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Abstract

Despite depression being a leading cause of global disability, neuroimaging studies have
struggled to identify replicable neural correlates of depression or explain limited variance.
This challenge may, in part, stem from the intertwined state (current symptoms; variable)
and trait (general propensity; stable) experiences of depression.

Here, we sought to disentangle state from trait experiences of depression by leveraging
a longitudinal cohort and stratifying individuals into four groups: those in remission
(‘trait depression group’), those with large longitudinal severity changes in depression symp-
tomatology (‘state depression group’), and their respective matched control groups (total
analytic n = 1030). We hypothesized that spatial network organization would be linked to
trait depression due to its temporal stability, whereas functional connectivity between net-
works would be more sensitive to state-dependent depression symptoms due to its capacity
to fluctuate.

We identified 15 large-scale probabilistic functional networks from resting-state fMRI data
and performed group comparisons on the amplitude, connectivity, and spatial overlap
between these networks, using matched control participants as reference. Our findings
revealed higher amplitude in visual networks for the trait depression group at the time of
remission, in contrast to controls. This observation may suggest altered visual processing in
individuals predisposed to developing depression over time. No significant group differences
were observed in any other network measures for the trait-control comparison, nor in any
measures for the state-control comparison. These results underscore the overlooked contribu-
tion of visual networks to the psychopathology of depression and provide evidence for distinct
neural correlates between state and trait experiences of depression.

Introduction

Depression is a global health challenge, emerging as the foremost cause of disability and affect-
ing more than 300 million individuals worldwide (Friedrich, 2017). While there is widespread
acknowledgment of depression as a disorder associated with dysfunctions of large-scale brain
networks (Williams, 2016), existing research has been hindered by inconsistencies (Greene
et al., 2022; Tozzi et al., 2020; Xia et al., 2019), lack of reproducibility (Kennis et al., 2020;
Saberi, Mohammadi, Zarei, Eickhoff, & Tahmasian, 2022), and, at best, the ability to account
for only a modest proportion of variance (Dutt et al., 2022; Schmaal, 2022; Winter et al., 2022).
This prevailing uncertainty creates a substantial gap in our comprehension of the neural basis
and potential etiology of this pervasive mental health condition. Addressing this knowledge
deficit is important, as a deeper understanding of depression’s etiological underpinnings
can improve diagnostic, treatment, and prevention strategies.

At the functional neurocircuitry level, investigations using resting-state fMRI have revealed
key insights into the differences between individuals with major depressive disorder (MDD)
and healthy controls (Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015; Mulders, van
Eijndhoven, Schene, Beckmann, & Tendolkar, 2015). Importantly, previous review and
meta-analysis studies on depression indicate hyperconnectivity within the default mode net-
work (DMN) and hypoconnectivity within the central executive network (CEN) (Kaiser
et al., 2015). However, recent meta- and mega-analyses present contradictory findings, report-
ing comparable connectivity patterns of the DMN and CEN between patients and controls
(Javaheripour et al., 2021), or reduced connectivity in patients (Yan et al., 2019). Despite
being less explored in previous neuroimaging studies on depression, disruptions in the func-
tional connectivity of sensory and motor networks have also been implicated in MDD, albeit
with similar inconsistency in directions of these connectivity disruptions both within sensory
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and motor networks or between these and other brain networks
(Kang et al., 2018; Lu et al., 2020; Ray, Bezmaternykh,
Mel’nikov, Friston, & Das, 2021; Wu, Lu, Kong, & Zhang, 2023;
Wüthrich et al., 2023; Zeng et al., 2012; Zhu et al., 2021).

The varying findings across studies can be attributed, at least in
part, to the diverse study designs employed. These include com-
parisons between patient and control groups (Flint et al., 2021;
Winter et al., 2022), regressions against depression severity scores
(Oathes, Patenaude, Schatzberg, & Etkin, 2015; Yoshida et al.,
2017) or personality traits like neuroticism (Braund et al., 2022;
Fournier et al., 2017; Steffens, Wang, Manning, & Pearlson,
2017), and investigations into heterogeneity (Dinga et al., 2019;
Drysdale et al., 2017; Hannon et al., 2022; Wen et al., 2022;
Yang et al., 2021). Moreover, the mixture of state depression (cur-
rent symptom severity) and trait depression (long-term propen-
sity for depression) further complicates study designs. While
state and trait depression are often viewed as closely related and
sometimes used interchangeably, biomarkers that differentiate
between state and trait depression can serve distinct purposes in
a clinical setting. For instance, trait biomarkers are instrumental
in identifying individuals at risk, while state biomarkers help
gauge treatment effectiveness and track patients’ progress over
time. This differentiation aligns with established categories of bio-
markers outlined by the FDA-NIH Biomarker Working Group
(2016). The failure to differentiate between state and trait depres-
sion likely contributes to inconsistencies in findings across the lit-
erature. Therefore, elucidating the distinct neural correlates of
state v. trait depression is poised to not only enhance the utility
of biomarkers but also offer clarity regarding the underlying
neural mechanisms of the disorder.

To date, few studies have specifically examined state and/or trait
depression. These investigations often involve comparisons between
participants in remission (trait) and those experiencing a current
episode of depression (state) (Admon et al., 2015; Ming et al.,
2017), or employ longitudinal designs to assess changes pre- and
post- pharmacological interventions (state) (Delaveau et al., 2011).
Unfortunately, however, these studies have yielded mixed results.
In one study, the ventromedial prefrontal cortex and precuneus
were suggested to signify trait markers of depression (Ming
et al., 2017), while another study indicated altered activity in
the same regions following antidepressant drug treatment,
implying state-dependent changes (Delaveau et al., 2011).
Besides the heterogeneity in analytical approaches that is well
known to hinder reproducibility and replicability in functional
MRI studies (Adali & Calhoun, 2022; Botvinik-Nezer et al.,
2020), insufficient power might also have contributed to the
inconsistency in these findings, as larger sample sizes are
required to detect small but meaningful effects in brain-
behavior associations (Marek et al., 2022; Ooi et al., 2024).

Insights into trait-like depression experiences may also be
gained from investigations focusing on individuals with a familial
history of, or genetic predisposition to, mood disorders. A recent
review reported aberrant connectivity between the amygdala and
a wide range of brain regions/networks in infants (Posner et al.,
2016; Qiu et al., 2015), 5-year old children (Soe et al., 2017),
and adolescents (Fischer, Camacho, Ho, Whitfield-Gabrieli, &
Gotlib, 2018; Singh, Leslie, Packer, Weisman, & Gotlib, 2018),
as well as altered DMN connectivity in adolescents (Bellgowan
et al., 2015; Chai et al., 2016) with elevated risks of depression
(Nazarova, Schmidt, Cookey, & Uher, 2022). Another study link-
ing polygenic risk scores for depression and resting-state connect-
ivity in young adults further highlighted alterations in subgenual

anterior cingulate cortex (sgACC)-based networks as depression
markers (Chen et al., 2024). However, the significant heterogen-
eity between these studies (e.g. variability in preprocessing and
analytical methods) and the limited number of replicated findings
make it challenging to conclude the specific regions affected
within these resting-state networks (Nazarova et al., 2022).

Collectively, the inconsistency in prior findings suggests that
the potentially dissociable neural correlates of state v. trait depres-
sion remain inadequately understood.

Leveraging the UK Biobank (UKB) data, the present study
aimed to identify potentially dissociable resting-state functional
correlates of state and trait depression. Inspired by previous
work (Admon et al., 2015; Delaveau et al., 2011; Ming et al.,
2017), we employed longitudinal data of depression severity to
differentiate state and trait experiences. This approach resulted
in indications of a high-level propensity to depression during
remission (trait) and substantial fluctuations in symptom sever-
ities between two time points (state), respectively, effectively dis-
sociating state from trait depression. We further applied a
state-of-the-art data-driven decomposition method to identify
large-scale brain networks from the resting-state fMRI data and
estimated the amplitude (i.e. network strength), connectivity
(i.e. between-network temporal correlations also known as net-
work matrices), and spatial overlap (i.e. shared regions between
network spatial maps) of these brain networks. Given the distinct
temporality in state- v. trait-depression experiences (i.e. changing
v. stable) and drawing from literature that suggests dynamic
alterations in functional connectivity alongside more enduring
spatial configurations of brain networks (Harrison et al., 2020),
we hypothesized that longitudinal changes in functional connect-
ivity of large-scale brain networks would be associated with
changes in depression symptom severity (i.e. state depression),
whereas the spatial organizations of those networks would be
related to trait depression experiences.

Methods

The group sampling and statistical analysis plans described below
were pre-registered at the Open Science Framework (Zhang &
Bijsterbosch, 2023).

Participants

Out of N = 5215 longitudinal UKB participants, N = 4595 had
complete longitudinal neuroimaging and depression data. To dis-
cern state and trait depression, we created two corresponding
groups and matched controls. The state depression group
(N = 311) was based on change scores in depression severity
between two assessments (i.e. scan 1 and scan 2), while the trait
depression group (N = 265) had high baseline (i.e. high propen-
sity) but low current symptom severity (i.e. remission at
scan 1). Their respectively matched controls (N = 311 and N =
265) had consistently minimal severity scores across all time
points (see detailed group definitions in section 2). The resulting
sample (N = 1030) included n = 33 overlaps between the state and
trait groups and n = 89 overlaps between the two matched control
groups (see study sample flowchart in Fig. 1a). As we performed
statistical analyses separately for state-control and trait-control
comparisons, these overlapping participants were included in
each group’s respective comparison analysis. Demographics are
summarized in Table 1.

Psychological Medicine 4857

https://doi.org/10.1017/S0033291724003167 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724003167


Defining Depression and Control Groups

State depression group
Longitudinal data were used to capture changes in state depres-
sion, identifying participants with a large (⩾3 points) absolute
change in longitudinal score of recent depressive symptoms
(RDS) between the first and follow-up imaging assessments (i.e.

scan1 and scan2). The absolute change (|ΔRDS|) was chosen to
allow for symptom severity changes in both increased and
decreased directions, capturing the full spectrum of state-
dependent fluctuations. The RDS is a 4-item scale with scores ran-
ging from 4 to 16, validated against standardized scales of depres-
sion (Dutt et al., 2022). The 3-point change threshold,

Figure 1. Flowchart of the study sample (a) and schema of analysis pipeline (b). Specifically, the RDSbaseline, RDSscan1, and RDSscan2 represent sum scores of recent
depressive symptoms (RDS) obtained at different time points, with subscripts indicating the assessment time, whereas |ΔRDS| denotes the absolute longitudinal
change score of RDS between two neuroimaging scans. The final sample consisted of two pairs of matched groups, connected by curved lines. Group comparisons
between the matched state-control (①) and trait-control (②) were performed separately, utilizing brain network measures (NTWK) assessed at different time points.
Importantly, in trait-control comparisons, the network measures at scan1 (NTWKscan1) were considered dependent variables, while in state-control comparisons,
the absolute values of longitudinal changes in the network measures (|ΔNTWK|), were included as dependent variables. All these dependent variables were mod-
eled as a function of the group variable (e.g. state v. control), while accounting for covariates.
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representing 25% of the full 12-point scale for RDS, signifies clin-
ically meaningful changes in state depression while maximizing
sample size (see online Supplemental Materials Table S1). As a
reference, a 25% change on the PHQ scale (0–27) would exceed
the 5-point cut-off for mild depressive symptoms (Kroenke,
Spitzer, & Williams, 2001). N = 311 participants met the |ΔRDS|
>3 inclusion requirement for the state depression group.

Trait depression group
Trait depression, reflecting a long-term tendency to experiencing
depressive symptoms (Klein, Kotov, & Bufferd, 2011) was opera-
tionalized in our study as individuals with prior depression but in
remission at the time of scanning (i.e. scan 1). Specifically, parti-
cipants with an RDS score at the baseline equal to or above 7
(RDSbaseline⩾ 7) AND an RDS score at the first imaging assess-
ment equal to or below 5 (RDSscan1⩽ 5) were included in the
trait depression group. Notably, our previous work has mapped
RDS onto PHQ-9 (Dutt et al., 2022), where an RDS score of
seven corresponds to PHQ = 5, the clinical threshold for mild
depression (Kroenke et al., 2001). Additionally, an RDS score
of five represents a minimal degree of depression and RDSscan1
⩽ 5 indicates a remission status at the first imaging assessment.
N = 265 participants met the RDSbaseline⩾ 7 & RDSscan1⩽ 5 inclu-
sion requirements for the trait depression group.

Based on these grouping criteria, we included different groups
of participants for trait v. state depression groups. This deliberate
separation was chosen to empirically dissociate state from trait
experiences of depression, allowing for clearer interpretations of
results.

Control participants and group matching
A pool of potential control participants was identified, meeting
criteria of minimal depression scores across all three time points
(RDSbaseline⩽ 5 & RDSscan1⩽ 5 & RDSscan2⩽ 5), and no change in
depression score between scan 1 and scan 2 (ΔRDS = 0). These
individuals were not on antidepressant medication at any time
point either, ensuring a healthy reference group (see list for anti-
depressants in online Supplemental Materials). We identified a
total of N = 1448 participants meeting these criteria. From this

total pool, we separately selected the equivalent number of
participants for both the state and trait depression groups.
These selections were made to ensure matching for each depres-
sion group on sex, age, in-scanner head motion (i.e. averaged rela-
tive framewise displacement), scanning site, and alcohol intake
frequency at the first imaging assessment (i.e. at scan 1), thus
minimizing potential confounding effects on between-group
differences under investigation.

Matches were identified using propensity scores with an opti-
mal matching algorithm, selected from several algorithms (see
matching diagnostics in online Supplemental Materials
Table S3). The matched groups demonstrated improved covariate
balance for all variables of interest, with no significant group dif-
ference observed between the depression groups and their respect-
ive matched controls (all p’s > 0.05; online Supplemental Materials
Table S4).

fMRI data acquisition and preprocessing

The UKB acquired resting-state neuroimaging data using a 3 T
Siemens Skyra (2.4 mm isotropic voxel size, TR = 0.735 s, multi-
band factor 8). The detailed scanning protocols are documented
online (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367).
Our study used preprocessed data that were released via the UKB
showcase. The preprocessing steps included distortion correction,
motion correction, high pass temporal filtering, and BOLD signal
denoising using ICA-FIX (details in (Alfaro-Almagro et al., 2018).

Brain networks identified by probabilistic functional modes
estimation
Probabilistic functional modes (PROFUMO) is a hierarchical
Bayesian approach to decompose resting state neuroimaging
data into a set of modes, representing resting-state brain networks
(Harrison et al., 2015, 2020). Each mode or network is described
by a spatial map, its associated time course, and signal amplitude.
At the subject level, a network matrix (i.e. connectivity matrix) is
estimated as the partial correlation between pairwise mode time
courses, capturing between-network similarities in their temporal
dynamics. These PROFUMO outputs encompass both the

Table 1. Demographics of matched depression and control groups

Matched state-control groups Matched trait-control groups

State (n = 311) Control (n = 311) Statsa Trait (n = 265) Control (n = 265) Statsa

NFemale (%) 196 (63) 217 (70) 3.18 167 (63) 179 (68) 1.20

Meanage-baseline (S.D.) 51.21 (6.79) 51.38 (7.29) 0.32 52.19 (6.49) 52.06 (7.26) −0.23

Meanage-scan 1 (S.D.) 59.95 (6.58) 60.22 (7.26) 0.49 61.01 (6.55) 60.81 (7.26) −0.36

Meanage-scan 2 (S.D.) 62.61 (6.39) 62.83 (4.77) 0.41 63.43 (4.40) 63.43 (7.04) −0.53

MeanRDS-baseline (S.D.) 6.39 (2.48) 4.77 (0.42) −12.38** 7.82 (1.33) 4.40 (0.49) −39.00**

MeanRDS-scan 1 (S.D.) 7.14 (2.73) 4.31 (0.46) −18.09** 4.57 (0.50) 4.56 (0.50) −0.71

MeanRDS-scan 2 (S.D.) 7.30 (2.91) 4.31 (0.46) −17.97** 5.26 (1.48) 4.56 (0.5) −7.79**

Meaninterval (S.D.)
b 949 (360) 973 (423) 1.09 3221 (492) 3214 (514) −1.15

NAntidepressants
c 79 0 NA 38 0 NA

N, sample size; S.D., standard deviation; RDS, Recent Depressive Symptom scale; NA, not applicable.
aχ2 test was conducted to examine between-group difference in sex, and unpaired t tests to examine numerical variables.
bIntervals (in days) between baseline assessment and scan 1 for state, between scan 1 and scan 2 for trait.
cNumber of participants on antidepressants in each group (see online Supplemental Materials for the full list of medications). By definition, no control participants had antidepressants.
**p < 0.0001.
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temporal and spatial characteristics of each mode or network: the
spatial map demonstrates the anatomical configuration of each
probabilistic network, the amplitude reflects the overall signal
fluctuation for each network, and the network matrix represents
the overall connectivity patterns among all modes or networks
per subject. Notably, each of these PROFUMO outputs is esti-
mated separately per longitudinal scan and simultaneously at
the group and individual levels. PROFUMO offers advantages
in effectively capturing spatial overlaps in network structures
that indicate shared spatial organization across networks
(Bijsterbosch, Beckmann, Woolrich, Smith, & Harrison, 2019),
and demonstrates increased sensitivity in discerning individual-
specific network configuration (Bijsterbosch et al., 2018;
Harrison et al., 2020). In practice, spatial overlaps between each
pair of PROFUMO modes or networks are estimated by taking
the subject-specific 3-dimensional spatial map for each mode,
vectorizing the 3-dimensional spatial matrix of each mode, and
then calculating the Pearson’s correlation between the vectors
for each pair of modes. To maintain consistency across state
and trait analyses, we merged resting-state fMRI data from all
four groups, resulting in a sample size of 1030 unique individuals.
Each participant contributed data from two time points (scan1
and scan2), totaling 2060 scans for the final PROFUMO
decomposition.

In the main analysis, we set the PROFUMO mode dimension
to 15, aligning with our focus on large-scale networks. After
removing two spurious modes (online Supplemental Materials),
we included 13 meaningful brain networks for statistical analyses
and used each of the three PROFUMO outputs per network as
dependent variables. To ensure robustness, we also examined 10
and 20 dimensions, validating significant findings from the
15-dimensional outputs. This adjustment from our preregistra-
tion, originally focused on 20-dimensional networks, aimed to
streamline multiple-testing comparisons, and emphasize a low-
dimensional decomposition into large-scale canonical resting-
state networks.

Statistical analysis

Using linear regression models, separate analyses compared group
differences in neural correlates between each of the two depres-
sion groups and their respective control groups. Specifically, state-
control comparisons assessed longitudinal changes in network
measures between two neuroimaging scans, while trait-control
comparisons considered network measures at scan1 as the
dependent variables (see Fig. 1b). These dependent variables com-
prised PROFUMO outputs, including mode amplitude (indicat-
ing overall signal fluctuation), network matrix (reflecting partial
correlation between mode timeseries), and spatial overlap matrix
(illustrating full correlation between mode spatial maps).

Main analyses
The primary analysis for state depression involved computing
longitudinal changes in each of the three brain network measures
(i.e. PROFUMO outputs) between two scans (i.e. scan 2 minus
scan 1). The absolute values of these changes served as dependent
variables in subsequent group-comparison analyses. In the main
analysis for trait depression, the network measures at scan 1
were utilized as dependent variables in the group-comparison
analyses. Thus, separate regression analyses were conducted for
state-control and trait-control group comparisons, utilizing differ-
ent dependent variables (see analysis equations in Fig. 1b). Within

each comparison, we performed statistical analysis separately for
each class of PROFUMO outputs. Covariates, including sex, age,
in-scanner head motion, scanning site, alcohol intake frequency,
time interval between two scans (only for state-control compari-
sons), and use of antidepressants, were adjusted in all analyses.

To address multiple testing concerns within each class of three
PROFUMO outputs, false discovery rate (FDR) correction was
applied. This approach was chosen to accommodate distinct
hypotheses for different PROFUMO outputs.

The number of separate univariate analyses was determined by
the PROFUMO dimensionality. In our main analyses (using 13
meaningful modes), we obtained 13 mode amplitudes, 78 tem-
poral edges from connectivity matrix, and 78 spatial edges indica-
tive of spatial overlaps between modes from spatial correlation
matrix. These edges represent unique pairwise correlation coeffi-
cients derived from the upper or low triangle of the connectivity
or spatial correlation matrices (i.e. 13 × 12/2 = 78), constructed
from the temporal or spatial correlations between each pair of
timeseries or spatial maps of modes.

Follow-up analyses
Several follow-up analyses were conducted to further validate the
statistical significance of the group comparison results from our
main analyses.

First, we performed regression analyses to investigate symptom
magnitude-dependent effects within depression groups in case
significant group differences were observed in any of the three
PROFUMO outputs. This involved separate analyses for each sig-
nificant result from the group comparisons among individuals
within the relevant depression group. For example, if individuals
with trait depression exhibited larger connectivity strength than
their control counterparts, the subsequent tests would examine
whether, among individuals with trait depression, greater con-
nectivity strength was associated with higher symptom severity.

Secondly, we conducted follow-up analyses aiming to identify
robust findings across different dimensionalities. We first identi-
fied the ‘best-matched’ mode(s) from 10- and 20-dimension
decompositions for the target modes from the 15-dimension
decomposition, using Cosine similarity coefficients (see details
in online Supplemental Materials). Subsequently, we repeated
group comparisons on the identified modes from 10 and 20
dimensionalities to confirm the persistence of significant results
observed in the 15-dimensionality. While our pre-registration
suggested the Hungarian algorithm (Kuhn, 1955) for mode
matching, we adjusted our strategy to prioritize replicating find-
ings for specific modes, favoring spatial similarity over the com-
plete data matching. This choice prevents issues with
imbalanced dimensionalities (e.g. 10 v. 15), ensuring effective
mode matching.

Thirdly, the state-depression group was defined using a binary
approach (i.e. above a certain symptom threshold), which does
not capture associations on a continuous scale. Additionally,
our statistical analysis initially considered only the absolute values
of brain measures, potentially obscuring directional insights. To
address these limitations, we repeated the statistical analysis for
the state-depression group using the original change score (i.e.
without taking the absolute value). Given the binary definition,
symptom change scores for the state-depression group likely fol-
low a binomial distribution. Therefore, we repeated the analyses
on two additional samples: the entire study cohort (N = 1030)
and the combined state-depression and trait-depression groups
(N = 576).

4860 Wei Zhang et al.

https://doi.org/10.1017/S0033291724003167 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724003167


Results

Characteristics of participants in each group

With our operationalized definitions of the state and trait depres-
sion groups, participants in the state group showed higher RDS
scores across all time points, whereas participants in the trait
group only reported higher RDS scores compared to controls at
baseline and scan 2 ( p’s < 0.0001), with comparable RDS scores
to controls at scan 1, indicating the intended remission status
(Table 1).

Importantly, these operational definitions achieved the desired
state-trait dissociation by reducing the known high correlations
between these two constructs. Specifically, for the participants
in the state group, the longitudinal changes in RDS between
two scans (ΔRDS), reflecting state-dependent depression experi-
ences, showed a negligible correlation (r = −0.01) with the base-
line RDS (RDSbaseline). This substantially reduced the initial
correlation between the ΔRDS and RDSbaseline (r = 0.291) in the
full UKB sample (n = 4595). A similar state-trait dissociation
was observed for the participants in the trait depression group:
The RDSbaseline, used to define trait experiences, exhibited only
a correlation of r = 0.03 with the RDS at scan1 (RDSscan1), com-
pared to the initial r = 0.52 in the full UKB sample. The
RDSscan1 here indexed the present depression symptoms of the
participants from the trait depression group at the time of scan
1, when the brain network measures were assessed for these
participants.

Furthermore, the control participants exhibited similar time
intervals between different assessments, along with demographic
and several other variables that were matched between the depres-
sion and control groups (Table 1; online Supplemental Materials
Table S4).

Decomposed PROFUMO modes

At the group level, a total of 15 probabilistic modes were esti-
mated across all depression and control participants using both
scan 1 and scan 2 data, 13 of which were identified as large-scale
brain networks representing meaningful brain signals (see full
decomposition in online Supplemental Materials Fig. S1). The
spatial distributions of these probabilistic modes highly resembled
canonical brain networks including the default mode, frontopar-
ietal, visual and motor networks. Similar resemblances were also
observed in 10- and 20-dimension decompositions, except that
some of the networks in one decomposition appeared to merge
into one or split into two or more modes in another decompos-
ition (online Supplemental Materials Figs S2 and S3).

Group comparisons in neural correlates

Individuals experiencing trait depression exhibited significantly
higher amplitude in two visual networks in contrast to the
matched control participants (Fig. 2). Anatomically, visual net-
work 1 predominantly involves the inferior division of the lateral
occipital lobe, including the occipital pole, and extends ventrally
into the lingual gyrus. For visual network 2, the strongest signal
was observed in the superior division of the lateral occipital
lobe. This network further extends ventrally across the inferior
division of the lateral occipital lobe, lingual gyrus, and fusiform
gyrus, while also extending dorsally into the superior parietal
lobe. These observed effects of increased amplitude were robust
against the inclusion of all covariates including antidepressant

usage (βvisual1 = 0.045, βvisual2 = 0.034, FDR corrected p’s < 0.05).
These findings also replicated in the follow-up analyses using
PROFUMO outputs from the 10- and 20-dimension decomposi-
tions (β’s > 0.02, p’s < 0.03; online Supplemental Results Table S5).
However, the magnitude of the mode amplitude within the visual
networks was not associated with depression symptom severity at
baseline among individuals within the trait group (β =−0.009,
p > 0.8). Further, we did not find significant group differences
in spatial overlaps or network matrices for the trait analyses (all
FDR corrected p’s > 0.05).

After corrections for multiple testing and potential confound-
ing effects, we did not find significant group differences in any
absolute longitudinal changes in PROFUMO outputs (amplitude,
network matrix, and spatial overlap) between individuals from the
state-depression group and the matched controls (all FDR cor-
rected p’s > 0.05).

In our follow-up analyses, after applying FDR corrections, no
significant associations were observed between symptom change
scores and any of the PROFUMO outputs. This null finding
held true for the state-depression group alone, the combined
trait- and state-depression groups, and the entire study cohort
(all FDR corrected p’s > 0.05).

Discussion

In the current study, we designed group contrast that effectively
disassociated the neural correlates of state and trait experiences
of depression. Using matched control participants as the refer-
ence, our results showed that greater amplitudes in two visual
networks were associated with trait depression and that these

Figure 2. Box plots showing group differences in amplitude of two visual networks at
the time of scan 1, between individuals with trait experience of depression (in
orange) and control participants (in green), with higher mean amplitudes in both net-
works, as annotated by filled circles, in the trait depression group. Note, separate
Y-axis scales were used to highlight the group mean differences within each
comparison.
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associative effects were robust against relevant confounders and
across different dimensionalities of brain networks. These find-
ings demonstrate that the overall BOLD signal fluctuations within
the visual networks may serve as a potential biomarker for trait
depression.

Visual cortex and trait depression

Depression is a mental disorder characterized by dysfunctional
brain networks (Williams, 2016). Although the majority of the
major depressive disorder (MDD) literature focuses on alterations
in the default mode, salience, and central executive networks
(Kaiser et al., 2015), there is increasing evidence linking depres-
sion to structural and functional alterations in sensory and
motor networks, including visual networks (Wu et al., 2023;
Zhukovsky et al., 2021).

Structurally, individuals with MDD often exhibit increased
volume (Ancelin et al., 2019), greater asymmetry (Maller et al.,
2014), and altered surface area (Schmaal et al., 2017) in the
occipital cortex compared to healthy controls. These structural
alterations have been further associated with symptom recurrence
and duration in MDD patients (Kang et al., 2023). Similar struc-
tural alterations have also been reported for individuals with
potential trait depression (Nazarova et al., 2022). For instance,
healthy adolescents with high familial risks for depression showed
reduced cortical thickness in the lateral occipital gyrus
(Foland-Ross, Behzadian, LeMoult, & Gotlib, 2016), and lower
white matter integrity in inferior fronto-occipital fasciculi
(Huang, Fan, Williamson, & Rao, 2011). Furthermore, individuals
at high familial risk for developing MDD demonstrated expanded
cortical thinning in a wide range of brain regions, including the
inferior occipital gyrus, which was also correlated with current
symptom severity (Peterson et al., 2009).

At the functional level, MDD patients demonstrate various
abnormalities within the visual network. This includes decreased
regional homogeneity (Peng et al., 2011; Yan et al., 2021), lower
nodal efficiency in occipital areas (Xu et al., 2022), aberrant
resting-state functional connectivity within the network (Lu
et al., 2020; Yu et al., 2019), and disruptions in connections
between the visual network and other brain networks
(Desseilles et al., 2011; Kaiser et al., 2015; Le, Borghi, Kujawa,
Klein, & Leung, 2017; Yan et al., 2019; Young et al., 2023).
Moreover, depressed individuals exhibit abnormal filtering of
irrelevant information in the visual cortex (Desseilles et al.,
2009) and altered activity patterns in visual association areas
affecting working memory (Le et al., 2017).

Although fewer studies have examined brain network activity
and connectivity in at-risk individuals, current evidence suggests
that familial risks for depression may heighten emotion-related
visual processing, with increased activation within the visual cor-
tex and its connectivity with other brain regions, such as the
amygdala (Wackerhagen et al., 2017). Additionally, connectivity
between the visual network and prefrontal regions has been
shown to predict the onset of internalizing disorder (i.e. depres-
sion and anxiety) for individuals with a parental history of
these conditions (Pawlak, Bray, & Kopala-Sibley, 2022). In con-
trast to adolescents with low familial risk for depression, those
at high risk have demonstrated a stronger association between
follow-up symptom severity and the baseline connectivity of sen-
sory/somatosensory networks with amygdala/striatal regions
(Holt-Gosselin et al., 2024). Abnormal activation patterns in the
visual cortex have also been observed in remitted depression

patients during emotion regulation (van Kleef et al., 2022) and
rumination (Burkhouse et al., 2017). Furthermore, increased
amplitude of low-frequency fluctuation (ALFF) in the occipital
cortex has been linked to patients with remitted depression in
contrast to healthy controls (Cheng et al., 2019).

These findings collectively underscore the crucial role of the
visual cortex in the psychopathology of depression (Friberg &
Borrero, 2000; Salmela et al., 2021). Such alterations may be
attributed to reduced concentrations of the neurotransmitter
GABA in MDD patients, leading to deficits in the inhibition or
suppression of relevant visual information processing (Price
et al., 2009; Song et al., 2021). Since brain network amplitudes
primarily reflect the level of synchronous activation among func-
tionally connected regions (within a network), and are closely
related to functional connectivity between networks (Lee et al.,
2023), our observation of increased amplitude in visual networks
indicates heightened synchrony among regions within these
networks, and potentially aberrant connectivity between visual
networks with other brain regions and/or networks. The anatom-
ical location of these two visual networks (e.g. lateral occipital, lin-
gual, and fusiform gyri) also aligns well with prior findings
highlighting the involvement of these regions in abnormal visual
information processing in depression (Chen et al., 2019; Wu et al.,
2023), which may contribute to altered visual perception and
associated cognitive and emotional impairments (Atchley et al.,
2012; De Zorzi et al., 2020; Fam, Rush, Haaland, Barbier, &
Luu, 2013; Golomb et al., 2009; Salmela et al., 2021; Valt et al.,
2022).

Yet, our study found no association between the magnitude of
amplitude increase and symptom severity among individuals with
trait depression, likely due to limited variability in symptom
severity within this group. Nearly half of the individuals (120
out of 265) in this depression group exhibited mild-level symp-
toms (RDS = 7), which was the minimum criterion for inclusion
in the trait group. However, despite the limited variability, the
propensity for depression was sufficient at the group level to be
associated with differences in brain function, evident in the
between-group differences in visual network amplitude.

Null findings for state depression

In contrast to our hypothesis, no significant differences in net-
work connectivity or other measures were found between the
state depression group and the control group. These null findings
may have resulted from several factors.

Firstly, the state experience in our study was defined as sub-
stantial fluctuations in symptom severity between two imaging
scans. While the overall symptom severity score provides insight
into the general experiences of state depression, it may not cap-
ture fluctuations in specific symptoms. This limitation makes
the investigation into associated brain measures susceptible to
individual heterogeneity, as network measures for different symp-
toms at the individual level may not converge at the group level.

Secondly, we opted for a cut-off score of 3 to define the state
experience, aiming at capturing meaningful changes in symptoms,
equivalent to 25% of the full 12-point scale. This choice was made
to also maximize the sample size with sufficient statistical power
to ensure robustness in detecting effects of interest. For example,
increasing the cut-off score to 4, would have reduced the com-
bined sample size to 256 (i.e. n = 311 to n = 128 for trait depres-
sion and control groups each; online Supplemental Materials
Table S1), potentially leading to underpowered analyses.
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Retrospective power analysis using the reduced sample size
showed 70% power to detect a small group effect at β = 0.05,
slightly higher than βvisual1 = 0.045 in our main findings, com-
pared to the 93% power obtained from the current combined n
= 622. However, it is possible that this mild cut-off may have
been insufficient to detect state-related alterations in network
connectivity or other brain measures.

Additionally, our current definition of state depression consid-
ered the magnitude of symptom fluctuations, combining both
positive and negative changes in symptom severity between two
imaging scans. If different brain networks are engaged in different
directions of state changes, our approach might fail to detect
group-level effects due to a potential mixture of results.
Unfortunately, our sample size for the state depression partici-
pants was nearly halved when considering two separate groups
with opposing change directions (n = 154 for negative changes
and n = 157 for positive changes), leaving separate testing under-
powered. Although we partially addressed the sample size issue by
combining the state- and trait-depression groups (N = 576) or
using the entire study cohort (N = 1030) in our follow-up tests,
no significant associations were found between symptom changes
and any PROFUMO brain measure changes after accounting for
multiple testing and confounding effects.

Lastly, given the dynamic nature of state depression experi-
ences, the use of evoked study designs might offer greater sensi-
tivity in capturing alterations in state-related neural correlates.
Recent meta-analysis studies seem to support this notion, reveal-
ing reduced brain activation in a wide range of cortical and sub-
cortical regions for MDD patients during emotional processing
after antidepressant treatment in contrast to the baseline
(Delaveau et al., 2011). Additionally, altered activity patterns
have been observed in tasks related to emotional processing or
executive functioning tasks, or across aggregated tasks from
these two domains (Gray, Müller, Eickhoff, & Fox, 2020).

Null findings in the default mode network (DMN)

Our current investigation did not find DMN differences in any
PROFUMO output for either the trait or state comparison. This
seemingly surprising result contrasts with the prior implications
of this brain network in relation to depression. It is important
to note, however, that previous research has also yielded incon-
sistent and/or contradictory findings regarding the role of the
DMN in MDD (Javaheripour et al., 2021; Kaiser et al., 2015;
Mulders et al., 2015; Yan et al., 2019). This inconsistency under-
scores the challenges in identifying robust neural correlates of
depression across studies.

Despite employing a data-driven approach to identify brain
networks including the DMN (i.e. mode 5 in online
Supplementary Fig. S1), and utilizing data from a large-scale pro-
spective epidemiological resource (Sudlow et al., 2015) to dissoci-
ate neural correlates of state and trait depression, our null findings
align with the broader inconsistencies observed in the literature
regarding alterations in the DMN and other brain networks in
previous studies.

Limitations

The current study has several limitations. First, our study sample
is a subset from the UK Biobank study, comprising specific age
groups (i.e. middle to older adults) and predominantly White
(Sudlow et al., 2015). This limits the generalizability of our

findings to more diverse populations with different demographic
characteristics. Second, our groups for state and trait depression
were defined using the overall symptom severity, which lacks
the precision to identify brain correlates of individual symptoms
known to be heterogeneous. Future research should consider
addressing the variability in clinical presentations of depression
to potentially enhance the reproducibility of brain association
findings (Greene et al., 2022; Hannon et al., 2024; Kennis et al.,
2020; Winter et al., 2022). Additionally, while we carefully
generated two control groups and matched them for each of the
target depression groups based on a set of crucial confounding vari-
ables, our analyses for group comparisons did not include psycho-
social or lifestyle factors that can contribute to individual
variations in depression symptoms (Aguilar-Latorre, Algorta,
Navarro-Guzmán, Serrano-Ripoll, & Oliván-Blázquez, 2022;
Remes, Mendes, & Templeton, 2021; Sarris, O’Neil, Coulson,
Schweitzer, & Berk, 2014; Zhao et al., 2023). These additional factors
may also influence the associative effects under investigation, and
future studies should consider integrating them into analysis.
Lastly, although we employed a data-driven approach to identify
large-scale brain networks, this method appeared to favor the discov-
ery of networks involving cortical regions over subcortical ones.
These networks showed higher signal intensities predominantly in
cortical areas, likely due to higher signal-to-noise ratios. Given the
documented structural (Ho et al., 2020; Schmaal et al., 2016) and
functional alterations (Gray et al., 2020; Miller, Hamilton, Sacchet,
& Gotlib, 2015; Xiong et al., 2021) in subcortical regions in MDD,
it may be prudent to explore supplementary approaches to better
detect brain networks involving subcortical regions in the future.

Conclusion

Incorporating pre-registered hypotheses and methods, this study
aimed to examine the potentially distinct neural correlates of state
and trait experiences of depression. We observed significantly
higher amplitude in two visual networks for individuals in the
trait depression group compared to controls. No significant differ-
ences in network measures were found in relation to state depres-
sion. Our findings suggest potentially altered visual information
processing for individuals with a persistent tendency to experience
depressive symptoms. These results highlight the potential contribu-
tion of visual networks to the psychopathology of depression that
has been largely overlooked in the literature and provide evidence
for neural correlates specific to trait experiences of depression.
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