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We consider a class of history-dependent quasivariational inequalities for which we
prove the continuous dependence of the solution with respect to the set of
constraints. Then, under additional assumptions, we associate with each inequality
in the class a new inequality, the so-called dual variational inequality, for which we
state and prove existence, uniqueness, equivalence and convergence results. The
proofs are based on various estimates, monotonicity and fixed-point arguments for
history-dependent operators. Our abstract results are useful in the study of various
mathematical models of contact. To provide an example, we consider a boundary
value problem which describes the equilibrium of a viscoelastic body in contact with
an elastic-rigid foundation. We list the assumptions on the data and derive both the
primal and the dual variational formulation of the problem. Then, we state and
prove existence, uniqueness and convergence results. We also provide the link
between the two formulations, together with their mechanical interpretation.
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1. Introduction

Variational inequalities play an important role in the study of both the mathemati-
cal and numerical analysis of various nonlinear boundary value problems. Reference
could be found in the books [2,5,6,9,12] for instance. The study of contact prob-
lems with deformable materials within the framework of variational inequalities was
made in various works, including [4,8,11,14,16,18].

History-dependent variational inequalities are inequalities involving a special
class of operators, the so-called history-dependent operators. A large number of
mathematical models which describe the contact between a deformable body and
a foundation lead to such kind of inequalities, in which the unknown is either the
displacement or the velocity field. This explains why the history-dependent varia-
tional inequalities originate and have many applications in Contact Mechanics. The
first abstract study of such inequalities was carried out in [17] where existence,
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uniqueness and regularity results have been obtained. This study was continued in
[20,21], where a more general existence and uniqueness result and a convergence
result for a penalty method were proved, respectively. Part of these results has been
extended to hemivariational inequalities with history-dependent operators, see for
instance [13,19,25] and the references therein. In most of these papers, the history-
dependent inequalities were associated with a set of constraints and the question
of the dependence of the solution with respect to the constraints have been left
open. Moreover, a large number of contact models lead to variational formulations
in which the unknown is the stress field. Such kind of inequalities represents the so-
called dual variational formulations of the corresponding contact models and give
rise to interesting mathematical problems. For instance, examples and details can
be found in [1,7,18,22,24].

In this paper, we consider a class of abstract inequalities which can be formulated
as follows.

Problem P. Find a function u : R+ → X such that, for all t ∈ R+, the inequality
below holds:

u(t) ∈ K, (Au(t), v − u(t))X + (Su(t), v − u(t))X (1.1)

� (f(t), v − u(t))X ∀ v ∈ K.

Here and below X is a real Hilbert space with inner product (·, ·)X and associated
norm ‖ · ‖X , K is a subset of X, A : X → X and S : C(R+;X) → C(R+;X) are
given operators and f : R+ → X. Moreover, R+ = [0,∞) and C(R+;X) represents
the space of continuous functions defined on R+ with values in X. We still use the
notation C(R+;K) for the set of continuous functions defined on R+ with values
in K and N will represent the set of positive integers.

In the study of problem P, we consider the following assumptions.

K is a nonempty closed convex subset of X. (1.2)

The operator A is strongly monotone and Lipschitz continuous operator, that
is, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(a) There exists m > 0 such that
(Au1 − Au2, u1 − u2)X � m ‖u1 − u2‖2

X

∀u1, u2 ∈ X.

(b) There exists M > 0 such that
‖Au1 − Au2‖X � M ‖u1 − u2‖X ∀u1, u2 ∈ X.

(1.3)

The operator S is a history-dependent operator, that is,⎧⎪⎪⎪⎨⎪⎪⎪⎩
For every n ∈ N there exists sn > 0 such that

‖Su1(t) − Su2(t)‖X � sn

∫ t

0

‖u1(s) − u2(s)‖X ds

∀u1, u2 ∈ C(R+;X), ∀ t ∈ [0, n].

(1.4)

The function f has the regularity

f ∈ C(R+;X). (1.5)
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Under these assumptions, we have the following existence and uniqueness result.

Theorem 1. Assume that (1.2)–(1.5) hold. Then, the history-dependent quasivari-
ational inequality (1.1) has a unique solution u ∈ C(R+;K).

Theorem 1 represents a particular case of more general existence and uniqueness
results proved in [17,21] and, therefore, we skip its proof. We restrict ourselves to
mention that it is based on arguments on time-dependent variational inequalities
with monotone operators and fixed point.

The aim of the current paper is threefold. The first one is to study the depen-
dence of the solution of problem P with respect to the set K. The second one is to
introduce a new inequality associated with (1.1), so-called dual variational inequal-
ity, and to provide its analysis. Finally, our third aim is to illustrate these abstract
results in the study of a contact model with viscoelastic materials.

The rest of the paper is structured as follows. In § 2, we state and prove our first
convergence result, theorem 2. In § 3, we introduce the dual variational inequality
of (1.1) and prove its equivalence with the primal variational inequality, theorem 4.
This result implicitly proves the unique solvability of the dual variational inequality.
Then, in § 4, we extend the convergence result in theorem 2 to the dual variational
inequality. In § 5, we introduce a viscoelastic problem of contact and list the assump-
tion of the data. Finally, in §§ 6 and 7, we provide its analysis by using the primal
and the dual variational formulation of the problem, in terms of displacements and
stress, respectively. To this end, we use the abstract results obtained in §§ 2–4.

2. A first convergence result

In this section, we investigate the dependence of the solution with respect to the
set K. To this end, we consider a perturbation Kρ of the set K together with the
following perturbation of problem P.

Problem Pρ. Find a function uρ : R+ → X such that, for all t ∈ R+, the inequality
below holds:

uρ(t) ∈ Kρ, (Auρ(t), vρ − uρ(t))X + (Suρ(t), vρ − uρ(t))X (2.1)

� (f(t), vρ − uρ(t))X ∀ vρ ∈ Kρ.

Assume that

Kρ = c(ρ)K + d(ρ)θ (2.2)

where θ is a given element of X and c : (0,+∞) → R+, d : (0,+∞) → R are given
functions such that

c(ρ) −→ 1 and d(ρ) −→ 0 as ρ −→ 0. (2.3)

Then, the existence of a unique solution of problem Pρ as well as its convergence
to the solution of problem P as ρ → 0 could be obtained by using a result in [3],
where a more general class of history-dependent variational inequalities has been
considered. Nevertheless, in the current paper, we decided to present a different
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version of this convergence result, under different assumptions. The reason is that
these assumptions allow us to prove additional results and, moreover, are needed
in the study of the dual formulation of problem P. Therefore, we consider in what
follows the following hypothesis.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

There exists a set K0 and an element g ∈ X such that
(a) K0 is a nonempty closed subset of X.
(b) u, v ∈ K0 =⇒ u + v ∈ K0.
(c) λ � 0, u ∈ K0 =⇒ λu ∈ K0.
(d) K = K0 + g.

(2.4)

⎧⎨⎩
For each ρ > 0 there exists an element gρ ∈ X such that
(a) Kρ = K0 + gρ ∀ ρ > 0.
(b) gρ → g in X, as ρ → 0.

(2.5)

Note that the assumptions (2.4)(a)–(b) show that K0 is a closed cone in X.
Moreover, note that if (2.4) holds, then (1.2) holds, too. Finally, it is easy to see
that, if (2.2)–(2.4) hold, then (2.5) holds too, with gρ given by gρ = c(ρ)g + d(ρ)θ,
for all ρ > 0.

Our main result in this section is the following.

Theorem 2. Assume that (1.3)–(1.5), (2.4) and (2.5) hold. Then:

(i) For each ρ > 0 inequality (2.1) has a unique solution which satisfies uρ ∈
C(R+;Kρ).

(ii) The convergence below holds:

‖uρ − u‖C(R+;X) → 0 as ρ → 0. (2.6)

Related to the statement (ii) in theorem 2, we recall that u ∈ C(R+;X) represents
the solution of the inequality (1.1) obtained in theorem 1. Moreover, we recall
that C(R+;X) can be organized in a canonical way as a Fréchet space, that is,
as a complete metric space in which the corresponding topology is induced by a
countable family of seminorms. Therefore, the convergence (2.6) is understood with
respect to the structure of this space, that is,{‖uρ − u‖C(R+;X) → 0 as ρ → 0 if and only if

max
r∈[0,n]

‖uρ(r) − u(r)‖X → 0 as ρ → 0, for all n ∈ N. (2.7)

Proof. (i) . Let ρ > 0. Using (2.4)(a)–(c) and (2.5)(a) it is easy to show that
the set Kρ is a nonempty closed convex subset of X. Therefore, the unique
solvability of problem Pρ is a direct consequence of theorem 1, used with
K = Kρ.

(ii) In order to prove the convergence (2.6), we consider the following claims that
we state here and prove at the end of this section.
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Claim 1. The following properties hold:{
(a) g ∈ K and gρ ∈ Kρ, ∀ ρ > 0.

(b) 2 v − g ∈ K ∀ v ∈ K and 2 vρ − gρ ∈ Kρ ∀ vρ ∈ Kρ, ∀ ρ > 0.

(2.8)

Claim 2. For all n ∈ N, there exist wn > 0 such that

‖uρ(t)‖X � wn and ‖u(t)‖X � wn ∀ t ∈ [0, n], ∀ρ > 0. (2.9)

Let n ∈ N, t ∈ [0, n] and ρ > 0. We use (2.5)(a) and (2.4)(d) to see that uρ(t) +
g − gρ ∈ K. Therefore, testing in (1.1) with v = uρ(t) + g − gρ, we obtain

(Au(t), (uρ(t) − u(t)) + (g − gρ))X + (Su(t), (uρ(t) − u(t)) + (g − gρ))X

� (f(t), (uρ(t) − u(t)) + (g − gρ))X .

Similarly, (2.4)(d) and (2.5)(a) imply that u(t) + gρ − g ∈ Kρ and, therefore, taking
vρ = u(t) + gρ − g in (2.1) yields

(Auρ(t), (u(t) − uρ(t)) + (gρ − g))X + (Suρ(t), (u(t) − uρ(t)) + (gρ − g))X

� (f(t), (u(t) − uρ(t)) + (gρ − g))X .

We now add the previous two inequalities to find that

(Auρ(t) − Au(t), uρ(t) − u(t))X � (Au(t) − Auρ(t), g − gρ)X

+ (Suρ(t) − Su(t), u(t) − uρ(t))X + (Su(t) − Suρ(t), g − gρ)X ,

then we use condition (1.3) to deduce that

m‖uρ(t) − u(t)‖2
X �

(
M‖gρ − g‖X + ‖Suρ(t) − S(t)‖X

)
‖uρ(t) − u(t)‖X (2.10)

+ ‖Suρ(t) − Su(t)‖X‖gρ − g‖X .

Moreover, using (1.4) and (2.9), we obtain

‖Suρ(t) − Su(t)‖X � sn

∫ t

0

‖uρ(s) − u(s)‖X ds

� sn

∫ t

0

‖uρ(s)‖X ds + sn

∫ t

0

‖u(s)‖X ds � 2nwnsn

and, therefore, (2.10) yields

m‖uρ(t) − u(t)‖2
X

�
(
M‖gρ − g‖X + ‖Suρ(t) − Su(t)‖X

)
‖uρ(t) − u(t)‖X + 2nwnsn‖gρ − g‖X .

Next, we use the elementary inequality

x, a, b � 0 and x2 � ax + b =⇒ x � a +
√

b (2.11)
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and condition (1.4) to obtain

‖uρ(t) − u(t)‖X � M

m
‖gρ − g‖X +

(
2nwnsn‖gρ − g‖X

m

)1/2

(2.12)

+
sn

m

∫ t

0

‖uρ(s) − u(s)‖X ds.

Let

Tn(ρ) =
M

m
‖gρ − g‖X +

(
2nwnsn‖gρ − g‖X

m

)1/2

.

Then, using the Gronwall argument, (2.12) yields

‖uρ(t) − u(t)‖X � Tn(ρ)e((sn)/(m))t

and, therefore,

max
t∈[0,n]

‖uρ(t) − u(t)‖X � Tn(ρ)e((nsn)/(m)). (2.13)

Using now (2.5)(b), it is easy to see that

Tn(ρ) −→ 0 as ρ −→ 0. (2.14)

The convergence (2.6) is now a direct consequence of (2.13), (2.14) and (2.7). �

We turn now to the proof of the claims.

Proof of the Claim 1. First, assumption (2.4)(c) implies that 0X ∈ K0 and, there-
fore, equalities (2.4)(d) and (2.5)(a) show that (2.8)(a) holds. Let v ∈ K. Then,
equality (2.4)(d) shows that there exists v0 ∈ K0 such that v = v0 + g. There-
fore, 2v − g = 2(v0 + g) − g = 2v0 + g and, since (2.4)(c) implies that 2v0 ∈ K0, we
deduce by (2.4)(d) that 2v − g ∈ K. Similar arguments show that 2vρ − gρ ∈ Kρ

for all vρ ∈ Kρ and, therefore (2.8)(b) holds, which concludes the proof. �

Proof of Claim 2. Let n ∈ N, t ∈ [0, n] and ρ > 0. We test in (2.1) with vρ = gρ ∈
Kρ to obtain

(Auρ(t) − Agρ, uρ(t) − gρ)X � (f(t), uρ(t) − gρ)X

+ (Suρ(t), gρ − uρ(t))X + (Agρ, gρ − uρ(t))X .

Then, we use condition (1.3)(a) to see that

m ‖uρ(t) − gρ‖X �
(
‖Agρ‖X + max

t∈[0,n]
(‖f(t)‖X) + ‖Suρ(t)‖X

)
. (2.15)

Next, using assumption (1.4), we find that

‖Suρ(t)‖X � ‖Suρ(t) − Sgρ‖X + ‖Sgρ − S0X‖X + ‖S0X‖X (2.16)

� sn

∫ t

0

‖uρ(t) − gρ‖X ds + sn

∫ t

0

‖gρ‖X ds + ‖S0X‖X .
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We now use the convergence (2.5)(b) to deduce that there exists c > 0 which does
not depend on ρ such that

‖gρ‖X � c (2.17)

and, using this bound in (2.16), yields

‖Suρ(t)‖X � nsnc + ‖S0X‖X + sn

∫ t

0

‖uρ(t) − gρ‖X ds. (2.18)

Moreover, we use assumption (1.3)(b) and (2.17) to see that

‖Agρ‖X � cM + ‖A0X‖X . (2.19)

We now use the bounds (2.15), (2.18) and (2.19) to deduce that there exists λn > 0
which depends on A, f and S but does not depends on ρ such that

‖uρ(t) − gρ‖X � λn +
sn

m

∫ t

0

‖uρ(t) − gρ‖X ds

and, using a Gronwall’s argument, we obtain that

‖uρ(t) − gρ‖X � λnsn

m
ensn/m.

Therefore,

‖uρ(t) − gρ‖X � cn (2.20)

where cn = λn sn/men sn/m. Now, we combine the inequality

‖uρ(t)‖X � ‖uρ(t) − gρ‖X + ‖gρ‖X .

with (2.20) and (2.17) to see that

‖uρ(t)‖X � cn + c. (2.21)

Let

wn = max(cn + c, max
t∈[0,n]

(‖u(t)‖X)). (2.22)

Then, it is easy to see that (2.9) is a direct consequence of (2.21) and (2.22) �

3. Dual variational inequality

In this section, we associate with inequality (1.1) a new inequality, called the dual
variational inequality, in which the unknown is the function σ = Au + Su. To this
end, everywhere in what follows, we assume that A : X → X is a linear continuous
and positively definite operator that is, besides condition (1.3), we assume that A
is linear. It is well known that in this case, A is invertible. Moreover, its inverse,
denoted by A−1 : X → X, satisfies the inequalities{

(a) (A−1u, u)X � m/M2 ‖u‖2
X ∀u ∈ X,

(b) ‖A−1u‖X � 1/m ‖u‖X ∀u ∈ X.
(3.1)

We start with the following result.
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Lemma 3. Assume that (1.3) and (1.4) hold and, moreover, assume that A is linear.
Then, there exists a unique operator R : C(R+;X) → C(R+;X) such that, for each
functions σ, u ∈ C(R+;X), the following equivalence hold:

σ(t) = Au(t) + Su(t) ∀ t ∈ R+ (3.2)

if and only if

u(t) = A−1σ(t) + Rσ(t) ∀ t ∈ R+. (3.3)

Moreover, R is a history-dependent operator, that is, for each n ∈ N there exists
rn > 0 such that

‖Rσ1(t) −Rσ2(t)‖X � rn

∫ t

0

‖σ1(s) − σ2(s)‖X ds (3.4)

∀σ1, σ2 ∈ C(R+;X), ∀ t ∈ [0, n].

Proof. Let σ ∈ C(R+;X). We consider the operator Λ : C(R+;X) → C(R+;X)
defined by equality

Λη(t) = A−1σ(t) − A−1Sη(t) ∀ η ∈ C(R+;X), t ∈ R+. (3.5)

Note that the operator Λ depends on σ but, for simplicity, we do not indicate
explicitly this dependence. Let η1, η2 ∈ C(R+;X). We use the definition (3.5) and
the properties (3.1)(b) and (1.4) of the operators A−1 and S, respectively, to see
that

‖Λη1(t) − Λη2(t)‖X � sn

m

∫ t

0

‖η1(s) − η2(s)‖X ds (3.6)

∀n ∈ N, t ∈ [0, n].

Therefore, by using a fixed point result in [23] it follows that Λ has a unique fixed
point η∗ ∈ C(R+;X). We note that, again, the fixed point η∗ depends on σ but,
for simplicity, we do not indicate explicitly this dependence. We combine (3.5) with
equality Λη∗ = η∗ to see that

η∗(t) = A−1σ(t) − A−1Sη∗(t) ∀ t ∈ R+. (3.7)

This equality allows to consider the operator R : C(R+;X) → C(R+;X) defined as
follows:

Rσ(t) = η∗(t) − A−1σ(t) = −A−1Sη∗(t) ∀σ ∈ C(R+;X), ∀ t ∈ R+. (3.8)

Moreover, (3.8) implies that

η∗(t) = A−1σ(t) + Rσ(t) ∀ t ∈ R+. (3.9)

Assume now that σ, u ∈ C(R+;X) and, moreover, assume that (3.2) holds. Then
it follows that

u(t) = A−1σ(t) − A−1Su(t) ∀ t ∈ R+ (3.10)

and, combining this equality with (3.5) it follows that u is a fixed point for the
operator Λ. Therefore, by the uniqueness of the fixed point, we deduce that u = η∗
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and using (3.9) we obtain (3.3). Conversely, assume that (3.3) holds. Then (3.9)
shows that u = η∗ and, therefore, u is a fixed point for the operator Λ. Thus,
definition (3.5) implies that

u(t) = A−1σ(t) − A−1Su(t) ∀ t ∈ R+

which shows that (3.2) holds, too. This proves the existence of the operator R and,
since its uniqueness is obvious, we conclude the first part of the lemma.

Next, to prove the second part, we consider two functions σ1, σ2 ∈ C(R+;X)
and denote by η∗

1 , η∗
2 ∈ C(R+;X) the functions η∗ obtained as above with σ = σi,

i = 1, 2, respectively. Let n ∈ N and let t ∈ [0, n]. Then, using equality (3.8) and
the properties of the operators A−1 and S, we deduce that

‖Rσ1(t) −Rσ2(t)‖X � sn

m

∫ t

0

‖η∗
1(s) − η∗

2(s)‖X ds. (3.11)

In addition, equality (3.9) shows that

‖η∗
1(s) − η∗

2(s)‖X � 1
m
‖σ1(s) − σ2(s)‖X + ‖Rσ1(s) −Rσ2(s)‖X ∀s ∈ R+.

(3.12)
We now combine inequalities (3.11) and (3.12) to see that

‖Rσ1(t) −Rσ2(t)‖X � sn

m2

∫ t

0

‖σ1(s) − σ2(s)‖X ds

+
sn

m

∫ t

0

‖Rσ1(s) −Rσ2(s)‖X ds.

This inequality combined with the Gronwall argument shows that (3.4) holds with
rn = sn/m2 ensn/m which concludes the proof. �

Now, for each t ∈ R+, we consider the time-dependent set Σ(t) ⊂ X defined by

Σ(t) = { τ ∈ X : (τ, v − g)X � (f(t), v − g)X ∀ v ∈ K }. (3.13)

We also define the set Σ0 by equality

Σ0 = { τ ∈ X : (τ, v0)X � 0, ∀ v0 ∈ K0 }. (3.14)

and we note that (2.4)(d) implies that

Σ(t) = Σ0 + f(t) ∀ t ∈ R+. (3.15)

Moreover, using the operator R defined in lemma 3, we consider the following
variational problem.

Problem PD. Find a function σ : R+ → X such that, for all t ∈ R+, the inequality
below holds:

σ(t) ∈ Σ(t),(A−1σ(t), τ − σ(t))X + (Rσ(t), τ − σ(t))X (3.16)

� (g, τ − σ(t))X ∀ τ ∈ Σ(t).
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We refer to inequality (3.16) as the dual variational inequality of the variational
inequality (1.1). This terminology could be motivated by the following equivalence
result.

Theorem 4. Assume that (1.3)–(1.5), (2.4) hold and, moreover, assume that A
is linear. Let u ∈ C(R+;X) and σ ∈ C(R+;X) be given function. The following
statements hold.

(i) If u is a solution to problem P and σ = Au + Su, then σ is a solution to
problem PD.

(ii) Conversely, if σ is a solution to problem PD and u = A−1σ + Rσ, then u is
a solution to problem P.

Proof. (i) Assume that u is a solution to problem P and σ = Au + Su. Let t ∈
R+ be given. Then, (1.1) yields

(σ(t), v − u(t))X � (f(t), v − u(t))X ∀ v ∈ K. (3.17)

Next, using (2.8), we have 2u(t) − g ∈ K and g ∈ K. Therefore, testing in
(3.17) with v = 2u(t) − g and v = g, we obtain

(σ(t), u(t) − g)X = (f(t), u(t) − g)X . (3.18)

We combine (3.17) and (3.18) to see that

(σ(t), v − g)X � (f(t), v − g)X ∀ v ∈ K

which shows that

σ(t) ∈ Σ(t). (3.19)

Next, we use (3.18) and the definition (3.13) of the set Σ(t) to obtain that

(τ − σ(t), u(t) − g)X � 0 ∀ τ ∈ Σ(t). (3.20)

In addition, lemma 3 implies that u(t) = A−1σ(t) + Rσ(t) and, therefore,
substituting this equality in (3.20), we deduce that

(A−1σ(t), τ − σ(t))X + (Rσ(t), τ − σ(t))X � (g, τ − σ(t))X ∀ τ ∈ Σ(t).
(3.21)

We now combine (3.19) and (3.21) to see that σ is a solution of problem PD.

(ii) Conversely, assume that σ is a solution to problem PD and u = A−1σ + Rσ.
Let t ∈ R+. Then (3.16) implies that

(u(t), τ − σ(t))X � (g, τ − σ(t))X ∀ τ ∈ Σ(t). (3.22)

We shall prove that u satisfies (1.1) and, to this end, we start by proving that
u(t) ∈ K, i.e., u0(t) = u(t) − g ∈ K0. Arguing by contradiction, we assume in
what follows that u0(t) /∈ K0 and we denote by Pu0(t) the projection of u0(t)
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on the closed cone K0. We have u0(t) 
= Pu0(t) and, using the characterization
of the projection, it follows that

(Pu0(t) − u0(t), v0)X � (Pu0(t) − u0(t), Pu0(t))X

> (Pu0(t) − u0(t), u0(t))X ∀ v0 ∈ K0.

This inequality implies that there exists α ∈ R such that

(Pu0(t) − u0(t), v0)X > α > (Pu0(t) − u0(t), u0(t))X ∀ v0 ∈ K0, (3.23)

and, taking v0 = 0X ∈ K0 in (3.23), yields

α < 0. (3.24)

Next, assume that there exists ṽ0 ∈ K0 such that

(Pu0(t) − u0(t), ṽ0)X < 0. (3.25)

We take v0 = λṽ0 in (3.23) where λ � 0 and obtain

λ(Pu0(t) − u0(t), ṽ0)X > α ∀λ � 0.

Therefore, passing to the limit as λ → ∞ and using (3.25) we deduce that
α � −∞ which contradicts α ∈ R. We conclude from above that

(Pu0(t) − u0(t), v0)X � 0 ∀ v0 ∈ K0. (3.26)

Moreover, since σ(t) ∈ Σ(t), (3.15) shows that σ(t) − f(t) ∈ Σ0 and, therefore,

(σ(t) − f(t), v0)X � 0 ∀ v0 ∈ K0. (3.27)

Combining (3.26) and (3.27) it follows that Pu0(t) − u0(t) + σ(t) − f(t) ∈ Σ0

and, using (3.15), we deduce that Pu0(t) − u0(t) + σ(t) ∈ Σ(t). This allows to
take τ = Pu0(t) − u0(t) + σ(t) in (3.22) and, using equality u(t) = u0(t) + g,
we find that

(u0(t), Pu0(t) − u0(t))X � 0. (3.28)

Now, combining (3.23) and (3.24) it follows that

(u0(t), Pu0(t) − u0(t))X < 0. (3.29)

The inequalities (3.28) and (3.29) lead to a contradiction. Therefore, we
conclude that u0(t) ∈ K0, which implies that

u(t) ∈ K. (3.30)

We are now in position to verify inequality (1.1). First, we note that f(t) ∈
Σ(t). Therefore, taking τ = f(t) in (3.22), it follows that

(f(t), u(t) − g)X � (σ(t), u(t) − g)X . (3.31)
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In addition, since σ(t) ∈ Σ(t) and u(t) ∈ K, the definition (3.13) shows that

(σ(t), u(t) − g)X � (f(t), u(t) − g)X . (3.32)

We combine inequalities (3.31) and (3.32), to see that

(σ(t), u(t) − g)X = (f(t), u(t) − g)X . (3.33)

Hence, since σ(t) ∈ Σ(t), we deduce that

(σ(t), v − u(t))X � (f(t), v − u(t))X ∀ v ∈ K. (3.34)

In addition, since u(t) = A−1σ(t) + Rσ(t), by lemma 3 we have σ(t) =
Au(t) + Su(t) and, therefore, (3.34) yields

(Au(t), v − u(t))X + (Su(t), v − u(t))X (3.35)

� (f(t), v − u(t))X ∀ v ∈ K.

We combine (3.30) and (3.35) to see that u is a solution to problem P, which
concludes the proof.

�

We now turn to the unique solvability of problem PD which results from the
following result.

Theorem 5. Assume that (1.3)–(1.5), (2.4) hold and, moreover, assume that A is
linear. Then, the history-dependent quasivariational inequality (3.16) has a unique
solution σ ∈ C(R+;X).

Proof. We provide two different proofs. The first one is based on theorems 2 and
4 and is as follows. We use theorem 2 to see that there exists a unique solution
u ∈ C(R+;X) to problem P. Then, theorem 4 (i) implies that σ = Au + Su is
a solution to problem PD. This proves the existence part of the solution. The
uniqueness part follows directly from (3.16), by using a Gronwall argument.

The second proof is based on theorem 1. Let R0 : C(R+;X) → C(R+;X) be the
operator defined by

R0τ(t) = R(τ(t) + f(t)) ∀ τ ∈ C(R+;X), t ∈ R+ (3.36)

and consider the intermediate problem of finding a function σ0 : R+ → X such that,
for all t ∈ R+, the inequality below holds:

σ0(t) ∈ Σ0, (A−1σ0(t), τ0 − σ0(t))X + (R0σ0(t), τ0 − σ0(t))X (3.37)

� (g − A−1f(t), τ0 − σ0(t))X ∀ τ0 ∈ Σ0.

We apply theorem 1 in the case when the set K, the operators A, S and the function
f are given by Σ0, A−1, R0 and g − A−1f , respectively. Therefore, we deduce the
existence of a unique solution σ0 ∈ C(R+,Σ0) to inequality (3.37). We now take
σ = σ0 + f and use equalities (3.15), (3.36) to see that σ is the unique solution of
problem PD with regularity σ ∈ C(R+,Σ). �
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4. A second convergence result

In this section, we investigate the dependence of the solution of problem PD with
respect to the set K. To this end, we consider a perturbation Kρ of the set K and,
for each t ∈ R+ we denote by Σρ(t) the set

Σρ(t) = {τρ ∈ X : (τρ, vρ − gρ)X � (f(t), vρ − gρ)X ∀ vρ ∈ Kρ}. (4.1)

Then, using (2.5)(a) it is easy to see that

Σρ(t) = Σ0 + f(t), (4.2)

where Σ0 is the set defined by (3.14). We also consider the following perturbation
of problem PD.

Problem PD
ρ . Find a function σρ : R+ → X such that, for all t ∈ R+, the

inequality below holds:

σρ(t) ∈ Σρ(t), (A−1σρ(t), τρ − σρ(t))X + (Rσρ(t), τρ − σρ(t))X (4.3)

� (gρ, τρ − σρ(t))X ∀ τρ ∈ Σρ(t).

Our main result in this section is the following existence, uniqueness and conver-
gence result.

Theorem 6. Assume that (1.3)–(1.5), (2.4), (2.5) (a) hold and, moreover, assume
that A is linear. Then:

(i) For each ρ > 0 inequality (4.3) has a unique solution which satisfies σρ ∈
C(R+;X).

(ii) In addition, if (2.5)(b) holds, then we have the following convergence

‖σρ − σ‖C(R+;X) → 0 as ρ → 0. (4.4)

Proof. (i) Let t ∈ R+ and ρ > 0. We use (4.2) and (3.15) to see that Σ(t) =
Σρ(t). The unique solvability of inequality (4.3) is now a direct consequence
of theorem 5, applied with gρ instead of g.

(ii) Let t ∈ R+ and ρ > 0. Since Σ(t) = Σρ(t) we test in (3.16) with τ = σρ(t) ∈
Σ(t), then in (4.3) with τρ = σ(t) ∈ Σρ(t). Next, we add the resulting
inequalities to find that

(A−1σρ(t) − A−1σ(t), σρ(t) − σ(t))X (4.5)

� (Rσρ(t) −Rσ(t), σ(t) − σρ(t))X + (gρ − g, σρ(t) − σ(t))X .

We now use inequalities (3.1) and (3.4) to see that

m

M2
‖σρ(t) − σ(t)‖2

X

�
(
‖gρ − g‖X + rn

∫ t

0

‖σρ(s) − σ(s)‖Xds
)
‖σρ(t) − σ(t)‖X
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and, therefore,

‖σρ(t) − σ(t)‖X

� M2

m
‖gρ − g‖X +

rnM2

m

∫ t

0

‖σρ(s) − σ(s)‖X ds.

We now use the Gronwall argument to deduce that

‖σρ(t) − σ(t)‖ � M2

m
‖gρ − g‖X ernM2t/m

and, therefore,

max
t∈[0,n]

‖σρ(t) − σ(t)‖X � M2

m
‖gρ − g‖X enrnM2/m. (4.6)

The convergence (4.4) is now a direct consequence of (4.6) and (2.5)(b). �

5. A viscoelastic contact model

The abstract results presented in §§ 2–4 are useful in the study of various quasistatic
models of contact with deformable bodies. To provide an example in this section,
we consider a frictionless contact problem for linearly viscoelastic materials with
long memory. Let Ω ⊂ R

d (d = 2, 3) be reference configuration of the viscoelastic
body, Γ the boundary of Ω and Γ1, Γ2, Γ3 a partition of Γ such that measΓ1 > 0.
We denote by ν the unit outward normal at Γ and by S

d the space of symmetric
tensors of second order on R

d. Then, the classical formulation of the problem is the
following.

Problem Q. Find a displacement field u : Ω × R+ → R
d and a stress field σ :

Ω × R+ → S
d such that

σ(t) = Aε(u(t)) +
∫ t

0

B(t − s)ε(u(s))ds in Ω, (5.1)

Div σ(t) + f0(t) = 0 in Ω, (5.2)

u(t) = 0 on Γ1, (5.3)

σ(t)ν = f2 on Γ2, (5.4)

uν(t) � ga, σν(t) + p(uν(t)) � 0,

(uν(t) − ga)
(
σν(t) + p(uν(t))

)
= 0

}
on Γ3, (5.5)

στ (t) = 0 on Γ3, (5.6)

for all t ∈ R+.

Problem Q was already introduced in [18] and, therefore, to not describe it in
detail. We only recall that equation (5.1) represents the constitutive equation in
which A and B are the elasticity operator and the relaxation tensor, respectively.
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Equation (5.2) is the equilibrium equation in which f0 denotes the density of body
forces, and conditions (5.3), (5.4) are the displacement-traction boundary conditions
in which f2 represents the density of traction on Γ2. Condition (5.5) represents the
contact condition with normal compliance and unilateral constraint, which models
the contact with an elastic-rigid foundation. Here ga > 0 ia a given bound, p is the
normal compliance function which will be described below and the index ν denotes
the normal components of vectors and tensors. Finally, condition (5.6) represents
the frictionless condition, which states that the tangential component of the stress
vector, denoted στ , vanishes on the contact surface Γ3.

In the study of problem Q, we use the notation ‘·’ and ‖ · ‖ for the inner product
and the Euclidean norm on the spaces R

d and S
d as well as standard notation for

the Lebesgue and Sobolev spaces associated with Ω and Γ. Moreover, we consider
the spaces

V = {v = (vi) ∈ H1(Ω)d : vi = 0 on Γ1 },
Q = { τ = (τij) : τij = τji ∈ L2(Ω) }.

These are real Hilbert spaces endowed with the inner products

(u,v)V =
∫

Ω

ε(u) · ε(v) dx, (σ, τ )Q =
∫

Ω

σ · τ dx.

and the associated norms denoted by ‖ · ‖V and ‖ · ‖Q, respectively. Here and below
ε is the deformation operator defined by

ε(u) = (εij(u)), εij(u) = 1
2 (ui,j + uj,i)

Completeness of the space (V, ‖ · ‖V ) follows from the assumption meas (Γ1) > 0,
which allows the use of Korn’s inequality.

For an element v ∈ V , we still write v for the trace of v on the boundary and
we denote by vν and vτ the normal and tangential components of v on Γ, given
by vν = v · ν, vτ = v − vνν. By the Sobolev trace theorem, there exists a positive
constant c0 which depends on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d � c0 ‖v‖V ∀v ∈ V. (5.7)

Also, for a regular function σ ∈ Q we use the notation σν and στ for the normal
and the tangential trace, that is, σν = (σν) · ν and στ = σν − σνν. Finally, we
denote by Q∞ the space of fourth order tensor fields given by

Q∞ = {E = (Eijkl) : Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 � i, j, k, l � d},
and we recall that Q∞ is a real Banach space with the norm

‖E‖Q∞ = max
1�i,j,k,l�d

‖Eijkl‖L∞(Ω).

Moreover, a simple calculation shows that

‖Eτ‖Q � d ‖E‖Q∞‖τ‖Q ∀ E ∈ Q∞, τ ∈ Q. (5.8)
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The assumptions on the data of problem Q are the following.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A : Ω × S
d → S

d.
(b) There exists LA > 0 such that

‖A(x, ε1) −A(x, ε2)‖ � LA‖ε1 − ε2‖
∀ ε1, ε2 ∈ S

d, a.e. x ∈ Ω.
(c) There exists mA > 0 such that

(A(x, ε1) −A(x, ε2)) · (ε1 − ε2) � mA ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(d) The mapping x �→ A(x, ε) is measurable on Ω,
for any ε ∈ S

d.
(e) The mapping x �→ A(x,0) belongs to Q.

(5.9)

B ∈ C(R+;Q∞). (5.10)

f0 ∈ C(R+;L2(Ω)d), f2 ∈ C(R+;L2(Γ2)d). (5.11)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) p : Γ3 × R → R+.
(b) There exists Lp > 0 such that

|p(x, r1) − p(x, r2)| � Lp |r1 − r2|
∀ r1, r2 ∈ R a.e. x ∈ Γ3.

(c) (p(x, r1) − p(x, r2))(r1 − r2) � 0
∀ r1, r2 ∈ R a.e. x ∈ Γ3.

(d) p(x, r) = 0 for all r � 0 a.e. x ∈ Γ3.
(e) The mapping x �→ p(x, r) is mesurable on Γ3,

for all r ∈ R.

(5.12)

Finally, we assume that there exists an element ζ ∈ V such that

ζ = ν on Γ3, (5.13)

and we send the reader to [10,24] for examples and details on this condition.
We use these assumptions to provide the variational analysis of problem Q based

on the primal variational formulation, in terms of displacements. Then, under addi-
tional assumptions that we shall introduce later, we shall provide the variational
analysis of the problem by using the dual variational formulation, in terms of stress.

6. Primal variational formulation

Everywhere in this section, we assume that (5.9)–(5.12) hold. Moreover, we define
the set U ⊂ V , the operators S : C(R+;V ) → C(R+;V ), P : V → V and A : V → V
and the function f : R+ → V by equalities

U = {v ∈ V : vν � ga on Γ3}, (6.1)

(Su(t),v)V =
( ∫ t

0

B(t − s)ε(u(s)) ds, ε(v)
)

Q
∀u ∈ C(R+;V ), v ∈ V, (6.2)
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(Pu,v)V =
∫

Γ3

p(uν)vν da ∀u, v ∈ V, (6.3)

(Au,v)V = (Aε(u), ε(v))Q + (Pu,v)V ∀u, v ∈ V, (6.4)

(f(t),v)V =
∫

Ω

f0(t) · v dx +
∫

Γ2

f2(t) · v da ∀v ∈ V, ∀ t ∈ R+. (6.5)

Assume in what follows that (u,σ) are sufficiently regular functions which satisfy
(5.1)–(5.6). Let v ∈ U and t ∈ R+. Then, using integration by parts combined with
standard arguments it is easy to see that∫

Ω

σ(t) · (ε(v) − ε(u(t))) dx =
∫

Ω

f0(t) · (v − u(t)) dx (6.6)

+
∫

Γ2

f2(t) · (v − u(t)) da +
∫

Γ3

σν(t)(vν − uν(t)) da,∫
Γ3

σν(t)(vν − uν(t)) da � −
∫

Γ3

p(uν(t))(vν − uν(t)) da. (6.7)

We now combine (6.6) and (6.7) and use the definitions (6.3), (6.5) to deduce that

(σ(t), ε(v) − ε(u(t)))Q + (Pu(t),v − u(t))V (6.8)

� (f(t),v − u(t))V ∀v ∈ U.

Next, we substitute the constitutive law (5.1) in (6.8) and use the definitions (6.2)
and (6.4) to deduce the following variational formulation of the contact problem Q.

Problem QV . Find a displacement field u : R+ → U such that, for all t ∈ R+, the
inequality below holds:

u(t) ∈ U, (Au(t),v − u(t))V + (Su(t),v − u(t))V (6.9)

� (f(t),v − u(t))V ∀v ∈ U

In the study of the problem QV we have the following existence and uniqueness
result.

Theorem 7. Assume that (5.9)–(5.12) hold. Then, problem QV has a unique
solution which satisfies u ∈ C(R+;U).

Proof. We use theorem 1 with X = V , K = U . To this end, we note that the set U
given by (6.1) is a nonempty closed convex subset of V and, therefore, it satisfies
the assumption (1.2). Next, we use assumptions (5.9), (5.12) and inequality (5.7)
to see that the operator A defined by (6.4) satisfies the inequalities

(Au − Av,u − v)V � mA ‖u − v‖2
V ∀u,v ∈ V, (6.10)

‖Au − Av‖V � (LA + c2
0Lp)‖u − v‖V ∀u, v ∈ V. (6.11)

Therefore, condition (1.3) holds with m = mA and M = LA + c2
0Lp. Let n ∈ N.

Then, a simple calculation based on the assumption (5.10) and inequality (5.8)
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shows that

‖Su1(t) − Su2(t)‖V � d max
r∈[0,n]

‖B(r)‖Q∞

∫ t

0

‖u1(s) − u2(s)‖V ds (6.12)

∀u1, u2 ∈ C(R+;V ), ∀ t ∈ [0, n].

This inequality shows that the operator S satisfies condition (1.4) with

sn = max
r∈[0,n]

‖B(r)‖Q∞ .

Finally, note that condition (5.11) on the body forces and tractions imply that
f ∈ C(R+;V ), which shows that condition (1.5) is satisfied, too. Theorem 7 is now
a direct consequence of theorem 1. �

Next, we study the dependence of the solution with respect the bound ga by
using the abstract convergence results in § 2. To this end, we consider the set

Uρ = {v ∈ V : vν � gaρ on Γ3 }, (6.13)

where, here and below, gaρ > 0 represents a perturbation of ga and ρ is a parameter
which converges to zero. We also consider the following perturbation of problem
QV .

Problem Qρ
V . Find a displacement field uρ : R+ → Uρ such that

(Auρ(t),vρ − uρ(t))V + (Suρ(t),vρ − uρ(t))V (6.14)

� (f(t),vρ − uρ(t))V ∀vρ ∈ Uρ.

We assume that

gaρ −→ ga as ρ −→ 0. (6.15)

Then, we have the following existence, uniqueness and convergence result.

Theorem 8. Assume that (5.9)–(5.12). Then:

(i) For each ρ > 0 problems Qρ
V has a unique solution.

(ii) In addition, if (5.13) and (6.15) hold, then the solution uρ of inequality (6.14)
converges to the solution u of inequality (3.16), that is,

uρ −→ u in C(R+;V ) as ρ −→ 0. (6.16)

Proof. We define the set U0 by equality

U0 = {v ∈ V : vν � 0 on Γ3 }. (6.17)

Then it is easy to see that condition (2.4) holds with X = V , K = U , K0 = U0 and
g = gaζ, the element ζ being defined in condition (5.13). Moreover, the condition
(2.5) holds with X = V , Kρ = Uρ, K0 = U0 and g = gaζ. Finally, recall that, as
shown in the proof of Theorem 7, conditions (1.3)–(1.5) hold. Theorem 8 is now a
direct consequence of theorem 2. �
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7. Dual variational formulation

We turn now to the dual variational formulation of problem Q, expressed in terms
of stress. To this end, we need additional assumptions which guarantee the linearity
of the operator A defined by (6.4). Therefore, in what follows we assume that{

A ∈ Q∞ and there exists mA > 0 such that
A(x, ε) · ε � mA ‖ε‖2 ∀ ε ∈ S

d, a.e. x ∈ Ω.
(7.1)

p(x, r) = 0 ∀ r ∈ R, a.e. x ∈ Γ3. (7.2)

Using these assumptions it follows that the operator (6.4) is given by

(Au,v)V = (Aε(u), ε(v))Q ∀u, v ∈ V. (7.3)

and, moreover, it is a linear operator.
Next, we consider the operator S∗ : C(R+;Q) → C(R+;Q) defined by

S∗τ (t) =
∫ t

0

B(t − s)τ (s) ds ∀ τ ∈ C(R+;Q), t ∈ R+ (7.4)

and note that assumption (5.10) implies that S∗ is a history-dependent operator.
Therefore, using lemma 3 in the case X = Q, we obtain the following result.

Lemma 9. There exists a unique operator R∗ : C(R+;Q) → C(R+;Q) such that,
for each functions u ∈ C(R+;V ), σ ∈ C(R+;Q) the following equivalence hold:

σ(t) = Aε(u(t)) +
∫ t

0

B(t − s)ε(u(s)) ds ∀ t ∈ R+, (7.5)

if and only if

ε(u(t)) = A−1σ(t) + R∗σ(t) ∀ t ∈ R+. (7.6)

Moreover, R∗ is a history-dependent operator.

In addition of the result in lemma 9, we recall that the operator R∗ is of the form

R∗σ(t) =
∫ t

0

B∗(t − s)σ ds ∀σ ∈ C(R+;Q), t ∈ R+,

where B∗ ∈ C(R+;Q∞) represents the creep tensor. Details on the inverse of the
viscoelastic constitutive law (7.5) by using the creep tensor could be found in [15],
for instance.

Now, for each t ∈ R+ we introduce the set of admissible stress fields defined by

Σ(t) = { τ ∈ Q : (τ , ε(v) − ε(g))Q � (f(t),v − g)V ∀v ∈ U } (7.7)

where, recall, g = gaζ was defined in the proof of Theorem 8. Then, using the
operator R∗ defined in lemma 9, we consider the following variational problem.
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Problem QD
V . Find a function σ : R+ → Q such that, for all t ∈ R+, the inequality

below holds:

σ(t) ∈ Σ(t), (A−1σ(t), τ − σ(t))Q + (R∗σ(t), τ − σ(t))Q (7.8)

� (ε(g), τ − σ(t))Q ∀ τ ∈ Σ(t).

We refer to problem QD
V as the dual variational formulation of the contact prob-

lem Q. The link between the variational problems QV and QD
V , formulated in terms

of displacements and stress, respectively, is provided by the following result.

Theorem 10. Assume (5.10), (5.11), (5.13), (7.1) and (7.2). The following
statements hold:

(i) If u is a solution to problem QV with regularity u ∈ C(R+;V ), then the
function

σ(t) = Aε(u(t)) +
∫ t

0

B(t − s)ε(u(s)) ds ∀ t ∈ R+ (7.9)

is a solution to problem QD
V , with regularity σ ∈ C(R+;V ).

(ii) Conversely, if σ is a solution to problem QD
V with regularity σ ∈ C(R+;Q),

then there exists a unique function u ∈ C(R+;V ) such that (7.9) holds and,
moreover, u is a solution to problem QV .

To present the proof of Theorem 10 will need some additional notation and
preliminaries. First, since measΓ1 > 0, the range of the deformation operator
ε : V → Q, denoted ε(V ), is a closed subspace of Q. A proof of this result can
be found in [18, p. 87]. It is a direct consequence of the equality

‖v‖V = ‖ε(v)‖Q ∀v ∈ V. (7.10)

Denote by P̃ : Q → ε(V ) the orthogonal projection operator on ε(V ) ⊂ Q and note
that equality (7.10) shows that ε : V → ε(V ) is an invertible operator. In what
follows, we denote by ε−1 : ε(V ) → V the inverse of ε. The ingredients above allow
to define the operator Θ: Q → V by

Θτ = ε−1(P̃τ ) ∀ τ ∈ Q. (7.11)

Then, it is easy to see that

(Θτ ,v)V = (τ , ε(v))Q ∀ τ ∈ Q, v ∈ V. (7.12)

Next, for each t ∈ R+, we define the set Σ(t) ⊂ Q by equality

Σ(t) = { τ ∈ V : (τ ,v − g)V � (f(t),v − g)V ∀v ∈ U } (7.13)

where, recall, the set U is defined by (6.1). Then, using (7.7) and (7.12) we deduce
that

τ ∈ Σ(t) ⇐⇒ Θτ ∈ Σ. (7.14)

We are now in a position to provide the proof of the Theorem 10.
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Proof. (i) Assume that u is a solution to problem QV with regularity u ∈
C(R+;V ), and let σ be given by (7.9) We also consider the function σ̃ ∈
C(R+;V ) defined by

σ̃(t) = Au(t) + Su(t) ∀ t ∈ R+ (7.15)

where, recall, the operators A and S are defined by (7.3) and (6.2), respec-
tively. Since S is a history-dependent operator, it follows from lemma 3 that
there exists a unique history-dependent operator R : C(R+;V ) → C(R+;V ),
such that (7.15) holds if and only if

u(t) = A−1σ̃(t) + Rσ̃(t) ∀ t ∈ R+. (7.16)

Let t ∈ R+. Then, theorem 4 (i) shows that

σ̃(t) ∈ Σ(t),(A−1σ̃(t), τ − σ̃(t))V + (Rσ̃(t), τ − σ̃(t))V (7.17)

� (g, τ − σ̃(t))V ∀ τ ∈ Σ(t).

We now substitute (7.16) in (7.17) to deduce that

σ̃(t) ∈ Σ(t), (τ − σ̃(t),u(t))V � (g, τ − σ̃(t))V ∀ τ ∈ Σ(t). (7.18)

In addition, using equality (7.15), the definitions of the operators A, S and
(7.9) it is easy to see that

(σ̃(t),v)V = (σ(t), ε(v))Q ∀v ∈ V. (7.19)

Therefore, regularity σ̃(t) ∈ Σ(t) implies that

σ(t) ∈ Σ(t). (7.20)

Let τ ∈ Σ(t). Then (7.14) allows us to test in (7.18) with τ = Θτ . Moreover,
using (7.12) and (7.19) it follows that

(τ ,u(t))V = (ε(u(t)), τ )Q, (g, τ )V = (ε(g), τ )Q,

(σ̃(t),u(t))V = (ε(u(t)),σ(t))Q, (g, σ̃(t))V = (ε(g),σ(t))Q.

Substituting these inequalities in (7.18) yields

(ε(u(t)), τ − σ(t))Q � (ε(g), τ − σ(t))Q. (7.21)

Recall also that (7.9) and lemma 9 imply that (7.6) holds. Therefore, using
(7.6) and (7.21) we deduce that

(A−1σ(t), τ − σ(t))Q + (R∗σ(t), τ − σ(t))Q � (ε(g), τ − σ(t))Q. (7.22)

We now combine (7.20) and (7.22) to see that (7.8) holds, which concludes
the first part of the proof.
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(ii) Conversely, let σ be a solution to problem QD
V with regularity σ ∈

C(R+;Q) and define the function ε̃ ∈ C(R+;Q) by equality

ε̃(t) = A−1σ(t) + R∗σ(t) ∀ t ∈ R+. (7.23)

Let t ∈ R+. Then, substituting (7.23) in (7.8) yields

(ε̃(t), τ − σ(t))Q � (ε(g), τ − σ(t))Q ∀ τ ∈ Σ(t). (7.24)

Consider now an element z ∈ Q such that

(z, ε(v))Q = 0 ∀v ∈ V. (7.25)

Since σ(t) ∈ Σ(t), using (7.25) and the definition (7.7) of the set Σ(t) we
deduce that σ(t) ± z ∈ Σ(t) therefore, testing in (7.24) with τ = σ(t) ± z we
obtain that

(ε̃(t),z)Q = (ε(g),z)Q. (7.26)

Using (7.26) and (7.25), we have that ε̃(t) − ε(g) ∈ ε(V )⊥⊥, where the symbol
⊥ represents the orthogonal complements in Q. On the contrary, since the
space ε(V ) is a closed subspace of Q we deduce that ε(V )⊥⊥ = ε(V ). This
implies that there exists an elements ũ(t) ∈ V such that ε̃(t) − ε(g) = ε(ũ(t))
and, denoting u(t) = ũ(t) + g we have

ε̃(t) = ε(u(t)). (7.27)

We now compare equalities (7.23) and (7.27) to see that

ε(u(t)) = A−1σ̃(t) + R∗σ̃(t)

and, using Lemme 9, we deduce that (7.9) holds. The regularity u ∈ C(R+;V )
and the uniqueness of this function follows from (7.27) and (7.10).
Next, we prove that u is a solution to problem QV . To this end, we consider
the function σ̃ ∈ C(R+;V ) defined by equality

σ̃ = Au + Su. (7.28)

Then, lemma 3 implies that

u = A−1σ̃ + Rσ̃. (7.29)

In addition, using (7.9), the definitions of the operators A, S and (7.28), it is
easy to see that

(σ(t), ε(v))Q = (σ̃(t),v)V ∀v ∈ V. (7.30)

Let τ ∈ Σ(t) and denote τ = ε(τ ). Then, it is easy to see that τ ∈ Σ(t). We
now use (7.24) and (7.27) to obtain that

(ε(u(t)), τ − σ(t))Q � (ε(g), τ − σ(t))Q.
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Thus, using (7.30) and equality τ = ε(τ ) yields

(u(t), τ − σ̃(t))V � (g, τ − σ̃(t))V . (7.31)

We now combine (7.29) and (7.31) to see that

(A−1σ̃(t) + Rσ̃(t), τ − σ̃(t))V � (g, τ − σ̃(t))V . (7.32)

Moreover, since σ is a solution to problem QD
V we know that σ(t) ∈ Σ(t) and,

therefore, equality (7.30) implies that

σ̃(t) ∈ Σ(t). (7.33)

Relations (7.32) and (7.33) show that the function σ̃ ∈ C(R+;V ) is a solution
of a history-dependent problem which, with the terminology introduced in § 3,
represents the dual variational inequality of the variational inequality (6.9).
Therefore, using (7.28) and theorem 4 (ii) we deduce that u satisfies (6.9) at
each time moment t ∈ R+, which concludes the proof.

�

The unique solvability of problem QD
V can be obtained by using theorem 5 and

is as follows.

Theorem 11. Assume that (5.10), (5.11), (5.13), (7.1) and (7.2) hold. Then,
problem QD

V has a unique solution which satisfies σ ∈ C(R+;Q).

We also note that the continuous dependence of the solution of problem QD
V with

respect a perturbation of the bound ga can be easily obtained by using the abstract
result provided by theorem 6. Since the details are obvious, we omit them.

A couple of functions (u,σ) which satisfies (6.9) and (7.8), respectively, at each
t ∈ R+, is called a weak solution to the contact problem Q. We conclude by theorems
7 and 11 that problem Q has a unique weak solution. Moreover, the solution depends
continuously on the bound ga.
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