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We study the effect of surfactants on the dynamics of a drop-interface coalescence
using full three-dimensional direct numerical simulations. We employ a hybrid
interface-tracking/level-set method, which takes into account Marangoni stresses that arise
from surface-tension gradients, interfacial and bulk diffusion and sorption kinetic effects.
We validate our predictions against the experimental data of Blanchette and Bigioni (Nat.
Phys., vol. 2, issue 4, 2006, pp. 254-257) and perform a parametric study that demonstrates
the delicate interplay between the flow fields and those associated with the surfactant
bulk and interfacial concentrations. The results of this work unravel the crucial role of
the Marangoni stresses in the flow physics of coalescence, with particular attention paid
to their influence on the neck reopening dynamics in terms of stagnation-point inhibition,
and near-neck vorticity generation. We demonstrate that surfactant-laden cases feature a
rigidifying effect on the interface compared with the surfactant-free case, a mechanism
that underpins the observed surfactant-induced phenomena.
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1. Introduction

The occurrence of drop-interface coalescence has been observed in a wide range of natural
phenomena and industrial applications, such as rain/cloud formation (Raes et al. 2000),
atomisation (Villermaux 2007) and also emulsification or de-emulsification processes
(Ziegler & Wolf 2005). Over half a century ago, Charles & Mason (1960) observed
coalescence in their ground-breaking experiments, and, ever since, researchers have been
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in constant pursuit of a better physical understanding of this phenomenon. However, it
was not until the advent of high-speed imaging that it became possible for Thoroddsen &
Takehara (2000) to observe the self-similar coalescence cascade phenomena of a drop
before its total coalescence. Since then, the significant interest in the field has led to
a recent comprehensive review on the topic by Kavehpour (2015), who concluded that
further work is needed to understand the Marangoni effect during the drop-interface
coalescence dynamics.

The dynamics commences with the drainage of the fluid between the drop and an
interface separating this fluid from another bulk phase whose extent is typically much
larger than the drop diameter. This drainage leads to the formation of a thin fluid layer
between the drop and the interface. As the layer thickness decreases, van der Waals forces
trigger its rupture with the generation of a hole which expands driven by capillarity. The
hole expansion for drop coalescence has been widely studied by Eggers, Lister & Stone
(1999), Aarts et al. (2005), Paulsen, Burton & Nagel (2011), Paulsen ef al. (2012), Paulsen
(2013), Paulsen et al. (2014), Anthony et al. (2017), Anthony, Harris & Basaran (2020)
among others, concluding that the interfacial dynamics is solely governed by a balance
between inertial, viscous and surface-tension forces, and subsequently the Ohnesorge
number Oh (i.e. ratio of viscous to capillary forces) is the most appropriate control
parameter for this phenomenon. Different coalescence regimes have been identified
depending on the order of magnitude of Oh: (i) the inertial regime (Oh < 1), which
is characterised by a nearly inviscid liquid, and the dynamics is surface-tension driven;
(ii) the Stokes regime (Oh > 1) where the viscous forces play a major role in the interfacial
dynamics; finally, (iii) an intermediate regime, the inertial-limited-viscous regime, which
bridges the inertial and Stokes Regimes (i.e. no dominance by either viscosity or surface
tension).

As pointed out earlier for intermediate values of Oh, Thoroddsen & Takehara (2000)
observed the so-called ‘coalescence cascade of a drop’ in which the drop coalescence leads
to the generation of a smaller daughter droplet which results in a cascade of self-similar
events until this successive coalescence process is completed. The process of formation
of a daughter droplet is known as a ‘partial coalescence’ phenomenon, and its physical
understanding came from the insightful experimental and numerical results of Blanchette
& Bigioni (2006), who suggested that the occurrence of pinch-off depends solely on the
competition between the vertical (inertia—viscous) and horizontal (capillary) pulls (the
former aids the total coalescence and the latter the capillary breakup), rather than the
mechanism of Rayleigh—Plateau instability. Additionally Blanchette & Bigioni (2006)
have provided an extensive Bo-Oh phase diagram delineating the boundaries between
partial and total coalescence. Here, Bo is the Bond number which compares the importance
of gravitational to surface-tension forces.

Importantly, Blanchette, Messio & Bush (2009), Thoroddsen et al. (2007) and
Sun et al. (2018) have also considered situations in which there is a surface-tension
mismatch between the drop and the interface triggering the generation of tangential
Marangoni stresses in the plane of the common interface formed post-coalescence. In
their experimental and numerical investigation of the coalescence of a water drop with an
ethanol reservoir, they reported that Marangoni-induced flow leads to the ejection of an
additional drop from its summit during its vertical stretching. Similarly, the generation of
gradients of surface tension can also be triggered by the use of surfactants (Manikantan &
Squires 2020).

Current understanding of the coalescence dynamics in such surfactant-laden systems
came from Dong, Weheliye & Angeli (2019), who experimentally showed for the first
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time surfactant concentration profiles for systems characterised by high Bond numbers.
Additionally, they suggested that surfactants have a strong effect on the interfacial
dynamics inducing interfacial rupture (i.e. hole formation) in an off-axis location. Their
interfacial concentration profiles agree qualitatively with the previous numerical work
performed by Martin & Blanchette (2015). Finally, Shim & Stone (2017) suggested that
the presence of surfactants decreases the air drainage time between the drop and interface
(so-called, ‘damped-coalescence-cascade mechanism’).

The effect of surfactants on the thinning and pinch-off of liquids threads has been
studied by Ambravaneswaran, Phillips & Basaran (2000); Craster, Matar & Papageorgiou
(2002); Timmermans & Lister (2002) and Liao, Franses & Basaran (2006) via linear
stability analysis, one-dimensional models and full numerical simulations. This work
concluded that surfactants are advected from the singularity point due to strong axial
flow and do not modify the self-similar structure of the flow as breakup is approached;
this structure, and associated scaling exponent, remain unaltered from the surfactant-free
case (Eggers 1993; Brenner, Lister & Stone 1996). However, McGough & Basaran
(2006) and Kamat er al. (2018) have demonstrated that the addition of surfactants results
in the formation of microthreads during thread thinning driven by Marangoni-induced
flow near but not at the pinch point. Additionally, recent studies have examined the
interplay between Marangoni stresses, capillarity and surface viscous effects (present at
sufficiently high surfactant concentrations) via solution of the one-dimensional slender jet
(Wee et al. 2020) and full Stokes equations (Martinez-Calvo & Sevilla 2021) reaching
similar conclusions (i.e. surface rheological effects lead to a decrease in the rate of
thinning). Recently, Constante-Amores ef al. (2020) and Kamat et al. (2020) showed the
deleterious effect of Marangoni stresses on interfacial singularities in the context of the
inhibition of the end-pinching mechanism during the capillary retraction of a liquid thread.
Marangoni-induced flow results in the suppression of the stagnation point by flow reversal
in the vicinity of the neck, and the higher generation of vorticity from the neck.

Although Martin & Blanchette (2015) have shown that the presence of surfactants is
responsible for the inhibition of the partial coalescence event, there is still a lack of
explanation of what causes this pinch-off inhibition. Moreover, the appreciation of the
distribution of Marangoni stresses in crucial regions of the interface, and other significant
insights into the flow fields close to the pinch-off, are also missing. The present study aims
to clarify and answer these questions and to overcome all numerical difficulties presented
in Martin & Blanchette (2015) by taking into account the nonlinear relation between the
surfactant concentration and surface tension, which is of central importance in non-dilute
systems. Additionally, we are able to explore parameter ranges corresponding to large
density and viscosity contrasts, corresponding to air—water systems, without numerical
difficulties, and to go beyond the surfactant elasticity range studied by Martin & Blanchette
(2015).

The rest of this article is organised as follows: § 2 presents the governing equations,
numerical set-up and the validation of the surfactant-free case against the experimental
observations of Blanchette & Bigioni (2006). Section 3 provides a discussion of the
results which are focused on the origin of the inhibition of the interfacial singularity,
and a parametric study accounting for the strength of the Marangoni stress and sorption
dynamics. Finally, concluding remarks are summarised in § 4.

2. Problem formulation and numerical method

With the purpose of studying the dynamics of interfacial coalescence in the presence
of surfactants, we perform direct numerical simulations of the two-phase Navier—Stokes
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Figure 1. Schematic representation of the flow configuration, and validation of the numerical procedure:
(a) initial shape of the drop resting close to the interface, highlighting the computational domain of size
12R, x 12R, x 6R, (not to scale) in a three-dimensional Cartesian domain, x = (x, y, z), with a resolution

of 3863; (b) direct comparisons of our numerical predictions for a surfactant-free case (blue line) with
experimental results reported by Blanchette & Bigioni (2006) for the post-coalescence dynamics of an ethanol
drop in air prior to interfacial singularity formation with Oh = 0.011 and Bo = 0.09; also shown in red lines
are the numerical solutions by Deka et al. (2019) for the same case.

equations in a three-dimensional Cartesian domain x = (x,y, z) (see figure la). The
treatment of the interface and its surface-tension forces is handled using a hybrid
front-tracking/level-set technique, also known as the level contour reconstruction method
(Shin & Juric 2009; Shin, Chergui & Juric 2017), with surfactant transport being resolved
both in the bulk and on the interface. More information on the numerical technique applied
to surfactant transport can be found in the work of Shin et al. (2018). Moreover, the
dependence of the surface tension on the interfacial surfactant concentration is described
by a nonlinear Langmuir equation of state (Muradoglu & Tryggvason 2014; Shin et al.
2018).

2.1. Scaling
In what follows, all variables will be made dimensionless (represented by tildes) using
. X .t .u p
X =—, = — u=—, p= s
R, t. U o1U?
o r c c (2.1a—h)
& - 1’:' = > C = > CS - d ’
Os I'o Co Coo

where #, u and p stand for time, velocity and pressure, respectively. The physical
parameters correspond to the liquid density p;, viscosity p;, surface tension o,
surfactant-free surface tension oy and gravitational acceleration, g; #, = / ,ole/aS is
the capillary time scale and R, is the initial drop radius; hence, the velocity scale is
U =R,/t. = J/os/(piR,). The interfacial surfactant concentration, I, is scaled on the
saturation interfacial concentration, [ ,, whereas the bulk and bulk sub-phase (the region
immediately adjacent to the interface) surfactant concentrations given by C and Ci,
respectively, are scaled on the initial bulk surfactant concentration, Co.. As a result of
the scaling in (2.1a—h), the dimensionless forms of the governing equations for the flow
and the surfactant transport are respectively expressed as

V.u=0, (2.2)
925 Al15-4
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+ / _(GRn+ V,5)8(x — Xp)dA, (2.3)
A(r)

86+~ ve= v (2.4)

o T T ey '
ar - | RS L
— + V- (i) = —ViT + Bi(kCs(1 = T") — I, (2.5)
at Peg

5=1+pBIn(l—-1), (2.6)

which correspond to the equations of mass and momentum conservation, the
convective—diffusion equations for the surfactant bulk and interfacial concentrations and
the nonlinear surfactant equation of state, respectively. Here, the density o and viscosity i
are expressed by p = pg/p1+ (1 — pg/p)H (%, 7) and 1 = pg/pi + (1 — pg/mH (X, 1)
wherein H (x, f) represents a smoothed Heaviside function, which is zero in the gas phase
and unity in the liquid phase, where the subscript g designates the gas phase; &y = (i - £)t
represents the velocity vector tangential to the interface in which & corresponds to the
interfacial velocity; « is twice the mean interface curvature calculated from the Lagrangian
interface grid; Vg = (I — nn) - V stands for the surface gradient operator wherein I is
the identity tensor and n is the outward-pointing unit normal to the interface; Xy is the
parameterisation of the interface A(7); finally, 8 represents a Dirac delta function that is
non-zero when X = Xy only. The numerical method used to solve the above equations is
described in detail by Shin et al. (2018).
The dimensionless groups that appear in (2.2)—(2.6) are defined as

2
PIgR; i
Bo=—"2% Oh= , (2.7a,b)
Og v PiosR
kiR, k,C, UR UR RTT.
Bi="C0 p=2C pp =20 pe =0 g 0 (284)
U ka Dy Dy, Oy

where Bo and Oh are the Bond number (ratio of gravitational to capillary forces) and
Ohnesorge number (ratio of viscous to surface tension forces), respectively. The surfactant
elasticity parameter, ;, measures the sensitivity of the surface tension to the surfactant
concentration in which the parameter %t represents the thermodynamic ideal gas constant
value 8.314 J K~! mol~!, and T denotes temperature. The parameters Pey and Pey, are the
interfacial and bulk Péclet numbers that represent the ratio of convective to diffusive time
scales in the plane of the interface and the bulk, respectively. The Biot number, Bi, stands
for the ratio of characteristic desorptive to convective time scales. Finally, k is the ratio of
adsorption to desorption time scales where k, and k, refer to the surfactant adsorption and
desorption coefficients, respectively.

At equilibrium, there is no surfactant exchange between the interface and the bulk, and
the last term on the right-hand side of (2.5) reduces to the Langmuir adsorption isotherm

L, &

I (14k)° (2.9)

X:
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where y stands for the fraction of the interface covered by adsorbed surfactant.
Furthermore, the Marangoni stress, T, which appears in the third term on the right-hand

side of (2.3), is expressed as a function of I as follows:

V6 t=— Bs _V,I -1, (2.10)

1-r

T

where ¢ is the unit tangent to the interface. In all cases considered in the present
study, the Marangoni time scale, uR,/Ac = O(10™%) s, as compared with the capillary

and sorptive/desorptive time scales, which are of 0(1073) and O(1073) — O(10™%) s,
respectively; thus Marangoni stresses will play a crucial role in the coalescence
phenomenon. Finally, the tildes are dropped henceforth with the understanding that,
hereafter, all variables discussed are dimensionless unless stated otherwise.

2.2. Numerical set-up, validation and parameters

The numerical set-up closely follows the work done by Sun et al. (2018), and Martin
& Blanchette (2015). Thus, the size of the dimensionless computational domain is
chosen as 12R, x 12R, x 6R,, which is found to be sufficiently large to avoid the
effect of artificial reflections from the boundaries. We define a radial component as
r= \/ (x — x,)% 4+ (y — yo)? where x,, and y, are the abscissa and ordinate drop position,
respectively. Solutions are sought subject to Neumann boundary conditions on all variables
at the lateral boundaries, p = 0 at the top boundary z = 6R,, and no slip at the bottom
z= 0. At the interface, we impose n - VC = —BiPeb(kCS(l — f) — f) as a condition
on C (we refer the reader to Shin er al. (2018) for more information). The initialisation
of the interface corresponds to a spherical drop resting immediately above a horizontal
flat interface before its interfacial rupture (e.g. all the velocities set to zero) where both
drop and liquid pool are made up of the same liquid. Importantly, the drop is connected
to the flat interface by a neck of radius 0.25R,, for the initialisation of the dynamics; a
similar approach has been previously used by Blanchette & Bigioni (2006, 2009) and
Martin & Blanchette (2015). The assumption is based on the time scale associated with
the retraction of the neck tcg = R,/~/205/p18, which is too short to have an influence on
the phenomenon.

Figure 1(b) highlights qualitative and quantitative validation of our numerical
framework with results from the literature (Eggers 1993; Blanchette & Bigioni 2006;
Castrejon-Pita et al. 2015; Deka et al. 2019). The numerical simulations have been
benchmarked against the surfactant-free experimental results of Blanchette & Bigioni
(2006) in terms of the temporal interfacial dynamics of the coalescence of an ethanol
drop surrounded by air (displayed in figure 15). Our numerical results are provided as
snapshots of the interface location at times corresponding to those given by Blanchette &
Bigioni (2006). We have also included the numerical predictions from Deka et al. (2019).
Figure 1(b) demonstrates that our numerical framework is capable of predicting accurately
the interfacial dynamics of the coalescence phenomenon for ‘clean’ interfaces. Since
Oh << 1 (Oh = 0.011), during the early thinning stages, there is competition between
the fluid inertia and the opposing capillary pressure which corresponds to the inertial
regime. The dynamics is expected to transition from this regime (7, ~ 7%/3) to the
inertial-viscous regime (7, ~ 7)) when the local Reynolds number drops to Rejpcqr ~ 1,

which occurs when 7y, ~ Oh* ~ 10~% (Notz, Chen & Basaran 2001). We note that the
global three-dimensional nature of our numerical technique, taking into account the entire
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domain, makes it prohibitive computationally to reach the level of mesh refinement needed
to capture all of the regime transitions accompanying the approach to pinch-off, which
have been highlighted by the work of Castrejon-Pita et al. (2015).

The dimensionless quantities for the studied phenomenon are consistent with
experimentally realisable systems. The Ohnesorge number was set to Oh =2 x 1072
because it allows for the observation of the interplay between the full range of
dynamics as there is a competition between inertial, viscous and capillary forces. The
chosen density and viscosity ratios, pg/p0; = 1.2 x 1073 and g/ = 0.018, respectively,
are representative of an air—water system. The elasticity number B; depends on the
interfacial concentration at saturation, I,,, which, in turn, is related to the critical
micelle concentration (CMC) that is of O(107%) mol m~2. We have explored the
range of 0.1 < f8; < 0.5 which corresponds to 2.9 x 107® < CMC < 1.4 x 10™> mol
m~2. Typical values for the interfacial diffusion coefficient for surfactants such as
sodium dodecyl sulphate (SDS), N-dodecyl-N,N-dimethylammonio-3-propane sulphonate
and similar monomers in aqueous solution, are within the range of 107!> < Dy <
1078 m? s™! when I' is below the CMC (Joos, Bleys & Petre 1982; Siderius, Kehl
& Leaist 2002); this range also covers phospholipid-based pulmonary surfactants, such as
N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoch-oline
(NBD-PC), which are considered effectively insoluble (Fallest et al. 2010; Strickland,
Shearer & Daniels 2015). Therefore, the interfacial Péclet number Pe; lies in the range
103 < Pey < 10°. Recently, Batchvarov ef al. (2020) and Constante-Amores et al. (2020)
suggested that the investigated interfacial dynamics reaches saturation above Pe; = 100;
thus, the selected interfacial Péclet is set to Pe; = 100. In terms of the chosen bulk
Péclet number, Agrawal & Neuman (1988) suggested that the interfacial and bulk Péclet
numbers are of the same order of magnitude; on this basis, hereafter, we set Pe, = Pey. In
summary, we have chosen the values of the surfactant-related parameters to ensure that all
of the relevant physical processes associated with surfactant transport such as Marangoni
stresses, surface/bulk diffusion and sorption kinetics are represented in the present study.

In terms of mesh resolution studies, we have ensured that our numerical simulations are
mesh independent, and subsequently, for a resolution of (386)3, the results do not change
with decreasing cell size. We have also ensured that the liquid volume and surfactant
mass conservation are satisfied with errors of under 1073 % and 1072 %, respectively (see
the Appendix for more information). Extensive mesh studies for surface-tension-driven
phenomena using the same computational method have been published previously
(Batchvarov et al. 2020; Constante-Amores et al. 2020). A discussion of the results is
presented next.

3. Results

Following the good agreement between the surfactant-free coalescence simulation and
the experimental results of Blanchette & Bigioni (2006), key surfactant effects will be
investigated in this section. We first display our results related to the effect of insoluble
surfactant, e.g. NBD-PC (Fallest et al. 2010; Strickland et al. 2015), showing ultimately
our insights regarding the surfactant-driven escape from a potential pinch-off singularity,
such as the one depicted in figure 1(b). We then present the effect of the sorptive kinetics on
the phenomenon through the use of soluble surfactants, e.g. SDS (Siderius et al. 2002). It
is also worth mentioning that all surfactant simulations have been carried out until the neck
has either pinched off or undergone reopening. Additionally, we provide with conclusive
evidence that the neck reopening is driven by Marangoni stresses.
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Figure 2. Effect of By on the drop-interface coalescence dynamics for insoluble surfactants. Spatio-temporal
evolution of the three-dimensional interface shape for surfactant-free, (a—d), and surfactant-laden coalescence
for By = 0.1, (e-h), Bs = 0.3, (i-/) and By = 0.5, (m—p). Here, the dimensionless parameters are Oh = 0.02 and
Bo = 1073, and for the surfactant-laden cases, Pe; = 100 and I', = I'sg /2. The colour indicates the magnitude
of I, and legend is shown in (e).

3.1. Insoluble surfactants

We start the discussion of the results by presenting the effect of the surface-active
agents through the analysis of the elasticity parameters By with Oh = 0.02, Bo = 1073,
Pe; = 100 and I, = I'»/2. Figure 2 shows the spatio-temporal interfacial dynamics for
the surfactant-free and surfactant-laden cases as a function of the elasticity parameter.
At the early stages of the dynamics, the neck expands as a result of the capillary
retraction of the liquid bridge which separates the drop from the underlying liquid
pool. The capillary retraction gives rise to the formation of capillary waves that travel
upwards towards the drop summit. As pointed out by Blanchette & Bigioni (2006), the
oscillations caused by the travelling capillary waves yield vertical stretching forming
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Figure 3. Effect of B, on the temporal dynamics of the vertical extent of the drop (a), its minimum neck
radius (b) and the system kinetic energy Ej (c), for Oh = 0.02, Bo = 1073, Peg = 100 and T, = I'so/2.

a nearly cylindrical drop, as shown in figure 2(c), before capillarity acts to drive the
dynamics towards a more energy-favourable state by pulling on the sides of the drop. This
capillary action leads to pinch-off of the liquid bridge via a singularity which culminates
in the formation of a secondary droplet; this, in turn, follows a ‘cascade of coalescence
events’ until the coalescence process is completed, as also shown by Thoroddsen &
Takehara (2000), Blanchette & Bigioni (2006), Blanchette & Bigioni (2009), Aryafar &
Kavehpour (2006) and Houssainy, Kabachek & Kavehpour (2020). Similar phenomena in
the surfactant-laden case are not the focus of the present work wherein we concentrate
on elucidating the mechanisms by which the presence of surfactant leads to escape from
singularity formation.

For all surfactant-laden cases, the generation of a secondary droplet is avoided even
for the lower end of the elasticity parameter range. For 8y = 0.1, the dynamics follows
closely that of the surfactant-free case, where significant vertical stretching of the original
droplet is observed (see figure 2e—h). At the point where surface tension is expected to
dominate the narrowing of the neck, the presence of non-uniform surfactant concentration
generates Marangoni stresses that change the outcome of the dynamics. By increasing S,
surfactant redistribution along the interface is enhanced as displayed in figures 2(i—/) and
2(m-p), for B; = 0.3 and By = 0.5, respectively. The surfactant concentration gradient, and
associated transport, is seen to suppress the capillary waves and to limit the vertical stretch
of the drop. For the region of s > 0.1, Marangoni-induced flow inhibits the capillary
singularity. However, a more exhaustive parametric study of the effect of the elasticity
parameter is clearly worthwhile in order to identify the locus of gy for which Marangoni
stresses do not result in neck reopening.

Figure 3 shows the immobilising effect brought about by the presence of surfactants
through the analysis of the temporal dynamics of the maximum vertical stretch of the
droplet, z,qx, the neck radius, 7,,;,, and the kinetic energy, Ex = fv(pu2 /2)dV. Here, the
E} values have been normalised by the surface energy E; = Soy, where S is the initial
superficial area of the system. The evidence for damping of the upward drop oscillation
can be seen in figure 3(a). Here, the increase in f; is seen to depress the maximum crest
location of the drop. These observations confirm the expectations of Martin & Blanchette
(2015) of suppression of the axial oscillation with an increase in the surfactant strength
(though these authors were only able to run simulations for 8; < 0.2). Interestingly,
the temporal evolution of z,,, exhibits a non-monotonic dependence on S, with the
most suppressed crest being associated with the intermediate value of Sy = 0.3. The
physical explanation of this outcome will be provided in the discussion of figure 4 below.
Furthermore, investigation of the temporal variation of the minimum neck radius, r,,;, (see
figure 3b), confirms neck reopening for all surfactant-laden cases, with a 50 % rise in the
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time associated with the onset of re-opening, ¢, corresponding to an increase in B, from
0.1 to 0.5. The non-monotonic dependence on Sy is also exhibited by 7,: even though the
longest delay in neck closure is observed for the highest g, studied, the 7, value for 8y = 0.3
is associated with the largest r,,;,. Further quantification of these physical phenomena is
provided below. Additionally, figure 3(b) shows that the presence of surfactant rigidifies
the interfacial dynamics by slowing down the neck growth at the early stages of the
capillary-driven expansion.

Finally, inspection of the kinetic energy plots shows that the presence of surfactants
induces a monotonically decreasing overall value of Ej; with B over the range in time
encompassing the creation of the cylindrically shaped drop (see figure 3c¢). This reduction
of the kinetic energy is a result of the rigidification of the interface brought on by the
tangential Marangoni stresses in agreement with Asaki, Thiessen & Marston (1995). It
is evident, however, that, for the surfactant-free case, Ex decreases rapidly, as the drop
breaks up via neck pinch-off, eventually dipping below those associated with gz = 0.1
and B; = 0.3.

The next part of the analysis focuses on the time evolution of a two-dimensional

projection of the interfacial shape, I", T and the radial component of the interfacial
velocity, u;-, presented in (a—i) of figure 4. We also show the interplay between the surface
and the azimuthal component of the vorticity field (vorticity is defined as w =V x u),
displayed in figures 4(j) and 4(k). In the surfactant-free case, it is seen from figure 4(d)
that u; < 0 and u, > O upstream and downstream of the developing neck, which drives
flow away from this region. The narrowing of the neck induces capillary-driven flow that
leads to further neck thinning and the development of large peaks in u;-, as shown in
figure 4(e,h), which are typical of singularity formation. Close inspection of the u;, profile
in figure 4(i) for the surfactant-free case reveals that it is characterised by the presence
of a large velocity peak (P1) and two stagnation points (labelled S1 and S2) with the
neck sandwiched between them. Over time, the inertio-capillary-induced flow ultimately
culminates in interfacial breakup to form a daughter droplet. From the vorticity plots in
figures 4(j) and 4(k), it is seen that, for the surfactant-free case, the vorticity generation is
confined to the vicinity of the neck as the two stagnation points aid the fluid recirculation
around the neck (so-called ‘vortex ring’, displayed in the left-panel of figure 4j). As time
evolves, the interfacial curvature of the neck increases, and a large vorticity generation can
be observed on the side of the bulk accompanying the eventual neck pinch-off, as depicted
in the left-panel of figure 4(k). More information regarding the mechanisms which induce
the generation of vorticity at the liquid—gas interface is provided below.

For the surfactant-laden cases, the accumulation of I" near the nascent neck can be seen
in figure 4(b) thus giving rise to a local decrease of 0. The presence of I" gradients results
in the generation of a large positive peak in the 7 profile in the vicinity of the neck region,
which is largest for the intermediate value of 8; = 0.3, as shown in figure 4(c) (consistent
with the non-monotonic response of the dynamics observed in figure 3). Upstream and
downstream of the neck, 7 > 0 and 7 < 0, respectively, which drives flow towards the
drop summit and tail, reflected by u;, < 0 and uy- > 0, respectively. Although the overall
shape of the uy, curve for the surfactant-free case is robust to the addition of insoluble
surfactant, it is evident that the magnitude of u;, decreases with increasing B, particularly
in the neck region; moreover, the oscillation in u,, in the surfactant-free case is damped
out for B > 0.

Additionally, by close inspection of the u; plots for the surfactant-laden cases in
figure 4(i), it becomes clear that only one stagnation point is present near the neck for
Bs = 0.3 and 0.5; thus, u, > 0 towards its tail. The Marangoni-induced flow has therefore
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Figure 4. (a—i) Effect of the elasticity parameter S on the flow and surfactant concentration fields associated
with the drop-interface coalescence phenomenon. Two-dimensional representation of the interface location,
I, © and the radial component of the interfacial velocity u; are shown in (a—d) and (e—h) for t = 1.20 and
t = 1.68, respectively. Note that the abscissa in (a,e) corresponds to the radial coordinate r, and in (b—d) and
(f—h) to the arclength s. (i) Represents a magnified view of (4). The arrows in (g) indicate the directions of
motion driven by the Marangoni stresses 7; in (h,i), points P1, and S1 and S2 designate the peak in u;- and the
stagnation points in the surfactant-free u, profile, respectively. The diamond shapes in (i) show the location
of the necks. The parameter values and the times for the radius are the same as in figure 3. (j,k) Effect of
surfactants on the azimuthal vorticity wy for the surfactant-free (left panels), and the surfactant-laden cases
(right panels), for By = 0.5, at t = 1.20, t = 1.68, respectively. All other parameters remain unchanged from
figure 3. The colour indicates the value of the azimuthal vorticity wg. The arclength s starts from the apex of
the droplet.

925 A15-11


https://doi.org/10.1017/jfm.2021.682

https://doi.org/10.1017/jfm.2021.682 Published online by Cambridge University Press

C.R. Constante-Amores and others

led to the suppression of one of the stagnation points. Furthermore, by comparing the
vorticity field pattern of the surfactant-free and the surfactant-laden cases, a change is
observed as a result of the presence of surfactants, and the inhibition of a stagnation point.
The generation of vorticity is also confined to the vicinity of the free surface; however, the
‘vortex ring’ no longer exists, as shown in the right panel of figure 4( ).

Further in time, when the escape of capillary singularity commences, we observe that
vorticity is separated from the vicinity of the interface, and advected towards the bulk
of liquid reservoir, which is consistent with the findings of Ananthakrishnan & Yeung
(1994), supporting the reopening of the neck, as displayed in the right panel of figure 4(k).
The reason behind the vorticity separation is the inhibition of one of the stagnation
points. This behaviour is similar to the phenomenon explained by Hoepffner & Paré
(2013) in terms of capillary retraction of surfactant-free viscous ligaments where they
suggested that the advection of wyg plays a crucial role in their escape from breakup. These
observations also agree with the recent studies reported by Constante-Amores et al. (2020)
and Constante-Amores ef al. (2021) in terms of the escape of capillary singularity during
the capillary retraction of a liquid thread, and the inhibition of jet-drop formation from
bursting bubbles, respectively.

Next, we turn our attention to the role of the Marangoni stresses in the generation
of vorticity at the gas-liquid interface; this is consistent with the work of Batchelor
(1967), who concluded that vorticity in a homogeneous fluid is generated at the
boundaries only. Several papers have discussed the generation of vorticity at a free surface
(Longuet-Higgins 1992; Cresswell & Morton 1995; Peck & Sigurdson 1998; Lundgren &
Koumoutsakos 1999; Brgns et al. 2014; Thoraval, Li & Thoroddsen 2016). Cresswell &
Morton (1995) was the first to explain the formation of the vortex ring during the impact
of a water drop on water surface. They have stated that the origin of the vorticity occurs
as a boundary condition on the interface in order to simultaneously satisfy the stress-free
boundary condition and irrotationality type of the flow. Once the vorticity is produced,
it is diffused into a thin boundary layer and advected towards the pool. The formation
of the vortex ring was presented experimentally by Dooley et al. (1997), who introduced
surfactant into their system in order to lower the interfacial tension, but the vorticity in the
vortex ring emerges much earlier than their sketches suggest.

Assuming that the interface behaves as a viscous free surface because of the small
air-to-water viscosity and density ratios (similar assumptions have been made previously
by Dooley et al. (1997) and Xia et al. (2017)). Kamat et al. (2020) demonstrated that, for
surface-tension-driven phenomena, vorticity generation depends solely on the interfacial
boundary conditions when Oh << 1. As a result, the tangential stress at the interface is
balanced by the surface-tension gradients, resulting in

t-D-n=t-V,o, 3.1)

in which, D represents the rate of deformation tensor (the symmetric part of the velocity
gradient tensor). By further mathematical manipulation (Lundgren & Koumoutsakos
1999), the generation of vorticity at the free surface depends entirely on the velocity field,
interfacial geometry and surface-tension gradients

u -
0=+ oo = 25 F2u a4t Vi, (3.2)
N

Similar results for w, and w; have been reported by Lundgren & Koumoutsakos (1999)
and Brgns et al. (2014). The first two terms on the right-hand side of (3.2) correspond to
the normal and tangential velocity-driven vorticity generation, respectively, whereas the
last term is representative of the Marangoni stress vorticity contribution.
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Figure 5. Vorticity production, o, along the gas—liquid interface expressed in terms of the local normal and
tangential components from the velocity field and the Marangoni stresses, represented by w,, w; and w,,
respectively. The surfactant-laden case is characterised by B; = 0.5 at r = 1.68. All other parameters remain
unchanged from figure 3. The diamond shape shows the location of the neck.

Figure 5 shows the vorticity distribution along the interface according to (3.2). By
close inspection of the profiles, we observe that the vorticity generation at the interface
is highly dominated by the interfacial curvature term, w;. Moreover, in the vicinity of the
neck we discover the existence of a positive peak in the Marangoni stress-driven vorticity
production (i.e. w;). The peak of w; has a different sign in comparison with w,. The
leading cause for this behaviour stems from the suppression of the stagnation points on
both sides of the neck, as shown in figure 4(i). Ultimately, this analysis demonstrates
the positive effect of surface-tension-driven vorticity generation on the neck reopening
process. Additionally, this finding is in agreement with Kamat et al. (2020), who concluded
that the generation of vorticity arising from the presence of surfactants is generated over a
time scale of similar magnitude to the capillary time scale.

Finally, we aim to provide more conclusive evidence that the interfacial singularity
inhibition is Marangoni driven rather than a result of the reduction of the surface tension
(i.e. capillary pressure reduction). For this reason, we have performed an additional
simulation in which Marangoni stresses have been suppressed (similar to what was
done by Xu (2007) and Kamat et al. (2018)). Figure 6 reports the temporal evolution
of the maximum axial position Zz.y, the neck radius ry;, and the kinetic energy Ej
for the surfactant-free and Marangoni-suppressed cases. Similar flow behaviours between
the surfactant-free and Marangoni-suppressed cases are observed. The most remarkable
finding is that, for the Marangoni-suppressed case, it is observed that the mean reduction
of the surface tension does not prevent the horizontal collapse of the droplet (see figure 6b).
The inspection of the kinetic energy plot shows that the Marangoni-suppressed and
surfactant-free cases have almost identical behaviours (see figure 6¢). Therefore, when
Marangoni stresses are enabled fully, a change of the fate of the coalescence is observed
via the reopening of the neck.

To conclude this section, we will turn our attention towards the role of Marangoni
stress in the large-scale dynamics of the coalescence phenomenon (i.e. neck curvature).
According to Alhareth & Thoroddsen (2020), when the axial curvature «, overcomes the
azimuthal curvature ky this leads to a negative Laplace pressure preventing the capillary
singularity (i.e. Ap = o (kg — ky)). This interplay between the curvatures can be seen as
a result of the Marangoni-induced flow. A representation of the neck shapes with their
respective curvatures for a surfactant-laden case can be seen in figure 7.
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Figure 6. Demonstration that tangential Marangoni stresses are responsible for the inhibition of the interfacial
singularity. Temporal evolution of the maximum vertical displacement of the interface, neck radius and kinetic
energy; (a—c), respectively, for the surfactant-free, full-Marangoni || > 0 and no-Marangoni cases |t| = 0, for

Oh =0.02, Bo = 1073, B;, = 0.5, Pe; = 100 and I, = 0.5 .
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Figure 7. Spatio-temporal evolution of the drop neck for the surfactant-laden case characterised by S5 = 0.5.
We show a magnified view of the neck region, with ky and «, indicating the azimuthal and axial curvatures,
respectively.

3.2. Soluble surfactants

In this subsection we present a discussion of the results associated with the effects
of surfactant solubility and sorption kinetics, parameterised by Bi and k, respectively.
Unless stated otherwise, the parameters remain fixed to their ‘base’ values: Oh = 0.02,
Bo = 1073, Bs = 0.5 and Pey; = 100; the interfacial surfactant concentration is initialised
using its equilibrium surfactant concentration, thus I, = x = k/(1 + k). Once again,
simulations are carried out until either neck pinch-off or reopening has been observed.

3.2.1. Effect of the Biot number, Bi

Figure 8 shows the effect of varying Bi in the range 0.1-10 on the drop maximal vertical
extent zpqy, the neck radius r,;, and the kinetic energy Ej with k = 1; also shown
are the curves associated with the insoluble surfactant and surfactant-free cases which
respectively correspond to the Bi — 0 and Bi — oo (and/or By — 0) limits. At the lower
end of this range (e.g. Bi = 0.1), the sorptive time scales are much larger than those
associated with interfacial effects; therefore, the dynamics is dominated by capillarity
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Figure 8. Effect of Bi on the temporal dynamics of the vertical strength of the drop (@), minimum neck radius
(b) and kinetic energy (c¢), when Oh = 0.02, Bo = 1073, Pey, = 100, Bs=05k=1and I, =

and Marangoni stresses, and is therefore expected to be similar to that observed for the
insoluble surfactant case. This is confirmed upon inspection of figure 8 as the curves
associated with the Bi = 0.1 case practically overlap with those generated for the insoluble
surfactant case. For large Bi, the monomers desorb rapidly from the interface, which
represents the case of a highly soluble surfactant characterised by a dynamics that is
similar to that accompanying the surfactant-free case. This is also confirmed by comparing
the curves associated with the surfactant-free and Bi = 10 cases, the latter corresponding
to the largest Bi value studied.

As depicted in figure 8(a), increasing the level of solubility leads to a decrease in the
surfactant mass at the interface available to induce Marangoni stresses and, consequently,
delays the retardation in the initialisation of the vertical stretch of the drop. Interestingly,
the lowest z,,4r 1s associated with the intermediate Bi = 1 case, thus g, exhibits a
non-monotonic dependence on the surfactant solubility. Turning our attention towards the
effect of solubility on the neck size, r,;, displayed in figure 8(b), it is clearly seen that
Marangoni-induced flow results in the inhibition of the capillary-driven singularity over
the entire range of Bi values studied. This effect becomes increasingly pronounced with
decreasing Bi and the r,,;, vs t profiles for the surfactant-laden cases are bounded between
the insoluble and the surfactant-free cases. Finally, the E profiles depicted in 8(c) show
that decreasing Bi leads to an overall reduction in the kinetic energy, which stems from the
rigidifying effect of the Marangoni stresses; this is weakened by increasing the solubility
and the enhanced surfactant desorption from the interface which leads to a reduction in t.

Evidence of surfactant-induced immobilisation with decreasing Bi is further provided
in figures 9(a,e) and 9(d,h), which depict the interface shape and u,., respectively; the
rest of the parameters remain unaltered from figure 8. It is also clearly seen from
figure 9(b,f) that higher surfactant desorption is observed as Bi increases, driven by
the mass transfer between the interface and bulk. Although the largest I" is associated
with the smallest Bi values, the largest gradients, and, therefore Marangoni stresses, t,
are found for the intermediate Biot number, Bi = 1, as shown in figure 9(c,g); this is
consistent with the non-monotonic dependence of the vertical stretch of the drop on Bi,
described in figure 8(a). Notably, a comparison of (b,f) and (c,g) of figure 9 reveals
that, over time, the I" gradients become sharper, particularly for small and intermediate
Bi, leading to an increase in 7, as was also observed in the insoluble surfactant case.
These Marangoni stresses counteract the direction of the inertio-capillary-induced flow,
dampen the oscillations in u,- (see figure 9d,h) and act to prevent neck pinch-off where
the efficacy is once more dependent on the magnitude of Bi. Finally, the same analysis
regarding the role of surfactants in the inhibition of stagnation points, explained in § 3.1,
can be extrapolated to the solubility parameter, Bi.
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Figure 9. Effect of the solubility parameter Bi on the flow and surfactant concentration fields associated with
the drop-interface coalescence phenomenon. Two-dimensional representation of the interface location, I, t
and the radial component of the interfacial velocity u; are shown in (a—d) and (e-h) for t = 1.20 and t = 1.68,
respectively. Note that the abscissa in (a,e) corresponds to the radial coordinate r, and in (b—d) and (f—h) to the
arclength s. Here, all other parameters remain unchanged from figure 8.
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Figure 10. Effect of the adsorption parameter k on the temporal dynamics of the vertical strength of the drop
(a), minimum neck radius (b) and kinetic energy (c), when Oh = 0.02, Bo = 1073, Bs = 0.5, Peg = Pep, = 100,
Bi=1land I, = x.

3.2.2. Effect of the adsorption parameter, k

Figure 10 shows the effect of the adsorption parameter, k, on the temporal dynamics of
the drop-interface coalescence phenomenon through the analysis of the vertical stretch
of the droplet z,,4y, the neck radius r,,;, and the kinetic energy, Ey, for Bi = 1, and k =
(0.01, 1, 5). We note that, as k — 0, x — 0, and this corresponds to vanishingly small
equilibrium interfacial concentrations, which were used to initialise the simulations. In
addition, from (2.5), k — 0 implies that I" will remain small, and thus, in this limit, we
expect the dynamics to be consistent with that associated with the surfactant-free case. For
k > 1, on the other hand, the flow behaviour is similar to that observed in the insoluble
surfactant case.

We start the discussion of the effect of the k parameter by analysing its effect on
the vertical stretch of the droplet (shown in figure 10a). By inspection of the profiles,
a monotonic response of the vertical stretch is observed with decreasing k values (e.g.
k = 0.1) the dynamics is similar to that of the surfactant-free case characterised by neck
formation and pinch-off, as shown in figure 11(a,e); this arises due to the increase in
mass transfer from the interface to the bulk decreasing the interfacial concentration (see
figure 11b,f) and reducing the magnitude of the Marangoni stress, which is maximal for
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Figure 11. Effect of the adsorption parameter k on the flow and surfactant concentration fields associated with
the drop-interface coalescence phenomenon. Two-dimensional representation of the interface location, I", T
and the radial component of the interfacial velocity u;- are shown in (a—d) and (e—h) for t = 1.20 and ¢ = 1.68,
respectively. Note that the abscissa in (a,e) corresponds to the radial coordinate r, and in (b—d) and (f—h) to the
arclength s. Here, all other parameters remain unchanged from figure 10.

k =1, as shown in figure 11(c,g). The trends highlighted in figure 10(a) are mirrored in
figure 10(b), that displays the temporal dynamics of 7,,;,, which also exhibits a monotonic
dependence on k. Increasing k alters the u, profile in figure 11(d,#) in a similar manner
to that observed upon increasing B; and/or decreasing Bi, as was shown previously in
figures 4(d,h) and 9(d.h), respectively. As a result, it is seen clearly that the presence
of surfactants alters the fate of the coalescence phenomenon as Marangoni-driven flow
induces neck reopening. Finally, the Ej; plots shown in figure 10(c) support, once more,
the high interfacial rigidification brought about by the presence of surfactants.

4. Conclusions

A study of the effect of Marangoni-induced flow as a result of the presence of surfactants
on the drop-interface coalescence was presented using a hybrid front-tracking/level-set
method (Shin & Juric 2009; Shin et al. 2017, 2018). The surfactant transport equations
were fully coupled to the Navier—Stokes equations in which the surface tension depends
on the interfacial surfactant concentration through a nonlinear Langmuir equation of state.
The numerical framework has been validated against the experimental work presented
by Blanchette & Bigioni (2006) for the surfactant-free coalescence dynamics, and the
inertio-viscous scaling laws regarding the temporal evolution of the neck towards its
capillary singularity presented by Day, Hinch & Lister (1998) and Castrejon-Pita et al.
(2015). We have selected a surfactant-free base case characterised by the dimensionless
quantities Oh = 0.02 and Bo = 1073. The former parameter ensures a rich dynamics in the
inertia—viscous—capillary flow regime, whereas the latter parameter ensures that gravity
forces do not affect the dynamics of the system, which could mask effects related to the
presence of surfactants.

In drop-interface coalescence in the presence of surfactants, we have demonstrated
that Marangoni stresses drive motion from regions of high surfactant concentration (low
surface tension) to low concentration (high tension) regions, resulting in retardation of
the interfacial dynamics. This immobilising effect of the surfactants as a result of the
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Marangoni stresses is also observed via the strong reduction in the maximum stretching (by
dampening the strength of the capillary waves which converge in the drop summit) of the
drop and kinetic energy. We have also shown that the condition for the capillary singularity
is the existence of two stagnation points close to the drop neck, which lead to the generation
of vorticity in this area. In the presence of surfactants, Marangoni-induced flow suppresses
one of the stagnation points, resulting in the advection of vorticity towards the liquid bulk
and the reopening of the neck. This effect is strongest for insoluble surfactants and, for
soluble surfactants, is maximal for an intermediate range of solubility and sorption kinetic
parameter values.

Future directions are related to the performance of numerical simulations featuring
three-dimensional behaviours occurring for large Bond numbers. Recently, the
experimental work performed by Dong et al. (2019) suggested that the presence of
surfactants induces the rupture of the interface (i.e. hole formation) in an off-axis location
at high Bond numbers. Thus, a fully three-dimensional retracting capillary wave will
certainly affect the behaviour of the system rising a more complex coalescence dynamics,
and constitute a fruitful area of future research. Additionally, the influence of an uneven
initial surfactant distribution could result in a pull of a thin liquid film over the neck driven
by Marangoni stresses (Thoroddsen et al. 2007), and clearly deserves further study.
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Appendix. Mesh study

On account of showing mesh independent results, we have monitored the temporal
variation of the liquid volume of the system for a resolution of (386)3, which has been used
throughout the entire study. Figure 12 shows the plot profiles for the surfactant-free and
the surfactant-laden cases. It is evident that the numerical method is capable of capturing
the rich interfacial dynamics with a conservation of volume of under 10~3%. With respect
to the accuracy of the surfactant equations, we refer to Shin et al. (2018), who carefully
benchmarked the formulation and numerical implementation of the surface gradients of
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Figure 12. Relative variation of the liquid volume for the surfactant-free and full-Marangoni cases |t| > 0,
for Oh = 0.02, Bo = 1073, B, = 0.5, Pe; = 100 and I, = 0.50 .

surfactant concentration and surface tension. For the studied phenomenon, we observed
the conservation of surfactant mass under 1072% for all the surfactant-laden cases.
Additionally, extensive mesh studies for capillary phenomena, using the same numerical
method, had been previously reported (Batchvarov et al. 2020, 2021; Constante-Amores
et al. 2020, 2021).
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