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Abstract

To investigate familial influences on the full range of variability in attention and activity across adolescence, we collected maternal ratings of 339 twin pairs at
ages 12, 14, and 16, and estimated the transmitted and new familial influences on attention and activity as measured by the Strengths and Weaknesses of
Attention-Deficit/Hyperactivity Disorder Symptoms and Normal Behavior Scale. Familial influences were substantial for both traits across adolescence:
genetic influences accounted for 54%–73% (attention) and 31%–73% (activity) of the total variance, and shared environmental influences accounted for 0%–22%
of the attention variance and 13%–57% of the activity variance. The longitudinal stability of individual differences in attention and activity was largely accounted
for by familial influences transmitted from previous ages. Innovations over adolescence were also partially attributable to familial influences. Studying the full
range of variability in attention and activity may facilitate our understanding of attention-deficit/hyperactivity disorder’s etiology and intervention.

Attention-deficit/hyperactivity disorder (ADHD) is one of
the most common child neurodevelopmental disorders with
symptoms in two essential areas: attention and activity, af-
fecting about 3.4% of children and adolescents worldwide
(Polanczyk, Salum, Sugaya, Caye, & Rohde, 2015). ADHD
symptoms manifest as an impaired ability to sustain attention
and inhibit impulsive/hyperactive behavior, respectively
(Barkley, 2003). These symptoms arise in childhood, with
DSM-IV requiring symptoms present by age 7 (American
Psychiatric Association, 1994) and DSM-5 extending the
age of onset up to age 12 (American Psychiatric Association,
2013). Follow-up studies of children with ADHD into adoles-
cence show that, although the symptoms of ADHD may shift
to better adapted ranges with the onset of puberty, 70%–85%
of diagnosed children have continued issues with attention
and activity levels during adolescence (Barkley, Fischer,
Edelbrock, & Smallish, 1990; Biederman et al., 1996; Cen-
ters for Disease Control and Prevention, 2005; Pingault
et al., 2015). Thus, it is very important to study the genetic
etiology of ADHD development in adolescence.

Attention and activity are two continua expressed quanti-
tatively from the well-adapted end to the extremely abnormal
end in the general population (Levy, Hay, McStephen, Wood,
& Waldman, 1997). A dimensional description of attention
and activity is in line with the research domain criteria initia-
tive that aims at developing, for research purposes, new ways
of classifying mental disorders based on behavioral dimen-
sions and neurobiological measures (Cuthbert, 2014). Atten-
tion is included as one of the core constructs of the cognitive
systems domain, while activity (and its regulation) maps well
onto another construct of the same domain, cognitive (effort-
ful) control. A dimensional description of psychopathology
also presents significant advantages for genetic studies,
such as greater power to identify specific genetic variants;
therefore, it is crucial that research studies consider a full
range of variation in phenotypic manifestation of attention
and activity for investigating the nature of ADHD (van der
Sluis, Posthuma, Nivard, Verhage, & Dolan, 2013). Avoiding
an artificial restriction of the range of variance in the under-
lying liability existing in the general population may help
shed light on the processes underlying developmental shifts
in ADHD from dysregulation to highly adaptive behaviors.
Unfortunately, the “adaptive ends” of these full range con-
tinua of attention and activity in the general population have
been largely neglected.

Most previous twin studies on ADHD, which have gener-
ally focused on the symptomatic portions of these dimensions
by using behavior rating scales, have reported substantial her-
itability estimates for inattention (31% to 82%) and hyperac-
tivity/impulsivity (36% to 88%) (Chang, Lihtenstein, Asher-
son, & Larsson, 2013; Freitag, Rohde, Lempp, & Romanos,
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2010; Greven, Rijsdijk, & Plomin, 2011; McLoughlin, Ro-
nald, Kuntsi, Asherson, & Plomin, 2007; Pingault et al.,
2015; Swanson et al., 2001; Thapar, Harrington, Ross, &
McGuffin, 2000). Even though it has been suggested that
their manifestations are affected by interplay of multiple ge-
netic and environmental factors that provide either risk or pro-
tection during development (Thapar, Langley, Asherson, &
Gill, 2007), polygenic liability studies should not be limited
to the symptomatic direction only, because the effects of sin-
gle genes on behavior may manifest themselves not only in
the problematic range but also in the adaptive, normative
range (Flint, 1998).

Cross-sectional twin research using continuous measures
provided by the Strengths and Weaknesses of Attention-Def-
icit/Hyperactivity Disorder Symptoms and Normal Behavior
Scale (SWAN) reported heritability estimates of 0.82 and
0.89 for attention and 0.31 and 0.90 for activity (Hay, Ben-
nett, Levy, Sergeant, & Swanson, 2007; Polderman et al.,
2007). Hay et al. (2007) found significant shared environ-
mental contribution that explained 53%–66% of the variabil-
ity for activity in both study groups (6–9 and 12–20 years
old), and 28% of the variability for attention in younger age
group. However, shared environmental influences have rarely
been observed in previous ADHD genetic studies using mea-
sures that focused on the symptomatic end (Brikell, Kuja-
Halkola, & Larsson, 2015; Burt, 2009; Burt, Larsson, Lich-
tenstein, & Klump, 2012; Posthuma & Polderman, 2013).

Previous developmental studies focusing on the symp-
tomatic end of ADHD have reported substantial stability of
individual differences in inattention and hyperactivity/im-
pulsivity across development, which was accounted for pri-
marily by genetic factors, whereas developmental changes
were mostly attributed to environmental influences (Costello,
Copeland, & Angold, 2011; Kan et al., 2013; Kuntsi, Rijsdijk,
Ronald, Asherson, & Plomin, 2005; Ramtekkar, Reiersen,
Todorov, & Todd, 2010; Reiersen, 2005; Todd et al.,
2008). Longitudinal twin studies suggest continuity of ge-
netic influences on ADHD symptoms; that is, some of the
genes that influence ADHD symptom dimensions at an early
age continue to operate in later age (Chang et al., 2013; Gre-
ven, Ashersen, Rijsdijk, & Plomin, 2011; Kuntsi et al., 2005;
Nadder, Rutter, Silberg, Maes, & Eaves, 2002; Price et al.,
2005; Saudino & Cherny, 2001) including the adolescent pe-
riod (Larsson, Lichtenstein, & Larsson, 2006; Larsson, Lars-
son, & Lichtenstein, 2004).

However, these studies were mainly confined to the symp-
tomatic end. To our knowledge, no previous longitudinal
studies have investigated the familial influences on the full
range of variability of attention and activity, using a develop-
mental, genetically sensitive design. The present study is the
first to investigate the contributions of genetic and environ-
mental influences to the stability and changes of attention
and activity during adolescence based on their full-range
variability. We hypothesized that continuous, full-range mea-
sures of attention and activity are strongly influenced by
stable and enduring genetic and environmental factors that

are transmitted from prior ages (vs. those that are transient
and period specific) and account for developmental stability
of individual differences along these two dimensions. We fur-
ther hypothesized that developmental change is brought
by new genetic and environmental influences that enter at
each age.

Method

Subjects

The present data were collected as part of a larger study of ge-
netics, neurocognition, and adolescent substance abuse, a
population-based, longitudinal cohort sequential study of
adolescent twins involving biannual laboratory visits. Twin
pairs were recruited through the Missouri Family Registry
(a database of twin pairs from a population-based twin regis-
try in the state of Missouri), which has a demographic com-
position that is broadly representative of the local population.
The present analyses utilize data from a subset of twin pairs
for whom maternal reports of twin behavior were available.
Maternal reports of twin attention and activity were available
for both members of 217 twin pairs at age 12 (122 monozy-
gotic [MZ], 95 dizygotic [DZ] pairs), for 294 twin pairs at age
14 (140 MZ, 154 DZ pairs), and for 184 pairs at age 16 (88
MZ, 96 DZ pairs). Data from a total of 339 twin pairs were
included, with data available at all three ages for 75 pairs,
at two ages for 206 pairs (N ¼ 104 at ages 12 and 14, N ¼
92 at ages 14 and 16, and N ¼ 10 at ages 12 and 16), and
at a single age for 58 pairs (N ¼ 28 at age 12, N ¼ 23 at
age 14, and N ¼ 7 at age 16 exclusively). The retention rate
for the 14-year-old phase was above 80%, but a significant
drop in the number of 16-year-old participants was caused
by a gap in funding. Because SWAN was added to the assess-
ment battery when baseline assessments had already been in
progress, the number of participants at age 14 (first follow-
up) is larger than at age 12 (baseline; sample characteristics
are listed in Table 1). Zygosity for these twin pairs was deter-
mined using genotyping on 160 DNA markers. Parents
signed an informed consent form as approved by the institu-
tional review board of Washington University School of
Medicine. Mothers completed the SWAN while their children
performed psychological tasks.

Phenotype assessment

The SWAN (Swanson et al., 2001) was used to assess the full
range of variability of attention (ATT) and activity (ACT).
The SWAN contains 18 items to assess attention (9 items)
and activity/impulsivity (9 items). Mothers were asked to in-
dicate on a 7-point Likert scale how each twin (rated sepa-
rately) compared to “other children the same age” over the
preceding month. As in the original SWAN measure, all ques-
tions were written so that it is beneficial to be “far above”
average (e.g., “organize tasks and activities” and “stay seated
[when required by class rules/social conventions]”). The 9
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items on each scale were summed to create a total score (pos-
sible range ¼ 9–63 for each subscale). Previous genetic stud-
ies using SWAN used variable scales to present the results.
To facilitate the comparison with clinical studies that used
symptomatic measures, in the present analyses all items
were reverse-coded, such that higher scores correspond to
the dysfunctional end of the distribution (inattention and hy-
peractivity), while lower scores correspond to the adaptive
end (high attentional skills and well-regulated behavior).
The SWAN has been found to have strong internal consis-
tency (0.80–0.95), acceptable test–retest reliability (0.72–
0.90), construct validity, and a normal distribution (Arnett
et al., 2013; Lakes, Swanson, & Riggs, 2012; Polderman
et al., 2007; Reiersen & Todorov, 2013; Swanson et al.,
2005). In the present data, Crobach a ranged from 0.93 to
0.96 for two subscales. Its two-factor structure was confirmed
at all three age points (comparative fit index range ¼ 0.986–
0.989, Tucker–Lewis index range ¼ 0.986–0.988) by con-
ducting confirmatory factor analysis using Mplus version 7
(Muthen & Muthen, 2012).

Statistical analyses

The mean scores of the two subscales within individuals at
consecutive time points were compared by paired t tests using
Stata version 9.2 (StataCorp, 2005), and the equivalence of
the MZ and DZ mean scores at the same time point was tested
using the regression procedure in Stata with the cluster option
to control for the nonindependence of twins. To assess stabil-
ity of ATT and ACT throughout development, we calculated
within-person phenotypic correlations over time. To explore
the genetic architecture, cross-twin correlations for MZ and
DZ groups were calculated at three time points and quantita-
tive genetic modeling was conducted to assess the signifi-
cance of familial influences.

Genetic analysis

Our genetic analysis was based on standard assumptions of
the twin study method (Plomin, DeFries, Knopik, & Neider-
hiser, 2013). These models assume that phenotypic variance

arises from additive genetic influences (A), nonadditive ge-
netic influences (D), environmental influences shared by
family members (C), and individually unique (nonshared)
environmental influences (E). Genetic influences are indi-
cated when MZ twin correlations are larger than DZ twin cor-
relations. If all twin pair similarity were attributable to A, the
MZ correlation would be about twice the DZ correlation, be-
cause MZ twins share all of their genes and DZ twins share
half of their segregating genes (on average). Nonadditive ge-
netic influences are indicated when the MZ correlation is
more than twice the DZ correlation (because MZs again share
100% of nonadditive genetic effects, but DZ twins only share
25% of such effects). Shared environmental influences are in-
dicated when the DZ correlation is more than 50% of the MZ
correlation. If all twin pair similarity were attributable to C,
the MZ and DZ correlations would be equal in magnitude be-
cause shared familial components are shared equally among
MZ and DZ twin pairs. When only data from twin pairs reared
together is available, it is not possible to test C and D simul-
taneously, and a decision regarding whether to test an ADE or
an ACE model is made based upon the observed twin corre-
lations (Rijsdijk & Sham, 2002). A detailed description of the
model fitting approach and assessment of heritability can be
found elsewhere (Neale & Cardon, 1992; Rijsdijk & Sham,
2002). Structural equation models were used to examine the
pattern of familiality using the Mx package, which was spe-
cifically developed to model genetically informative data
(Neale, 2004). Because in a longitudinal design, data from
one or more time points or from one twin may be missing
from the data set, multivariate structural equation models
were fitted to the raw data by a maximum likelihood method
(Lange, Westlake, & Spence, 1976). As a first step to multi-
variate analysis, we tested a Cholesky (lower triangular)
model, in which influences at Time 1 are also allowed to
load directly onto all other assessments, new influences enter
the model at each subsequent assessment, and these influ-
ences are also allowed to load onto all later assessments (Rijs-
dijk & Sham, 2002); the path loadings for the E components
of the attention scale in Figure 1 depict a Cholesky parame-
terization. This model provides a first glance into the genetic
architecture and serves as a base model to which more re-

Table 1. Sample characteristics and cross-age correlations for attention and activity scores

Cross-Age Within Individual Correlations

ATT ACT
Age 12 Age 14 Age 16

N Male MZ M (SD) M (SD) M 95% CI M 95% CI M 95% CI

Age 12 434 52.3% 56.2% 32.7 (8.5) 31.5 (8.5) — 0.71 0.66–0.76* 0.66 0.56–0.74*
Age 14 589 51.4% 47.5% 31.0 (9.7) 29.8 (9.9) 0.65 0.59–0.71* — 0.74 0.69–0.78*
Age 16 370 52.7% 47.8% 28.7 (10.3) 27.4 (10.3) 0.63 0.53–0.71* 0.67 0.60–0.72* —

Note: The values for the attention (ATT) and activity (ACT) cross-age correlations are above and below the diagonal, respectively. The 12-year-olds consisted of
122 monozygotic (MZ) and 95 dizygotic (DZ) pairs, the 14-year-olds consisted of 140 MZ and 154 DZ pairs, and the 16-year-olds group consisted of 89 MZ and
96 DZ pair.
*p ¼ .05.
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stricted models can be compared. A particularly useful model
for longitudinal data is an autoregressive (or simplex) model,
because it specifies that a latent factor at time t is influenced
directly the immediately preceding time (t – 1) in addition to
any new influences (Boomsma & Molenaar, 1987; Eaves,
Long, & Heath, 1986; Neale & Cardon, 1992); the A compo-
nents in both the attention and activity scales of Figure 1
depict a simplex pattern. The simplex model takes full advan-
tage of the time series nature of longitudinal data (Boomsma
& Molenaar, 1987) and is a stronger test of developmental hy-
potheses. A hallmark of a simplex data structure is a pattern
where the correlations are highest among adjacent assess-
ments and decrease systematically as the span between as-
sessments increases (Rijsdijk & Sham, 2002). The simplex
structure fits well with our hypothesis that the stability of
both attention and activity is maintained by prior influences
that are transmitted to subsequent ages, and that change
may be brought by new influences that enter at each age,
which suggests a simplex (autoregressive) model. The signif-
icance of paths is tested by examining the decrement in fit
when individual paths are eliminated from the model. Fit of

the submodels was determined by calculating the difference
in 22 times the log-likelihood of the full model and the sub-
model, which is interpreted as a chi-square test for the given
degrees of freedom. Fit statistics for the reduced develop-
mental models were compared with those for the saturated
models. If the decrement in fit for a reduced model was not
significant, that path was deleted from the model, and we
tested the significance of additional parameters.

Given that the power to detect gender differences in var-
iance components was low with the current sample size (Pol-
derman, Posthuma, De Sonneville, Verhulst, & Boomsma,
2006), the data from male and female twins were combined
in the present analyses, and gender was controlled for in all
genetic models.

Results

Descriptive statistics

The mean values for ATT and ACT (Table 1) decreased sig-
nificantly with age (tested using paired t tests in Stata 9.2

Figure 1. Best-fitting structural equation model for genetic and environmental determinants of attention score, controlling for gender. Rectangles
represent the observed variance for each age, and circles represent the latent factors. A simplex model is shown for additive genetic influences
(A12, A14, and A16) and shared environmental influences (C12, C14, and C16). A Cholesky (triangular decomposition) model is shown for the
nonshared environmental effects (E12, E14, and E16). Broken lines indicate latent factors and paths that could be dropped from the model.
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(StataCorp, 2005), with clustering on family to control for the
inclusion of data from both twins). Among the subset of 358
individuals (179 pairs) with data at both ages 12 and 14, the
means declined from 32.6 to 30.9 for inattention, and from
31.5 to 29.3 for hyperactivity, t (357) ¼ 4.63 and 5.40, re-
spectively, p , .001. Among the subset of 336 individuals
(168 pairs) with data at both ages 14 and 16, the means de-
clined from 30.5 to 28.7 for inattention, and from 29.3 to
27.3 for hyperactivity, t (357) ¼ 4.59 and 4.29, respectively,
p , .001. There was no significant difference between MZ
and DZ twins in their mean scores on either ATT or ACT at
any age ( ps ¼ .08–.97; tested using simple regression analy-
ses in Stata, version 9.2, with clustering on family to control
for the nonindependence of twins; means not shown but
available upon request). The skewness and kurtosis scores
for both scale scores suggested minimal departure from nor-
mality (ATT: skewness¼ –0.09 to –0.39, kurtosis¼ –0.86 to
0.33; ACT: skewness ¼ –0.36 to –0.63, kurtosis ¼ –1.1
to 0.25).

Correlations

Test–retest phenotypic correlations across the time points
(Table 1) were large (ATT: rs ¼ .66–.74; ACT: rs ¼ .63–
.67; tested in SAS, version 9.2 (SAS Institute Inc., 2008), in-
dicating high longitudinal stability of these traits over a 4-year
period. Furthermore, phenotypic cross-age correlations were
slightly lower for the longer interval (ages 12–16) than corre-
lations for shorter intervals (ages 12–14 and 14–16), suggest-
ing an autoregressive (or simplex) pattern.

Intrapair twin correlations for ATT and ACT scores are
presented in Table 2 (all twin-pair correlations and confi-
dence intervals were calculated using Mx, a statistical pack-
age designed for use with data containing related individuals).
At all ages, MZ correlations were higher than DZ correla-
tions, suggesting genetic influence on both traits across all
time points. The DZ correlations for ACT were more than
one half of MZ correlations, suggesting that shared environ-
mental influences might be important. However, the pattern
for ATT was inconsistent, with the DZ correlation much
less than one half of MZ correlation at age 12, about half
the MZ correlation at age 14, and more than half the MZ
correlation at age 16, suggesting the potential for nonadditive
genetic influences in early adolescence and shared environ-
mental influences in later adolescence. Although correlations
can be used to test the significance of total familiality, struc-
tural equation modeling is required to test the significance of
the specific contributions of genetic and shared environ-
mental factors to total familiality.

Multivariate model fitting

The results of model fitting for ATT and ACT are presented in
Table 3. The Cholesky models were used to test significance
of the A, D (for ATT), and C components (E, which includes
error as well as individual-specific effects is retained in all T
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Table 3. Multivariate model fitting for attention and activity subscales at ages 12, 14, and 16, controlling for gender

ATT ACT

Compare to Models Compare to Models

Model Para 22LL df Model Dx2 Ddf p Model Para 22LL df Model Dx2 Ddf p

1. ADE Choleskya 27 9309.015 1364 — — — —
2. ACE Cholesky 27 9303.734 1364 — — — — 1. ACE Cholesky 27 9091.150 1364 — — — —
3. ACE reduced Cholesky,

no C on attention at age 12 24 9303.733 1367 2 20.001 3 1.00 2. AE Cholesky 21 9148.177 1370 1 57.027 6 ,.001
4. AE Cholesky , no C on

attention 21 9314.898 1370 3 11.164 3 .01 3. CE Cholesky 21 9180.042 1370 1 88.892 6 ,.001
5. CE Cholesky, no A on

attention 21 9369.747 1370 2 66.013 6 ,.001
6. ACE simplexa 24 9320.667 1367 2 16.933 3 ,.001 4. ACE Simplex 24 9094.411 1367 1 3.261 3 .35
7. ACE: A (simplex) C & E

(Cholesky) 26 9305.081 1365 2 1.347 1 .25
5. ACE (reduced simplex,

no new A at 16) 23 9094.411 1368 4 0 1 1.00
8. ACE: C (simplex) A & E

(Cholesky) 26 9303.733 1365 2 20.001 1 1.00
6. ACE (reduced

simplex)c 20 9096.537 1371 5 2.126 3 .55
9. ACE: A & C (simplex) E

(Cholesky) 25 9305.080 1366 2 1.346 2 .25
10. ACE: A & C (reduced

simplex) E (Cholesky)b 21 9308.435 1370 9 3.355 4 .56

Note: Significant p values indicate poor model fit. ATT, Attention; ACT, activity; –2LL, –2 log likelihood; A, additive genetic variance; D, nonadditive genetic variance; C, shared environmental variance; E, non-
shared environmental variance.
aThe model was rejected by comparing it with the full ACE Cholesky model.
bBest fitting model for ATT; no C at 12 (and thus no transmission to age 14), no new A at 14, and no new C at 16.
cBest fitting model for ACT; no new A at 16, no new C at 14; no E transmission from 12 to 14 or 14 to 16).
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models, although specific paths may be eliminated), and as a
reference for comparison with the more restrictive simplex
models.

For ATT, the ACE Cholesky model fit slightly better over-
all than the ADE model (Models 2 and 1, respectively), and
thus was used as the base model for ATT. There was no evi-
dence of C at age 12 for ATT (Model 3), but significant C was
found at ages 14 and 16 (Model 4). A model that eliminated
shared environmental influences while retaining genetic ef-
fects (Model 4) and one that eliminated genetic effects while
retaining shared environmental effects (Model 5) were both
rejected, suggesting significant genetic and shared environ-
mental influences for ATT. Thus, the model ACE was se-
lected as the final Cholesky model, and used as the reference
model for the simplex model. The simplex ACE model
(Model 6) fit significantly less well than the full Cholesky
model, indicating that the more restrictive simplex pattern
did not describe the data as well as the full Cholesky model.
However, models specifying a simplex pattern for A (Model
7), or for C (Model 8) individual, or for A and C simultane-
ously (Model 9) did not result in a decrement in fit, indicating
that they described the data well. Additional testing con-
firmed no C at age 12 (and thus no transmission from 12 to

14), no new C at age 16, and no new A at age 14 (Model
10). Thus the final model for ATT (shown in Figure 1) in-
cluded a simplex pattern for A and C, with E left as a Cho-
lesky parameterization.

For ACT, neither A nor C could be removed from the Cho-
lesky model without a significant decrement in fit (Models 3
and 2, respectively), indicating significant genetic and shared
environmental contributions to ATT. For ACT, the simplex
model did not have a significantly poorer fit than the Cho-
lesky model (Model 4), suggesting that the more parsimo-
nious simplex model described the data well. Additional test-
ing indicated that there was no new A at age 16 (Model 5), no
new C at age 14, and no E transmitted over time (either from
12 to 14 or from 14 to 16). The final model, Model 6, is
shown in Figure 2.

The proportions of variance explained by the three compo-
nents based on best fitting models are listed in Table 2. At
each age, the contribution of A was significant and substan-
tial, accounting for 54%–73% of the variance in ATT, and
31%–73% of the variance of ACT. Although no C was found
at age 12 for ATT, significant C were found at ages 14 (22%)
and 16 (13%) for ATT, and at all ages for ACT (13%–57%).
As shown in Table 2, these familial influences were highly

Figure 2. Best fitting structural equation model for genetic and environmental determinants of activity score, controlling for gender. Rectangles
represent the observed variance for each age, and circles represent the latent factors. A simplex model is shown for additive genetic influences
(A12, A14, and A16), shared environmental influences (C12, C14, and C16), and nonshared environmental effects (E12, E14, and E16).

Variability in attention and activity levels 523

https://doi.org/10.1017/S0954579415001091 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579415001091


stable. For ATT, 100% and 52% of A at ages 14 and 16 were
transmitted from the prior assessments, respectively, and
100% of C at age 16 was transmitted from age 14. For
ACT, at ages 14 and 16, 60% and 100% of A, and 100%
and 20% of C were transmitted from the prior age, respec-
tively.

Discussion

This is the first longitudinal twin study to assess the stability
of and change in genetic and environmental influences on the
full range of variability of attention and activity, two behav-
ioral dimensions relevant to ADHD. Similar to existing stud-
ies that focused on symptoms, we found very high levels of
familiality on both the attention and activity levels of adoles-
cents as rated by their mothers. In contrast to most previous
research, our study suggests that shared environmental factors
contribute to twin resemblance, in addition to the genetic in-
fluences typically found. In a meta-analysis of childhood and
adolescent behavioral disorders, Burt (2009) found that
ADHD was the sole disorder that showed no evidence of
shared environmental influence. Although not observed con-
sistently, several studies have shown evidence of shared envi-
ronmental influence on attention and activity (Greven, Rijs-
dijk, et al., 2011; Hay et al., 2007; McLoughlin et al.,
2007; Saudino & Zapfe, 2008; Wood, Saudino, Rogers,
Ashersen, & Kuntsi, 2007). In a response to Burt’s (2009)
meta-analysis, Wood, Buitelaar, Rijsdijk, Ashersen, and
Kuntsi (2010) noted that shared environmental influences
were observed in 16% of studies on ADHD symptoms, and
accounted for 27% of the variability in the studies in which
they were observed. Research using the SWAN has shown
mixed results, with Polderman et al. (2007) finding familial-
ity attributable entirely to genetic factors, and Hay et al.
(2007) finding evidence for significant genetic and shared
environmental influence for both inattention and hyperactiv-
ity/impulsivity in children (6–9 years of age) and for hyper-
activity/impulsivity in adolescents (12–20 years of age).
Our hyperactivity/impulsivity genetic (31% and 42%) and
shared environmental (57% and 51%) components at ages
14 and 16, respectively, were highly consistent with Hay
et al.’s 31% genetic and 66% shared environment in adoles-
cents.

There are several possible explanations for the inconsistent
findings regarding shared environmental influences on atten-
tion and activity. Hay et al. (2007) suggested that studying the
full range of variability of behavior might partially explain the
finding of shared environmental influences on these two traits
during adolescence. Wood et al. (2010) suggested several ad-
ditional reasons why studies of ADHD might not show evi-
dence of shared environment. In addition to low power and
the potential presence of both nonadditive genetic and shared
environmental influences (which cannot be disentangled
using only twin pairs who grew up together), Wood et al.
also suggested the possibility that the absence of shared envi-
ronment could stem from the highly skewed nature of tradi-

tional diagnostic measures of ADHD. In the present study,
both the range of variability (from “far better than age mates”
to “far below age mages”) and the normal distribution in the
general population (and our sample) might have enhanced
our ability to detect shared environmental influences. Neither
suggestion would explain the absence of shared environment
in Polderman et al. (2007) examining the SWAN, although
cultural differences between the studies might be important
to consider (our sample is from the United States, Hay
et al.’s was Australian, and Polderman et al.’s was Dutch).
In particular, the Midwestern US population from which
the sample was drawn may have a broader range of variability
in family-level environmental factors (e.g., socioeconomic
status, ethnic background, neighborhood, and school charac-
teristics) than both the Australian and Dutch populations.

Our longitudinal analyses paralleled prior studies in find-
ing that attention and activity levels remained largely stable
(with significant, but not dramatic improvement) during ado-
lescence, even when examining behavior from the adaptive
end of the spectrum. Cross-age correlations were also consis-
tent with those previously reported for inattention and hyper-
activity/impulsivity (Larsson et al., 2004), and stability over
time was mainly accounted for by familial factors, which is
also in keeping with previous ADHD research (Larsson
et al., 2004; Nadder et al., 2002; Price et al., 2005). However,
our familial contributions were again a combination of ge-
netic and familial environmental factors, with most previous
research finding genetic factors were the sole familial con-
tributor to stability.

Although much of stability over time in attention and ac-
tivity is attributable to genetic factors, the contribution of ge-
netics to this stability varies within age group (Larsson et al.,
2006; McLoughlin et al., 2007; Nadder et al., 2002; Nikolas
& Burt, 2010). Our results suggested that stability over time
was primarily attributable to familial influences. For atten-
tion, 43% of stability from ages 12 to 14 was attributable to
nonshared (individual-specific) influences, and this dropped
to only 13% when examining stability from ages 14 to 16.
For activity, all stability was attributable to familial influ-
ences, becasue we were able to remove the nonshared envi-
ronmental transmission paths from the model entirely (see
Figure 2). More detailed examination of the transmission ef-
fects for attention indicated that genetic influences at age 14
were entirely overlapping with those from age 12, but that
new genetic effects emerged at age 16, with about 50% of ge-
netic influences at 16 being transmitted from age 14. For ac-
tivity, there were new genetic influences at age 14 (with about
60% of genetic variance being transmitted from at 12) but no
additional new genetic influences at age 16. We again found
that some of the stability over time in activity was attributable
to shared environmental influences. For attention, there was
no evidence of shared environmental influence at age 12,
with shared environmental influences apparent at age 14
and carrying through to age 16, with no additional shared
environmental contributions arising at age 16. For activity,
the shared environmental influences observed at age 12 car-
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ried through to age 14 (with no new effects observed), but
shared environmental influences from age 14 explained
24% of the total C component at age 16. It is not surprising
that genetic effects involve both stability and innovation dur-
ing adolescence, because puberty is likely associated with
both new genetic factors arising and some genes ceasing to
be active. However, the development of novel shared environ-
mental influences during adolescence seems somewhat coun-
terintuitive. Given that these are mother ratings of both atten-
tion and activity, one possible explanation is that the maternal
reports are reflecting changes in the influence of peers as the
twins progress from primary school into middle and high
school, with new peer networks developing and parental su-
pervision decreasing.

Studying attention and activity across the full range of
variability is a more accurate reflection of the entire behav-
ioral spectrum than the conventional symptomatic scales,
and has several advantages. First of all, it has clinical impli-
cations to help identify both genetic and environmental risk
and protective factors that contribute to the development of
attention and activity, so that the risk and protective pathways
that lead to adverse outcomes or resilience from ADHD can
be elucidated. Second, the role of shared environmental influ-
ence on attention and activity suggested in the present study
may facilitate the development of effective ADHD risk-re-
duction strategies. Third, it overcomes several major limita-
tions that are commonly seen in the field of behavior genetics,
such as skewness, rater contrast effect, and truncation. In
keeping with this possibility, the data collected on a full range
produces more normally distributed data. Without data trans-

forming, which could result in biased parameter estimates, the
power to detect genes associated with attention and activity
related to ADHD at varying degrees of expression increases
(Arnett et al., 2013). It has also been suggested that the
more detailed measure is more resistant to rater contrast ef-
fects than instruments focusing on the symptomatic end
only by opening up a wider range of positive and negative re-
sponse options (Kuntsi et al., 2005; Kuntsi & Stevenson,
2001). In addition, in molecular genetic studies, the ability
to define concordant unaffected pairs and extremely discor-
dant pairs will be strengthened if the well-adapted range of
behaviors is not truncated at zero (Swanson, Wigal, & Lakes,
2009). The present study highlights the potential value of a
full range dimensional approach on studying the common
features of psychopathology in mental disorders (Casey, Oli-
veri, & Insel, 2014).

Although, to our knowledge, this study is the first to ex-
plore the stability and change of genetic and environmental
influences on the full range of variability of attention and ac-
tivity in a longitudinal twin design, there are limitations to
bear in mind. The first one is the reliance on maternal ratings.
Teachers’ ratings would have been an especially useful addi-
tion, but were not available. In addition, due to statistical
power limitations, we could not perform gender-specific
analyses. These results need to be replicated and refined
with larger samples of genetically related subjects. With
more objective neuropsychological measures available in
the present longitudinal genetics study, the developmental
genetic architecture of these two traits could be further
investigated in the near future.
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