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The perceived velocity gradient tensor (PVGT), constructed from four fluid tracers
forming a tetrahedron, provides a natural way to study the structure of velocity
fluctuations and its dependence on spatial scales. It generalizes and shares qualitatively
many properties with the true velocity gradient tensor. Here, we establish the evolution
equation for the PVGT, and, for homogeneous and isotropic incompressible turbulent
flows, we analyse the dynamics of the PVGT in particular using its second- and
third-order invariants. We show that, for PVGT based on regular tetrads with
lateral size R0, the second-order invariants can be expressed solely in terms of
the usual second-order velocity structure functions, while the third-order invariants
involve the usual third-order longitudinal velocity structure function and a less well
known three-point velocity correlation function. For homogeneous and isotropic
turbulence, exact relations between the second moments of strain and vorticity, as
well as enstrophy production and the third moments of the strain, are derived. These
generalized relations are valid for all ranges of R0, and reduce to classical results
for the velocity gradient tensor when R0 is in the dissipative range. With the help
of these relations, we quantify the importance of the various terms, such as vortex
stretching, as a function of the scale R0. Our analysis, which is supported by the
results of direct numerical simulations of turbulent flows in the Reynolds-number
range 100 6 Rλ 6 610, allows us to demonstrate that strain prevails over vorticity
when R0 is in the inertial range.

Key words: isotropic turbulence, turbulence theory

1. Introduction
The challenge to describe the physics of turbulent flows comes not only from the

wide range of scales involved, but also from the spatial organization of the flow, which

† Email address for correspondence: hxu@tsinghua.edu.cn
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is responsible for the coupling between scales (Monin & Yaglom 1975; Frisch 1995;
Pope 2000). One manifestation of this complex structure is the emergence of tubes,
where the magnitude of the vorticity vector ω = ∇ × U is very high (Siggia 1981;
Douady, Couder & Brachet 1991; Jimenez et al. 1993; Ishihara et al. 2007; Buaria
et al. 2019). The amplification of vorticity results from its nonlinear coupling with
the rate-of-strain tensor, s= 1

2(m+mT), where m=∇U is the velocity gradient tensor
(Frisch 1995; Tsinober 2009).

Much of the experimental investigation of turbulent flows has relied on the
investigation of the velocity structure functions, defined as the moments of the
difference between the component of flow velocity, U, at two spatial points separated
by a distance x along a spatial direction (say x): Dn(x)=〈(U(x)−U(0))n〉. While this
quantity, defined with the help of two spatial points, is accessible from wind tunnel
experiments (Comte-Bellot & Corrsin 1966; Pope 2000; Bodenschatz et al. 2014) and
provides a very useful characterization of the scaling properties of the flow, it does
not provide much information on the structural aspects of the velocity field. This
deficiency is particularly important in the context of modelling the energy flux acting
at small scales below the filtering scale in a large-eddy simulation approach (Borue
& Orszag 1998; Tao, Katz & Meneveau 2002; Van der Bos et al. 2002; Meneveau
2011; Johnson & Meneveau 2018). A possible approach to studying simultaneously
the structural and the scaling aspects of turbulence consists in considering the velocity
at four points separated by a distance R0 forming a regular tetrad (Chertkov, Pumir
& Shraiman 1999). How such a tetrad deforms as the fluid particles move with the
flow reveals interesting properties of the flow (Pumir, Shraiman & Chertkov 2000;
Biferale et al. 2005; Naso & Pumir 2005; Xu, Ouellette & Bodenschatz 2008; Hackl,
Yeung & Sawford 2011; Meneveau 2011; Xu, Pumir & Bodenschatz 2011; Naso
& Godeferd 2012; Devenish 2013; Devenish & Thomson 2013; Sawford, Pope &
Yeung 2013; Naso 2019). Here, we focus on the perceived velocity gradient tensor
(PVGT), M , obtained from the velocity differences over the distance between the
four points defining the tetrad. The PVGT can be viewed as an extension of the
velocity gradient tensor to length scales beyond the dissipation range (Chevillard &
Meneveau 2006; Meneveau 2011; Jucha et al. 2014; Johnson & Meneveau 2016; Xu,
Pumir & Bodenschatz 2016). Other attempts to study the velocity gradient beyond the
dissipative scale include the velocity gradient coarse-grained over a spherical volume
following a fluid particle trajectory (Meneveau & Lund 1994), and the velocity
gradient obtained from the velocities of fluid particles within a sphere centred at a
target fluid particle (Lüthi et al. 2007). As we stress in this work, the study of the
PVGT provides some information on the relative role of vorticity and strain as a
function of scales, and also on their dynamics.

As shown, for example, by Pumir, Bodenschatz & Xu (2013), strong similarities
exist between the properties of the PVGT and those of the true velocity gradient m.
Nonetheless, there are important differences between the two quantities. One of them
comes from the incompressibility condition, which is not satisfied by M: tr(M) 6=
0, except in the limit R0 → 0, where M reduces to m. This leads to quantitative
differences in the properties of m and M , which we analyse in this work.

Specifically, we decompose the PVGT as M=S+W + 1
3 tr(M) I , where S and W are

the symmetric and antisymmetric parts of M , respectively, and I is the identity tensor.
We establish here the evolution equations for M , S and W . The equations for the
quadratic invariants of M , tr(S2) and tr(W 2), differ from the corresponding invariants
of m via terms involving the traces of powers of M . In the case of homogeneous
turbulence in incompressible flows, the averaged values of tr(m2) and tr(m3) are
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exactly zero (Betchov 1956). In fact, these relations allow one to express the second
and third invariants of m in terms of 〈tr(s2)〉 and 〈tr(s3)〉 only. The deviation from
the incompressibility (tr(M) 6= 0) makes the situation more complicated for the PVGT.
In this work, we generalize the exact relations obtained in Betchov (1956) to the
PVGT when the flow is homogeneous and isotropic, and, together with the dynamic
equations for M , we discuss quantitatively the production of strain rate and vorticity.
Overall, we find that strain rate prevails over vorticity in the inertial range.

In technical terms, we show how to express the second- and third-order moments
of the tensor M in terms of the second- and third-order correlation functions of
the fluctuating velocity. In the case of an isotropic flow, this leads in turn to
explicit asymptotic forms for most of the second and third moments of M in terms
of the velocity structure functions. We stress that, whereas the original work of
Betchov (1956) relied only on the incompressibility and homogeneity of the flow,
the generalized relations are derived in this work by assuming that the flow is
homogeneous and isotropic.

This work is organized as follows. In § 2, we recall the definition of M , which is
based on a general tetrad with arbitrary shape, and derive its evolution equation from
the Navier–Stokes equations. Then § 3 generalizes the properties of the second and
third moments of the true velocity gradient, m, to the PVGT, M , constructed from
regular tetrahedra, and provides exact expressions for all the quantities involved, in the
spirit of Betchov (1956), valid only for homogeneous and isotropic flows. Whereas our
analysis relates most of these moments to the well-documented two-point longitudinal
structure functions of the second and third order (Frisch 1995), the vortex stretching
term also involves the genuine three-point correlation function, with three points on
an equilateral triangle. In § 4, we express the correlations involving the PVGT, M , and
the fluid acceleration, appearing in the dynamics of the second and third moments of
M , in terms of the two-point velocity structure functions Dn(r). Last, with the help of
direct numerical simulation (DNS) data at several Reynolds numbers, we analyse in
§ 5 the various terms in the equations for strain and vorticity production, and show the
prevalence of strain over vorticity production in the inertial range. Finally, § 6 presents
our concluding remarks.

2. The perceived velocity gradient tensor
In this section, we discuss the definition of the PVGT M based on four fluid points

in the flow, and derive the equation of evolution for M . Our approach is completely
general, and can be applied to tetrahedra of any shape. We will restrict ourselves to
regular tetrahedra, defined by a set of four points separated from each other by a size
R0 only in later sections.

2.1. Elementary construction of the perceived velocity gradient tensor
We first introduce the convention used in this work. The construction of the PVGT
used here closely follows previous work (Xu et al. 2011; Pumir et al. 2013). Consider
four fluid particles in a homogeneous turbulent flows. We compute the PVGT M as
follows. Denoting the positions and velocities of the four points in the laboratory
frame by Xα and Uα (α = 1, 2, 3, 4), respectively, we introduce the coordinates xα

with respect to the centre of mass, xα = Xα
− X0, where X0

=
1
4

∑4
α=1 Xα, and the

reduced velocity, uα =Uα
−U0, where U0

=
1
4

∑4
α=1 Uα. The PVGT M , based on the

four points of the tetrahedron, is defined by

xαj M ji = uαi for α = 1, 2, 3, 4, (2.1)
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or equivalently, after multiplying both terms of (2.1) by xαk , and summing over α,

M ij = g−1
ik Ξkj, (2.2)

where the tensors g and Ξ are defined by

gij ≡

4∑
α=1

xαi xαj and Ξij ≡

4∑
α=1

xαi uαj . (2.3a,b)

When the tetrahedron is regular, the tensor g is isotropic, gij =
1
3 tr(g)δij, with trace

tr(g)= 3
2 R2

0, where R0 is the distance between any two points forming the tetrahedron.
For a tetrahedron with arbitrary shape, we extend the definition of the scale R0 to it
by using

R2
0 ≡

2
3

tr(g)=
2
3

4∑
α=1

xαi xαi . (2.4)

It is important to note that, contrary to the velocity gradient tensor m, which is
always incompressible, tr(m)=0, the PVGT is in general not incompressible, tr(M) 6=0.
This reflects the observation that, at the level of the tetrad, the flow can locally lead
to compression or expansion. In the following, we consider the trace of the tensor
separately. We also consider the classical decomposition of the PVGT as a sum of its
symmetric and antisymmetric parts,

M ij = Sij +W ij +
1
3 tr(M)δij, (2.5)

where Sij=
1
2(M ij+M ji)−

1
3 tr(M)δij and W ij=

1
2(M ij−M ji). The S and W terms in (2.5)

describe the straining and rotational motions as perceived by the four points of the
tetrad. The definition simplifies in the case of the true velocity gradient tensor to m=
s+w . Given the definitions used here, the PVGT M reduces to the velocity gradient
tensor m when the size of the tetrahedron, R0, is vanishingly small. In practice, this
limit is reached when R0 is smaller than the Kolmogorov length scale η = (ν3/ε)1/4,
where ε is the rate of kinetic energy dissipation per unit mass in the flow (Pumir et al.
2013).

2.2. Evolution equation for the perceived velocity gradient tensor
The equation of evolution for M can be derived from (2.1)–(2.3). Namely, taking the
time derivatives of (2.2) and (2.3) in the frame attached to X0 and moving with the
centre-of-mass velocity U0 yields

dgik

dt
Mkj + gik

dMkj

dt
=

dΞij

dt
=

4∑
α=1

uαi uαj +
4∑
α=1

xαi aαj , (2.6)

where aα is the accelerations of fluid particles relative to the centre of mass, which is
related to the acceleration in the laboratory frame Aα by aα = Aα

−
1
4

∑4
β=1 Aβ . The

Navier–Stokes equation express that

Aα
=

dUα

dt
=−∇Pα +Fα

+ ν∇2Uα, (2.7)

where F is the external body force per unit mass.
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In (2.6) we can rewrite the term
∑4

α=1 uαi uαj in terms of M and g as

4∑
α=1

uαi uαj =
4∑
α=1

xαk Mkixαn Mnj =MkigknMnj =MTgM. (2.8)

Differentiating g, as defined by (2.3), with respect to time, leads to

dg

dt
= gM +MTg. (2.9)

Then substituting (2.8) and (2.9) into (2.6) leads to, after some elementary algebra,

dM

dt
= g−1

[−gM2
−MTgM +MTgM + H/tr(g−1)] =−M2

+ΠH

= −M2
+ΠHp

+ΠHν
+ΠH f . (2.10)

Here the tensor Π = g−1/tr(g−1) was introduced by Chertkov et al. (1999) and H is
defined by

H ij = tr(g−1)

4∑
α=1

xαi aαj = Hp
ij + Hν

ij + H f
ij, (2.11)

in which Hp
ij, Hν

ij and H f
ij are the contributions to H ij from the components of aα

corresponding to the pressure gradient, the viscous forces and the external forcing;
see (2.7). Equation (2.10) is very reminiscent of the evolution equation of m
(Meneveau 2011):

dm

dt
=−m2

−Hp
+ ν∇2m+∇F, (2.12)

where Hp is the pressure Hessian, Hp
ij = ∂i∂jp. The strong resemblance between

equations (2.10) and (2.12) is a direct consequence of the Navier–Stokes equations
themselves. Namely, the quadratic nonlinear terms in (2.10) and (2.12) are identical,
and the terms ΠHp, ΠHν and ΠH f in (2.10) represent the pressure Hessian, the
viscous diffusion and the gradient of the external forcing in (2.12), respectively.

To simplify the notation in the analysis, we denote throughout the rest of the text
the trace of a tensor by a bar over the tensor:

Y ≡ tr(Y ). (2.13)

Decomposing M as in (2.5), we readily obtain the equations for M , S and W :

dM

dt
=−

(
S2
+W 2

+
1
3

M
2
)
+ΠH, (2.14)

dS

dt
=−S2

−W 2
−

2
3

MS +
1
3
(S2
+W 2)I +

1
2
[ΠH + (ΠH)T] −

1
3
ΠH I, (2.15)

dW

dt
=−SW −WS −

2
3

MW +
1
2
[ΠH − (ΠH)T], (2.16)

where we recall that I refers to the identity tensor. The evolution equations for m
and M differ in several important ways. The first important difference is that M is,
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in general, non-zero. This is made explicit in the decomposition (2.5), and results
in terms involving M in (2.15) and (2.16). The second difference comes from the
appearance of a pressure term ΠHp

− (ΠHp)T in the equation for W through the
term ΠH − (ΠH)T, while the pressure does not contribute to the equation for the
antisymmetric part w of the velocity gradient tensor m:

dw

dt
=−sw −ws+ ν∇2w +

1
2
[∇F− (∇F)T]. (2.17)

This effect of pressure originates from the finite difference approximation, and the
term ΠHp

− (ΠHp)T reduces to zero only in the R0 → 0 limit. Last, the coupling
between the evolution of M and the geometry, through the tensor g, leads to the
most significant difference. As a result of this coupling, the evolution of M is not
determined by (2.10) alone, as the shape and size of the tetrads evolve along with M .

Taking into account these deformations is essential in the understanding of the
physics of the PVGT (Pumir et al. 2013). In particular, equations (2.15) and (2.16)
provide a way to investigate the production of strain rate and vorticity, and their
dependence on scale. To quantify the production of vorticity and strain, we will
particularly focus on the equations for the invariants 〈S2

〉 and 〈W 2
〉, where the

brackets 〈·〉 denote an ensemble average over many tetrads with the same geometry
in the flow. Multiplying (2.15) by S, taking the trace and using the relation S = 0,
we obtain

1
2

d〈S2
〉

dt
=−〈S3

〉 − 〈WSW 〉 −
2
3
〈M S2

〉 + 〈ΠHS〉. (2.18)

Similarly, multiplying (2.16) by W leads to

1
2

d〈W 2
〉

dt
=−2〈WSW 〉 −

2
3
〈M W 2

〉 + 〈ΠHW 〉. (2.19)

For tetrads of size R0 much smaller than the Kolmogorov scale η, equation (2.19)
reduces to the well-known equation for the evolution of enstrophy:

d〈 1
2ω

2
〉

dt
=−

d〈w2 〉

dt
= 4〈wsw〉 + ν〈ω ·∇2ω〉 + 〈ω · ∇×F〉, (2.20)

where the vorticity ω is related to the antisymmetric part of m by w ij=−
1
2εijkωk, with

εijk being the permutation tensor. We have made explicit use in (2.20) of the relation
ω2
=−2w2, and we further note that wsw = 1

4ω · s ·ω.
The coupling between the PVGT and the geometry, i.e. terms 〈ΠHS〉 and 〈ΠHW 〉,

implies that the averages of the time derivatives of the quadratic invariants, −W 2 and
S2, over many identical tetrads in the flow, are not zero, even if the flow is statistically
stationary: vorticity or strain can grow, as measured by following an initially regular
Lagrangian tetrad of size R0. This property is interesting in its own right, as it allows
us to characterize enstrophy and strain production as a function of scale.

As was the case for the velocity gradient tensor (Betchov 1956), a systematic
analysis of the invariants of the PVGT, M , helps in the understanding of the dynamics
of vorticity and strain rate, as we document in the following section when M is based
on regular tetrahedra. We stress that the relations established below are derived under
the assumption that the turbulent fluctuations are locally isotropic, whereas the original
Betchov derivation was based only on incompressibility and homogeneity.
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3. Betchov relations generalized to the PVGT based on regular tetrahedra
In addition to the identity m≡ tr(m)= 0, which simply results from incompressibility,

it was established (Townsend 1951; Betchov 1956) that, in homogeneous flows,

〈m2〉 = 〈m3〉 = 0. (3.1)

These equalities result from elementary algebraic manipulations, and lead to the
following identities:

〈s2〉 =−〈w2〉 =
1
2 〈ω

2
〉, (3.2)

〈s3〉 =−3〈wsw〉 =− 3
4 〈ω · s ·ω〉. (3.3)

Equation (3.2) connects the amplitudes of vorticity and the rate of strain, while (3.3),
remarkably, relates the rate of generation of enstrophy, 〈ω · s · ω〉, see (2.20), to the
properties of the rate of strain. Namely, equation (3.3) expresses the mean rate of
generation of enstrophy in terms of the eigenvalues of s, i.e. λ1, λ2 and λ3 (ordered
such that λ1 > λ2 > λ3): 〈ω · s · ω〉 = −4〈λ1λ2λ3〉. Enstrophy production implies that
〈λ1λ2λ3〉 < 0, so the intermediate eigenvalue λ2 is preferentially positive (Betchov
1956; Tsinober 2009).

In the rest of this section, assuming the flow to be statistically homogeneous and
isotropic, we will extend relations (3.2) and (3.3) to the PVGT M obtained from
regular tetrahedra.

The first step will be to establish relations between quantities Mn for n= 2 and 3,
generalizing (3.1). Based on equations (2.2), (2.3) and (3.4), we systematically reduce
the moments of M to elementary moments of the velocity fluctuations at two or three
points. We note that, for regular tetrads, equation (2.2) reduces to the simple form
M = (2/R2

0)Ξ , where Ξ is defined by (2.3). We also note that, with our definitions,
the averaged value of M vanishes,

〈M〉 =
2
R2

0

4∑
α=1

xαi 〈u
α
i 〉 = 0, (3.4)

as a consequence of the homogeneous condition 〈uαi 〉= 0 for any particle α (16α6 4)
and for any component i (1 6 i 6 3). While the second- and third-order velocity
correlation functions involving two points separated by a given distance have been
extensively studied (Monin & Yaglom 1975), it is interesting to note that the
third-order moment of M involves the undocumented third-order velocity correlation
function involving velocities at three points forming an equilateral triangle, which we
need to evaluate.

3.1. Second-order moments of M
3.1.1. Generalized Betchov relations for the second moments

To simplify the notation, we denote the various second moments of M by Tp
2 (1 6

p 6 3), defined as

T1
2 = 〈M

2
〉, T2

2 = 〈MMT
〉 and T3

2 = 〈M
2
〉. (3.5a−c)

The invariants such as 〈S2
〉 and 〈W 2

〉 can be simply deduced from the equalities:

T1
2 = 〈S

2
〉 + 〈W 2

〉 +
1
3 T3

2 , and T2
2 = 〈S

2
〉 − 〈W 2

〉 +
1
3 T3

2 . (3.6a,b)
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To evaluate Tp
2 , we start with (2.3) and (3.4). An elementary calculation leads to

T1
2 =

〈
4
R4

0
Ξ 2

〉
=

〈
4
R4

0

(
4∑
α=1

xαi uαj

)(
4∑

β=1

xβj uβi

)〉

=
4
R4

0
(4x1

i 〈u
1
i u1

j 〉x
1
j + 12x1

i 〈u
2
i u1

j 〉x
2
j ), (3.7)

T2
2 = 〈MMT

〉 =
2
R2

0

〈
MT R2

0

2
IM

〉
=

2
R2

0
〈MTgM〉

=
2
R2

0

〈
4∑
α=1

uαi uαi

〉
=

8
R2

0
〈u1

i u1
i 〉, (3.8)

T3
2 =

〈
4
R4

0
Ξ

2
〉
=

〈
4
R4

0

(
4∑
α=1

xαi uαi

)(
4∑

β=1

xβj uβj

)〉

=
4
R4

0
(4x1

i 〈u
1
i u1

j 〉x
1
j + 12x1

i 〈u
1
i u2

j 〉x
2
j ). (3.9)

To obtain the expressions of Tp
2 in terms of the velocity correlations in the equations

above, we used the symmetry between the vertices of a regular tetrahedron and
the isotropy of the flow field, which lead to, for example, x1

i 〈u
1
i u1

j 〉x
1
j = x2

i 〈u
2
i u2

j 〉x
2
j

and x1
i 〈u

1
i u2

j 〉x
2
j = x3

i 〈u
3
i u4

j 〉x
4
j , and similar expressions by permuting the indices of

the velocity uα and position, xβ . We also note that the fourth equality in (3.8)
results from (2.8). The second moments Tp

2 are therefore expressed in terms of the
two-point velocity correlation functions 〈u1

i u1
j 〉 and 〈u1

i u2
j 〉. To proceed, we note that,

for homogeneous and isotropic velocity fields, the correlation tensor 〈ui(0)uj(r)〉 can
be expressed as (see equation (12.30) of Monin & Yaglom (1975))

〈ui(0)uj(r)〉 =F1r̂ir̂j +F2δij, (3.10)

where F1 and F2 are scalar functions of r (r= |r|) and r̂ is the unit vector in the r
direction. This implies, in particular, that 〈ui(0)uj(r)〉 is symmetric in its indices i and
j, and therefore that x1

i 〈u
1
i u2

j 〉x
2
j = x1

i 〈u
2
i u1

j 〉x
2
j . Then from (3.7) and (3.9), we conclude

that T1
2 = T3

2 , or in other words

〈M2
〉 = 〈M

2
〉. (3.11)

Substituting in (3.6) leads to

〈S2
〉 =−〈W 2

〉 +
2
3 〈M

2
〉. (3.12)

Equations (3.11) and (3.12) can be viewed as generalizations of (3.1) and (3.2) to the
PVGT, for which M 6= 0. Obviously, equations (3.11) and (3.12) reduce to the classical
expressions when R0 is in the dissipative range, where M = 0.
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3.1.2. Expression of the second moments in terms of two-point structure functions
For isotropic turbulent flows, the correlation functions 〈uαi uβj 〉 that appear in (3.7)–

(3.9) can in fact be systematically expressed in terms of the second-order longitudinal
velocity structure function

D2(r)= 〈[(U(r)−U(0)) · r̂]2〉, (3.13)

where U is the fluctuating turbulent velocity as defined in § 2.1. The velocity correlation
tensor Rij(r)= 〈Ui(x)Uj(x+ r)〉 can be written as (cf. § 6.2.1 of Davidson (2015) and
equations (12.29) and (13.69) of Monin & Yaglom (1975))

Rij(r) = R1r̂ir̂j +R2δij (3.14)

=
r̂ir̂j

4
rD′2(r)+

[
1
3
〈U2
〉 −

D2(r)
2
−

r
4

D′2(r)
]
δij, (3.15)

where the prime denotes the derivative with respect to r. Recall the relation between
u and U, uα = Uα

−
1
4(
∑4

β=1 Uβ), and also that 〈U1
i U1

j 〉 =
1
3 〈U

2
〉δij and 〈U1

i U2
j 〉 =

Rij(r12) = Rij(x2
− x1), with rαβ ≡ xβ − xα. The correlations appearing in equations

(3.7)–(3.9) can thus be expressed as

〈u1
i u1

i 〉 =

〈(
U1

i −
1
4

4∑
β=1

Uβ
i

)(
U1

i −
1
4

4∑
β=1

Uβ
i

)〉

= 〈U1
i U1

i 〉 −
2
4
(〈U1

i U1
i 〉 + 3〈U1

i U2
i 〉)+

1
16
(4〈U1

i U1
i 〉 + 12〈U1

i U2
i 〉)

=
3
4
〈U2
〉 −

3
4
〈U1

i U2
i 〉 =

3
4
〈U2
〉 −

3
4
(R1 + 3R2)

=
9
8

D2(R0)+
3
8

R0D′2(R0), (3.16)

x1
i 〈u

1
i u1

j 〉x
1
j = x1

i

〈(
U1

i −
1
4

4∑
β=1

Uβ
i

)(
U1

j −
1
4

4∑
β=1

Uβ
j

)〉
x1

j

=
3
4

x1
i 〈U

1
i U1

j 〉x
1
j −

6
4

x1
i 〈U

1
i U2

j 〉x
1
j +

6
16

x1
i 〈U

1
i U2

j 〉x
1
j +

6
16

x1
i 〈U

2
i U3

j 〉x
1
j

=
1
4
〈U2
〉x1

i x1
i −

9
8

x1
i x1

j Rij(x2
− x1)+

3
8

x1
i x1

j Rij(x3
− x2)

=
3

32
〈U2
〉R2

0 −
9
8
(x1

i x1
j r̂12

i r̂12
j R1 + x1

i x1
i R2)+

3
8
(x1

i x1
j r̂23

i r̂23
j R1 + x1

i x1
i R2)

=

(
3
32
〈U2
〉 −

9
32

R1 −
9
32

R2

)
R2

0 =
9

64
D2(R0)R2

0 (3.17)

and

x1
i 〈u

1
i u2

j 〉x
2
j = x1

i

〈(
U1

i −
1
4

4∑
β=1

Uβ
i

)(
U2

j −
1
4

4∑
β=1

Uβ
j

)〉
x2

j

= −
1
4

x1
i 〈U

1
i U1

j 〉x
2
j +

5
8

x1
i 〈U

1
i U2

j 〉x
2
j −

8
16

x1
i 〈U

1
i U3

j 〉x
2
j +

1
8

x1
i 〈U

3
i U4

j 〉x
2
j
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= −
1
12
〈U2
〉x1

i x2
i +

5
8

x1
i x2

j Rij(r12)−
1
2

x1
i x2

j Rij(r13)+
1
8

x1
i x2

j Rij(r34)

=
1
96
〈U2
〉R2

0 +
5
8

x1
i x2

j r̂12
i r̂12

j R1 −
1
2

x1
i x2

j r̂13
i r̂13

j R1 +
1
8

x1
i x2

j r̂34
i r̂34

j R1 +
1
4

x1
i x2

i R2

=

(
1
96
〈U2
〉 −

5
32

R1 −
1
32

R2

)
R2

0

=

[
1

64
D2(R0)−

1
32

R0D′2(R0)

]
R2

0. (3.18)

In the derivation of the results above, we made explicit use of the symmetry of
the regular tetrahedron, and of the flow isotropy, as done in equations (3.7)–(3.9).
A crucial element in our derivation is the geometric factors such as xαi xβj r̂γ δi r̂γ δj , which
can be expanded to multiplications of xαi xβi , or the inner product between xα and
xβ . These quantities can be evaluated by taking into account that the tetrad under
consideration is regular and that the coordinates of the vertices xα can be expressed,
up to a rotation, as (±1/2, 0,−1/(2

√
2))R0 and (0,±1/2, 1/(2

√
2))R0, which leads

to

xα · xβ =

{
3
8 R2

0, when α = β,
−

1
8 R2

0, when α 6= β.
(3.19)

Expanding xαi xβj r̂γ δi r̂γ δj in terms of xαi xβi , one obtains the following identities:

xαi xβj r̂γ δi r̂γ δj =


1
4 R2

0, if γ 6= δ and (α, β)= (γ , γ ) or (α, β)= (δ, δ),
−

1
4 R2

0, if γ 6= δ and (α, β)= (γ , δ) or (α, β)= (δ, γ ),
0, otherwise.

(3.20)

With the help of these expressions, equations (3.7)–(3.9) reduce to

〈M
2
〉 = 〈M2

〉 =
1
R2

0

(
3D2(R0)−

3
2

R0D′2(R0)

)
(3.21)

and

〈MMT
〉 =

1
R2

0
(9D2(R0)+ 3R0D′2(R0)). (3.22)

The expressions above can be further simplified by using the scaling properties of
D2(r). In the inertial range of scales, D2(r)=C2(εr)2/3, so (3.22) and (3.21) together
with (3.6) lead to

〈M
2
〉 = 〈M2

〉 = 2
D2(R0)

R2
0
,

〈MMT
〉 = 11

D2(R0)

R2
0
,

〈S2
〉 =

35
6

D2(R0)

R2
0
,

〈W 2
〉 =−

9
2

D2(R0)

R2
0
,


(3.23)
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all for η � R0 � L. In the dissipative range of scales, D2(r) reduces to D2(r) =
〈(m11)

2
〉r2, which yields

〈M
2
〉 = 〈M2

〉 = 0,

〈MMT
〉 = 15

D2(R0)

R2
0
= 15〈(m11)

2
〉,

〈S2
〉 =−〈W 2

〉 =
15
2

D2(R0)

R2
0
=

15
2
〈(m11)

2
〉,


(3.24)

for R0� η. As anticipated, one recovers in this limit the classical Betchov relations,
equations (3.1) and (3.2).

3.2. Third-order moments of M

We now turn to the third-order moments of M . As was the case for the second-order
moments, we introduce the notation Tp

3 as

T1
3 = 〈M

3
〉, T2

3 = 〈M
2MT
〉, T3

3 = 〈M
2 M〉, T4

3 = 〈MMT M〉, and T5
3 = 〈M

3
〉.

(3.25a−e)
We note that, using the decomposition of M , the quantities Tp

3 are related to moments
of S, W and M as

T1
3 = 〈M

3
〉 = 〈M

3
〉, (3.26)

T2
3 = 〈M

2MT
〉 = 〈S3

〉 − 〈WSW 〉 + 〈S2 M〉 − 1
3 〈W

2 M〉 + 1
9 〈M

3
〉, (3.27)

T3
3 = 〈M

2 M〉 = 〈S2 M〉 + 〈W 2 M〉 + 1
3 〈M

3
〉, (3.28)

T4
3 = 〈MMT M〉 = 〈S2 M〉 − 〈W 2 M〉 + 1

3 〈M
3
〉, (3.29)

T5
3 = 〈M

3
〉 = 〈S3

〉 + 3〈WSW 〉 + 〈S2 M〉 + 〈W 2 M〉 + 1
9 〈M

3
〉. (3.30)

In homogeneous and isotropic turbulent flows, the corresponding quantities for R0
in the dissipation range (R0 . η), obtained by substituting M by m in the above
definitions, all reduce to zero, except for T2

3 .
We now show that the quantities T1

3 , T3
3 and T5

3 are in fact related through a simple
relation, which is a property of M for homogeneous and isotropic turbulence. This
relation provides us with a generalization of the Betchov relation, equation (3.3), for
m in homogeneous flows.

To proceed, we express, as done in § 3.1, the moments of the quantities Tp
3 in terms

of geometric factors such as xαi xβj xγk , multiplied by the third-order velocity correlation
function, taken at two spatial points, Sijk(r) = 〈Ui(x)Uj(x)Uk(x + r)〉, and the third-
order velocity correlation function evaluated at three different spatial points forming
an equilateral triangle, Qijk(η, ξ) = 〈Ui(x)Uj(x + η)Uk(x + ξ)〉. For incompressible
isotropic fields, the third-order correlation at two spatial points, Sijk, can be expressed
as (cf. § 6.2.1 of Davidson (2015) and equations (12.120) and (13.80) of Monin &
Yaglom (1975))

Sijk(r) = S1r̂ir̂jr̂k +S2(r̂iδjk + r̂jδik)+S3r̂kδij (3.31)

=
1
6

[
D3(r)− rD′3(r)

2
r̂ir̂jr̂k +

2D3(r)+ rD′3(r)
4

(r̂iδjk + r̂jδik)−
D3(r)

2
r̂kδij

]
, (3.32)
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where D3(r) = 〈[(U(r) − U(0)) · r̂]3〉 is the third-order longitudinal velocity structure
function. On the other hand, the three-point correlation function Qijk is not so well
known. Its general expression (see § 12.5 of Monin & Yaglom (1975)) is given by

Qijk(η, ξ) = Q1η̂iη̂jη̂k +Q2η̂iδjk +Q3η̂jδik

+Q4η̂kδij +Q5η̂iη̂jξ̂k +Q6η̂iξ̂jη̂k +Q7ξ̂iη̂jη̂k

+Q8ξ̂iξ̂jη̂k +Q9ξ̂iη̂jξ̂k +Q10η̂iξ̂jξ̂k +Q11ξ̂iξ̂jξ̂k

+Q12ξ̂iδjk +Q13ξ̂jδik +Q14ξ̂kδij, (3.33)

where the Qn are scalar functions of |ξ |, |η| and ξ ·η. Using the symmetric conditions
Qijk(η, ξ) =Qikj(ξ , η) =Qjik(−η, ξ − η), and noting that, for a regular tetrahedron,
|ξ | = |η| = |ξ − η| = R0 and ξ · η = ξ · (ξ − η) = 1

2 R2
0 (the three points involved in

the definition of Qijk form an equilateral triangle), we can reduce the Qn appearing
in (3.33) to only three independent scalar functions:

Qijk(η, ξ) = Q1η̂iη̂jη̂k +Q2η̂iδjk − 2Q2η̂jδik

+Q2η̂kδij +Q5η̂iη̂jξ̂k −
1
2Q1η̂iξ̂jη̂k − (Q1 +Q5)ξ̂iη̂jη̂k

−
1
2Q1ξ̂iξ̂jη̂k +Q5ξ̂iη̂jξ̂k − (Q1 +Q5)η̂iξ̂jξ̂k

+Q1ξ̂iξ̂jξ̂k +Q2ξ̂iδjk +Q2ξ̂jδik − 2Q2ξ̂kδij. (3.34)

Substituting equations (3.31) and (3.34) into (3.25) allows us to express Tp
3 in terms

of scalar functions Sn and Qn. Here we show briefly the derivation of T5
3 as an

example:

T5
3 =

〈
8
R6

0
Ξ 3

〉
=

〈
8
R6

0

(
4∑
α=1

xαi uαj

)(
4∑

β=1

xβj uβk

)(
4∑

γ=1

xγk uγi

)〉

=

〈
8
R6

0

(
4∑
α=1

xαi (U
α
j −U0

j )

)(
4∑

β=1

xβj (U
β

k −U0
k )

)(
4∑

γ=1

xγk (U
γ
i −U0

i )

)〉

=

〈
8
R6

0

(
4∑
α=1

xαi Uα
j

)(
4∑

β=1

xβj Uβ

k

)(
4∑

γ=1

xγk Uγ
i

)〉

=
8
R6

0
(4x1

i x1
j x1

k〈U
1
i U1

j U1
k 〉 + 36x1

i x1
j x2

k〈U
1
j U1

k U2
i 〉 + 24x1

i x2
j x3

k〈U
1
j U2

k U3
i 〉)

=
8
R6

0
[36Sjki(x2

− x1)x1
i x1

j x2
k + 24Qjki(x2

− x1, x3
− x1)]x1

i x2
j x3

k

=
8
R6

0

[
36×

(
1
8
S1 +

1
4
S2 +

1
16

S3

)
+ 24×

(
3
16

Q1 −
3

16
Q2 −

1
8
Q5

)]
× R3

0

= (36S1 + 72S2 + 18S3 + 36Q1 − 36Q2 + 24Q5)/R3
0. (3.35)

When obtaining the result above, for the first three equalities, we simply substituted
in the definition of T5

3 and expanded the expression. The fourth equality relies on the
identity

∑4
α=1 xαi = 0 for any single tetrad. For the fifth equality, we used the isotropy

of the velocity field and the symmetry between the vertices of the tetrahedra. The
sixth equality comes from the definitions of Sijk and Qijk and the isotropy of the flow
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field so that the third-order moment of the single-point velocity fluctuation 〈U1
i U1

j U1
k 〉

vanishes. The seventh equality is obtained by substituting in equations (3.31) and
(3.34) the expressions for Sijk and Qijk, and evaluating the geometric factors such
as r̂ir̂jr̂kx1

i x1
j x1

k , r̂iδjkx1
i x1

j x1
k , ξ̂iξ̂jξ̂kx1

i x1
j x1

k , etc., which are all proportional to R3
0. The last

equality is obtained by rearranging the terms.
Other Tp

3 are obtained in a similar way. Among all the steps involved, the evaluation
of the geometric factors like r̂ir̂jr̂kx1

i x1
j x1

k involve some cumbersome algebra. We
determined those expressions using formal calculation with MATLAB. The script is
available upon request. In summary, the results are

T1
3 = (36S1 + 36S2 + 54S3 + 72Q2 − 48Q5)/R3

0,

T2
3 = (30S1 + 108S2 + 42S3 + 3Q1 − 24Q2 + 6Q5)/R3

0,

T3
3 = (36S1 + 60S2 + 30S3 + 24Q1)/R3

0,

T4
3 = (30S1 + 84S2 + 66S3 − 6Q1 + 48Q2 − 12Q5)/R3

0,

T5
3 = (36S1 + 72S2 + 18S3 + 36Q1 − 36Q2 + 24Q5)/R3

0.

 (3.36)

With these expressions, we note that the quantities T1
3 , T3

3 and T5
3 are related by

1
2 T1

3 −
3
2 T3

3 + T5
3 = 0, i.e.

〈M3
〉 =

3
2 〈M

2 M〉 − 1
2 〈M

3
〉. (3.37)

Substitution of equations (3.26), (3.28) and (3.30) into (3.37) yields

〈S3
〉 =−3〈WSW 〉 + 1

2 〈M M2
〉 −

5
18 〈M

3
〉. (3.38)

Equations (3.37) and (3.38) generalize the Betchov relations to the PVGT. They
reduce to the classical expressions (3.1) and (3.3) when R0 is in the dissipative range
of scales (R0 . η).

We note that, contrary to the second-order moments Tp
2 , defined by (3.5), which

could be explicitly expressed in terms of the well-studied second-order velocity
structure function, the invariants Tp

3 cannot be reduced to the corresponding third-order
structure function of the velocity difference between two points. Instead, they involve
the three-point correlation functions based on three points forming an equilateral
triangle, as shown by (3.36).

4. Mixed second-order invariants of M and ΠH

The evolution equations of the strain and enstrophy based on the PVGT, namely,
equations (2.18) and (2.19), involve not only the third-order invariants of M due to
nonlinearity, but also the mixed invariants of M and ΠH, which can be expressed in
terms of 〈MΠH〉, 〈M(ΠH)T〉 and 〈M ΠH〉. The terms involved in (2.18) and (2.19)
for the evolution of the strain and enstrophy, respectively 〈ΠHS〉 and 〈ΠHW 〉, can
be readily deduced from these terms, via the relations

〈ΠHS〉 = 1
2 〈MΠH〉 + 1

2 〈M(ΠH)T〉 − 1
3 〈M ΠH〉 (4.1)

and
〈ΠHW 〉 = 1

2 〈MΠH〉 − 1
2 〈M(ΠH)T〉. (4.2)
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As we now demonstrate, these terms can also be represented by the third-order
longitudinal structure function D3(r). Expanding these terms by their definitions
leads to

〈M(ΠH)T〉 =
8
R2

0
〈u1

i a1
i 〉, (4.3)

〈M ΠH〉 =
4
R4

0
(4x1

i 〈u
1
i a1

j 〉x
1
j + 12x1

i 〈u
1
i a2

j 〉x
2
j ), (4.4)

〈MΠH〉 =
4
R4

0
(4x1

i 〈u
1
i a1

j 〉x
1
j + 12x1

i 〈a
2
i u1

j 〉x
2
j ), (4.5)

in which the correlation between the reduced velocity uα and the reduced acceleration aβ
can be related to the velocity–acceleration correlation function Lij(r)=〈Ui(x)Aj(x+ r)〉
through definitions uα = Uα

−
1
4

∑4
β=1 Uβ and aα = Aα

−
1
4

∑4
β=1 Aβ . We also note

that, for isotropic flows, Lij can be written as

Lij(r)=L1r̂ir̂j +L2δij, (4.6)

in which L1 and L2 are scalar functions of r. With the help of (4.6), and using
the symmetry of the vertices of the regular tetrads, we can evaluate the correlations
involving 〈uαi aβj 〉 in terms of the velocity–acceleration correlation function as

〈u1
i a1

i 〉 =
3
4 〈UiAi〉 −

3
4(L1 + 3L2), (4.7)

x1
i 〈u

1
i a1

j 〉x
1
j = (

3
32 〈UiAi〉 −

9
32L1 −

9
32L2)R2

0, (4.8)

x1
i 〈u

1
j a2

i 〉x
2
j = (

1
96 〈UiAi〉 −

5
32L1 −

1
32L2)R2

0. (4.9)

The stationarity of the flow implies that 〈UiAi〉 = d〈U2
〉/dt= 0. We also note that the

symmetry between the indices i and j leads to 〈u1
i a2

j 〉 = 〈a
2
i u1

j 〉.
To proceed, we need to derive tractable expressions for L1 and L2. To that end,

we decompose the acceleration A as a sum of a local part ∂U/∂t, plus a convective
part U · ∇U. This leads to

Lij(r) = 〈Ui(x)Aj(x+ r)〉

=

〈
Ui(x)

∂Uj(x+ r)
∂t

〉
+

〈
Ui(x)Uk(x+ r)

∂Uj(x+ r)
∂(x+ r)k

〉
=

〈
Ui(x)

∂Uj(x+ r)
∂t

〉
+

∂

∂rk
〈Ui(x)Uk(x+ r)Uj(x+ r)〉. (4.10)

The first term on the right-hand side vanishes, since

0 =
∂

∂t
〈Ui(x)Uj(x+ r)〉 =

〈
Ui(x)

∂Uj(x+ r)
∂t

〉
+

〈
∂Ui(x)
∂t

Uj(x+ r)
〉

= 2
〈

Ui(x)
∂Uj(x+ r)

∂t

〉
, (4.11)

where the last equality comes from isotropy. Finally, since 〈Ui(x)Uk(x+ r)Uj(x+ r)〉=
Sjki(−r), we obtain from (4.10),

Lij(r)=
∂

∂rk
Sjki(−r). (4.12)
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Substituting equations (3.31) and (3.32) into the expression above, elementary
manipulations lead to

Lij(r) = L1r̂ir̂j +L2δij

=

(
−2S1

r
−S ′

1 +
S2

r
−S ′

2 +
S3

r
−S ′

3

)
r̂ir̂j +

(
−3S2

r
−S ′

2 −
S3

r

)
δij

=

(
−D3(r)

6r
+

D′3(r)
6
+

D′′3(r)r
24

)
r̂ir̂j +

(
−D3(r)

6r
−

D′3(r)
4
−

D′′3(r)r
24

)
δij.

(4.13)

Therefore, substituting equations (4.7)–(4.9) and (4.13) into equations (4.3)–(4.5), we
obtain

〈M(ΠH)T〉 =
4D3(R0)

R0
+

7D′3(R0)

2
+

D′′3(R0)R0

2
, (4.14)

〈MΠH〉 = 〈M ΠH〉 =
3D3(R0)

R0
−

D′3(R0)

2
−

D′′3(R0)R0

4
. (4.15)

Equations (4.14) and (4.15) can be further simplified by using the scaling properties
of the structure function D3(r). For R0 in the inertial range of scales, the celebrated
four-fifths law, D3(R0)=−

4
5εR0, implies that

〈M(ΠH)T〉 =
15D3(R0)

2R3
0
=
−6ε
R2

0
(4.16)

and

〈MΠH〉 = 〈M ΠH〉 =
5D3(R0)

2R3
0
=
−2ε
R2

0
. (4.17)

When R0 is in the dissipative range, D3(R0)= 〈(m11)
3
〉R3

0, which leads to

〈M(ΠH)T〉 =
35D3(R0)

2R3
0
=

35
2
〈(m11)

3
〉 (4.18)

and
〈MΠH〉 = 〈M ΠH〉 = 0. (4.19)

It is interesting to recall that the acceleration Aα can be decomposed as a sum of
the pressure gradient, viscous dissipation and external forcing, see (2.7). The mixed
second-order invariants of M and ΠH considered in this section can be divided into
three parts, corresponding to the contribution from the external forcing term, the
pressure gradient term and the viscous term. We expect the viscous term to dominate
the other two, especially when the length scale is much smaller than the integral
scale L. The arguments are that, first, 〈Ui(x)∇jP(x + r)〉 = 0 due to isotropy and
incompressibility (von Kármán & Howarth 1938) and, second, the external force Fα

is imposed on the large scale and varies moderately in the region we consider; thus
f α =Fα

−
1
4

∑4
β=1 Fβ

≈ 0, which leads to 〈uαi f βj 〉 ≈ 0.
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FIGURE 1. Generalized Betchov relations (3.12) and (3.38): (a) left-hand side (squares)
and right-hand side (crosses) of (3.12); (b) negative values of left-hand side (squares) and
right-hand side (crosses) of (3.38). The values of 3〈WSW 〉 (diamonds) are also shown
in (b) for comparison. All terms are made dimensionless by using the time scale t0 ≡

(R2
0/ε)

1/3. In both panels, the results obtained at Reynolds numbers Rλ = 610, 406 and
166 are shown by the solid blue, red dotted and dark-green dashed lines, respectively.

5. Verification of the theoretical predictions: DNS results
In this section we examine the theoretical results derived in §§ 2–4, using DNS data.

In addition to checking our derivation, numerical data provide useful information on
Tp

3 , the third moments of M (see (3.25)), which depend on a largely undocumented
three-point velocity correlation function; see § 3.2.

Three different datasets with Reynolds number Rλ = 166, 406 and 610 are used.
The Rλ = 166 dataset was generated by using a spectral code, run on the cluster at
ENS Lyon with a 3843 spatial resolution. The other two sets were downloaded from
the Johns Hopkins University database (Li et al. 2008; Yeung, Donzis & Sreenivasan
2012). In order to construct the PVGT from regular tetrahedra with various sizes, we
note that four points out of the eight vertices of a cube form a regular tetrahedron
if every two of them are on a surface diagonal line, which provides a convenient
approach to extract data points forming tetrahedra from a regular cubic grid out of the
simulation domain. The smallest tetrad size R0,min that can be reached is then

√
2 times

the grid spacing. Tetrads with sizes in integer numbers of R0,min can also be obtained
without interpolation. The eight vertices of a cube form two tetrahedra with different
orientations, so the number of tetrahedra that one can construct from N grid points
is equal to 2N, using the periodic boundary conditions of the numerical simulations.
For dataset Rλ= 166 we extract 3843 data points from two different snapshots, which
results in statistics of 2 × 3843

≈ 1.1 × 108 for each orientation and R0,min/η ≈ 2.8.
For the other two Reynolds numbers, we extract 5123 data points from one single
snapshot, which allows us to obtain statistics with 5123

≈ 1.3 × 108 data points for
each orientation and R0,min/η ≈ 6.3 at Rλ = 406 and R0,min/η ≈ 12.5 at Rλ = 610. To
check the statistical convergence, we compared the values obtained from two different
tetrahedron orientations, and in all cases they differ by no more than a few per cent.

Figure 1(a) and 1(b) verify the generalized Betchov relations, equations (3.12) and
(3.38), respectively. Namely, the left-hand (square symbols) and right-hand (cross
symbols) sides of (3.12) and (3.38), made dimensionless by using the Kolmogorov
time scale corresponding to the tetrad size, t0 ≡ (R2

0/ε)
1/3, are plotted. For (3.38), we

actually plotted the negative values of both sides, as 〈S3
〉< 0. Our results show that
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the two sets of symbols superpose almost perfectly for both second- and third-order
quantities. The imbalance between the two sides of the equation, clearly visible at
large values of R0/η in the case of the third-order moments, is very likely to be due
to the residual large-scale anisotropy, since the equations have been derived under the
explicit assumption of homogeneity and isotropy of the flow. Moreover, we note that,
when normalized by t0, the results at the two higher Reynolds numbers, Rλ= 406 and
610, collapse well for R0 smaller than the integral length scale L. This is an indication
that the properties of the inertial range dynamics studied here with the PVGT are
indeed universal for high-Reynolds-number turbulence. The finite Reynolds-number
effect is evident from the systematic variations of the curves when Rλ decreases.

Figure 1(b) also shows the values of the term corresponding to vortex stretching,
3〈WSW 〉, shown with diamond symbols. One can see that, in the dissipative range,
this quantity is identical to −〈S3

〉 as implied by (3.3). At larger values of R0, 3〈WSW 〉
is only slightly smaller than −〈S3

〉 (we will return to this ratio; see figure 2d). This
indicates that the relation between the third moment of strain and vortex stretching,
established in (3.3), provides a good approximation even in the inertial range.

Further insight into the generalized Betchov relations can be obtained by comparing
the various terms in (3.12) and (3.38). Figure 2(a) shows the terms in (3.12), all
made dimensionless by dividing by D2(R0)/R2

0. The horizontal lines correspond to the
exact values in the dissipative or the inertial range, as predicted by the calculations
in § 3.1.2; see (3.21)–(3.23). For values of R0 . 4η, the values of 〈M2

〉, 〈S2
〉 and

〈W 2
〉 agree with the asymptotic limit predicted in the dissipative range. Similarly, for

R0 & 50η, these quantities follow the predicted behaviour in the inertial range. The
relatively small value of 〈M2

〉, compared to either of 〈S2
〉 or 〈W 2

〉, ensures that the
ratio −〈S2

〉/〈W 2
〉 does not deviate by more than ∼30 % with respect to 1. As shown

in figure 2(b), the ratio −〈S2
〉/〈W 2

〉 increases monotonically from 1 in the dissipative
range to the predicted value of 35/27 when R0 increases in the inertial range. We
stress that, at the level of the PVGT, for R0 above the dissipative range, or R0 & 10η,
strain dominates over enstrophy.

The values of 〈M3
〉 and 〈M M

2
〉, made dimensionless by dividing by D3(R0)/R3

0,
are shown in figure 2(c). Note that D3(R0) < 0, so the positive values in the figure
imply that the two quantities shown are in fact negative. As expected from the fact
that M reduces to m when R0 is in the dissipative range, and from incompressibility,
the third-order moments of M , shown in figure 2(c), appear to decay to zero in the
dissipative range, for R0 . 4η. On the other hand, for 30η . R0 . L, both 〈M3

〉 and
〈M M

2
〉 approximately show a plateau when Rλ & 400. This is not surprising, since

the correlation functions Qi in (3.36) are expected to scale with the same exponent
as D3 in the inertial range. In the same spirit, the ratio between 〈S3

〉 and 〈WSW 〉
decreases from the theoretical prediction −3 in the dissipative range to another
constant value, approximately equal to −3.7, in the inertial range. Although this ratio
determined numerically in the inertial range differs slightly from that predicted by
the original Betchov relation in the dissipative range, equation (3.3), the qualitative
picture is unchanged: the positive value of (perceived) vortex stretching 〈WSW 〉> 0,
corresponds to 〈S3

〉< 0.
Figure 3 presents the values of the mixed second-order invariants of M and ΠH,

determined only from the Rλ = 406 flow. (The external forcing terms in the Rλ =
166 and Rλ = 610 cases are not available, so making the analysis of the ΠH term
impossible in these two cases.) The smallest value of R0≈ 6.3η does not allow us to
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FIGURE 2. The DNS results for the second- and third-order invariants of M . In all panels,
blue solid, red dotted and dark-green dashed curves indicate Reynolds numbers Rλ = 610,
406 and 166, respectively. (a) Values of 〈M2

〉 (crosses), −〈W 2
〉 (diamonds) and 〈S2

〉

(squares), all normalized by D2(R0)/R2
0, at different scale R0/η. The straight lines show

the theoretical predictions: 〈S2
〉=−〈W 2

〉= 15/2 (thin solid line) and 〈M2
〉= 0 (thick solid

line) in the dissipative range, and 〈S2
〉= 35/6 (thin dashed line), −〈W 2

〉= 9/2 (thin dotted
line) and 〈M2

〉 = 2 (thin dot-dashed line) in the inertial range. (b) Change of the ratio
−〈S2
〉/〈W 2

〉 with R0/η. The thin solid and the dotted lines show the predicted values of
1 and 35/27 in the dissipative and inertial ranges. (c) Values of 〈M3

〉 (squares) and 〈M M2
〉

(diamonds), normalized by D3(R0)/R3
0, at different scale R0/η. (d) Dependence of the ratio

〈S3
〉/〈WSW 〉 as a function of scale R0/η. The solid line is the theoretical value −3 in

the dissipative range.

explore directly the dissipative range. On the other hand, our results are compatible
with the existence of a plateau in the inertial range of scales for 〈MΠH〉 and for
〈M ΠH〉, consistent with the values predicted; see § 4. The possible existence of a
plateau for 〈M(ΠH)T〉, however, is at best suggested by the inflection point in figure 3.

In figure 3(b), (c) and (d), we decompose the values of the mixed invariants into
three parts, corresponding to the force, pressure and viscous terms. Consistent with
our previous analysis, when R0� L, the contributions from the external force and the
pressure gradient terms are negligible. The situation changes when R0 ' L, which is
likely to be a consequence of the flow anisotropy at scales comparable to the size of
the simulation domain.

Finally, figure 4 shows the terms in the equation for the rate of production of
strain and vorticity obtained from PVGT based on regular tetrads, i.e. equations (2.18)
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FIGURE 3. The DNS results for the mixed second-order invariants of M and ΠH at
Rλ = 406. (a) Values of 〈M(ΠH)T〉 (crosses), 〈MΠH〉 (pluses) and 〈M ΠH〉 (diamonds)
normalized by D3(R0)/R3

0. (b) Contributions of the pressure gradient term (blue pluses),
viscous term (magenta diamonds) and external forcing (black triangles) to 〈M(ΠH)T〉 and
their sum (red crosses), all normalized by D3(R0)/R3

0. (c) Same as (b), but for 〈MΠH〉.
(d) Same as (b), but for 〈M ΠH〉. The straight lines are theoretical predictions in the
inertial range for 〈M(ΠH)T〉 (= 15/2, dotted line) and 〈MΠH〉 = 〈M ΠH〉 (= 5/2, dashed
line).

and (2.19). Note that the rates of production for quantities from PVGT are non-zero
even in statistically stationary turbulence because the tetrads evolve in size and
shape as the fluid particles forming the tetrads move in the flow. The data shown in
figure 4 are from DNS at Rλ = 406. All the terms in these two equations are made
dimensionless by dividing by D3(R0)/R3

0. We multiplied the various contributions
by ±1 to make all the quantities positive (note that D3(R0) is negative). As an
example, we plot 〈S3

〉R3
0/D3(R0) instead of −〈S3

〉R3
0/D3(R0) that appears in (2.18).

Note that since 〈S2
〉> 0 and 〈W 2

〉< 0, the DNS data shown in figure 4 indicate that
d〈S2
〉/dt > 0 and d〈W 2

〉/dt < 0, i.e. the magnitudes of both strain and vorticity are
increasing. From figure 4(a), we see that the largest contribution to the production of
strain comes from −〈S3

〉, with additional small positive contribution from the term
−

2
3 〈M S2

〉. The term 〈ΠHS〉, on the other hand, acts against the production of strain.
This contribution describes the action of other forces against the deformation of the
tetrads, and, as we noted when discussing figure 3, is mostly due to the viscous
dissipation. Expressing 〈ΠHS〉 = (〈ΠHM〉 + 〈ΠH MT

〉)/2 − 〈MΠH〉/3 and using
equations (4.16) and (4.17) leads to the prediction that 〈ΠHS〉 ×R3

0/D3= 25/6 in the
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FIGURE 4. Magnitudes of terms in the equation for the rate of production of (a) strain,
equation (2.18), and (b) vorticity, equation (2.19). All terms are made dimensionless by
dividing by D3(R0)/R3

0 (note that D3(R0) < 0). The dashed horizontal line in panel (a)
is the theoretical prediction in the inertial range for 〈ΠHS〉 (= 25/6), and the dotted
horizontal line in panel (b) is the prediction for 〈ΠHW 〉 (= 5/2).

inertial range, which is well supported by the data shown in figure 4(a). In addition,
the vortex stretching term, 〈WSW 〉, also provides a negative contribution to the rate
of change of 〈S2

〉.
Figure 4(b) shows all the contributions to the equation of evolution of enstrophy,

equation (2.19). As expected, the main positive contribution is the vortex stretching
term 〈WSW 〉. The term originating from the non-zero value of M , − 2

3 〈M W 2
〉, is

negligibly small over the entire range of R0 explored. In the inertial range, the forcing
term 〈ΠHW 〉 can be expressed, by using (4.2), and by substituting the expressions
(4.16) and (4.17), as

−〈ΠHW 〉 =
1
2
(〈M(ΠH)T〉 − 〈MΠH〉)=

1
2

(
15
2
−

5
2

)
D3

R3
0
=

5
2

D3

R3
0
=−

2ε
R2

0
. (5.1)
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This can be rewritten as −〈ΠHW 〉R3
0/D3 =

5
2 . This predicted value is in very good

agreement with the numerical data shown in figure 4(b). Consistent with the notion
that a positive vortex stretching is a part of the turbulent cascade, we observe that
the generation of perceived enstrophy is positive. As a consequence, −〈S3

〉 should be
greater than zero, which says that the intermediate eigenvalue of S is preferentially
positive.

As the terms in the equation for the rate of production of strain and vorticity,
1
2 d〈S2

〉/dt and − 1
2 d〈W 2

〉/dt, are shown in the two panels of figure 4 with the
same normalization, they could thus be compared directly. We note that, except in
the dissipative range when R0 . η, strain production is much larger than enstrophy
production, approximately by a factor of 3 in the inertial range. (Note that the
vertical ranges of the two panels are different.) As already noted, the evolution of
strain and enstrophy measured with regular tetrads of size R0 does not give rise to
a closed, stationary problem, as the shape and size of the tetrads evolve with time,
an effect that has to be taken into account in a consistent description of the problem
(Pumir et al. 2013). The excess of strain production, compared to that of vorticity
production, is nonetheless consistent with the excess of strain over enstrophy when
R0 is in the inertial range, as clearly seen in our prediction (3.23) and from data
shown in figure 2(b). Thus, our results at a finite scale, with R0 in the inertial range,
consistently point to an excess of strain, compared to enstrophy.

6. Discussion and concluding remarks

In this article, we have established exact equations for the evolution of the perceived
velocity gradient tensor (PVGT), M , constructed from four points in the fluid,
forming a tetrahedron of size R0 in a homogeneous turbulent flow. Starting from
the incompressible Navier–Stokes equations, we derived the evolution equation of the
rate of strain and enstrophy of the PVGT. One important aspect in the present work
is that we explicitly took into account the trace of M , which is not identically zero
when the size of the tetrad is outside the dissipative range. The usual decomposition
of M in terms of its symmetric, S, and antisymmetric, W , components has to be
generalized to take into account the non-zero M ≡ tr(M); see (2.5).

We extended the well-known Betchov relations between invariants of the velocity
gradient tensor, m, to the PVGT M . While the Betchov relations were originally
derived under the assumptions that the flow is homogeneous and incompressible,
our extension requires a further assumption of isotropy, and, in addition, we restrict
ourselves to the PVGT M constructed from four points forming a regular tetrad with
lateral size R0. The extended Betchov relations allowed us to relate the norms of
strain 〈S2

〉 and enstrophy −〈W 2
〉 in the flow, as well as vortex stretching 〈WSW 〉

and the third moment of strain, 〈S3
〉, defined at any scale R0. Our analytic results

are confirmed by DNS results for homogeneous and isotropic flows. When R0 is in
the inertial range, the ratio −〈S2

〉/〈W 2
〉 is approximately 1.3 (compared to 1 in the

dissipative range, see figure 2b), in excellent agreement with our theoretical value of
35/27 (see (3.23)). We also demonstrated numerically that, in the inertial range of
scales, the production of strain significantly exceeds that of enstrophy.

In technical terms, our derivation consists in reducing the moments of order
up to three of the PVGT, based on four points forming a regular tetrahedron, to
elementary two- and three-point velocity correlations/structure functions. In the
case of homogeneous and isotropic turbulence, while the two-point correlations
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and structure functions have been extensively studied, theoretically, numerically and
experimentally, much less is known about the correlation function of velocities
involving three different points. Our analysis of the third moment of M requires some
information about the three-point velocity correlation for three points forming an
equilateral triangle. We hope that our work can motivate further investigation of these
three-point velocity correlations and structure functions (Mydlarski et al. 1998; Yao
et al. 2014; Wu et al. 2018).

The generalization of the Betchov relations to the PVGT for scales R0 in the inertial
range of turbulent flows allows us to draw interesting conclusions on the relative
role of strain and vorticity in the case of homogeneous and isotropic flows. These
results, taken together, suggest the prevalence of strain over vorticity at the level of
M , an effect anticipated several times (Tsinober 2009), and recently studied using
alternative approaches (Carbone & Bragg 2020; Johnson 2020). The description in
terms of the PVGT may therefore lead to insight previously difficult to obtain, at the
inertial range of scales. A challenging question would be to understand whether the
results derived by algebraic manipulations of the equations obtained here could be
understood from elementary terms, as the evolution of a tetrahedron is simply due to
turbulent transport.

The general approach discussed here offers several interesting possibilities of
extension. In this work, we have derived general equations for M , valid without any
particular condition on the flow except homogeneity. It would be interesting to study
flows with a non-trivial large-scale structure, such as a shear or straining. A good
control on how the large-scale structure of the flow affects the properties of M at
smaller scales is of interest not only for fundamental reasons, but also for improving
large-eddy simulation strategies (Meneveau & Katz 2000).
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