂[P,A](ΘP(A) \ {λ}). Afterwards, �̂[P,A](ΘP(A) \ {λ}) ⊆ �̂[P,A](ΘP(A) \ {λ})
holds, satisfying condition 30 from Definition 30. Thus, since condition 30 ends up

violated, the set ΘP(A) does not conform Definition 30, reaching the absurdity.

⇐) We have that for every λ ∈ ΛP(A), it holds that λ /∈ �̂[P,A](ΛP(A) \ {λ}).
From Definition 30, we know that ΘP(A) ⊆ ΛP(A), thus, we need to show

that ΛP(A) ⊆ ΘP(A). By reductio ad absurdum, we assume that there is some

λ ∈ ΛP(A) such that λ /∈ ΘP(A). But then, from Definition 30, we know that

λ ∈ �̂[P,A](ΛP(A) \ {λ}), which is absurd. �

Lemma 9

For any λ ∈ ΛP(A) and λ′ ∈ ΛP(A), if [λ′ ∈ �[P,A](λ)] → [σ(γ(λ)) = σ(γ(λ′))] and

λ ∈ ΘP(A), then �[P,A](λ) ∩ΘP(A) = {λ}.

Proof

From Proposition. 17, we know that λ ∈ �[P,A](λ), thus λ ∈ (�[P,A](λ)∩ΘP(A)). By

reductio ad absurdum, let us assume that there is some line λ′ ∈ (�[P,A](λ)∩ΘP(A)),

such that λ �= λ′. Since λ ∈ ΘP(A), from Definition 30, λ ∈ �̂[P,A](ΘP(A)) and

λ ∈ �̂[P,A](ΘP(A)). We also have that λ′ ∈ �̂[P,A](ΘP(A)). From hypothesis, we

know that σ(γ(λ)) = σ(γ(λ′)) holds. It is clear that every line that is open (resp., closed)

by λ′ is also open (resp., closed) by λ. Hence, �̂[P,A](ΘP(A)) = �̂[P,A](ΘP(A)\{λ′}),
and if �̂[P,A](ΘP(A)) ⊆ �̂[P,A](ΘP(A)) holds so it does �̂[P,A](ΘP(A) \ {λ′}) ⊆
�̂[P,A](ΘP(A) \ {λ′}). Since this is contrary to condition 30 from Definition 30, we

reach an absurdity. Finally �[P,A](λ) ∩ΘP(A) = {λ}. �

The following theorem states under which conditions the attacking set, alteration

set, and incision-aware alteration set determine the same sets of rules to be removed.

That is, Σσ(Att(TP(A))) = Σσ(ΛP(A)) = Σσ(ΘP(A)) holds when both conditions

1 and 2 from Theorem 11 are satisfied. Condition 1 states that if there is a

line in ΛP(A) closed through a regular collaterality function (Definition 27) by

another line in ΛP(A), then their incisions coincide. Observe that this is part of

the preconditions required in Lemma 9. On the other hand, condition 2, states

that if a line in ΛP(A) is closed through a context-sensitive collaterality function

(Definition 29) by another line in ΛP(A), then it is necessarily closed by a regular

collaterality function. Thus, the collaterality occurs over the selected argument in that

line.

Theorem 11

Given the following two conditions:

(1) ∀λ′ ∈ ΛP(A), ∀λ ∈ ΛP(A); if λ′ ∈ �[P,A](λ) then σ(γ(λ′)) = σ(γ(λ))

(2) ∀λ′ ∈ ΛP(A), ∃λ ∈ ΛP(A); if λ′ ∈ �̂[P,A](ΛP(A) \ {λ′}) then λ′ ∈ �[P,A](λ) and

λ �= λ′

If both 1 and 2 hold, then Σσ(Att(TP(A))) = Σσ(ΛP(A)) = Σσ(ΘP(A)).
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Proof

From Definition 30, we know ΘP(A) ⊆ ΛP(A), and hence, it is easy to see

that Σσ(ΘP(A)) ⊆ Σσ(ΛP(A)) holds. Thus, we need to show that Σσ(ΛP(A)) ⊆
Σσ(ΘP(A)) also holds. We will assume (a) there is some λ ∈ ΛP(A) and some

λ′ ∈ ΛP(A) such that λ′ ∈ �[P,A](λ) and λ �= λ′. From Lemma 9, we know that if

λ ∈ ΘP(A) then λ′ /∈ ΘP(A) holds. However, since σ(γ(λ′)) = σ(γ(λ)), we know that

σ(γ(λ′)) ⊆ Σσ(ΘP(A)). On the other hand, if λ /∈ ΘP(A) and λ′ /∈ ΘP(A) then from

condition 2 we know for every λ′′ ∈ ΛP(A) there is some λ′′′ ∈ ΛP(A) such that if

λ′′ ∈ �̂[P,A](ΛP(A)\{λ′′}) then λ′′ ∈ �[P,A](λ
′′′) and λ′′ �= λ′′′. But then, it follows that

either (1) λ′′ /∈ �̂[P,A](ΛP(A) \ {λ′′}) or (2) λ′′ /∈ ΘP(A) and λ′′′ /∈ ΘP(A). For the

latter case, observe that for every λ ∈ ΘP(A) it follows that λ /∈ �̂[P,A](ΘP(A)\{λ})
and hence ΘP(A) = ΛP(A) (see Theorem 10). The former case is similar, and in

case (a) is not satisfied, then we will also be satisfying ΘP(A) = ΛP(A). Finally,

Σσ(ΛP(A)) = Σσ(ΘP(A)) holds.

Besides, since condition 11 conforms to the preconditions of Theorem 9,

Att(TP(A)) = ΛP(A) holds, and hence, Σσ(Att(TP(A))) = Σσ(ΛP(A)) is also

satisfied. �

Example 21

Considering Example 20, and assuming ϕ3 = ϕ4 = ϕ5, the conditions of Theo-

rem 11 are satisfied. Observe that σ(γ(λ1)) = σ(γ(λ2)) = σ(γ(λ3)). It is clear that

Att(TP(A)) = ΛP(A), and that ΘP(A) may be any singleton containing either λ1,

λ2, or λ3. As stated by Theorem 11, the set of rules to remove from the de.l.p. would

be the same for any of the sets, Att(TP(A)), ΛP(A), or ΘP(A).

As a consequence of the properties shown, from now on we will only rely on the

incision-aware alteration set to formalize the upcoming change operations.

5.4 Argument change operators

The argument expansion can be defined in a simple manner by just adding the

necessary rules to activate the desired argument; formally:

Definition 32 (Argument Expansion)

An argument expansion operation P +�A over a de.l.p. P = (Π,Δ) by an argument

A from either ArgsP or XargsP, is defined as follows:

P +�A = (Π,Δ ∪A).

Note that not only argument A is activated, but the addition of A’s rules to

Δ could cause the automatic activation of many other arguments. This is part of

the dynamism of the theory. Moreover, the definition of the argument expansion

has the inherent implications to expansions within any non-monotonic formalism:

despite the set of arguments Args
(P+�A)

being increased, the amount of warranted

consequences from P +�A could be diminished.

Regarding contractions, we are looking for an operator that provides warrant

for an argument A ∈ ArgsP by turning every attacking line in TP(A) to a non-

attacking line through an argument incision function σ. That is, we are going to
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drop arguments towards A’s warrant. This is the reason why we call it argument

defeating contraction. Considering that the notion of consequence is warrant, we are

taking advantage of the non-monotonic nature of argumentation.

Definition 33 (Argument Defeating Contraction)

An argument defeating contraction operation P −ωA of a de.l.p. P = (Π,Δ) by

an argument A ∈ ArgsP, is defined by means of a minimally-warranting incision

function “σ” applied over selections γ(λ) for each λ ∈ ΘP(A) in the incision-aware

alteration set of TP(A), as follows:

P−ωA = (Π,Δ \ Σσ(ΘP(A))).

An argument revision operator should firstly add to the program the new argument

for which warrant is to be achieved. Afterwards, a warrant contraction should be

applied. Note that in case the argument was already warranted, the contraction

would produce no change since the alteration set would be empty. The operation is

called argument warranting revision.

Definition 34 (Argument Warranting Revision)

Given a DeLP program P = (Π,Δ), and an argument A from either ArgsP or

XargsP, an operator “∗ω” is an argument warranting revision iff

P∗ωA = (Π,Δ′ \ Σσ(ΘP′(A))),

where “σ” is a minimally-warranting incision, ΘP′(A) is the incision-aware alteration

set of TP′(A), and P′ = (Π,Δ′) with Δ′ = Δ ∪A.

In belief revision, revisions and contractions may be defined one in terms of

the other by means of the Levy identity (Levi 1977). In this model of change,

Definition 34 can be rewritten in terms of an argument expansion and a defeating

contraction as an analogy of the reversed Levi identity (Hansson 1993), which we

have called the argument change identity.

(Argument Change Identity) P ∗ωA = (P +�A) −ωA

In this revision, the expansion has to be performed firstly because otherwise there

would be no argument to warrant. Besides, inconsistent intermediate states are not

an issue in this formalism, since it is based on argumentation.

Given a knowledge base P and an argument A, the next postulates stand for

the principles of inclusion, success, and minimal change, for an argument revision

operator “∗” based on alteration of dialectical trees such as ATC. A complete study

about postulates in ATC can be referred to (Moguillansky et al. 2011).

(inclusion) P ∗A ⊆ P ∪A.

(success) A is warranted from P ∗A.

(core-retainment) If ϕ ∈ (P \ P ∗ A), then there is some P′ ⊆ P such that A is

warranted from P′ ∪A but not from P′ ∪A ∪ {ϕ}.

Inclusion aims at guaranteeing that no other new information beyond the one

conforming argument A will be included in the de.l.p. Success states that the new
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information to be incorporated should be accepted by the worked argumentation

semantics, i.e., the new argument should end up warranted. Core-retainment was

originally introduced in (Hansson 1991) and then it was adapted for revision

in (Hansson 1997; Hansson and Wassermann 2002). Through this postulate, the

amount of change is controlled by avoiding removals that are not related to the

revision, i.e., every rule ϕ lost serves to the acceptation of the new argument. This

means that ϕ is removed in order to achieve an effective alteration.

Assuming the knowledge base P as a de.l.p., the argument A corresponding to

either ArgsP or XargsP, and associating the abstract argument revision operator

“∗” as the one given in Definition 34; the proposed argument revision operator “∗ω”

upon de.l.p.s is shown to satisfy the given postulates.

Theorem 12

Given a de.l.p. P = (Π,Δ) and the external argument A ∈ XargsP, if “∗ω” is

an argument revision operator, then P∗ωA satisfies inclusion, success, and core-

retainment.

Proof

We know “σ” is minimally-warranting (Definition 34) thus satisfying preservation

(Definition 31 and Definition 25) and thus strict preservation (see Proposition 14).

Hence, inclusion is satisfied. Success and core-retainment follow from Theorem 6

and Theorem 7. �

6 Towards an implementation for ATC

In this section, we present several examples of minimal change criteria, and

afterwards introduce a prolog-like algorithm that illustrates an implementation

of the argument revision operator, as defined in Section 5.

6.1 Minimal change criteria exemplified

We have defined how ATC relies on the minimal change principle, which specifies the

way change is evaluated. Following this principle, particular minimal change criteria

can be developed in order to establish a specific way of measuring change. In this

section, we propose some of these criteria. Additionally, we will address the third

axis of change mentioned in Section 5, by considering restrictions over the relation

between selections and incisions for each proposed criterion. These restrictions

make use of the properties previously defined in this article, like cautiousness, (weak)

profitability, and strict preservation. The attachment of a restriction to each criterion

represents just an example, and is neither intended to be formal nor definitive. That

is, additional restrictions could be posed to achieve the desired behavior for these

criteria, as well as none.

6.1.1 Preserving program rules

In general, when looking to remove as few rules as possible, selecting direct defeaters

of the root argument ensures a minimal deletion of defeasible rules from the de.l.p.

This is so because the deletion of a root’s defeater eliminates a whole subtree.
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Trying to achieve the same result by deleting rules from “lower” arguments in the

tree would affect a greater amount of arguments, due to possible branching. We

will make incisions only over those direct defeaters that are undefeated, i.e., those

belonging to attacking lines, since the ones that are defeated do not compromise the

warrant of the root.

Rules-preserving selection criterion. Given a line λ ∈ SP(A), where SP(A) deter-

mines TP(A), ≺λ = {(B1,B2) | B1 ∈ λ−,B2 ∈ λ−, and B1 ∈ λ↑(B2)}
An interesting restriction is to seek for profitable incisions, i.e., those that have

a collateral incision with a selection in another line. Such an incision is desirable,

since it would not only save a future incision, but would also collaborate with the

criterion by preventing the deletion of extra rules.

Note that, in pursuit of profitability, this criterion could be relaxed to allow

selections to be mapped to arguments placed at lower positions in the line. This is

performed by updating the order, as shown before. However, the question remains

about how much effort should be put on this re-ordering. Should we go for the best

combination (select as high as possible capturing shared incisions) risking to end up

deleting more rules? Or should there be specific boundaries beyond which dropping

the search ends up being worthier? Since computational tractability is also at stake,

a definite answer remains a matter of implementation.

6.1.2 Preserving the dialectical tree structure

When trees are treated as an explanation for the answer given to a query (Garcı́a

et al. 2007), they are of utmost importance, since their structure turns out to be the

main source of information. Provided that dialectical trees are the most suitable tool

to trust and understand the interrelation among arguments and their influence to the

final answer, we will define a selection criterion that determines a revision operation

making minimal changes in the structure of the temporary tree (recall this notion

was introduced on page 919) in order to render its root undefeated. Therefore,

like in Example 10, the selection criterion will be determined by the level of the

argument in the argumentation line; the lower an argument is, the less is its impact

in the structure of the tree, making the argument more suitable for selection. Hence,

this criterion specifies the opposite order than the rules-preserving one. In this case,

an interesting restriction would be to identify those strict-preserving incisions, that

is, incisions that do not collide with any other argument in the tree. This would

collaborate with the preservation of the tree structure. Again, strict preservation

should not be sought blindly, at the expense of the original ordering specified by

the selection criterion, but some sort of balance must be pursued instead.

6.1.3 Preserving rules without compromising tree structure

Following the two principles given above, a combined approach can be studied in

order to preserve the rules of the program while minimizing the pruning of the

dialectical tree. This approach takes advantage of adjacency among attacking lines,

incising one of the arguments acting as a “common factor” for them, i.e., belonging
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to the shared upper segment. In this way, the deactivation of fewer arguments is

encouraged. The principle also attempts to go as deep as possible when selecting

arguments. Thus, the amount of arguments disappearing from prunes in the tree is

diminished. Example 23 illustrates the usage of this criterion.

Tree-and-rules-preserving selection criterion. Given the dialectical tree TP(A) and

two lines λ1 ∈ Att(TP(A)) and λ2 ∈ Att(TP(A)) belonging to its attacking set; if

λ1 and λ2 are adjacent at an argument B such that there is no adjacency point in

λ
↑
1(B) shared with a line in Att(TP(A)), then ≺λ1

= ≺λ2
= {(B1,B2) | B1 ∈ λ−1 ,B2 ∈

λ−1 ,B1 ∈ λ
↑
1[B], and B2 ∈ λ

↑
1(B1)}

6.1.4 Preserving semantics

In addition to the principles given above, we could consider to produce the least

possible modifications to the semantics of the defeasible logic program. The set

of warranted arguments would be preserved at the highest possible degree, while

satisfying some minimal change criterion. A way to implement this would be to

not consider warranted arguments as candidates for deactivation. It might be the

case that the deactivation of some arguments could be unavoidable. In such a case,

there would be a compromise between the chosen criterion and the preservation

of semantics, leading to an update of the selection criterion. For instance, if we

attempt to preserve the structure of the tree while not harming the set of warranted

arguments, we define:

Semantics-preserving selection criterion. Given a line λ ∈ SP(A), where SP(A)

determines TP(A), ≺λ = {(B1,B2) | B1 ∈ λ−,B2 ∈ λ−, and B2 ∈ λ↑(B1) and neither

B1 nor B2 are warranted from P}

Example 22

Consider the program P1 being revised by argument A and the corresponding

temporary tree of Example. 5. The criterion trying to preserve program rules would

select arguments B1 and B2. From Example 11, we know that there is a way of

incising B1 while collaterally incising B2, which is σ(B1) = {∼a –≺y}. Therefore, the

resulting tree is as depicted on the right, and the revised program would lose just

one rule: P1
R = (Π1,Δ1 ∪ {A} \ {∼a –≺y}).
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Following the tree-preserving minimal change principle, lower selections are

considered firstly, thus the selected arguments are B1 and B4. Now the incision

over B1 will avoid collateral incisions, i.e., will be strict-preserving; hence, σ(B1) =

{y –≺x}. Since B4 is a cautious selection (see Example 11) and has one rule, the only

possible incision is: σ(B4) = {∼w –≺ t}. Finally, the resulting tree is as depicted on the

right, and its corresponding program is: P2
R = (Π1,Δ1 ∪ {A} \ {(y –≺x), (∼w –≺ t)}).

Example 23

Let us consider a modification of the program P1 used in Example 22:

P23 =

⎛⎝Π1,Δ1 ∪

⎧⎨⎩
(a –≺x), (x –≺z),

(b –≺∼a), (∼a –≺p),

(∼b –≺ t), (b –≺z)

⎫⎬⎭
⎞⎠ .

If we reviseP23 byA = 〈{∼b –≺p},∼b〉, we can build the temporary dialectical tree

depicted below, annotated with the defeasible rules used in each argument. Following

the rules-preserving criterion, the argument to be incised would be B1 = 〈{b –≺z}, b〉,
that is, the revision would consist of adding the rule from A and deleting the single

rule from B1.

If the chosen minimal change criterion attempts to preserve the tree structure,

B5 = 〈{(∼a –≺y), (y –≺x), (x –≺z)},∼a〉 and B10 = 〈{∼w –≺ t},∼w〉 are selected. The

unique choice to incise B10 does not collide with any other argument, that is, it

satisfies the requirement of being strict-preserving. The only possible incision over

B5 is (y –≺x), as the other rules are shared with B4 and B6.

When considering the combined criterion that attempts to preserve both the tree

structure and program rules, there would be two choices: B1 and B3. These are the

only con arguments belonging to the shared segment of the two attacking lines in

the tree. Finally, the criterion chooses the lowest one in the line aiming to preserve

the tree structure; that is, B3. Note that this argument does not intersect with any

other argument in the tree and, therefore, this is a clean incision.
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6.2 An algorithm for argument revision

Next, we present a prolog-like program as an approach for an implementation of

argument revision. The given algorithms constitute part of the implementation that

we are currently working in towards the first fully implemented ATC approach.

A computational complexity analysis is underway. However, we believe that such

a detailed analysis would fall out of the scope of this article: the main objective

in this section is to show how the proposed theory can be easily implemented in

prolog-like programs by taking advantage of some distinctive characteristics of the

logic paradigm like backtracking.

Algorithm 1 Argument Revision

Input: de.l.p. P = (Π,Δ) and an argument 〈A, α〉
Output: Revised de.l.p. P∗ωA = (Π,ΔR)

revise((Π,Δ), 〈A, α〉, (Π,ΔR))←
union(Δ,A,ΔA),
assert lines((Π,ΔA),A), %facts line/1

initialize selection orders, %facts order/2

assert att set, %facts attacking/1

get incisions,
get inc aware alteration set(ΘP(A)),
findall(σ, (member(λ,ΘP(A)), incision(σ, , λ)),Σ),
subtract(ΔA,Σ,ΔR).

get incisions←
retractall(incision( , , )),
forall(line(λ), get alteration(λ)),
forall(line(λ), preservation(λ)), !,
(not(update order wrt upper( , )); update orders, get incisions).

get alteration(λ)←
select(γ, λ),
incise(σ, γ),
assert(incision(σ, γ, λ)).

preservation(λ′)←
incision(σ′, , λ′),
forall(get upmost collateral(σ′, λ,B),
(incision(σ, γ, λ), in upper segment(γ,B, λ)
;
assert(update order wrt upper(λ,B))).

select(λ, γ)←
order(λ, [γ| ]).

In Algorithm 1,4 the main predicate is revise/3, which takes a program and an

(possibly external) argument, performs the revision, and returns the revised program.

The algorithm begins by inserting argument A into the set of defeasible rules of P,

obtaining a set ΔA. Next, it asserts facts line/1 (through predicate assert lines/2), one

per line in the tree rooted inA, each of which holds a list representing a sequence of

arguments. Then, from those facts, it initializes the selection orders according to the

4 Note that every symbol in the program is a variable, i.e., there are no atoms.
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criterion through predicate initialize selection orders/0, which asserts facts order/2

mapping lines to the ordering assigned to their interference sets. Afterwards, the

algorithm recognizes the subset of lines belonging to the attacking set of the tree

and asserts facts attacking/1, through predicate assert att set/0.

Predicate get incisions/0 firstly gathers all incisions and selections by assert-

ing facts incision/3, one per line, through the call to predicate get alteration/1.

Then, selections and incisions in every line are checked to satisfy the preservation

principle. Whenever some line does not satisfy preservation, the order there has

to be updated through predicate update order wrt upper/2, which removes from

order/2 those pairs including an argument below the collateral incision, so that the

selection is restricted to the collateral incision’s upper segment, and get incisions/0

is invoked again. This iterative process ends when the current selection orders yield

incisions satisfying preservation. The algorithm always terminates because there is

always a configuration of incisions and selections that satisfies this principle (see

Theorem 4).

Once all the selections and incisions are verified against preservation, the incision-

aware alteration set of the tree at issue is calculated through the predicate

get inc aware alteration set/1, and for each line in it, the incisions are gathered

into a set Σ, which is afterwards removed from the set ΔA of defeasible rules, thus

obtaining the revised program (Π,ΔR).

Algorithm 2 shows the predicates to obtain the incision-aware alteration set

of a dialectical tree TP(A) through predicate get inc aware alteration set/1. This

predicate firstly computes the alteration set Θ (get alteration set/2) and then, for

every candidate X in Θ’s power set (which is sorted by cardinality), checks whether

they comply with the condition of having the context sensitive open set within the

context-sensitive closed set. When this property is satisfied, X’s supersets are marked

in order to avoid its evaluation. After all the candidate sets of lines (minimal wrt. ⊆)

are obtained, their sets of incisions are calculated and then compared among them

to get the one that yields the least amount of change, according to the rule-based

criterion adopted. Regarding the computation of the power set of the alteration set, a

few optimizations can be done, following properties from Section 5.3. For instance,

this would allow us to greatly simplify the computation of the incision-aware

alteration set, whenever we recognise the conditions stated by Theorems 8, 9, 10,

and 11.

Predicates context open/3 and context closed/2 respond to their corresponding

definitions. The former gathers all lines that are open by lines in X and then

performs the union with the attacking set; the latter includes every line in the tree

such that it receives a collateral incision over its selection, and any other collateral

incision does not affect the selection’s upper segment.

In addition to preservation, we give the alternative to pursue extra restrictions

to control the third axis of change, regarding the desired behavior of incisions and

selections. Algorithm 3 shows another rule for predicate get incisions/0, intending to

achieve a selection plus incision satisfying strict preservation, i.e., an incision which

does not collaterally affect any argumentation line. In this case, the convention

is that get upmost collateral/3 returns in B an empty list. Whenever the original
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Algorithm 2 Incision-aware Alteration Set
get inc aware alteration set(IncAwareSet)←

retractall(avoid supersets( )),
get open set(�[P,A]),
get alteration set(�[P,A],ΛP(A)),
powerset(ΛP(A), P ),
findall(X,

(member(X, P ),
inc aware(�[P,A], X),
assert(avoid supersets(X))),
MinSubsets),

minimal change(MinSubsets, [IncAwareSet| ]).

inc aware(�[P,A], X)←
not((avoid supersets(S), subset(S,X))),

context open(�[P,A], X, ̂�[P,A]),

context closed(X, ̂�[P,A]),

subset( ̂�[P,A], ̂�[P,A]).

context open(�[P,A], X, CO)←
findall(OL,

(member(o(O,OL),�[P,A]), member(O,X)),
F),

flatten(F,XOpen), attacking set(Att), append(Att, XOpen, CO).

context closed(X,CC)←
lines(Lines),
findall(λ′,

(member(λ′, Lines),
member(λ,X),
selection(λ, S), incision(S, I),
con args(λ′, Con), member(C, Con), rules in(C, Cr),
intersection(I, Cr,NonEmpty), NonEmpty\ = [],
forall(member(λ′′, X),

(selection(λ′′, S2), incision(S2, I2),
args(λ′, LPargs), member(B, LPargs), rules in(B, Br),
intersection(I2, Br, NonEmpty2),
(NonEmpty2\ = [],
upper segment(B, λ′, U), member(C,U)
; true))
)), CC).

Algorithm 3 Strict Preservation
get incisions←

retractall(incision( , , )),
forall(line(λ), get alteration),
forall(line(λ), strict preservation(λ)),
(not(update to next selection( ))
;
update orders wrt strict preservation, get incisions).

strict preservation(λ′)←
incision(σ′, γ′, λ′),
forall((get upmost collateral(σ′, λ,B),B �= γ′),
(B = []
;
assert(update to next selection(λ′)))).
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order does not meet this condition (i.e., B �= []), the order is updated and strict

preservation is checked again, until an order satisfies this principle or an update

is no longer possible. That is, unlike preservation, the strict preservation principle

could fail to be satisfied. It is important to note that once strict preservation is

satisfied, so is preservation (see Proposition 14.2) and thus, there is no need to check

if the latter holds. In case strict preservation fails, the revision procedure should be

restarted to meet only preservation.

Algorithm 4 implements profitability, which requires collateral incisions to affect

selections in lines belonging to the attacking set. Again, if a given selection in a line

does not satisfy profitability, an update of the order is asserted for that line.

Algorithm 4 Profitability
get incisions←

retractall(incision( , , )),
forall(line(λ), get alteration),
forall(line(λ), profitability(λ)),
(not(update selection to collinc( , ))
;
update orders wrt profitability, get incisions).

profitability(λ′)←
incision(σ′, γ′, λ′),
forall((get upmost collateral(σ′, λ,B),B �= γ′),
(attacking(λ), incision(σ,B, λ)
;
assert(update selection to collinc(λ,B)))).

7 Related work

In general, there is no literature directly related to ATC, although some authors

have developed systems that relate belief revision and argumentation (Cayrol et al.

2008; Boella et al. 2008a). One of the papers closely related to our approach studies

revision of logic programs (Delgrande et al. 2008). Next, we will describe several

approaches and their relation to our work. Afterwards, we will briefly introduce

the article (Moguillansky et al. 2011) which presents a variant of ATC applied to

propositional argumentation.

Regarding ideas from the classic belief revision theory applied to non-monotonic

theories, (Billington et al. 1999), the authors study the dynamics of a simpler variant

of defeasible logic through the definition of expansion, revision, and contraction

operators. Here, a defeasible theory contains facts, defeasible rules, and defeaters.

The first two elements are similar to those in DeLP, whereas defeaters are rules

that, instead of being used to draw conclusions, they prevent their achievement. The

focus of the paper, unlike the approach we presented, is to provide a full account of

postulates, which are closely related to those from the AGM model. The intuitions

behind each operator do not need any special consideration, and each one of them

is formally checked to comply with the corresponding set of postulates.

Benferhat et al., 1995, presented an article primarily oriented towards the treatment

of inconsistency caused by the use of multiple sources of information. Knowledge

bases are stratified, namely each formula in the knowledge base is associated with
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its level of certainty corresponding to the layer to which it belongs. They suggest

that it is not necessary to restore consistency in order to make sensible inferences

from an inconsistent knowledge base. Likewise, argumentation-based inference can

derive conclusions supported by reasons to believe in them, independently of the

consistency of the knowledge base.

Pollock and Gillies 2000 studied the dynamics of a belief revision system con-

sidering relations among beliefs in a “derivational approach” trying to obtain a

theory of belief revision from a more concrete epistemological theory. According to

them, one of the goals of belief revision is to generate a knowledge base in which

each piece of information is justified (by perception) or warranted by arguments

containing previously held beliefs. The difficulty is that the set of justified beliefs

can exhibit all kinds of logical incoherences because it represents an intermediate

stage in reasoning. Therefore, they propose a theory of belief revision concerned

with warrant rather than justification.

Falappa et al. 2002, proposed a kind of non-prioritized revision operator based on

the use of explanations. The idea is that an agent, before incorporating information

that is inconsistent with its knowledge, requests an explanation supporting it. They

presented a framework oriented to defeasible reasoning. One of the most interesting

ideas of this work is the generation of defeasible conditionals from a revision

process. This approach preserves consistency in the strict knowledge and it provides

a mechanism to dynamically qualify the beliefs as strict or defeasible.

Paglieri and Castelfranchi 2006 joined argumentation and belief revision in the

same conceptual framework, highlighting the important role played by Toulmin’s

layout of argument in fostering such integration. They consider argumentation as

“persuasion to believe” and this restriction is useful to make more explicit the

connection with belief revision. They propose a model of belief dynamics alternative

to the AGM approach: data-oriented belief revision (DBR). Two basic informational

categories (data and beliefs) are put forward in their model, to account for the

distinction between pieces of information that are simply gathered and stored by

the agent (data), and pieces of information that the agent considers (possibly up to

a certain degree) truthful representations of states of the world (beliefs). Whenever

a new piece of evidence is acquired through perception or communication, it affects

directly the agent’s data structure and only indirectly his beliefs. Belief revision is

often triggered by information update either on a fact or on a source: the agent

receives a new piece of information, rearranges his data structure accordingly, and

possibly changes his beliefs.

Boella et al. 2008a, showed a direct relation between argumentation and belief

revision. They consider argumentation as persuasion to believe and that persuasion

should be related to belief revision. More recently, (Boella et al. 2008b) presented

the interrelation between argumentation and belief revision on multi-agent systems.

When an agent uses an argument to persuade another one, he must consider not

only the proposition supported by the argument, but also the overall impact of the

argument on the beliefs of the addressee.

Cayrol et al. 2008, proposed a revision theory upon Dung-style abstract argu-

mentation systems. The main issue of any argumentation system is the selection
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of acceptable sets of arguments. An argumentation semantics defines the properties

required for a set of arguments to be acceptable. The selected sets of arguments under

a given semantics are called extensions of that semantics. Then, by considering how

the set of extensions is modified under the revision process, they propose a typology

of different revisions: decisive revision and expansive revision. A strong restriction is

posed: the newly added argument must have at most one interaction (via attack) with

an argument in the system. This restriction greatly simplifies the revision problem,

as multiple interactions with the original system are more common to occur, and

could become difficult to handle. In ATC, this is addressed with the inclusion of

subarguments and through the handle of collateralities. Moreover, the objective of

(Cayrol et al. 2008) differs from ours in that we apply (assuming it is allowed)

additional change to the original argumentative framework (and consequently, to

the de.l.p.) pursuing warrant of a single argument through the analysis of dialectical

trees, whereas they study how the addition of a given argument would affect the set

of extensions, by looking at an arguments graph.

Delgrande et al. 2008, address the problem of belief revision in (non-monotonic)

logic programming under answer set semantics: given two logic programs P and Q,

the goal is to determine a program R that corresponds to the revision of P by Q,

denoted P ∗ Q. They proposed formal techniques analogous to those of distance-

based belief revision in propositional logic. They investigate two specific operators:

(logic program) expansion and a revision operator based on the distance between

the SE models of logic programs. However, our approach is very different. Firstly,

we use defeasible logic programs instead of logic programs: it is clear that defeasible

logic programs are more general and more expressive than logic programs. Secondly,

since we want an external argument A to end up undefeated after the revision, we

must modify the defeasible logic program so that the conclusion of A is warranted.

7.1 ATC applied to propositional argumentation

In the recently published article (Moguillansky et al. 2011), ATC is applied to a

propositional argumentation framework (AF) with the objective of dealing with the

dynamics of knowledge of an underlying inconsistent propositional KB from where

the AF is built. Thus, similarly to the proposal given in the present article, handling

dynamics of arguments of the AF allows to deal with the dynamics of knowledge

of the underlying inconsistent KB. The main difference regarding the utilized KBs

is that in this article de.l.p.s are used as a kind of KB, while in Moguillansky et al.

(2011), a potentially inconsistent propositional KB is given in a more classical way.

A set of rationality postulates adapted to argumentation is also given, and

therefore, the proposed model of change is related to the postulates through the

corresponding representation theorem. (Moguillansky et al. 2011) constitutes the

main ATC approach given that it is fully axiomatizated within the theory of

belief revision. Nevertheless, the theory proposed in the present article introduces

an important result regarding the application of ATC to an implemented sort of

argumentation system: DeLP.
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In contrast to the ATC model upon which we rely in this article, the alteration of

dialectical trees in (Moguillansky et al. 2011) is achieved according to an alternative

but more general viewpoint: incisions are applied globally to the dialectical tree,

and therefore, no selection function is needed to determine a precise argument from

each argumentation line to which the incision is applied. Hence, a global incision

function determines a possible set of beliefs to be removed in order to effectively

alter all the necessary lines at once.

The usage of a selection function in the present article, allows to specify different

criteria of minimal change as has been introduced in Section 6: removing as few

beliefs as possible from the de.l.p., altering as few argumentation lines as possible

from the tree, and preserving the tree structure as much as possible by removing

arguments placed as low as possible in each line, getting closer to the leaves.

In addition, the model presented in (Moguillansky et al. 2011) does not pursue

such an extensive variety of minimal change criteria as the ones discussed here, but

only avoids to lose beliefs that are not related to the revision through the postulate of

core-retainment (see page 943). Moreover, it is important to remark that the notion

of minimality is usually subjective: most approaches in classic belief revision do

not obtain real minimality, but approximations to it by specifying different criteria

interpreting the meaning of minimal change as we have done in this article.

8 Conclusions

Argument Theory Change (ATC) is an abstract formalism that applies the concept

of revision from classic theory change to argumentation. Concretely, ATC looks

for the incorporation of a new argument to the current argumentation theory,

upon which it performs the necessary modifications in order for the newly inserted

argument to end up warranted. In this article, we focus on an implemented, working

argumentation system: DeLP. In this programming, arguments are built from sets

of rules, checked for minimality and consistency, and warrant of an argument is

determined by building and evaluating a dialectical tree. All these elements were

taken into account in this reification of ATC, yielding a very detailed version of

it. Given the specific nature of this approach, Section 4 was devoted to study the

properties of the DeLP marking procedure utilized to evaluate dialectical trees.

These results constitute the foundations for elements presented afterwards.

The complete change machinery was addressed in Section 5: the classical notions

of selection and incision were redefined in terms of ATC, and the argumentation-

related difficulties (namely, collateral incisions), controlled by proper, concrete prin-

ciples. Desirable properties were also analyzed, characterizing certain combinations

of selections/incisions. Special attention was paid to the determination of what

argumentation lines to alter within the dialectical tree at issue. This alteration set

was thoroughly investigated from the somewhat naı̈ve notion of attacking set up to

the evolved concept of incision-aware alteration set, which minimizes the amount of

incisions performed to the tree. Interrelations among these different kinds of sets of

lines to be altered were studied, and also their relation to several properties; some

of these results would be useful in the implementation.
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The necessary change operations composing the argument warranting revision

were provided in Section 5 for an external argument (an argument that cannot be

built from the worked de.l.p. P and that only derives its claim when considering the

set of strict rules from P). Regarding the main formal results, the paper provides

justifications for the classification of argumentation lines, and also to ensure the

correctness of the revision operators. The latter assertion refers to the two main

objectives pursued throughout this article: (1) change de.l.p.s in a controlled manner

(through some kind of minimal change) toward (2) achieving warrant for the claim

of the newly inserted argument. We proposed both objectives to refer to two well-

known principles of change in the classic theory of belief revision: persistence of prior

knowledge and primacy of new information, respectively, as originally introduced in

Dalal 1988. Both principles were addressed through the proposal of two of the usual

postulates from belief revision readapted to argumentation theory: core-retainment

and success.

Finally, Section 6 addresses the implementation of ATC over DeLP. Several

minimal change principles are proposed and discussed, clarifying the intuitive

ideas given throughout the article. Most importantly, a prolog-like algorithm is

provided, showing a possible implementation for the argument revision operator.

The main operations are given in detail and optimizations are suggested, by following

the properties established in Section 5, specially those relieving the potential

exhaustiveness when looking for the subset of lines representing the incision-aware

alteration set. Within certain conditions this computation could be even avoided.
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Chesñevar, C., Maguitman, A. and Simari, G. 2007. Emerging artificial intelligence

applications in computer engineering. In Frontiers in Artificial Intelligence and Applications,

vol. 160. IOS Press, Amsterdam, Netherlands, Chapter Recommender Systems based on

Argumentation, 53–70.
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