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We generalise the classical Benjamin solution (Benjamin, J. Fluid Mech., vol. 31,
1968, pp. 209–248) modelling the flow in a horizontal duct of finite depth in situations
where the flow contains a region spanning the depth of the duct, and a region in which
the surface detaches from the ceiling of the duct as a free surface. It is shown that the
Benjamin solution belongs to a one-parameter family of similar solutions, which are
divided into two types: solutions that describe potential flows where the free surface
of the fluid is deflected from the duct ceiling at a zero angle; and solutions that admit
the formation of a vortex flow region in the vicinity of the point of fluid separation
from the duct ceiling. It is shown that this one-parameter family of solutions is the
limit of a two-parameter family of solutions in which part of the uniform flow energy
is converted into energy of the small-scale fluid motion. Based on the local hydrostatic
approximation, the applicability of the constructed solutions is discussed.

Key words: channel flow, vortex dynamics

1. Introduction

This paper presents a theoretical study of steady gravity currents in a horizontal
rectangular duct of finite depth in situations where the flow contains a region spanning
the depth of the duct, and a region in which the surface detaches from the ceiling of
the duct as a free surface. Such currents represent the limiting case of more complex
two-layer gravity currents when the density of the lighter fluid tends to zero. This kind
of fluid flow is seen to occur in power plant tailrace tunnels, storm-water and sewage
systems, qanat systems (gently sloping underground aqueducts), irrigation systems, and
pipelines with air vents or undersized surge tanks (Sundquist & Papadakis 1983).

In his classical paper, Benjamin (1968) investigated theoretically a steady gravity
current of an incompressible fluid inside a horizontally aligned rectangular duct and
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circular tube. As a result of these studies, approximate solutions were constructed
that simulate wave flows arising after the instantaneous removal of the barrier
bounding a semi-infinite duct or tube filled with liquid. Wallis, Crowley & Hagi
(1977) investigated experimentally the water outflow from a horizontal pipe using
a basic hydraulic approach. They showed that both viscosity and surface-tension
effects are negligible provided the pipe diameter is larger than 100 mm. Comparable
results followed also from Wilkinson (1982), who carried out an experimental study
of the motion of an air cavity into a long horizontal duct with a rectangular
cross-section. Baines & Wilkinson (1986) investigated the air propagation into
an inclined rectangular duct and analytically predicted the cavity shape of their
experiments. Hager (1999) studied cavity outflow from a nearly horizontal pipe,
based on detailed experimentation and a hydraulic approach. Atrabi et al. (2015)
proposed and applied for numerical simulation two one-dimensional mathematical
models of transient flows with the propagation of an interface in a water-filled duct.

A generalisation of the problem of fluid outflow arising after the instantaneous
removal of the barrier bounding a semi-infinite rectangular duct filled with liquid is
the problem of the two-layer gravity currents produced by lock exchange, i.e. currents
that occur after the instantaneous removal of the barrier separating two resting liquids
of different densities filling a rectangular duct. A rather large number of papers have
been devoted to theoretical, numerical and experimental study of the second problem;
see, for example, Shin, Dalziel & Linden (2004), Ungarish (2010), Borden & Meiburg
(2013), Baines (2016) and Konopliv et al. (2016). Whereas a characteristic feature
of the solutions to the first problem (simulating the outflow of a single-layer fluid)
is the existence of a stagnation point A at which the free surface of the liquid is
deflected from the duct ceiling at a finite angle, the flow in the vicinity of this point
is potential and, as a consequence, the fluid velocity at point A coincides with the
movement velocity of this point. The stagnation-point condition was effectively used
by Korobkin (2013) for modelling wave flows induced by lifting of a flat body from
the free boundary of an infinitely deep liquid. Wave flows induced by lifting of a
rectangular beam partly immersed in shallow water were considered by Ostapenko &
Kovyrkina (2017) in the first approximation of shallow-water theory (Friedrichs 1948;
Stocker 1957) without using the stagnation-point condition.

The Benjamin solution (1968) given in § 2 was obtained under conditions that
uniquely determine the parameters of uniform flows at the inlet and outlet of
a rectangular duct. These conditions suggest that the fluid is ideal, its flow is
potential and liquid separation from the duct ceiling occurs at a stagnation point
A. In this paper, we generalise the Benjamin solution, successively weakening these
conditions. In § 3, we cancel the stagnation-point condition, which allows us to
obtain a one-parameter family of solutions describing the potential flows where
the free surface of the fluid is deflected from the duct ceiling at a zero angle. In
§ 4, we reject the potential-flow condition, which makes it possible to construct a
one-parameter family of solutions that admit the formation of a vortex-flow region in
the vicinity of the point A of fluid separation from the duct ceiling. In § 5, we take
into account the effect of viscous friction in the vicinity of the separation point A,
which allows us to obtain a two-parameter family of stable solutions in which part of
the uniform flow energy is converted into energy of the small-scale fluid motion. In
§ 6, the applicability of the constructed solutions is given using the local hydrostatic
approximation proposed by Ostapenko (2018).
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FIGURE 1. Potential flow of an ideal incompressible fluid flowing from a horizontally
aligned rectangular duct. The free fluid surface is the Benjamin solution (solid line 1)
and the other solution is where the free surface of the fluid is deflected from the duct
ceiling at a zero angle (dotted line 2).

2. Benjamin solution

Consider a plane-parallel steady gravity current of an incompressible fluid inside a
horizontally aligned rectangular duct. In the coordinate system shown in figure 1, the
fluid depth h(x) of this current satisfies the conditions

h(x)=H, x 6 0, and h(x) <H, x> 0, (2.1a,b)

where H is the duct height. Let us assume that the flow becomes uniform at a certain
distance a from the vertical section x = 0 where the upper boundary of the fluid is
deflected from the duct ceiling. The flow uniformity in these areas means that

h(x)= h2, x > a, and p̃(x)= p(x, h(x))= p1, x 6−a, (2.2a,b)

u(x, z)=
{
v1, x 6−a,
v2, x > a, and w(x, z)= 0, |x|> a. (2.3)

Here p(x, z) and p̃(x) are the specific pressures in the fluid and on its surface; u(x, z)
is the horizontal velocity of the fluid directed along the x axis; w(x, z) is the vertical
velocity of the fluid; and h2, p1, v1 and v2 are some given values.

We assume that the atmospheric pressure on the free surface of the fluid is equal
to zero, i.e. p̃(x)= 0 at x > 0, and that the fluid surface z= h(x) is a streamline with
the horizontal velocity of the fluid at the stagnation point A= (0,H) being

u0 = u(0,H)= 0. (2.4)

Benjamin (1968) showed that in this case, from the Bernoulli equation along the
surface streamline (with allowance for the mass and momentum conservation laws on
the segment |x| 6 a), it follows that the parameters of a piecewise-constant solution
(2.2) and (2.3) are determined uniquely and are calculated by the following:

h2 =H/2, v1 = c1/2, v2 =
√

2c2, p1 =−c2
1/8, (2.5a−d)

where c1=
√

gH and c2=
√

gh2 are the velocities of propagation of small perturbations
within the framework of the shallow-water theory and g is the acceleration due to
gravity. It follows from (2.5) that the flow is subcritical (v1< c1) in the domain x6−a
and supercritical (v2 > c2) in the domain x > a.
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3. One-parameter family of approximate solutions obtained within the
framework of the model of an ideal incompressible fluid

Within the framework of the ideal incompressible fluid model, the plane-parallel
steady flow is described by the continuity equation

ux +wz = 0 (3.1)

and by the steady Euler equations

uux +wuz + px = 0, uwx +wwz + pz + g= 0 (3.2a,b)

for the horizontal and vertical components of the fluid velocity. A consequence of
equations (3.2) is the Bernoulli equation

B=
u2
+w2

2
+ gz+ p= const. (3.3)

along each fluid streamline. For the potential flow uz − wx = 0, the constant on the
right-hand side of (3.3) is identical for all streamlines. From (3.1) and (3.2) follow
the equations

(u2
+ p)x + (uw)z = 0, (uw)x + (w2

+ p+ gz)z = 0, (3.4a,b)

which are conservation laws for the horizontal and vertical momenta of the fluid
written in differential form.

First we will simulate the flow under consideration by the solution

u(x, z), w(x, z), p(x, z), 0 6 z 6 h(x), (3.5a−d)

of equations (3.1) and (3.2), satisfying the conditions (2.1) and the following boundary
conditions at infinity:

lim
x→+∞

h(x)= h2, lim
x→−∞

p(x,H)= p1, (3.6a,b)

lim
x→−∞

u(x, z)= v1, lim
x→+∞

u(x, z)= v2, lim
x→±∞

w(x, z)= 0, (3.7a−c)

which are consistent with the conditions (2.2) and (2.3). Assuming that the fluid
surface z= h(x) is the streamline in solution (3.5), we obtain the kinematic condition
on this surface as

w(x, h)= u(x, h)hx. (3.8)

Let us integrate the differential equations (3.1) and (3.4a) with respect to z from
0 to h and with respect to x from x1 to x2. Taking into account the kinematic
condition (3.8) and the no-normal-flow condition on the duct bottom,

w(x, 0)= 0, (3.9)

we obtain on the spatial interval [x1, x2] the integral conservation laws for the mass
and horizontal momentum of the fluid:(∫ h

0
u dz

)∣∣∣∣x2

x1

= 0,
(∫ h

0
(u2
+ p) dz

)∣∣∣∣x2

x1

=

∫ x2

x1

p̃hx dx. (3.10a,b)
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Generalised solutions to the Benjamin problem

Based on conditions (2.1), we have

hx = 0, x< 0, and p̃= 0, x > 0; (3.11a,b)

correspondingly, for our problem we obtain∫ x2

x1

p̃hx dx= 0. (3.12)

Let us assume that the solution (3.5) approximately satisfies conditions (2.2) and
(2.3). In this case, the Bernoulli equation (3.3) written with respect to the surface
streamline z= h(x) yields the following approximate relation:

v2
1/2+ gH + p1 = v

2
2/2+ gh2. (3.13)

As the pressure of the fluid in a uniform flow obeys the hydrostatic law,

p= p̃+ g(h− z) ⇒

∫ h

0
p dz= p̃h+ gh2/2,

then the approximate expressions for solution (3.5), which follow from the conservation
laws (3.10) at x1 <−a and x2 > a, are

q=Hv1 = h2v2, Hv2
1 + gH2/2+Hp1 = h2v

2
2 + gh2

2/2, (3.14a,b)

where q is the flow rate of the fluid.
If pressure p1<0, the system of equations (3.13) and (3.14) admit the one-parameter

family of solutions

v1 =
c1h2

H
= h2

√
g
H
, v2 = c1 =

√
gH, h2 =H −

√
2H|p1|

g
, (3.15a−c)

in which the parameter is p1. The depth positive condition h2 > 0 leads to the
following restriction on this parameter:

− c2
1/2< p1 < 0. (3.16)

It follows from (3.15) that the flow is subcritical in the domain x 6 −a and
supercritical in the domain x > a for all values of the pressure p1 satisfying
inequalities (3.16). In this case, the velocity v2 does not depend on the value p1,
but the velocity v1, depth h2 and flow rate q decrease monotonically to zero with p
decreasing to −c2

1/2.
For the correctness of solution (3.15), the Bernoulli equation (3.3) has to be satisfied

along the entire surface streamline z = h(x), in particular, at the point A = (0, H),
where the surface pressure is p̃(0)= 0. From here, taking into account equations (3.13)
and (3.14), we obtain

u2
0

2
=
v2

1

2
+ p1 =

gh2
2

2H
+ p1 =

gH
2
−
√

2gH|p1|> 0 ⇒ |p1|6
gH
8
. (3.17a,b)
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As a result, at u0= 0 we obtain the Benjamin solution (2.5), and at u0 > 0 we obtain
a family of solutions whose parameters satisfy the inequalities

− c2
1/8< p1 < 0, H/2< h2 <H, c1/2< v1 < c1. (3.18a,b)

Thus, the Benjamin solution is the limiting solution for the one-parameter family of
solutions (3.15) and (3.18) that describe potential flows where the free surface of the
fluid is deflected from the duct ceiling at a zero angle (dotted curve 2 in figure 1).
Using the method proposed by Plotnikov & Toland (2004), it can be shown that,
within the framework of potential flows of an ideal fluid, the free surface of the liquid
in the Benjamin solution (solid curve 1 in figure 1) is deflected from the duct ceiling
at an angle of 60◦.

4. Solutions that allow the formation of a vortex-flow region in the vicinity
of the liquid separation point from the duct ceiling

We describe the flows that model the solutions (3.15) satisfying the condition

− c2
1/2< p1 <−c2

1/8, (4.1)

which leads to a violation of the inequality (3.17a). For such solutions, the fluid
surface z = h(x) is not a single streamline on the interval [−a, a]. In this case the
Bernoulli equation (3.3) used to derive (3.13) is not satisfied on the fluid surface
z = h(x) over the entire interval [−a, a]. Moreover, as the kinematic condition (3.8)
is not satisfied on the entire interval [−a, a], the integral conservation laws (3.10)
for x1 < −a and x2 > a cannot be derived from the differential continuity and
Euler equations (3.1) and (3.2). Thus, to describe such flows, the integral mass and
momentum conservation laws (3.10) should be taken as the basic relations, which
do not follow from the differential equations of the ideal incompressible fluid in the
general case.

Under condition (4.1) a vortex-flow region is formed in the neighbourhood of the
point A = (0, H), where the fluid separates from the duct ceiling (figure 2). Let us
assume that this region has the form

W1 = {(x, z) : b1 < x< b2, µ(x) < z< h(x)},

where −a< b1 < 0, a> b2 > 0 and the function z=µ(x) satisfies the conditions

µ(b1)= h(b1)=H, µ(b2)= h(b2) <H.

We will also assume that the function z=µ(x) is part of the streamline

z= η(x)=

H, x 6 b1,

µ(x), b1 6 x 6 b2,

h(x), x > b2,
(4.2)

separating the vortex-flow region W1 from the potential-flow region W2 = W \ W1,
where

W = {(x, z) : 0 6 z 6 h(x, t)}

is the area of existence of the solution (3.5)–(3.7). This assumption allows to use the
formula (3.13) obtained from Bernoulli equation (3.3) and formulae (3.14) obtained
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FIGURE 2. The flows in which the vortex-flow region W1 is formed in the vicinity of the
point A.

from the integral conservation laws (3.10) to construct solutions (3.15) in which the
pressure p1 satisfies the inequalities (4.1). The parameters of such solutions satisfy the
conditions

− c2
1/2< p1 <−c2

1/8, 0< h2 <H/2, 0< v1 < c1/2.

If streamline (4.2) has discontinuous derivatives at the points x= bi, i.e. satisfies the
conditions

lim
x→b1+0

µ′(x) < 0, lim
x→b2−0

µ′(x) > h′(b2),

then it follows from the continuity of the fluid velocity at these points that

u(b1,H)=w(b1,H)= 0, u(b2, hb)=w(b2, hb)= 0, hb = h(b2). (4.3a,b)

Using the Bernoulli equation (3.3) written for streamline (4.2) at points with
coordinates (−∞, H), (b1, H), (b2, hb) and (+∞, h2) taking into account conditions
(3.6), (3.7) and (4.3) we have

v2
1/2+ gH + p1 = gH + pb = ghb = v

2
2/2+ gh2. (4.4)

From here, with allowance for formulae (3.15), we obtain the surface pressure

pb = p̃(b1)= gH/2−
√

2gH|p1|< 0

on the left boundary of the vortex-flow region W1 and the depth

hb = h(b2)= 3H/2−
√

2H|p1|/g (4.5)

on the right boundary of this region. It follows from (3.15) and (4.5) that hb − h2 =

H/2 for any value of the pressure p1 satisfying condition (4.1). In this case, the
characteristic vertical size

H − hb =
√

2H|p1|/g−H/2

of the domain W1 increases from 0 to H/2 as p1 decreases from −c2
1/8 to −c2

1/2.
Note that the conditions (4.3) leading to equalities (4.4) provide the smallest

possible size of the vortex-flow region W1.
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5. Solutions in which part of the uniform flow energy is converted into
energy of the small-scale fluid motion

In the general case, the solutions (2.1)–(2.3) of the considered problem depend on
two parameters, namely, pressure p1 and velocity v1, which determine the depth h2
and velocity v2 of the fluid flowing from the duct. In the one-parameter family of
solutions (3.15) obtained under condition (3.16), the pressure p1 and velocity v1 are
related by the following equality:

v1 +
√

2|p1| = c1. (5.1)

Assume that equality (5.1) is not satisfied. Then, the system of equations (3.13)
and (3.14) becomes incompatible. A similar situation arises for the shocks that
model hydraulic bores in shallow-water theory (Stocker 1957). On such shocks,
the system of mass and total momentum conservation laws is incompatible with
the energy conservation law, which at standing shocks is equivalent to the local
momentum conservation law; its analogue in our problem is equation (3.13). Moreover,
the criterion for the shock stability (Friedrichs & Lax 1971; Lax 1972) is energy
inequality, due to which the energy decreases (is lost) when the fluid flows through
the shock. For hydraulic bores, this means that part of the free-stream energy behind
the bore front is transformed to the energy of small-scale fluid motion, which is not
taken into account in the shallow-water theory.

We will apply this approach to construct energy-stable solutions (2.1)–(2.3) and
(3.14), for which equality (5.1) does not hold. These solutions simulate flows in
which the small-scale fluid motion occurs on the free surface of the liquid near
the point of its separation from the duct ceiling. Figure 3 shows a case of surface
wave breakdown in some interval (a2, a3) that leads to the formation of surface
turbulent-vortex flow in the same interval (a1, a4). Such small-scale fluid perturbations
drift mostly downstream, gradually damping (due to the action of viscous friction)
on approaching the horizontal boundaries of this region. Herein, we will neglect
friction at the bottom and ceiling of the duct. With this in mind, we assume that
for x< a1 and x> a4 the flow becomes potential, and also that for x<−a< a1 and
for x> a> a4 it becomes uniform, i.e. satisfy the conditions (2.2) and (2.3). Similar
assumptions are typically made in the modelling of hydraulic bores in the framework
of shallow-water theory (Stocker 1957).

Given these assumptions, the parameters of the considered flows in the interval
[x1, x2], where x1 < −a and x2 > a, satisfy the integral mass and total momentum
conservation laws (3.10) from which, taking into account (2.1)–(2.3) and (3.12), we
obtain equations (3.14). Excluding from these equations fluid velocities v1 and v2, we
have

q2

Hh2
(H − h2)=

g
2
(H2
− h2

2)+Hp1. (5.2)

Since for h2 <H the left side of this equation is positive, the right side must also be
positive. From this we obtain the following restriction on the pressure:

p1 >−
g

2H
(H2
− h2

2)=−
c2

1

2

(
1−

h2
2

H2

)
. (5.3)

A consequence of the system (3.1) and (3.2) is

(uB)x + (wB)y = 0, (5.4)
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FIGURE 3. Flows in which waves break down on the free surface of the liquid near the
point A, which leads to the formation of a surface region of the turbulent-vortex flow.

where B is the Bernoulli function in (3.3). This equation is a differential form of the
energy conservation law of a liquid. Integrating equation (5.4) taking into account the
conditions (3.8), (3.9) and (3.11), we obtain the integral energy conservation law(∫ h

0
u
(

u2
+w2

2
+ gz+ p

)
dz
)∣∣∣∣x2

x1

= 0. (5.5)

When modelling the flows described in the previous section, this conservation law
should be taken as the basic relation, which does not follow from the differential
equations (3.1) and (3.2) in the general case. From the conservation law (5.5) at
x1 <−a and x2 > a, taking into account (2.2) and (2.3), we obtain

(q(v2/2+ gh+ p̃))|x2
x1
= 0.

For the stability of the solutions (2.1)–(2.3), (3.14) and (5.3), considered in this
section, it is necessary to fulfill the energy inequality

(q(v2/2+ gh+ p̃))|x2
x1
< 0,

which (given the fact that q= const. > 0) can be rewritten in the form

v2
1/2+ gH + p1 > v

2
2/2+ gh2. (5.6)

Using formulae (3.14) and (5.2), we exclude from the inequality (5.6) the fluid
velocities v1 and v2. As a result, we obtain the following restriction on the pressure:

p1 <−
g

2H
(H − h2)

2
=−

c2
1

2

(
1−

h2

H

)2

.

Thus, under the condition

−
c2

1

2

(
1−

h2
2

H2

)
< p1 <−

c2
1

2

(
1−

h2

H

)2

, (5.7)
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equations (3.14) define a two-parameter family of energy-stable solutions (2.1)–(2.3).
Note that the method for constructing these solutions is similar to the method using
the Kutta condition in aerodynamics (Clancy 1975).

The determination of the parameters of a particular solution (3.14) and (5.7) is
conveniently carried out as follows. First set the depth h2 ∈ (0, H), after which we
select the pressure p1 satisfying the inequalities (5.7). Next, from equation (5.2) we
find the flow rate q, which we use to calculate the velocities v1 = q/H and v2 =

q/h2. For example, if the depth h2 = H/2, as in the Benjamin solution (2.5), then
the inequality (5.7) takes the form

− 3c2
1/8< p1 <−c2

1/4. (5.8)

Choosing p1 in the middle of the interval (5.8) and using equation (5.2) we obtain

p1 =−
5c2

1

16
, q=

Hc1

4
, v1 =

c1

4
, v2 =

c1

2
=

c2
√

2
. (5.9a−d)

It is interesting to note that, in contrast to the one-parameter family of solutions (3.15)
and (3.16), to which the Benjamin solution (2.5) belongs, in the solution (5.9) the flow
is subcritical, for both x<−a and x> a.

6. Justification of the applicability of the constructed solutions on the basis
of the local hydrostatic approximation

The classical method of justifying the applicability of vertically averaged solutions
of equations of the ideal incompressible fluid is based on the long-wave approximation
(Friedrichs 1948), which implies that the fluid flow is potential and the characteristic
depth of the flow H0 is much smaller than the characteristic length of the surface
waves L0, i.e. ε=H2

0/L
2
0� 1. For this reason (Stocker 1957), the spatial derivative of

the depth h of the plane-parallel flow satisfies the condition |hx|6O(
√
ε). However, in

our case, this method is not applicable, since the flows studied in §§ 4 and 5 are not
potential, and the potential flows considered in § 3 satisfy the condition |hx| 6 1
for all x > 0 only if (H − h2)/H 6 1. Therefore, to justify the applicability of
the approximate solutions (2.1)–(2.3) constructed in this paper, we apply the local
hydrostatic approximation proposed by Ostapenko (2018).

We will say that when the fluid flows out from a rectangular duct (figure 1)
its parameters satisfy the local hydrostatic approximation at the point (x, z), if the
inequality w2(x, z)/c2

1 < δ � 1 is satisfied at this point, where δ is a given small
number. Let us divide the domain V of existence of the two-dimensional flow under
consideration into two subdomains:

V1(δ)= {(x, z) ∈ V :w2(x, z)/c2
1 < δ}, V2(δ)= V \ V1(δ).

In the domain V1, we introduce dimensionless variables

x∗ =

√
δ

H
x, z∗ =

z
H
, h∗ =

h
H
, u∗ =

u
c1
, w∗ =

w
√
δc1
, p∗ =

p
c2

1
, (6.1a−f )

which, after the substitution δ = H2
0/L

2
0, H0 = H, transform into the dimensionless

variables of the long-wave approximation, where the variable L0 can be considered as
the characteristic wavelength along the streamlines passing inside the domain W1(δ).
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We will assume that the domain V2(δ) in which the local hydrostatic approximation
is not satisfied is bounded. With this in mind, the number a included in (2.2) and (2.3)
is chosen so that for |x|> a the flow is potential and condition |x|< a is satisfied for
all points (x, z)∈V2(δ). In this case, the flows considered in §§ 3 and 4 are described
by the integral mass, momentum and energy conservation laws (3.10) and (5.5), in
which x1 < −a and x2 > a. Writing down these conservation laws in dimensionless
variables (6.1), by analogy with Ostapenko (2018), we obtain the relations

q|x2
x1
= 0, (qv + h2/2+ hp̃)|x2

x1
= 0, (v2/2+ h+ p̃)|x2

x1
= 0, (6.2a−c)

with accuracy no less than O(δ). In equations (6.2) the asterisk is omitted for brevity.
For the flows studied in § 5, equation (6.2c) should be replaced by the energy
inequality

(v2/2+ h+ p̃)|x2
x1
< 0. (6.3)

Given that acceleration g= 1 in dimensionless variables (6.1), the relations (6.2) imply
formulae (3.13) and (3.14) and relations (6.2a,b) along with inequality (6.3) imply
formula (5.2) and inequality (5.7). It follows that the approximate piecewise-constant
solutions (2.1)–(2.3) that we have constructed in §§ 3–5 transmit the parameters of the
considered flows with accuracy no less than O(δ).

7. Conclusion

In this paper, we construct three families of solutions (2.1)–(2.3) that generalise
the classical Benjamin (1968) solution. The first family of solutions (3.15) and (3.18)
describes the potential flows for which the stagnation-point condition is not satisfied
(dotted line 2 in figure 1); the second family of solutions (3.15) and (4.1) admit the
formation of a vortex-flow region in the vicinity of the separation point A (figure 2);
and the third family of solutions (3.14) and (5.7) describes the flow in which part
of the uniform flow energy is converted into energy of the small-scale fluid motion
(figure 3). Since the third family of solutions is two-parameter, the whole set of
constructed solutions depends on two input parameters; whereas the first two families
of solutions, together with the Benjamin solution, form a single one-parameter family
of solutions (3.15) and (3.16) satisfying the energy-conserving condition (5.1).

A characteristic feature of a steady flow described by solution (3.15) and (3.16)
is that the uniform flow at x > a is supercritical. It follows from the shallow-water
theory (Stocker 1957) that the parameters of this uniform flow at the duct outlet
are completely determined by the flow inside the duct, and therefore, for the correct
modelling of such steady flow by the pseudo-unsteady method, it is necessary to set
two boundary conditions (pressure p1 and velocity v1) for the uniform flow at the
duct inlet and one should not set any boundary conditions for the uniform flow at the
duct outlet. For the correct modelling of energy-losing steady flows (3.14) and (5.7),
in which the uniform flow at x > a is subcritical, the same as in the example (5.9),
it is necessary to specify one boundary condition (for example, velocity v1) for the
uniform flow at the duct inlet and one boundary condition (for example, depth h2)
for the uniform flow at the duct outlet.

Let us pass to the coordinate system in which separation point A moves with
velocity −v1 and the velocity of the uniform flow in the left part of the duct
becomes equal to zero. This is consistent with standard laboratory experiments
(Wilkinson 1982) in which the fluid outflow is regulated only by the liquid depth h2
at the duct outlet. Since the characteristic feature of such experiments is the formation
of the stagnation point A, it is possible to obtain in these experiments only a single
energy-conserving steady flow corresponding to the Benjamin solution (2.5).
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