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Flow-induced vibrations (FIV) of an elastically mounted circular cylinder are investigated
by means of two-dimensional simulations. A mechanical coupling between cross-flow
translation and rotation provides a single degree-of-freedom system in which the coupled
rotational oscillations affect the fluid–structure dynamics. The structural response of this
system is investigated exploring the design space spanned by reduced velocity, coupling
radius and phase density ratio. The kinematic coupling introduces the rotation-induced
shear layer modifications, as well as an equivalent inertia effect connected to the coupling
force. Such a computational campaign is carried out by means of direct numerical
simulations with immersed boundary forcing at a Reynolds number equal to 100. The
investigated system exhibits the wake-body synchronisation features typical of lock-in for
non-rotating cylinders. However, the kinematic coupling provides a novel FIV scenario, in
which the oscillation amplitude is magnified in the locked configurations with respect to
the forced rotation case. Furthermore, it is found that there a significant widening of the
reduced velocity domain where the lock-in condition takes place. In view of the proposed
analyses, it is determined that the coupled rotation guarantees the phase alignment between
lift and displacement necessary to sustain the lock-in condition, making the oscillation
amplitude grow indefinitely with the reduced velocity. This is inherently achieved due to
the rotational shear layer and the added mass contribution, which prevent the exact match
between oscillation frequency and system natural frequency in vacuum. The outcomes of
this study might potentially lead to an innovative water energy harvester offering larger
power outputs and extended optimal operating regions.
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1. Introduction

The elastic response of bluff bodies subject to cross-flow oscillations collects significant
interest from the scientific community owing to its presence in a broad range
of applications. The mutual energy exchange in flow-induced vibrations (FIV) can
compromise the integrity of immersed structures (Paidoussis 1998) or be harnessed
to harvest renewable energy from clean sources (Young, Lai & Platzer 2014;
Seyed-Aghazadeh, Samandari & Dulac 2020). In this connection, the study of FIV
of elastically mounted circular cylinders allowed us to elucidate the fundamental
mechanisms behind the related fluid–structure interaction (FSI) dynamics (Bearman 1984;
Anagnostopoulos & Bearman 1992; Sarpkaya 2004; Williamson & Govardhan 2004;
Bearman 2011), as well as it provided a proof of concept for predicting the aforementioned
engineering scenarios.

The elastically mounted circular cylinder has been the subject of numerous patents
(Drew, Plummer & Sahinkaya 2009) proposing water energy converters based on the
enhancement and stabilisation of the cylinder vortex-induced vibration (VIV) dynamics. In
the renewable generators landscape, circular cylinders belong to the class of alternating lift
technologies (ALTs), typically targeted towards water flows slower than 1.0 − 1.5 m s−1,
which cover a range of velocities inaccessible to watermills and turbines (Yuce &
Muratoglu 2015). Considering that the majority of sea and river currents fall within this
range, and that these currents are highly predictable and seasonally consistent compared
with wind or waves (Bahaj & Myers 2003), such converters can occupy a relevant part of
the renewable energy portfolio. Compared with tidal turbines they need a much smaller
intake volume, and extract more energy on a peer projected area basis, thus resulting
in larger power-to-volume density and a reduced impact on marine life (Bernitsas et al.
2006). These motivations make the ALTs energy harvesters a current avenue of research
and optimisation (Bernitsas et al. 2008; Abdelkefi, Hajj & Nayfeh 2012; Hobbs & Hu 2012;
Wang et al. 2020), especially regarding oscillating cylinders. A successful implementation
of the present concept was realised by Kim & Bernitsas (2016), who tested a 4 kW,
four-cylinder prototype achieving the 88.6 % peak global efficiency of the Betz limit.
Most of the marine turbines provide a 50.6 % conversion efficiency of the Betz limit at a
nominal flow speed faster than 2.0 m s−1, and they require significantly larger initial capital
cost (Wilberforce et al. 2019). In 2016 the technology readiness level (TRL) was assessed
7 out of 9 by the US Department of Energy (Kim & Bernitsas 2016; Sun, Bernitsas &
Turkol 2020), indicating an advanced level of maturity of this technology. To this extent,
coupled computational investigations can provide a cheap design platform to dissect the
VIV mechanisms and test design advancements.

The mechanical power P potentially harvested from an oscillating cylinder with
diameter D and length L is proportional to

P ∝ ρf U2fyAyDL, (1.1)

with Ay the oscillation amplitude, fy the oscillation frequency, U the free-stream flow
velocity, ρf the fluid density. Thus, for a given oscillation frequency, a straightforward
enhancement of the extracted power comes from the amplification of the amplitude of
VIV oscillations. The present work takes steps to investigate an energetically efficient way
to augment the power extracted from elastically mounted cylinders undergoing VIV.

A simple two-dimensional (2-D) cylinder free to oscillate in the cross-flow direction
is known to experience VIV owing to the repeated shedding of vortices from alternating
sides at a characteristic Strouhal frequency, which is a function of the Reynolds number
(Chen 1985). When the vortex-shedding frequency is far from the natural frequency of
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the cylinder, the vibrations frequency matches the shedding frequency. However, as the
shedding frequency approaches the natural frequency of the system in vacuum, the lock-in
regime is established (Khalak & Williamson 1999), and the former is determined by
the latter. Under lock-in, the shedding frequency remains locked at the system natural
frequency when increasing the hydrodynamic loading conditions, and the body exhibits
large amplitude oscillations (LAOs), until the wake becomes desynchronised, and the
amplitude drops down to small values (Govardhan & Williamson 2000). Under broken
flow symmetry, elastically mounted bodies may also be subjected to the phenomenon of
galloping (Païdoussis, Price & De Langre 2010), which consist of an instability mechanism
characterised by low-frequency oscillations, whose amplitude generally increases with
the hydrodynamic loading. Galloping is driven by the asymmetric pressure distribution
around the body, therefore, it does not necessarily involve a synchronisation with the vortex
dynamics, although galloping and VIV regions might overlap (Corless & Parkinson 1988).

In this scenario, different passive and active strategies have been proposed to either
amplify or suppress VIV, depending on the engineering context, whose overview can be
found in Kumar, Sohn & Gowda (2008), Wang et al. (2016). One of the most effective
means of controlling the cross-flow cylinder oscillations relies on the enforcement of a
prescribed rotatory motion to the cylinder itself. Bourguet & Lo Jacono (2014) explored
the cross-flow vibrations of a 2-D circular cylinder subjected to forced rotation at Reynolds
number Re = 100, illustrating that the peak oscillation amplitude can be even tripled
with respect to the non-rotating cases. The rotation was observed to force the system
to the lock-in condition up to a certain rotation rate, depleting the galloping regime
(despite the rotation introducing a relevant asymmetry on pressure distribution). Results
from this investigation are confirmed by experimental measurements (Seyed-Aghazadeh &
Modarres-Sadeghi 2015) and further extended to larger rotation rates (Munir et al. 2021).

The influence of rotary oscillations on elastically mounted cylinders have been first
explored by Du & Sun (2015). Their study, aiming at suppressing VIV, showed by a
numerical study at Re ≤ 400 that forced rotary oscillations are able to suppress VIV
amplitude to less than 1 % of the cylinder diameter. Furthermore, if the rotary speed rate is
sufficiently high, the ‘lock-on’ phenomenon occurs, where the shedding vortex frequency
fs is determined by the forced rotational frequency fr. This enables us to opportunely
deviate the shedding frequency from the natural frequency of the spring-mass system
fN , thus preventing the onset of LAOs. However, despite being in a lock-on condition,
for rotational frequencies close to the natural frequency, an amplification of oscillations
with respect to the baseline non-rotating case is observed. An analogous system has
been investigated experimentally by Wong et al. (2018) at Re = 2940 covering a wider
parameter space. They reported two lock-on regimes, related to the body oscillation
frequency fy, rather than the conventional vortex-shedding frequency. A rotary lock-on
(RLO) regime is achieved when the body oscillation frequency settles on the forcing rotary
oscillation frequency (fy ∼= fr), whereas in the tertiary lock-on regime, the body oscillation
frequency is locked on the one-third subharmonic of the forcing frequency (fy ∼= fr/3). The
dynamic response showed similar trends with respect to the numerical results by Du & Sun
(2015), despite differences in density ratio and Reynolds number. The cylinder vibration
response has been investigated in the RLO regime with fixed forcing parameters, over
a wide reduced velocity range. Three different regimes were reported, in two of which
a galloping dynamics characterised by larger oscillations than the non-rotating case has
been recognised.

In light of the beneficial effect of the rotatory motion for energy harvesting purposes,
we present a novel mechanical system able to amplify the cylinder’s oscillation amplitude
by coupling cross-stream translation and rotation. This coupling can be achieved through
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a rack-and-pinion joint, thus, without further energy injection to sustain the cylinder
rotation. When FIV occurs, this system produces an oscillatory-rotary motion which
exhibits the typical features of lock-in over a broad parameter subset. A further beneficial
outcome consists of the extension of the lock-in regime over a wider range of reduced
velocities if compared with constrained rotation studies, with the consequent widening of
the optimal operating condition limits. The FSI mechanisms of the system are investigated
by means of 2-D direct numerical simulation (DNS) relying on a well-established
immersed boundary (IB) technique previously verified for different FSI problems (de
Tullio & Pascazio 2016), and results are outlined by means of a joint analysis of the body
kinematics, vorticity patterns and hydrodynamic forces.

The parameter space includes the solid-to-fluid density ratio, the transmission
coefficient and the reduced velocity. It is worth pointing out that the present study provides
a simple proof of concept of a new dynamical system, and practical considerations
connected to its realisation, such as the transmission efficiency or electrical generator
coupling, are for the time being neglected. The suitability of the 2-D approximation as
well as the spanned non-dimensional parameters are discussed in details in the following
section.

The manuscript is organised as follows. The physical model and the numerical method
are presented in §§ 2.1 and 2.2, respectively. Then, the results of the computational
campaign are assessed in § 3. In particular, the structural response and the wake pattern are
described in §§ 3.1 and 3.2. The influence of fluid force distribution, including phase lag
and added mass effects, are elucidated in § 3.3. Eventually, key findings and study outlooks
are summarised in § 4. Additional information including validation and grid convergence
studies are reported in the appendices.

2. Computational model and numerical method

2.1. Model problem
The proposed model consists of a 2-D elastically mounted circular cylinder immersed in
a cross-flow parallel to the z axis. The cylinder can undergo both vertical and rotational
displacement (ỹ, θ̃ ), but the rotation is mechanically connected to the translation through
a pure rolling motion with respect to a surface at distance r̃ from the cylinder centre. A
sketch of the physical configuration is presented in figure 1(a). This results in a single
degree-of-freedom system, governed by a forced second-order oscillator equation, which
can be expressed as

(
m + Io

r̃2

)
¨̃y + c ˙̃y + k(ỹ − ỹ0) = Fy + C

r̃
. (2.1)

The variables ˙̃y, ¨̃y, ˙̃
θ and ¨̃

θ represent the dimensional velocity and acceleration for the
translational and rotational degrees of freedom, respectively. In the above equation m
and Io denote the cylinder mass and polar moment of inertia with respect to the cylinder
centre; c and k are the damping and stiffness parameters, whereas Fy and C represent the
resultant lift force and the torque exerted by the flow over the cylinder surface. Gravity is
neglected in the present investigation. A free body diagram, from which the terms in (2.1)
can be inferred, is reported in figure 1(b). The equivalent non-dimensional formulation is
obtained using the definitions y = ỹ/D, r = r̃/D, t = t̃U/D, with U being the free-stream
velocity and D the cylinder diameter. This yields the non-dimensional equation of rigid
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body motion,

ρeÿ + μẏ + ξ( y − y0) = cy + 1
r

cm, (2.2)

which is characterised by the density ratio ρ = ρs/ρf , the damping parameter μ =
c/(ρf UD), the non-dimensional stiffness ξ = k/(ρf U2) and the lift and torque coefficients
cy = Fy/(ρf U2D), cm = C/(ρf U2D2). The equivalent geometric parameter is defined as
e = A/D2 + Jo/(D2r̃2), with A the area of the cylinder and Jo the polar moment of
area. It addresses the cumulative inertial effect of the translating-rotating dynamics. The
kinematic coupling is given by

rθ̇ = ẏ, (2.3)

with θ̇ = ˙̃
θD/U being the non-dimensional cylinder angular velocity. The relative loading

condition of the dynamical system can be conveniently denoted in terms of reduced
velocity Ur = U/( fnD), which represents the ratio of the natural time scale of the rigid
body to the convective time scale of the flow, with fn = 1/(2π)

√
k/me being the natural

frequency of the oscillator in vacuum. The system damping is likewise characterised by
the damping ratio ζ = c/(2

√
kme) defined with respect to the critical damping. It is worth

pointing out that, unlike previous investigations, the reduced velocity and damping ratio
are defined with respect to the equivalent mass me = m + Io/r̃2, to account for the coupled
kinematics. The fluid motion is governed by the incompressible Navier–Stokes equations,
which reads in non-dimensional form as

∇ · u = 0,
∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u + f ,

}
(2.4)

where Re = UD/ν is the diameter-based Reynolds number, and f represents the body
force arising from the IB treatment. All the simulations in the present study are conducted
at a Reynolds number equal to 100, in which the flow past an elastically mounted cylinder
is acknowledged to be 2-D regardless of the other governing parameters, although laminar
vortex shedding occurs. Along with the Reynolds number, the rotation rate plays a crucial
role in the three-dimensional transition (Mittal & Kumar 2003; El Akoury et al. 2008). The
numerical investigation by El Akoury et al. (2008) pointed out that in rotating cylinders
at Re < 500 and θ̇ < 1 the rotation rate increases the critical Reynolds number for the
three dimensionality, whereas at higher rotation rates the scenario becomes increasingly
complex (Rao et al. 2013). Munir et al. (2019) identified the three-dimensional transition
of a rotating cylinder at Re = 100 for θ̇ = 7.6. When the forced rotation is combined
with VIV regimes, Bourguet & Lo Jacono (2014) found that at Re = 100 a further
delay in the three-dimensional transition is observed over the whole parameter window
where limit-cycle oscillations occur. At (θ̇, Ur) = (7.5, 13.0) the flow was still found
to be fully two dimensional. Following these guidelines we can expect the flow to be
two dimensional within the explored parameter space. The latter was built spanning
the reduced velocity Ur, the solid-to-fluid density ratio ρ and the coupling coefficient
r. The phase density ratio takes the values within the collection {4, 6, 8, 10}, which
includes realistic engineering scenarios for marine applications. We emphasise that, for
any axisymmetric hollow cylinder, the moment of area and the density ratio represent
a scale factor in the equivalent mass expression me, therefore, different density ratios
might potentially correspond to different geometric configurations of the cylinder. The
reduced velocity is sampled from 2.0 to 12.0 with a step of 0.4, to capture the most
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y

z

θ

r̃

D/2

U

C
– C/r̃

Fy

cỹ̇ + kỹ

(I0/r̃2) ẏ̇̃  
�θ̃

�ỹ

(a) (b)

Figure 1. (a) Schematic of the computational domain and mechanical components. The vertical dashed line
denotes the surface along which the pure rolling motion occurs. (b) Free body diagram. Red arrows represent
the forces acting on the system undergoing a (positive) displacement depicted by black arrows.

Phase density ratio ρ [4, 10]
Coupling radius r [0.067, 0.5]
Reduced velocity Ur [2.0, 12.0]
Damping ratio ζ 0.0
Reynolds number Re 100

Table 1. Dimensionless physical parameters of the investigated system with the corresponding boundary
values.

relevant features at moderate loading conditions. Eventually, the transmission coefficient
r is varied from the initial value r0 = 0.5 to lower values following the geometric
progression rn = r0pn−1, since the equivalent area goes to infinity as it goes to zero with
a hyperbolic trend. The common ratio is chosen to be p = 0.8. Thus, r takes the values
{0.500, 0.400, 0.320, 0.256, 0.205, 0.164, 0.131, 0.105, 0.0839, 0.0670}, where the lower
bound provides doubled equivalent mass with respect to the purely translating case. In
the space spanned by the prescribed r and Ur values very large oscillation amplitudes
are encountered. Although the effect of the damping introduced by the user connection is
of significant engineering interest, we set μ = 0.0 and postpone this issue to subsequent
investigations to reduce the number of independent parameters in this preliminary study.
All physical parameters involved in this study are summarised in table 1.

Further insights on the proposed mechanical system can be found in Appendix A, where
the main construction aspects are briefly discussed.

2.2. Numerical method
The coupled fluid–structure system is simulated by means of the IB framework described
by de Tullio & Pascazio (2016) and Nitti et al. (2020). The fluid phase (2.4) are integrated
by a classical fractional step method based on conservative second-order accurate centred
differences over a staggered grid (Kim & Moin 1985). Time integration is performed
by a semi-implicit scheme, where the convective terms are advanced by an explicit
third-order Runge–Kutta scheme and the diffusive terms by an implicit Crank–Nicholson
scheme. The large penta-diagonal systems arising from the semi-implicit integration of
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the momentum equation are solved by means of an approximate factorisation, whereas
the Poisson problem formulated to enforce continuity is solved with a direct solver to
ensure mass conservation to a tight tolerance. Further details of the numerical method
for the fluid phase can be found in Orlandi (2012). Following the approach presented in
Uhlmann (2005) the forcing term necessary to fulfil the no-slip condition is computed on
Lagrangian markers laying on the immersed surface in the form of a volume force field,
and then transferred to the Eulerian nodes. The information at the Lagrangian marker
location is interpolated by means of a moving-least squares approach (Vanella & Balaras
2009), which is recognised to attenuate spurious oscillations of hydrodynamic loads for
moving interfaces while preserving second-order accuracy in space. The present solver
has been validated and verified extensively for a broad variety of stationary and moving
boundary problems in earlier works (de Tullio & Pascazio 2016), as well as in the present
study (see Appendix B). The rigid body equation of motion (2.1) is transformed into two
first-order ordinary differential equations by a state-space formulation, which in turn are
integrated by a fourth-order explicit Runge–Kutta scheme.

The fluid and structural sub-systems are solved in a sequential fashion since the
involved phase density ratios do not compromise the stability and the accuracy of the
loosely coupled approach. The reader can find a numerical evidence for this assumption
in the work by Borazjani, Ge & Sotiropoulos (2008). The cylinder is immersed in
a computational domain of (z, y) dimensions [−15D, 25D] × [−30D, 30D], with an
isotropic grid resolution in the subdomain [−2D, 8D] × [−6D, 6D] characterised by the
spacing Δx = 0.015D. A Dirichelet velocity boundary condition is used at the domain
inlet, and a radiative outflow boundary condition (Orlanski 1976) at the domain outlet.
Free-slip condition are specified for the upper end lower boundaries. Thus, the baseline
grid employed for the numerical campaign counts 801 × 801 nodes. Grid refinement
studies are reported in Appendix B to confirm grid convergence. All simulations are
performed with adaptive time-step size, adjusted to match the CFL = 0.2 condition. The
relative spacing between adjacent Lagrangian markers is set equal to 0.5Δx, with Δx being
the local Eulerian grid spacing, as numerical trade-off between accuracy of the interface
condition and computational expense (Nitti et al. 2020). Given the present IB treatment,
the flow field across the surface presents a smooth transition layer whose thickness takes
at most two Eulerian cells, as shown by de Tullio & Pascazio (2016) with numerical
experiments. Therefore, viscous and pressure loads are evaluated by interpolating the field
variables at a probe created along the outward-pointing normal from the surface. The probe
length is selected as the local averaged cell size.

All simulations are initialised with the periodic flow past a stationary cylinder at Re =
100. The analyses are based on time series comprising the last 40 periods, collected after
the initial transient dies out. Convergence of each simulation is established by monitoring
the time-averaged and root-mean-square values of the fluid force coefficients and body
displacement.

3. Discussion of results

3.1. Structural response
The structural response of the investigated model is quantified in the present section. In the
first instance the displacement amplitude Ay/D and the oscillation frequency fyD/U in the
ρ = 8 case are addressed. The vertical oscillations of the system are generally periodic and
exhibit a strongly sinusoidal behaviour with null mean displacement. The LAO response
is individuated over a wide range of parameters, demonstrating the effectiveness of the
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Figure 2. (a) Maximum oscillation amplitude and (b) vibration frequency as functions of the reduced velocity
for different coupling radii. Each curve is associated with a value of coupling radius, consistently labelled in
the adjacent colourbar. The insert in panel (a) provides a surface plot of the maximum oscillation amplitude
for sake of clarity.

system as an energy harvester. The peak vertical displacement Ay/D and oscillation
frequency fyD/U corresponding to the maximum power spectral density (PSD) are plotted
as a function of the reduced velocity for different coupling radii in figure 2. Any frequency
value presented in the following of the manuscript is computed in the same way. As
a general trend, the peak amplitude appears to grow monotonically when increasing
the reduced velocity within the observed range. Conversely, the computational studies
carried out by Bourguet & Lo Jacono (2014) and Zhao, Cheng & Lu (2014) showed that
an elastically mounted cylinder with constant, uncoupled rotation undergoes LAOs in a
narrower reduced velocity range on a peer rotational speed basis, and that an hysteretic
behaviour takes place at the higher end of the lock-in region (Zhao et al. 2014). Reynolds
number, density ratio and rotation rates are similar to those encountered in the present
case. Such a feature enables our system as a truly versatile energy harvesting device, since
a LAO dynamics is found for any hydrodynamic loading above the critical threshold, and
no amplitude drop is found up to Ur = 12.0. This is clearly evident from the comparison
with computational data of elastic cylinders with constant rotation rate from Bourguet
& Lo Jacono (2014), available in figure 4(a). The numerical study is limited to such a
value because extremely large oscillations are already encountered. Larger oscillations are
of limited practical interest owing to an increased design complication for a harvesting
device.

Since the translational oscillations follows a sinusoidal kinematics, the peak rotational
speed can be estimated as that of a purely alternating rolling motion by θ̇max =
2πfyAy/r. Therefore, a picture of the maximum rotational speed can be simply drafted
from figure 2(a,b). The maximum rotational speed, equal to θ̇ = 7.9, is reached at
(r = 0.320, Ur = 12.0). Relying on the outcomes of Bourguet & Lo Jacono (2014),
mentioned in § 2.1, such a value does not entail the three-dimensional transition, therefore,
2-D analyses are considered suitable. It is worth pointing out that the amplification effect
generated by the enforced rotation can be already appreciated at θ̇ = 1.0, therefore, in the
coupled model the FSI mechanisms are affected by rotation starting from the low end of the
LAO region. The critical reduced velocity Ur triggering the transition to the LAO regime
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decreases with the coupling ratio, showing a wide range of possibilities, from Ur = 7.6
for r = 0.067 to Ur = 4.8 for r = 0.500.

The oscillation frequency map (figure 2b) exhibits two well-defined operating
conditions. In the range of low reduced velocities the vibration frequency matches
the vortex-shedding frequency observed in the static cylinder case, where fωD/U ∈
[0.163, 0.167] (Zdravkovich 1996). Under similar operating conditions a static cylinder
immersed in a uniform flow generates an unsteady laminar wake pattern (Sumer
et al. 2006) inducing periodic loading oscillations. Analogous behaviour is observed
at any reduced velocity for r ≤ 0.105. Under this condition the cylinder frequency is
synchronised with the predominant frequency of vortex shedding, and small amplitude
vibrations (Ay/D < 0.05) take place. Conversely, each case undergoing LAO matches the
natural frequency of the system fyD/U = 1/Ur apart from a small offset. Thus, following
the definition of Khalak & Williamson (1999), Williamson & Govardhan (2004) a lock-in
condition is established. We emphasise that under lock-in the coupling radius does not
affect the oscillation frequency, despite the fact that a broad range of peak rotation rates are
encountered. From a purely structural perspective this feature is inherently achieved when
considering the equivalent mass me in the definition of reduced velocity. However, the
mutual influence of hydrodynamic loading and rotation rate does not make this outcome
foregone. Among the explored parameter combinations, the regime transition is found
at Ur = 5.6, except for r = 0.131 and r = 0.164, whose frequency jump transition at
larger Ur values. We emphasise that in the present model the LAO scenario could provide
similarities with the RLO condition (Wong et al. 2018), where the cross-flow oscillation
frequency settles on the frequency of forced rotary oscillations. This phenomenon was
proved to generate an increase of the oscillation amplitude. Nevertheless, the kinematic
coupling in the present model does not allow for a clear match of the RLO definition.
Hence, the aforementioned regime will be simply referenced as lock-in hereafter.

At the largest coupling radii, the frequency correspondence does not trigger the LAO
dynamics, but the transition is rather delayed towards larger values of reduced velocity.
Whereas smaller coupling radii bring a larger equivalent inertia, it can be argued that the
system is more resilient to the lock-in transition. However, this must not be correlated
to the additional inertia, since the same phenomenon is observed in the same Ur range at
smaller phase density ratios ρ, but it is prevented at larger ρ. This can be definitely inferred
from the frequency-reduced velocity plots for different ρ and equal r in figure 3. Hence,
we speculate that the systems featured by a small coupling radius (r = 0.131, r = 0.164
with reference to figure 2(b)) owe the delayed transition to a large resistant torque. In
such configurations the rotation generates a viscous friction large enough to prevent
the onset of LAO. This outcome highlights the complexity introduced by the coupled
translations/rotational motion since Wong et al. (2018) found that, for enforced rotary
oscillations characterised by a kinematic law with small amplitude and large frequency,
the system is inclined to undergo LAO, under comparable reduced velocity values.

The variation of the coupling radius at constant reduced velocity provides a remarkable
feature. For Ur > 10.0, the oscillation amplitude stops growing monotonically and reaches
a maximum at r = 0.320. This will be linked to the added mass effects in § 3.3. The
effect of the coupled kinematics on the structural response can be clarified by comparing
amplitude and frequency data from the present model with non-rotating cases. Figure 4
provides a comparison of the r = 0.320 case with two non-rotating configurations, one
with identical mass and the other with m = me. It is immediately evident that the coupled
kinematics generates a significant increase in the oscillation amplitude. Under forced
rotary oscillations, Wong et al. (2018) showed a peak amplitude increase of approximately
270 % at Ur = 8.0, at large Reynolds numbers (Re ≈ 3000). The present model likewise
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Figure 3. Dimensionless vibration frequency as a function of the reduced velocity for different phase density
ratios. Two coupling radii are taken into account, (a) r = 0.131 and (b) r = 0.164.
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Figure 4. Maximum amplitude of vibration (a) and vibration frequency (b) as functions of the reduced velocity
for cases with and without rotation coupling. Black lines in panel (a) represent the peak vibration amplitude of
an elastically mounted cylinder with constant rotation rate under lock-in Bourguet & Lo Jacono (2014).

provides a 360 % increase in the peak amplitude at the same reduced velocity. Unlike
time-varying or constant forced rotation (Bourguet & Lo Jacono 2014; Zhao et al. 2014;
Wong et al. 2018), our model seems to present no subcritical bifurcations (despite the
fact that continuation algorithms are not employed), but a smooth transition to the LAO
dynamics is observed. As previously documented, the non-rotating cases provide a sudden
appearance of the LAO regime at Ur = 5.2, with subsequent drop of the oscillation
amplitude up to Ur = 8.4 (Mittal & Kumar 2003). Figure 4(b) clearly reports the lack
of a return to the static synchronisation regime (this refers to the synchronisation of
the body vibration with the vortex frequency of a static cylinder) at Ur ≥ 8.8, as well
as the dependence of the frequency offset on the rotation. Following the arguments of
Bourguet & Lo Jacono (2014), this offset will be explained in § 3.3, as a consequence of
the added mass effect. Minor differences are noticed in the locked regime when comparing
the non-rotating cases. Such a similarity takes place for ρ = O(10) or larger mass ratios
since the extension of the lock-in region, as well as the amplitude of the corresponding
oscillations, become nearly insensitive to the mass ratio itself (Khalak & Williamson 1997;
Govardhan & Williamson 2004).
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3.2. Wake pattern
The nature of the vortex-shedding pattern downstream of a circular cylinder has been
the subject of extensive investigations in previous studies (Griffin & Ramberg 1976;
Williamson & Roshko 1988; Tokumaru & Dimotakis 1991; Govardhan & Williamson
2000; Choi, Choi & Kang 2002; Bourguet & Lo Jacono 2014; Wong et al. 2018) due to its
connection with the structural dynamics. Recently, Menon & Mittal (2021) quantitatively
proved that the FIV of an elastically mounted cylinder is driven by the vorticity-induced
force, and, specifically, the periodic oscillations are sustained by the shear layers on
the transverse part of the cylinder surface, which in turn are energised by the wake
structures. Thus, the inspection of the wake pattern is found to elucidate the influence
of the vortex modes on the phase of lift and drag forces (Gabbai & Benaroya 2005).
The referenced works have shown that both elastically mounted cylinders with rotary
oscillation and constant rotation rate can exhibit a variety of recurring wake structures.
Further interest concerning the wake pattern configuration arises when considering
hydrokinetic energy converters built from multiple oscillating cylinders (Papaioannou
et al. 2008; Kim & Bernitsas 2016) in tandem/staggered configurations. In this context
the wake tuning represents a crucial factor for maximising the energy harvesting potential.
This section addresses the classification of the laminar wake patterns encountered
in the present model, and it provides explanations of their link with the oscillation
frequency.

A map of the different wake patterns for each pair (r, Ur) investigated, is presented
in figure 5(a), where different patterns are classified by colours. Each pattern class,
identified by the terminology of Bourguet & Lo Jacono (2014) and Gabbai & Benaroya
(2005), is illustrated in figure 6 by instantaneous contours of spanwise vorticity ωx,
for certain values of (r, Ur). A focus on the most common vortex-shedding modes can
be found in Gabbai & Benaroya (2005). In the present work the classification of the
wake pattern is delivered by visual inspection, since transition phenomena might appear
in the pattern switch zones (Prasanth & Mittal 2008). The interpretation of the wake
pattern map can be enhanced by a collocation of each pattern in the frequency-amplitude
space (figure 5b). Both low hydrodynamic loading and low coupling radius regions are
characterised by the 2S pattern, which is defined by two counter-rotating vortices shed
per oscillation (figure 6a), resembling the classic von Kármán vortex street of a static
cylinder at supercritical Reynolds number. At r ≤ 0.105, the kinematic coupling provides
a significant amplification of the rotational oscillations with respect to translation, but
the amplitude of rotational oscillations is not large enough to modify the wake pattern.
The C2S wake pattern is encountered within the frequency range fyD/U ∈ [0.12, 0.14].
Likewise, Bourguet & Lo Jacono (2014) found the C2S regime at frequencies lower
than the Strouhal frequency, under a steady rotation regime. In the coupling radii region
approximately delimited by (0.256 ≤ r ≤ 0.5) the vortices shed in the cylinder afterbody
maintain a separate pattern: they tend to coalesce in the far wake (C2S) and to be advected
downstream with limited rotational interaction. The rotational/translational acceleration
of the cylinder at the peak displacement induces the rolling up of each of the separating
shear layers into close vortices. The C2S pattern is found at moderate peak displacement
(see figure 5b). This trend was recognised for free vibrations of non-rotating cylinders
(Singh & Mittal 2005) and elastically mounted cylinders with steady forced rotation
(Bourguet & Lo Jacono 2014) in the range 4.8 ≤ Ur ≤ 6.0. The same pattern is found
here for larger reduced velocities (6.0 ≤ Ur ≤ 8.0). Interestingly, for r ≤ 0.205, the 2S
pattern is found under the lock-in regime as well, although vortices gain a larger spacing.
This is mainly caused by the magnification of the vibration amplitude connected to the
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Figure 5. Wake pattern classification in the coupling radius-reduced velocity domain (a). Wake pattern
classification in the peak oscillation amplitude-oscillation frequency domain (b). Wake frequency to oscillation
frequency ratio and as a function of coupling radius and reduced velocity (c).

lock-in dynamics. The notation 2S* is formally introduced here to point out the relation
between vortex-shedding pattern and dynamical regime.

Wong et al. (2018) denoted a 2S-P switching behaviour under forced rotational
oscillations, outside the RLO region, owing to the inherently chaotic nature of the
upper-branch VIV condition. A substantial analogy with the latter experimental study is
found at very large peak oscillations (Ay/D > 1.5), where two opposite-signed vortices
of equal strength are alternatively shed, forming two parallel vortex rows with limited
interaction. This pattern is here defined as L2S, and it was recognised by Wong et al.
(2018) for θ̇ = 4.0. The related vortices have much higher enstrophy content than the
2S* and C2S cases, but they do not interact due to the lower shedding frequency, which
increases their relative distance. This is confirmed by the clear separation of the C2S and
L2S regions in the frequency domain shown in figure 5(b). At larger oscillation amplitudes
(thus, at higher rotation rates), the wake pattern is characterised by a blending of pairs (2P)
and single vortices (S), therefore, named P + S (Blackburn & Henderson 1999; Bourguet
& Lo Jacono 2014). It is worth noting that each wake pattern, except the latter, covers a
well-delimited region in the ( fyD/U, Ay/D) domain.

Vorticity patterns characterised by two non-interacting vortices shed per cycle result in
a more concentrated vorticity magnitude. This condition, which here takes place with the
C2S and L2S patterns, was found to approximately coincide with the peak of lift forces
seen in experimental results (Gabbai & Benaroya 2005), suggesting that larger forces
are being induced by the shedding of more concentrated vorticity. As a matter of fact,
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Figure 6. Instantaneous contours of spanwise vorticity identifying different wake patterns. The contour scale
ranges from ωx = −1.5D/U (dark blue) to ωx = 1.5D/U (dark red). The excursion covered by the cylinder is
denoted by a cyan segment. A minor part of the computational domain is shown. Results are shown for the (a)
2S pattern, (r, Ur) = (0.5, 3.2); (b) C2S pattern, (r, Ur) = (0.4, 6.8); (c) 2S* pattern, (r, Ur) = (0.164, 7.6);
(d) L2S pattern, (r, Ur) = (0.256, 9.6); and (e) P + S pattern, (r, Ur) = (0.4, 11.2).

figure 5(b) correlates the C2S and L2S patterns with larger peak oscillation amplitude
than the 2S pattern.

A further confirmation of the wake-body tuning is obtained by inspecting the maximum
PSD frequency of the vorticity signal fω. Vorticity time traces are collected by integrating
the spanwise vorticity ωx along the line z/D = 3.0, in the cylinder wake. Such a measure
collects the information on the flow structures being advected in the near wake of the
cylinder, and it reflects the sinusoidal nature of the cylinder oscillation. The analysis of
the wake-to-displacement frequency ratio fω/fy reveals a clear tuning (fω/fy ≈ 1.0) in the
majority of the investigated cases. In fact, both the static synchronisation, and the lock-in
regimes are characterised by a match of structural response and wake dynamics in the
frequency domain (see figure 5c). At r ≥ 0.4 and Ur ≥ 10.0, the dominant frequency of
the vortex force jumps suddenly to a multiple of the displacement frequency: fω = 2fy or
fω = 3fy. In the referenced figure the desynchronised case lay over grey planes defining the
integer multiples of the frequency ratio. It is achieved in correspondence of the P+S wake
pattern, confirming that multiple vortex are shed per cycle without incurring in a chaotic
vortex dynamics. This feature was recognised in the experimental investigation carried out
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by Wong et al. (2018) at much lower hydrodynamic loading and rotation rate (Ur > 5.5
and θ̇ ≥ 1.0).

In the study carried out by Wong et al. (2018) and Zhao et al. (2018) the fω = 3fy
ratio is considered clearly indicative of the rotation-induced galloping response. This
condition was found to be also characterised by a null lift-displacement phase difference
(this feature will be addressed in the following paragraph) and by an unbounded growth of
the oscillation amplitude with the reduced velocity. Although these conditions are verified
in the present model, we also claim the correspondence of oscillation frequency and
system natural frequency, which is typical of lock-in configurations. Hence, we account
for a lock-in condition as the most general way to describe the system response across the
reduced velocity domain.

3.3. Force distribution
Insights about the mechanisms behind the dynamics of the present oscillator are provided
by inspecting features of fluid forces and energy transfer.

Phase portraits and instantaneous surface pressure are investigated for three cases
sampled within the LAO region. For the same reduced velocity Ur = 8.0, three coupling
radii r = {0.164, 0.320, 0.500} are examined. Despite being all within the lock-in region,
they encompass significantly different oscillation amplitudes, as well as three different
wake patterns: 2S* pattern for r = 0.164, C2S pattern for r = 0.320 and L2S pattern
for r = 0.500 (see figure 5a). For each case, the phase portraits of vertical position and
angular speed, both as a function of the lift (cross-flow) coefficient, are plotted in the left
panels in figure 7. Phase portraits are depicted for the last five cycles of each simulation.
Furthermore, the instantaneous pressure coefficient distribution is plotted in four relevant
cycle instants, individuated as the null displacement instant during the upward swinging
phase (A), the subsequent instant corresponding to the 0.8Ay/D displacement value (B),
the peak positive displacement instant (C), and the instant corresponding to 0.8Ay/D
displacement in the downward swinging phase (D). The pressure coefficient is defined
over the Lagrangian markers as cp = 2(p − p0)/(ρf U2).

The effect of the coupling radius can be noted from the superposed phase portraits
when analysing the relative scaling between peak displacement and peak rotation rate. At
r = 0.500, for larger peak displacement, a lower peak rotation rate is achieved with respect
to the case with r = 0.320, at identical reduced velocity. Phase portraits corresponding to
r = 0.164 and r = 0.320 prove the absence of higher harmonics in the lift force time
history, and the steadiness of the phase difference between lift and displacement. It can
be inferred that a unique limit cycle exists, and the oscillation frequency is locked onto
the natural frequency of the system in vacuum instead of the Strouhal frequency of a fixed
cylinder (Nobari & Naderan 2006; Placzek, Sigrist & Hamdouni 2009). The inclination
of the lift-displacement cycle provides an estimate of the phase angle, therefore, on the
nature of the fluid–structure energy transfer. Such a feature will be explored for the
whole configuration ensemble in the following. It is worth pointing out that the maximum
rotational (therefore, translational) speed is achieved after the null-displacement point,
halfway to the peak, due to inertial effects. For larger coupling radii (see, for instance,
figure 7b), the peak speed is reached when the cylinder has a small net displacement, owing
to a smaller equivalent inertia. From the phase portrait perspective this results in a larger
inclination of the {cy(t), y(t)} plot. At instant A the cylinder is in the upward acceleration
phase, mainly driven by the pressure unbalance caused by the negative pressure region on
top. At the peak velocity (nearly point B), and peak displacement (point C), the suction
area drifts counterclockwise on the cylinder surface, as well as the peak pressure spot.
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Figure 7. Phase portraits of cylinder displacement and rotational speed against cross-flow force coefficient
(left panel). Instantaneous polar distribution of pressure coefficient cp = 2(p − p0)/(ρf U2) in the time instants
located over the phase portrait. Incoming flow impinges the cylinder on the left. The red dot denotes the
instantaneous angular displacement of the cylinder. Results are shown for (a) r = 0.164, Ur = 8.0; (b) r =
0.320, Ur = 8.0; and (c) r = 0.500, Ur = 8.0.
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This is mainly connected with the detachment of a positive vortex. In position D the
negative pressure area is evenly distributed on the surface and the cylinder motion is
mainly governed by the elastic recoil.

For r = 0.320, the cylinder experiences a larger peak oscillation amplitude, and a L2S
wake pattern is established. In the central region of the phase portrait we observe a nearly
linear variation of the displacement with the lift coefficient. Within this time window
the inertial effects of the system are negligible due to a nearly constant velocity, and the
fluid load distribution experiences small changes. Thus, the linearity of the elastic force
allows for a nearly linear dynamics in between y = −1 and y = 1. The system vibration
frequency remains locked onto the natural frequency, and only two vortices of opposite
sign are shed per cycle. The pressure snapshots provide a substantially different scenario
with respect to the previous case. At null displacement (point A) both positive and negative
pressure spots are biased towards the upper part of the cylinder surface, owing to the large
rotation rate. Mittal & Kumar (2003) observed a similar pressure coefficient distribution
for a rotating cylinder at Re = 200, confirming our speculations about the almost steady
nature of hydrodynamic loads. In the other time instants the pressure forces follow the
trend observed in the previous case, but with much larger negative pressure peaks.

The wake pattern of the case (r, Ur) = (0.500, 8.0) has been classified as L2S (see
figure 5b), despite showing a transitional vortex dynamics. The corresponding phase
portrait (figure 7c) therefore exhibits a well-defined path, but without the ovoid shape
observed in the previous locked configurations. The symmetry in the {cy(t), y(t)} phase
portrait is lost due to the appearance of secondary frequencies in the force coefficients.
Comparing the phase portrait with the frequency plot (figure 5c), we can speculate that, as
pointed out by (Placzek et al. 2009), the wake is locked, since the main wake frequency
matches the natural frequency in vacuum, and the additional high frequencies do not affect
the cycle-to-cycle periodicity. The appearance of additional harmonics in the lift evolution
can be related to the emission of the third vortex in the upper side of the wake, leading the
transition to the P+S wake regime. In the case under examination, the pressure distribution
shows few changes with respect to the case (r, Ur) = (0.320, 8.0). Considering the
similarity in amplitude and oscillation frequency, this further confirms that the body
excitation is mostly sensitive to the pressure part of the force, as previously noted by
Bourguet & Lo Jacono (2014) in the case of constant rotation rate. As recognised in earlier
studies for static cylinders and forced cross-flow oscillations (Bishop & Hassan 1964), the
anti-symmetric nature of vortex shedding results in a ratio of 2 between the fundamental
frequencies of the in-line and cross-flow force coefficients. For purely rotating cylinders,
the symmetry breaking induced at large rotation rates (θ̇ ≥ 3.5) causes a switch to a
frequency ratio fcz/fcy ≈ 1.0 (Mittal & Kumar 2003), i.e. matching the fundamental
frequencies of cz and cy. The same phenomenon was observed for elastically mounted
cylinders with forced rotation outside the lock-in region (Bourguet & Lo Jacono 2014). In
the present model the frequency match is found anywhere within the spanned parameter
space, regardless of the cylinder dynamics (see figure 8a). A slight misalignment is
observed at large reduced velocities due to the emergence of secondary harmonics in the
lift forces linked to the occurrence of the P+S wake pattern. Similarly, Bourguet & Lo
Jacono (2014) recognised significant PSD peaks for secondary and tertiary harmonics at
θ̇ = 3.0. The phase difference Δφ between the cross-flow displacement y(t) and the lift
coefficient cy(t) can be interpreted as a descriptor of the transfer of mechanical energy
(product of fluctuating lift force and centre of mass displacement) from the fluid to
the cylinder (Gabbai & Benaroya 2005). In forced vibration studies the phase shift was
associated with a change in the direction of energy transfer (Blackburn & Henderson
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cz against reduced velocity (a). Vertical lines represent the critical reduced velocity for transition to the LAO
state. Phase difference Δφ between the cross-flow force coefficient cy and the cylinder displacement y/D as
a function of the reduced velocity for different coupling radii (b). Each curve is associated with a value of
coupling radius, consistently labelled in the adjacent colourbar.

1999; Carberry, Sheridan & Rockwell 2001; Guilmineau & Queutey 2002), whereas a
more complex scenario was evidenced for free vibrations. Experiments at high Reynolds
number carried out by Zdravkovich (1982), Khalak & Williamson (1999) showed that the
phase jump takes place in the middle of the lock-in region, accompanied by a shift from
the upper branch to the lower branch in the oscillation dynamics. Thus, the transition
from the static synchronisation to the lock-in regime does not entail a jump in the phase
difference φ(cy(t)) − φ( y(t)). For low Re, no upper branch has been observed, therefore,
the phase jump does not generate any discontinuous trend within the lock-in region.
Specifically, Prasanth & Mittal (2008) detected a phase jump at Ur = 6.9 in between of the
LAO range (5.0 ≤ Ur ≤ 8.3), with the phase difference switching impulsively from 0◦ to
approximately 180◦. The sudden phase shift was then associated to a change of the system
response to small phase perturbations. Moreover, they pointed out that the phase jump is
not hysteretic; the same behaviour is observed for increasing as well as decreasing Ur.
Both computational and experimental studies (Govardhan & Williamson 2000; Prasanth
& Mittal 2008) showed that the phase jump takes place when the oscillation frequency
precisely matches the natural frequency of the structure in vacuum. This correspondence
does not occur at the triggering of the lock-in phenomenon, where a small departure from
the natural frequency is still verified due to fluid-structure feedback mechanisms (Prasanth
& Mittal 2008), but in the middle of the lock-in region. This feature was found also in
the present investigation for non-rotating cylinders, where the exact frequency match is
achieved at Ur = 6.8 (see figure 4b).

In a similar fashion, for elastically mounted cylinders with forced rotation rate, both
phasing states are observed in the lock-in region when θ̇ ≤ 3, although lower maximum
phase differences are achieved (Bourguet & Lo Jacono 2014; Zhao et al. 2014). For larger
rotation rates, force and displacement remain in phase, regardless of the hydrodynamic
loading. In the former condition, an increase in the rotation rate corresponds to a reduction
in the phase difference at large reduced velocities. Again, the phase jump was found
to fulfil the condition of exact match between oscillation frequency and system natural
frequency in vacuum. Both in rotating and non-rotating cylinders the phase difference was
found to be affected mainly by the pressure part of the fluid force, especially in the range
of low reduced velocity (Prasanth & Mittal 2008; Bourguet & Lo Jacono 2014). In forced
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vibration experiments (Williamson & Roshko 1988) the jump in the phase difference has
been attributed to a sharp change in the timing of vortex shedding when switching from
the wake pattern 2S to pattern P, whereas for free oscillations no similar correspondences
have been found.

In the present work the angular phase difference [◦] measurement is based on discrete
Fourier transform and maximum likelihood estimation of the signals’ initial phases
(Sedlacek & Krumpholc 2005). Figure 8(b) provides a picture of the phase shift as
a function of the reduced velocity for different coupling radii. For Ur ≤ 5.2, the lift
force is essentially in phase with the displacement, regardless of Ur and r values. For
reduced velocities larger than 6.0, the phase jump takes place only for the smallest values
of the coupling radius, i.e. r ≤ 0.105 (they do not undergo lock-in), reaching a peak
difference of approximately Δφ ≈ 180◦. Interestingly, within the LAO case ensemble,
the phase difference is found to gradually grow without a jump, but with a maximum
phase difference inversely proportional to the coupling radius. The peak Δφ achieved for
a LAO case is approximately 45◦. Such proportionality owes to the larger peak rotation
rate occurring with the smaller r (see (2.3)). Likewise, recent experimental and numerical
investigations (Bourguet & Lo Jacono 2014; Seyed-Aghazadeh & Modarres-Sadeghi 2015)
showed that at larger rotation rates θ̇ > 3.0 the phase difference jump vanishes in favour
of a smooth transition.

We emphasise once more that, as long as the oscillation frequency of the system does
not exactly match the frequency of the system in vacuum, the phase difference jump is
prevented. The present system, once shifted to the lock-in regions, provides an almost
constant frequency offset with respect to the natural frequency (see figure 2b). Such a
feature, along with the rotational motion, seems to guarantee the force-displacement phase
alignment. A fundamental implication of this trend is the lack of a limiting mechanism
for the oscillation amplitude of locked cases. Prasanth & Mittal (2008) verified the
consequences of the phase jump by manipulating the phase shift in a LAO case under
periodic motion. In such a case they found that forcing Δφ(t0) = 0 generates very large
amplitude oscillations. Our system is able to force this condition by a simple kinematic
coupling, which results in magnified oscillations, as reported with the comparison in
figure 4(a).

As stated earlier, the described phenomenon is strictly connected with the offset of
the oscillation frequency from the natural frequency, which in turn can be linked to the
added mass effect. The natural frequency of an elastically mounted rigid body, immersed
in a viscous fluid, differs from that of a dry body by a coefficient Ca representing
the additional inertia of the surrounding fluid displaced by the body itself. The mutual
dependence of added mass, reduced velocity and natural frequency (Gabbai & Benaroya
2005) makes the estimation of the correlation between added mass and hydrodynamic
loading a cumbersome task. Following the discussion in Vikestad, Vandiver & Larsen
(2000), the ‘true’ natural frequency fnc, augmented by the added mass coefficient Ca, is
defined by

fnc = 1
2π

√
k

me + ρf ACa
, (3.1)

where ρf A is the fluid mass displaced by the body. Without any assumption on the
harmonics content of the body kinematics, the effective added mass coefficient can be
found from the lift coefficient and non-dimensional acceleration by Vikestad et al. (2000),

943 A30-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.442


Cross-flow oscillations of a cylinder with coupled rotation

Bourguet & Lo Jacono (2014), Wang, Fan & Triantafyllou (2021),

Ca = − 2
π

∫
T

cy(t)ÿ(t) dt∫
T
(ÿ(t))2 dt

, (3.2)

with the lift coefficient cy integrated in phase with the body acceleration. From (3.1), the
normalised oscillation frequency results in

fy
fnc

=
√√√√ ρe

ρe + π

4
Ca

. (3.3)

Extensive experimental investigations (Khalak & Williamson 1997, 1999; Vikestad et al.
2000), over a broad range of Reynolds numbers, proved that the added mass coefficient
decreases monotonically with the reduced velocity. Such a feature, as well as the existence
of a negative added inertia region, has been generally found in vibrations of elastically
mounted bluff bodies (Païdoussis et al. 2010). According to its definition, negative values
of Ca entail a change in the phase between fluid forces and body acceleration. When
considering a flow past a cylinder with its own complex dynamics, there is no a priori
explanation of the force-to-acceleration phase difference. To this extent, the evolution of
the added mass with the reduced velocity (or with the natural frequency) has a rather
complex interpretation. Païdoussis et al. (2010) proved with a simple linearized model of
a elastically mounted bluff body that the added mass coefficient decreases monotonically
with the reduced velocity as a result of the coupled dynamics of a wake oscillator and
a solid oscillator. As a consequence, the true natural frequency fnc increases with the
reduced velocity, as reported by numerous works (Gabbai & Benaroya 2005). Figure 9
shows the relation of the added mass coefficient Ca and normalised frequency ratios
(fy/fnc or fy/fn) as a function of the reduced velocity, at different coupling radii. The added
mass coefficient is found to decrease monotonically up to Ur = 6.4, where it changes
sign only for high equivalent mass cases (r ≤ 0.105). The well-established link between
added mass and lift force-displacement phase opposition (Païdoussis et al. 2010) is found
in this system too, by comparing the pairs (r, Ur) entailing a phase opposition (figure 8b)
and a negative added mass coefficient (figure 9b). As a general trend, under lock-in the
absolute value of Ca decreases with the coupling radius, regardless of the oscillation
amplitude, owing to the fact that a larger coupling ratio generally results in a smaller
peak rotation rate. In this connection the growth of the rotation rate was found to be
correlated with an increase of the added mass coefficient both at low Reynolds (Bourguet
& Lo Jacono 2014; Zhao et al. 2014) and high Reynolds numbers (Seyed-Aghazadeh
& Modarres-Sadeghi 2015). It can be inferred that a faster rotation generates a larger
momentum diffusion in the surrounding fluid, therefore, a larger displaced fluid mass. A
key difference with the numerical investigations with steady forced rotation rate (Bourguet
& Lo Jacono 2014; Zhao et al. 2014) relies in the Ca behaviour within the early LAO region
6.4 ≤ Ur ≤ 12.0. They highlighted a monotonic decrease of the added mass coefficient
that, for small rotation rates, θ̇ ≤ 3.5 reaches negative values. Conversely, in the present
work a non-classical trend is observed (see the insert in figure 9), with Ca having a more
moderate slope, despite the (positive) values interval being fully consistent. On the other
hand, the same reference investigations recognised a similar trend for large rotation rates
(θ̇ > 5.0) and larger reduced velocity (Ur > 14.0). One can notice that the oscillation
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Figure 9. Effective added mass coefficient computed from expression (3.2) as a function of the reduced
velocity (a). Each curve is associated with a value of coupling radius, consistently labelled in the adjacent
colourbar. Normalised frequency response as a function of the reduced velocity (b). Crosses in panel (b)
indicate the fy/fn ratio and circles indicate the fy/fnc ratio, whereas the dashed line in the panel indicates
the normalised frequency of vortex shedding in the stationary cylinder case. Normalised frequency response as
a function of the reduced velocity for the r = 0.205 case, at different phase density values (c).

amplitude is found to be maximum in correspondence of a nearly unitary added mass
coefficient, by comparing figures 9(a) and 2(a). The unity line corresponds to the added
mass coefficient for a non-rotating cylinder based on the potential flow assumption.

The influence of the added mass in the system natural frequency (3.1) explains the
frequency shift observed in figure 2(b), and reported in figure 9(b) with a consistent
normalisation. With a density ratio equal to 10.3, Khalak & Williamson (1997) observed
a similar behaviour in the normalised oscillation frequency of an elastically mounted
cylinder without rotation, except that they found values slightly larger than 1.0. We
speculate that this difference might be mainly caused by the change in the sign of the
angular velocity at the peak displacement and the associated change in vortex-shedding
timing. It is worth pointing out that the significance of the added mass effects clearly
increases as the phase density ratio ρ becomes smaller (Khalak & Williamson 1997,
1999). Further confirmation of the effectiveness of the coupling kinematics is provided
by comparing the frequency ratio in the lock-in regime for different phase density values
(see figure 9c). Within the lock-in Ur interval the frequency ratio fy/fnc is fairly insensitive
to the phase density, as well as the lock-in threshold itself. On the contrary, oscillating
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Cross-flow oscillations of a cylinder with coupled rotation

cylinders with and without constrained rotation experience a significant variation of the
lock-in width depending on the mass ratio (Vikestad et al. 2000).

4. Summary and outlooks

The present work introduces a model of water energy harvester belonging to the class
of ALTs. Such technologies provide a new concept for the generation of clean and
renewable energy from slow ocean/river currents, based on the amplification of the VIV
phenomenon. Both numerical simulations and prototyping activities have shown that
organised oscillating cylinders can result in higher conversion efficiency with respect
to a wave energy harvester and more conventional devices, based on a normalised
benchmarking (Bernitsas et al. 2008).

Our model consists of a transversely oscillating cylinder immersed in a free stream,
with mechanically coupled rotation. This investigation provides a computational proof of
concept which can potentially lead to an improvement of existing prototypes (Hobbs &
Hu 2012; Wang et al. 2016) for an augmented harnessed power, indeed. The fluid-structure
system has been investigated by 2-D FSI simulations based on DNS with IB forcing, at a
Reynolds number equal to 100. The impact of the mechanical coupling has been analysed
over the parameter space spanned by reduced velocity and coupling radius. Furthermore,
additional explorations with different phase density ratios have been carried out.

The kinematic coupling provides a new VIV scenario, in which the LAOs typical of
the lock-in condition are magnified with respect to the non-rotating case. Furthermore,
the rotation–translation kinematic coupling broadens the reduced velocity domain where
the lock-in condition takes place. These outcomes might potentially lead to innovative
devices offering larger power outputs and extended optimal operating regions. Although
the potential of rotation in enhancing the oscillation amplitude has been thoroughly
investigated in previous studies, this represents the first concept device where no additional
energy input is needed. With the suitable (r, Ur) pair, the oscillatory rotation endows the
cylinder with the suitable force distribution to achieve approximately a 360 % increment
in oscillation amplitude with respect to non-rotating cylinders, on a peer hydrodynamic
loading basis. It is worth pointing out that the coupling radius does not affect the
frequency response for a given reduced velocity. The kinematic coupling inherently
prevents the amplitude drop when increasing the reduced velocity, leading to a nearly
monotonic growth of the peak oscillation amplitude and to the permanence of the locked
state. Previous studies have shown that the galloping dynamics is characterised by an
unbounded increase in oscillation amplitude, nevertheless, it does not involve a lock-in
mechanism between structural response and vortex dynamics. Although galloping and
lock-in dynamics may overlap, we define the condition associated to LAOs as lock-in,
without the claim of a rigorous classification.

The inspection of the wake pattern confirmed the wake-body synchronisation. The
analysis of the wake-displacement frequency ratio reveals a clear tuning in most of the
investigated cases, except that at large coupling radii/reduced velocity. Well-established
patterns have been recognised and their relation with the oscillation dynamics has been
elucidated. As a matter of fact, each pattern falls within a clearly delimited region of the
frequency-amplitude domain.

Phase portraits revealed that cylinder response is generally periodic and it exhibits a
strongly sinusoidal behaviour with null mean displacement. The phase difference between
lift coefficient and cylinder displacement shed the light on the energy transfer between
the fluid and the cylinder. For Ur ≤ 5.2, the lift force is essentially in phase with the
displacement, regardless of Ur and r values, whereas for any locked case, no phase
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jump is observed. The phase difference is found to gradually grow with the reduced
velocity, with a maximum phase difference (≈ 45◦) inversely proportional to the coupling
radius. Thus, the coupled rotation guarantees the phase alignment necessary to sustain
LAO, making the oscillation amplitude grow indefinitely with the reduced velocity. This
is inherently achieved by preventing the exact match between oscillation frequency and
system natural frequency in vacuum. Such frequency offset is connected in turn with the
added mass effect. Previous investigations correlate sufficiently large rotation rates with
an increase of the added mass coefficient, which displaces the natural frequency of the
system away from its oscillation frequency. In the present model the added mass coefficient
is subject to limited changes with the reduced velocity, if compared with the uncoupled
rotary motion case (Bourguet & Lo Jacono 2014), providing the necessary frequency shift
to avoid the aforementioned phase jump.

As a concluding remark, we point out that the pursuit of a deterministic correlation
behind the nature of such an extended lock-in region leads to a ‘circular’ problem. This is
an inherent consequence of the mutual dependence of reduced velocity, natural frequency
of the system and added mass effect (Gabbai & Benaroya 2005). In view of this condition,
fully coupled FSI simulations provide a suitable tool for investigating the problem. Thus,
we speculate that the simple kinematic coupling rθ̇ = ẏ provides, for a wide collection of
(r, Ur) pairs, the balance of equivalent mass and peak rotation rate necessary to prevent
the oscillator from the phase jump.

The present study offers several chances of generalization. In the first instance, the
conceptualised model needs to be further investigated by including in the rigid body (2.1)
the damping effect induced by the coupling with an electrical generator. Besides moving
towards a more realistic scenario, the inclusion of a damping parameter can affect the peak
oscillation amplitude for a wide range of phase density values (Skop & Balasubramanian
1997; Govardhan & Williamson 2006), therefore influencing the effectiveness of the
system. Specifically, the amplitude of the structural response during lock-in and the band
of reduced velocities over which the lock-in phenomenon exists is strongly dependent on
the reduced damping parameter (Gabbai & Benaroya 2005). Since very large amplitude
oscillations are achieved within the explored parameter space, the structural model can be
further enhanced by considering a cubic stiffness term in (2.1) to account for stiffening
effects under large displacement.

Although the low Reynolds number allowed for a simple elucidation of the FSI
mechanism due to the lack of a chaotic dynamics, the effect of realistic flow condition,
as well as the associated three dimensionality must be accounted for to get a full picture of
the system operating performance. Finally, a query for larger power outputs can be satisfied
by coupling multiple cylinders in tandem/staggered configurations, once evaluated the
optimal wake-cylinder interaction scenario (Kim & Bernitsas 2016).
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Figure 10. Schematic of the proposed mechanical arrangement. The incoming flow takes place in the
out-of-plane direction.

Appendix A. Constructive features

In the present appendix we briefly address some practical aspects for the realisation of an
energy harvester based on the FSI mechanism described in this manuscript.

The targeted energy harvester can be designed starting from the technical experience
reported by Bernitsas et al. (2006). The cylinder is constrained to oscillate in the cross-flow
direction (corresponding to the y direction in figure 10) by means of submerged rods
sliding on low-friction guides. A recent contact-less magnetic slider for hydrokinetic
energy harvesting has been patented (Bernitsas & Xiros 2021) with the aim of minimising
friction and wear-related issues. A helical spring fixed on the static frame can provide
the elastic force necessary to sustain large VIVs. A system inspired to our model must
implement a shaft-mounted cylinder. Consequently, shaft and sliders must be connected
by rolling bearings, in order to allow the rotation of the cylinder. We emphasise that the key
feature of our model is the rotation-translation coupling. This can be realised by connecting
the frame with the shaft through a rack-and-pinion mechanism. With the rack being joined
to the device frame, the translating motion drives a rotation around the cylinder axis. In
view of this solution, the model parameter r actually represents the gear ratio.

We speculate that the energy conversion can be realised by means of a linear generator,
such as that proposed by Kim et al. (2017) specifically for sea energy converters. This
solution complies with any off-design operating condition in similar prototypes, since the
oscillation amplitude is not constrained. This implies that, under lock-in conditions, the
system can work with any inflow velocity while providing amplification of the limit-cycle
oscillations. In this mechanical system, velocity-correlated damping effects might be
attributed to the translation resistance offered by the generator and guides.

Appendix B. Solver verification and convergence

We validate the tool employed in this computational campaign by comparing results from
multiple test cases against data available in the literature. A broad validation has been
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Figure 11. Spanwise (a) and streamwise (b) velocity profiles for an impulsively started rotating cylinder past
a uniform flow at Re = 200 and θ̇ = 1.0. Numerical results are compared with experimental data provided by
Coutanceau & Menard (1985).

already carried out in the presentation of the numerical tool (de Tullio & Pascazio 2016)
against both two- and three-dimensional tests. Hence, all of the cases selected for this
section are strictly related with the main focus of this work, both in terms of loading
conditions and kinematic aspects. The following test are conducted using the baseline
discretisation and the computational domain described in § 2.2. In the first instance we
run the simulation of a rotating cylinder at Re = 200 and rotation rate θ̇ = 1.0. The
velocity profile of the spanwise and streamwise velocity components are compared with
experimental data provided by Coutanceau & Menard (1985). The former profile is taken
over a horizontal symmetry line, whereas the latter over a vertical symmetry line. The
cylinder and the fluid are initially at rest, and, given an impulsive fluid velocity and cylinder
rotation rate, the velocity profiles are inspected at three subsequent time instants. Our
numerical results match reasonably well the evolution of the boundary layer in the early
stage of the flow observed in the experimental data (see figure 11). This certifies that
the no-slip condition is adequately enforced in the presence of a rotating interface and
the related shear layers are consistently resolved. The accuracy of the load computation
technique has been likewise verified for a rotating cylinder, since this represents a
potential source of uncertainty for the study problem. Four cases of a cylinder rotating
at constant rotation rate and Re = 200 have been simulated. Very large rotation rates
have been considered, namely θ̇D/(2U) = {2.5, 3.0, 3.5, 4.0}, such that vortex shedding
is suppressed. Figure 12 shows the pressure coefficient distribution over the cylinder
profile, superposed with data from Mittal & Kumar (2003). The pressure coefficient is
here defined as cp = 2( p − p0)/(ρf U2), with p0 being the pressure value at the inlet edge.
Our computations have been able to accurately replicate the strongly asymmetric profile,
which leads to an augmented lift force.

To check the accuracy of the FSI procedure, we replicated the results provided by
Bourguet & Lo Jacono (2014) for an elastically mounted cylinder with forced rotation.
The cylinder can only undergo cross-flow oscillations, which in turn are heavily affected
by the rotation rate. This test resembles the most hydrodynamic loading arising in the
proposed system, therefore, it is taken as a final validation step. All cases are characterised
by Re = 100, ρ = 10, whereas the rotation rates comprise the values {0.0, 2.0, 4.0}.
The maximum rotation ratio is close to the largest value observed in our investigation.
The reduced velocity is spanned in between Ur = 4.0 and Ur = 12.0 with ΔUr = 0.5
increments. The oscillation amplitude and the time-averaged lift coefficient are compared
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Figure 12. Comparison of the pressure coefficient, defined as cp = 2( p − p0)/(ρf U2), along the cylinder
profile for a rotating cylinder at Re = 200 with different rotation rates.

with the numerical results by Bourguet & Lo Jacono (2014) in figure 13. Both the
maximum oscillation amplitude and the width of the lock-in region agree well with
those reported in the reference study. The comparison is carried out up to a rotation rate
equal to θ̇ = 7.0, which is fairly close to the peak rotation rate encountered in this study.
Furthermore, a few cases have been run at θ̇ = 8.0, confirming the suppression of large
amplitude vibrations. Analogously, the dependence of the amplitude on the rotation rate is
well reproduced. Similar to that of a stationary cylinder, the magnitude of the negative
lift coefficient increases with the increase of the rotation rate of the cylinder. A grid
convergence study was performed on the system under investigation with Ur = 8.0 and
r = 0.4, upon the occurrence of LAO. The baseline grid tested consists of 801 × 801 grid
nodes, with uniform grid spacing in the region [−2D, 8D] × [−6D, 6D], corresponding
to a local resolution of approximately 60 grid nodes along the cylinder diameter. This grid
is compared with those with 581 × 581 and 1081 × 1081, which corresponds to 40 and 80
grid nodes along the diameter, respectively. A sketch of the Cartesian grid and domain
size is provided in figure 15. These grids are 0.53 and 1.82 the size of the baseline grid in
terms of total node count. All simulations are performed by keeping a constant refinement
ratio between Lagrangian markers and local Eulerian grid size as Δl/Δx = 0.5, therefore,
252, 378 and 504 markers are employed, respectively. In order to assess the convergence of
both spatial and temporal discretization schemes this comparison is conducted at constant
CFL = 0.2, leading to different time-step size. The comparison is presented in terms of
percentage variation of maximum value and period (computed as a root mean square
over the last 20 cycles) of the vertical displacement y/D and lift coefficient cy. Data are
provided schematically in table 2, whereas time traces of y/D, cy and cm are plotted in
figure 14 for the three grids examined. All parameters show a much lower variation from
the baseline grid to the fine grid than from the coarse one. Thus, the baseline grid can be
considered within the asymptotic range in terms of spatial and temporal discretization. The
grid convergence above illustrated, although performed for a single case, is expected to be
a demonstration of grid convergence for the system dynamics investigated in the present
work. Furthermore, we have tested different cases over the same grids, which provided
similar root-mean-square variations as those mentioned above. These results are not shown
here for the sake of brevity.

In the present study the size of the computational domain was selected relying on the
results provided by Zhao et al. (2014), Kang, Choi & Lee (1999), in which a comparison of
different domain sizes was performed with identical boundary conditions. We selected the
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Figure 13. Comparison between the present numerical solution (crosses) and reference data from Bourguet
& Lo Jacono (2014) for an elastically mounted cylinder with constrained rotation undergoing VIV (circles).
The comparison is carried out in terms of oscillation amplitude (a) and time-averaged lift coefficient (b), for
different rotation rates.
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Figure 14. Time traces of (a) vertical displacement, (b) lift coefficient and (c) moment coefficient for
flow-induced oscillations at Ur = 8.0 using the three discretization sets tested.
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( y/D)max (%) TyU/D (%) cmax
y (%) Tcy U/D (%)

Coarse 1.1 0.10 3.2 0.23
Baseline 0.11 0.0061 0.42 0.017

Table 2. Percentage of error with regard to the fine mesh for some of the parameters monitored in the
convergence analysis.

extension [−15D, 25D] × [−30D, 30D] since it provides minimal blockage effect with a
limited computational expense on a similar rotation-rate basis.

REFERENCES

ABDELKEFI, A., HAJJ, M.R. & NAYFEH, A.H. 2012 Phenomena and modeling of piezoelectric energy
harvesting from freely oscillating cylinders. Nonlinear Dyn. 70 (2), 1377–1388.

ANAGNOSTOPOULOS, P. & BEARMAN, P.W. 1992 Response characteristics of a vortex-excited cylinder at
low Reynolds numbers. J. Fluids Struct. 6 (1), 39–50.

BAHAJ, A.S. & MYERS, L.E. 2003 Fundamentals applicable to the utilisation of marine current turbines for
energy production. Renew. Energy 28 (14), 2205–2211.

BEARMAN, P.W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16 (1), 195–222.
BEARMAN, P.W. 2011 Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27 (5-6),

648–658.
BERNITSAS, M.M., RAGHAVAN, K., BEN-SIMON, Y. & GARCIA, E.M.H. 2006 VIVACE (vortex induced

vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow.
In International Conference on Offshore Mechanics and Arctic Engineering, vol. 47470, pp. 619–637.

BERNITSAS, M.M., RAGHAVAN, K., BEN-SIMON, Y. & GARCIA, E.M.H. 2008 VIVACE (vortex induced
vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow.
J. Offshore Mech. Arctic Engng 130 (4), 041101.

BERNITSAS, M.M. & XIROS, N. 2021 Contact-less magnetic supports for marine hydrokinetic energy
harvesting using flow induced oscillations. US Patent 11, 143, 158.

BISHOP, R.E.D. & HASSAN, A.Y. 1964 The lift and drag forces on a circular cylinder oscillating in a flowing
fluid. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 277 (1368), 51–75.

BLACKBURN, H.M. & HENDERSON, R.D. 1999 A study of two-dimensional flow past an oscillating cylinder.
J. Fluid Mech. 385, 255–286.

BORAZJANI, I., GE, L. & SOTIROPOULOS, F. 2008 Curvilinear immersed boundary method for simulating
fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227 (16), 7587–7620.

BOURGUET, R. & LO JACONO, D. 2014 Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 740,
342–380.

CARBERRY, J., SHERIDAN, J. & ROCKWELL, D. 2001 Forces and wake modes of an oscillating cylinder.
J. Fluids Struct. 15 (3-4), 523–532.

CHEN, S.-S. 1985 Flow-induced vibration of circular cylindrical structures. Tech. Rep.. Argonne National
Laboratory (ANL).

CHOI, S., CHOI, H. & KANG, S. 2002 Characteristics of flow over a rotationally oscillating cylinder at low
Reynolds number. Phys. Fluids 14 (8), 2767–2777.

CORLESS, R.M. & PARKINSON, G.V. 1988 A model of the combined effects of vortex-induced oscillation
and galloping. J. Fluids Struct. 2 (3), 203–220.

COUTANCEAU, M. & MENARD, C. 1985 Influence of rotation on the near-wake development behind an
impulsively started circular cylinder. J. Fluid Mech. 158, 399–446.

DREW, B., PLUMMER, A.R. & SAHINKAYA, M.N. 2009 A review of wave energy converter technology.
Proc. Inst. Mech. Engrs A: J. Power Energy 223 (8), 887–902.

DU, L. & SUN, X. 2015 Suppression of vortex-induced vibration using the rotary oscillation of a cylinder.
Phys. Fluids 27 (2), 023603.

EL AKOURY, R., BRAZA, M., PERRIN, R., HARRAN, G. & HOARAU, Y. 2008 The three-dimensional
transition in the flow around a rotating cylinder. J. Fluid Mech. 607, 1–11.

GABBAI, R.D. & BENAROYA, H. 2005 An overview of modeling and experiments of vortex-induced vibration
of circular cylinders. J. Sound Vib. 282 (3-5), 575–616.

943 A30-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.442


A. Nitti, G. De Cillis and M.D. de Tullio

GOVARDHAN, R. & WILLIAMSON, C.H.K. 2000 Modes of vortex formation and frequency response of a
freely vibrating cylinder. J. Fluid Mech. 420, 85–130.

GOVARDHAN, R. & WILLIAMSON, C.H.K. 2004 Critical mass in vortex-induced vibration of a cylinder. Eur.
J. Mech. (B/Fluids) 23 (1), 17–27.

GOVARDHAN, R.N. & WILLIAMSON, C.H.K. 2006 Defining the ‘modified griffin plot’ in vortex-induced
vibration: revealing the effect of Reynolds number using controlled damping. J. Fluid Mech. 561, 147–180.

GRIFFIN, O.M. & RAMBERG, S.E. 1976 Vortex shedding from a cylinder vibrating in line with an incident
uniform flow. J. Fluid Mech. 75 (2), 257–271.

GUILMINEAU, E. & QUEUTEY, P. 2002 A numerical simulation of vortex shedding from an oscillating circular
cylinder. J. Fluids Struct. 16 (6), 773–794.

HOBBS, W.B. & HU, D.L. 2012 Tree-inspired piezoelectric energy harvesting. J. Fluids Struct. 28, 103–114.
KANG, S., CHOI, H. & LEE, S. 1999 Laminar flow past a rotating circular cylinder. Phys. Fluids 11 (11),

3312–3321.
KHALAK, A. & WILLIAMSON, C.H.K. 1997 Investigation of relative effects of mass and damping in

vortex-induced vibration of a circular cylinder. J. Wind Engng Ind. Aerodyn. 69, 341–350.
KHALAK, A. & WILLIAMSON, C.H.K. 1999 Motions, forces and mode transitions in vortex-induced

vibrations at low mass-damping. J. Fluids Struct. 13 (7–8), 813–851.
KIM, E.S. & BERNITSAS, M.M. 2016 Performance prediction of horizontal hydrokinetic energy converter

using multiple-cylinder synergy in flow induced motion. Appl. Energy 170, 92–100.
KIM, J.-M., KOO, M.-M., JEONG, J.-H., HONG, K., CHO, I.-H. & CHOI, J.-Y. 2017 Design and analysis of

tubular permanent magnet linear generator for small-scale wave energy converter. AIP Adv. 7 (5), 056630.
KIM, J. & MOIN, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations.

J. Comput. Phys. 59 (2), 308–323.
KUMAR, R.A., SOHN, C.-H. & GOWDA, B.H.L. 2008 Passive control of vortex-induced vibrations: an

overview. Recent Patents Mech. Engng 1 (1), 1–11.
MENON, K. & MITTAL, R. 2021 On the initiation and sustenance of flow-induced vibration of cylinders:

insights from force partitioning. J. Fluid Mech. 907, A37.
MITTAL, S. & KUMAR, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 303–334.
MUNIR, A., ZHAO, M., WU, H. & LU, L. 2019 Numerical investigation of wake flow regimes behind a

high-speed rotating circular cylinder in steady flow. J. Fluid Mech. 878, 875–906.
MUNIR, A., ZHAO, M., WU, H. & TONG, F. 2021 Flow-induced vibration of a rotating circular cylinder at

high reduced velocities and high rotation rates. Ocean Engng 238, 109562.
NITTI, A., KIENDL, J., REALI, A. & DE TULLIO, M.D. 2020 An immersed-boundary/isogeometric method

for fluid–structure interaction involving thin shells. Comput. Meth. Appl. Mech. Engng 364, 112977.
NOBARI, M.R.H. & NADERAN, H. 2006 A numerical study of flow past a cylinder with cross flow and inline

oscillation. Comput. Fluids 35 (4), 393–415.
ORLANDI, P. 2012 Fluid Flow Phenomena: A Numerical Toolkit, vol. 55. Springer Science & Business Media.
ORLANSKI, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3),

251–269.
PAIDOUSSIS, M.P. 1998 Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic

Press.
PAÏDOUSSIS, M.P., PRICE, S.J. & DE LANGRE, E. 2010 Fluid-Structure Interactions: Cross-Flow-Induced

Instabilities. Cambridge University Press.
PAPAIOANNOU, G.V., YUE, D.K.P., TRIANTAFYLLOU, M.S. & KARNIADAKIS, G.E. 2008 On the effect of

spacing on the vortex-induced vibrations of two tandem cylinders. J. Fluids Struct. 24 (6), 833–854.
PLACZEK, A., SIGRIST, J.-F. & HAMDOUNI, A. 2009 Numerical simulation of an oscillating cylinder in a

cross-flow at low Reynolds number: forced and free oscillations. Comput. Fluids 38 (1), 80–100.
PRASANTH, T.K. & MITTAL, S. 2008 Vortex-induced vibrations of a circular cylinder at low Reynolds

numbers. J. Fluid Mech. 594, 463–491.
RAO, A., LEONTINI, J., THOMPSON, M.C. & HOURIGAN, K. 2013 Three-dimensionality in the wake of a

rotating cylinder in a uniform flow. J. Fluid Mech. 717, 1–29.
SARPKAYA, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19

(4), 389–447.
SEDLACEK, M. & KRUMPHOLC, M. 2005 Digital measurement of phase difference-a comparative study of

DSP algorithms. Metrol. Meas. Syst. 12 (4), 427–448.
SEYED-AGHAZADEH, B. & MODARRES-SADEGHI, Y. 2015 An experimental investigation of vortex-induced

vibration of a rotating circular cylinder in the crossflow direction. Phys. Fluids 27 (6), 067101.
SEYED-AGHAZADEH, B., SAMANDARI, H. & DULAC, S. 2020 Flow-induced vibration of inherently

nonlinear structures with applications in energy harvesting. Phys. Fluids 32 (7), 071701.

943 A30-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.442


Cross-flow oscillations of a cylinder with coupled rotation

SINGH, S.P. & MITTAL, S. 2005 Vortex-induced oscillations at low Reynolds numbers: hysteresis and
vortex-shedding modes. J. Fluids Struct. 20 (8), 1085–1104.

SKOP, R.A. & BALASUBRAMANIAN, S. 1997 A new twist on an old model for vortex-excited vibrations.
J. Fluids Struct. 11 (4), 395–412.

SUMER, B.M., et 2006 Hydrodynamics Around Cylindrical Strucures, vol. 26. World Scientific.
SUN, H., BERNITSAS, M.M. & TURKOL, M. 2020 Adaptive harnessing damping in hydrokinetic energy

conversion by two rough tandem-cylinders using flow-induced vibrations. Renew. Energy 149, 828–860.
TOKUMARU, P.T. & DIMOTAKIS, P.E. 1991 Rotary oscillation control of a cylinder wake. J. Fluid Mech. 224,

77–90.
DE TULLIO, M.D. & PASCAZIO, G. 2016 A moving-least-squares immersed boundary method for simulating

the fluid–structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 325, 201–225.
UHLMANN, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows.

J. Comput. Phys. 209 (2), 448–476.
VANELLA, M. & BALARAS, E. 2009 A moving-least-squares reconstruction for embedded-boundary

formulations. J. Comput. Phys. 228 (18), 6617–6628.
VIKESTAD, K., VANDIVER, J.K. & LARSEN, C.M. 2000 Added mass and oscillation frequency for a

circular cylinder subjected to vortex-induced vibrations and external disturbance. J. Fluids Struct. 14 (7),
1071–1088.

WANG, Z., FAN, D. & TRIANTAFYLLOU, M.S. 2021 Illuminating the complex role of the added mass during
vortex induced vibration. Phys. Fluids 33 (8), 085120.

WANG, J., GENG, L., DING, L., ZHU, H. & YURCHENKO, D. 2020 The state-of-the-art review on energy
harvesting from flow-induced vibrations. Appl. Energy 267, 114902.

WANG, C., TANG, H., YU, S.C.M. & DUAN, F. 2016 Active control of vortex-induced vibrations of a circular
cylinder using windward-suction-leeward-blowing actuation. Phys. Fluids 28 (5), 053601.

WILBERFORCE, T., EL HASSAN, Z., DURRANT, A., THOMPSON, J., SOUDAN, B. & OLABI, A.G. 2019
Overview of ocean power technology. Energy 175, 165–181.

WILLIAMSON, C.H.K. & GOVARDHAN, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36,
413–455.

WILLIAMSON, C.H.K. & ROSHKO, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids
Struct. 2 (4), 355–381.

WONG, K.W.L., ZHAO, J., JACONO, D.L., THOMPSON, M.C. & SHERIDAN, J. 2018 Experimental
investigation of flow-induced vibration of a sinusoidally rotating circular cylinder. J. Fluid Mech. 848,
430–466.

YOUNG, J., LAI, J.C.S. & PLATZER, M.F. 2014 A review of progress and challenges in flapping foil power
generation. Prog. Aerosp. Sci. 67, 2–28.

YUCE, M.I. & MURATOGLU, A. 2015 Hydrokinetic energy conversion systems: a technology status review.
Renew. Sustain. Energy Rev. 43, 72–82.

ZDRAVKOVICH, M.M. 1982 Modification of vortex shedding in the synchronization range. J. Fluid Eng.
104 (4), 513–517.

ZDRAVKOVICH, M.M. 1996 Different modes of vortex shedding: an overview. J. Fluids Struct. 10 (5),
427–437.

ZHAO, M., CHENG, L. & LU, L. 2014 Vortex induced vibrations of a rotating circular cylinder at low Reynolds
number. Phys. Fluids 26 (7), 073602.

ZHAO, J., JACONO, D.L., SHERIDAN, J., HOURIGAN, K. & THOMPSON, M.C. 2018 Experimental
investigation of in-line flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 847, 664–699.

943 A30-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.442

	1 Introduction
	2 Computational model and numerical method
	2.1 Model problem
	2.2 Numerical method

	3 Discussion of results
	3.1 Structural response
	3.2 Wake pattern
	3.3 Force distribution

	4 Summary and outlooks
	A Appendix A. Constructive features
	B Appendix B. Solver verification and convergence
	References

