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Abstract. We establish various new results on a problem proposed by Mahler [Some
suggestions for further research. Bull. Aust. Math. Soc. 29 (1984), 101–108] concerning
rational approximation to fractal sets by rational numbers inside and outside the set in
question. Some of them provide a natural continuation and improvement of recent results
of Broderick, Fishman and Reich, and Fishman and Simmons. A key feature is that many
of our new results apply to more general, multi-dimensional fractal sets and require only
mild assumptions on the iterated function system. Moreover, we provide a non-trivial lower
bound for the distance of a rational number p/q outside the Cantor middle-third set C to
the set C , in terms of the denominator q. We further discuss patterns of rational numbers
in fractal sets. We highlight two of them: firstly, an upper bound for the number of rational
(algebraic) numbers in a fractal set up to a given height (and degree) for a wide class of
fractal sets; and secondly, we find properties of the denominator structure of rational points
in ‘missing-digit’ Cantor sets, generalizing claims of Nagy and Bloshchitsyn.
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1. A question of Mahler and generalizations
1.1. Introduction and notation. In 1883, Cantor introduced what is today referred to as
the Cantor middle-third set. This consists of the real numbers in [0, 1] whose infinite base
3 representation avoids the digit 1, that is, numbers of the form

ξ =
∑
j≥1

w j

3 j , w j ∈ {0, 2}.

In 1984, Mahler [21] proposed the problem of studying how well elements in this set
can be approximated by rational numbers within the set, and rational numbers outside of
it. Problems of this type are usually referred to as intrinsic and extrinsic approximation,
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respectively. He noticed that convergents of the continued fraction expansion to numbers in
the Cantor middle-third set may or may not lie in the Cantor middle-third set. His problem
can be naturally generalized to wider families of fractal sets. The easiest twist is to take
b ≥ 3 an integer and a digit set W ⊆ {0, 1, . . . , b − 1} of cardinality at least 2 and at most
b − 1, and to consider all numbers in [0, 1] whose base b digits belong to W . We call
such sets missing-digit Cantor sets and write C = Cb,W . We will consider wider classes of
d-dimensional fractal sets, comprised in the following Definition 1. For convenience we
always consider Rd equipped with the supremum norm ‖z‖ =max1≤ j≤d |z j |; however, all
proofs below can be easily modified if we work with the usual Euclidean norm instead.

Definition 1. (IFS, Cantor set) We call a function f : Rd
→ Rd a contraction if, for some

fixed 0< τ < 1, we have

‖ f (x)− f (y)‖ ≤ τ‖x − y‖, x, y ∈ Rd .

In this paper, an iterated function system (IFS) F = ( f1, . . . , f J ) is a finite set of
contractions. We call the IFS a similarity IFS if the contractions are similarities, that is, for
1≤ j ≤ J there exist 0< τ j < 1 with the property

‖ f j (x)− f j (y)‖ = τ j‖x − y‖, x, y ∈ Rd .

We call the IFS affine if the contractions are affine functions on Rd , that is, functions

f j (y)= A j y + b j , 1≤ j ≤ J, (1)

where A j ∈ Rd×d and b j ∈ Rd . We call an IFS rational-preserving if f j (Qd)⊆Qd for
1≤ j ≤ J . Any IFS induces a compact set C ⊆ Rd , called the attractor of the IFS, given
as the unique solution of

⋃
1≤ j≤J f j (C)= C . We call any such C a Cantor set and carry

over the definitions above in the obvious way to Cantor sets (for example, C is called an
affine and rational-preserving Cantor set if the corresponding IFS is affine and rational-
preserving).

We discuss relations between the notions of the above definition. Any similarity IFS
is an affine IFS with matrices A j = S j · O j for orthogonal matrices O j and for S j =

τ j Id scalar multiples of the identity matrix; see Hutchinson [16]. Hence any similarity
Cantor set is an affine Cantor set, and for d = 1 the concepts coincide. An affine IFS is
rational-preserving if and only if A j ∈Qd×d and b j ∈Qd for 1≤ j ≤ J . By the above
characterization of A j , to obtain a rational-preserving similarity Cantor set we require
orthogonal matrices with rational entries (then we can choose τ j ∈Q). A comprehensive
description of all such matrices was given in [20]. Clearly, a special choice is τ j ∈

Q ∩ (−1, 1) and O j = Id for 1≤ j ≤ J . There are also various examples of non-affine,
rational-preserving IFS. For d = 1, one may consider f (y)= f j (y) any collection of
rational functions cP(y)/Q(y)+ y/2 with P, Q ∈Q[Y ], with Q not having real roots,
the degree of P not exceeding the degree of Q, and rational c > 0 sufficiently small
to guarantee | f ′(y)| ∈ [ε, 1− ε] uniformly, for example f (y)= y/(3+ 3y2)+ y/2. It
is further possible to construct real analytic, transcendental functions with this property
(here transcendental means that f does not satisfy a polynomial identity P(z, f (z))= 0
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with P ∈ C[X, Y ]); it suffices to multiply the functions obtained by Marques and Moreira
in [22, Theorem 1.2] by any non-zero rational factor of absolute value less than 2/3.

The existence of the unique fixed point C in Definition 1 follows from Banach’s fixed
point theorem [16] applied with respect to the Hausdorff metric on compact subsets of Rd .
Any ξ ∈ C has an address (ω1, ω2, . . .) ∈ {1, 2, . . . , J }N, that is, it can be written in the
form

ξ = lim
i→∞

π1 ◦ · · · πi (0), π j = fω j ∈ F.

Addresses may not be unique: to guarantee uniqueness one typically has to assume the
so-called strong separation condition (SSC); see Definition 2 below. We do not dig deeper
into this topic here. We will further need the open set condition (OSC) for some of our
results.

Definition 2. (OSC, SSC) An IFS satisfies the open set condition if there exists a
bounded open set O ⊆ Rd so that f j (O)⊆ O for 1≤ j ≤ J and for i 6= j we have
fi (O) ∩ f j (O)= ∅. For simplicity we will say that a Cantor set C as in Definition 1
satisfies the OSC if its associated IFS does. A Cantor set C satisfies the strong separation
condition if the sets f j (C) are disjoint.

We briefly discuss measures and dimension of fractals. Any Cantor set C in Definition 1
supports a natural probability measure by Frostmann’s lemma (see [11]). For similarity
Cantor sets that satisfy the OSC, it is just a multiple of some 1-dimensional Hausdorff
measure, and there is a well-known general formula to determine 1 in terms of the
contraction factors [16]. See also [23] for a generalization. Clearly this value 1 ∈ [0, d]
equals the Hausdorff dimension of C . For Cb,W it just becomes 1= log |W |/log b.
We refer to Falconer [11] for an introduction to metric theory on fractals. Rational
approximation to Cantor type sets has been intensely studied, especially metrical questions
with respect to the measure mentioned. However, until recently, approximation to fractals
in the sense of Mahler’s question with restrictions on the rationals had not been studied in
detail. Only in 2007 was a first attempt made by Levesley, Salp and Velani [19]. In 2011
a paper by Broderick, Fishman and Reich [5] dealt with intrinsic approximation. Two
recent papers by Fishman and Simmons [13, 14] shed more light on the topic as well. We
rephrase important results from [5, 13, 14] in §1.2 below. The purpose of this paper is to
establish further results on Mahler’s question, where possible in the very general settings
of Definition 1. In §2 we generalize results on intrinsic approximation from [5, 13]. The
focus of the paper lies on extrinsic approximation in §3. As a byproduct we obtain related
results, especially on the cardinality of rational/algebraic vectors of bounded degree and
height and their period lengths. Moreover, we gain some new insight into the structure of
rational numbers in missing-digit Cantor sets Cb,W . We gather all these findings in §4.

1.2. Recent results on Mahler’s problem. The main result of [5] shows a Dirichlet type
result for intrinsic rational approximation to missing-digit Cantor sets Cb,W . We present a
slightly simplified version to avoid dealing with technical details.

THEOREM 1.1. (Broderick, Fishman and Reich [5]) Let C = Cb,W be a missing-digit
Cantor set and ξ ∈ C. If 1= log |W |/log b denotes the Hausdorff dimension of C, the
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inequalities

1≤ q ≤ bQ1

,

∣∣∣∣ξ − p
q

∣∣∣∣≤ b
Qq

, (2)

have a solution p/q ∈Q ∩ C for every parameter Q ≥ 1. In particular, if ξ /∈Q, there
exist infinitely many p/q ∈Q ∩ C with the property∣∣∣∣ξ − p

q

∣∣∣∣≤ 1
q(logb q)1/1

. (3)

As observed in [5], the bounds (2) and (3) become weaker when for fixed b we extend
the digit set and thereby increase the Hausdorff dimension1. This seems counter-intuitive
as there are more rational numbers in C ; however, in larger Cantor sets there exist more
irrational ξ ∈ C to be approximated as well. A generalization of Theorem 1.1 was given
by Fishman and Simmons [13].

THEOREM 1.2. (Fishman and Simmons [13]) Let C ⊆ R be a one-dimensional, affine,
rational-preserving Cantor set, derived from an IFS as in (4), that satisfies the OSC. Let
1 be its Hausdorff dimension and let γ be as in (5). Let ξ ∈ C. Then there is a constant K
such that for any Q ≥max1≤ j≤J q j the estimate∣∣∣∣ξ − p

q

∣∣∣∣≤ K qγ−1(log Q)−1/1

admits a solution p/q ∈Q ∩ C with 1≤ q ≤ Q.

For one-dimensional, affine, rational-preserving Cantor sets as in the theorem, C is the
attractor of an IFS

f j (y)=
p j

q j
y +

r j

q j
, 1≤ j ≤ J, (4)

for p j/q j of absolute value at most 1 and r j/q j a rational number. We can assume that
q j > 0. Then let

γ = max
1≤ j≤J

log |p j |

log q j
. (5)

Definition 3. If d = 1, we call an affine, rational-preserving IFS monic if p j ∈ {1,−1}
in (4) for all 1≤ j ≤ J , or equivalently if γ = 0. We call the derived Cantor set a one-
dimensional, affine, monic, rational-preserving Cantor set.

Note that the missing Cantor sets Cb,W defined above are monic. Indeed, the similarities
can be written f j (y)= y/b + w j/b for w j ∈W , with every contraction factor equal to
1/b. For monic Cantor sets as in the theorem where γ = 0, the estimate becomes∣∣∣∣ξ − p

q

∣∣∣∣≤ K q−1(log Q)−1/1.

We thus identify Theorem 1.1 (up to the value of the constant) as a special case. We
turn to extrinsic approximation. A result of Fishman and Simmons reads as follows [14,
Corollary 1.2].
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THEOREM 1.3. (Fishman and Simmons [14]) Let C ⊆ Rd be a Cantor set that satisfies
the OSC and does not contain a line segment. Assume the additional property that for any
compact set K ⊆ Rd there is a constant κ > 0 with

‖ f j (x)− f j (y)‖ ≥ κ‖x − y‖, x, y ∈ K , 1≤ j ≤ J. (6)

Let ξ ∈ C \Qd . Then, for some constant c = c(C) > 0, there exist infinitely many p/q ∈
Qd
\ C such that

‖ξ − p/q‖ ≤ c · q−1−1/d .

Originally this result was only formulated for the narrower class of similarity Cantor
sets in [14]; however, the proof given extends to our more general situation, once small
modifications of the proof of [14, Lemma 2.12] have been made. Indeed, our local
hypothesis (6) on the contractions suffices to derive γ as in its proof, and the equality
in the last displayed formula must be altered to ‘greater than or equal to’, not affecting
the implication of the lemma. Up to the constant c, the bound is of best possible order we
can expect for generic ξ ∈ C . As observed in [14], if d = 1, by Dirichlet’s theorem the
claim follows directly with c = 1 whenever infinitely many convergents to ξ lie outside C .
However, it was recently shown [25] that any missing Cantor set C = Cb,W contains
irrational numbers ξ with almost all convergents in Cb,W . The actual proof of Theorem 1.3
employed a variant of Lemma 5.3 below.

2. Intrinsic approximation
In this section we provide a variant of Theorem 1.2 for Cantor sets in higher dimension.

THEOREM 2.1. Let C ⊆ Rd be a rational-preserving affine Cantor set, that is, the
attractor of an IFS F consisting of contraction maps

f j (y)=
A j y

q j
+

b j

s j
, 1≤ j ≤ J,

where A j ∈ Zd×d , b j ∈ Zd and q j , s j ∈ N. Let τ j ∈ (0, 1) be the contraction factor of f j

and τ =max1≤ j≤J τ j . Further, let S :=
∏

1≤ j≤J s j and

µ j =
log τ j

log q j
, µ= max

1≤ j≤J
µ j < 0.

Then, for any ξ ∈ C and any parameter Q ≥ S · 2d(max1≤ j≤J q j )
d , there exists p/q ∈

C ∩Qd with the properties

1≤ q ≤ Q, ‖ξ − p/q‖ ≤ qµ/d(log Q)log τ/log J .

If d = 1 and we identify γ − 1= µ with γ in (5), we almost obtain Theorem 1.2.
One difference is a slightly altered exponent for log Q. We believe the optimal exponent
for log Q is again −1/1 for 1 the Hausdorff dimension of C . For similarities f j , our
exponent is slightly worse, unless in the special case that all contraction factors τ j coincide
where the identity log τ/log J =−1/1 can be readily verified [16]. In particular, we
identify Theorem 1.1 as a special case of Theorem 2.1. On the other hand, even for
d = 1 our Theorem 2.1 is slightly more general than Theorem 1.2 in the sense that we
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do not require s j = q j as in (4), so µ/d = µ is in general better than the inferred constant
γ − 1 obtained from transitioning to representation (4). Observe that µ/d ∈ [−1/d, 0),
with µ/d =−1/d for instance if all A j are permutation matrices (with optional sign
conversions 1 to −1). Note also that in contrast to [13] we do not require the OSC for
the conclusion of Theorem 2.1.

3. Extrinsic approximation
3.1. Uniform extrinsic approximation. A topic that seems to be untouched so far is
uniform extrinsic approximation to Cantor sets. Theorem 3.3 below shows that under mild
assumptions on the underlying IFS, any element of the derived Cantor set is uniformly
approximable by rationals outside C with denominator at most Q of order Q−1, and
this bound is essentially optimal. It is evident that an improvement as for intrinsic
approximation in Theorems 1.1 and 1.2 cannot be achieved for extrinsic approximation.
Another interpretation is that the exponent−1− 1/d from Theorem 1.3 is not valid when it
comes to uniform approximation. The result follows from a combination of Theorems 3.1
and 3.2, which are formulated in very general settings.

THEOREM 3.1. Let C ⊆ Rd be any Cantor set arising from an IFS with contraction ratios
τ j , 1≤ j ≤ J , and let τ =max1≤ j≤J τ j and D := −log τ/log J > 0. Assume that either
• C satisfies the OSC and (6), and there is a vector v ∈ Zd such that C contains no line

segment parallel to v; or
• we have D < 1/2.
Then there exists a constant K = K (C) so that, for every ξ ∈ C and every Q ≥ 1, the
inequality

‖ξ − p/q‖ ≤
K
Q

(7)

has a solution p/q ∈Qd
\ C with 1≤ q ≤ Q.

We believe that the weak assumption on line segments just means that C has empty
interior; however, for d > 1 a proof of this would be desirable. The implication from
this first assumption is in fact a straightforward consequence of results in [14]. The
alternative latter assumption essentially says that C has small Hausdorff dimension, and
the implication is a consequence of a new counting result in this case. We now turn to the
more challenging reverse estimates.

Definition 4. We call a vector v ∈ Rd irrational if it has at least one irrational coordinate,
so that v /∈Qd .

THEOREM 3.2. Let C ⊆ Rd be a rational-preserving Cantor set. Assume that there is
f j ∈ F whose unique fixed point α j lies in Qd . Assume further that either
• all contraction maps f j ∈ F are one-to-one; or
• any element in C has at most countably many addresses (which is true if C satisfies

the SSC).
Let 8 : N→ R>0 be any function that tends to 0 (arbitrarily slowly). Then the set of
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irrational ξ ∈ C for which

‖ξ − p/q‖>
8(Q)

Q
(8)

holds for infinitely many Q ∈ N>0 and every p/q ∈Qd
\ C with 1≤ q ≤ Q, is

uncountable and dense in C.

Remark 1. Clearly the claim holds if ξ ∈ C ∩Qd , and such vectors are dense in rational-
preserving Cantor sets C (see also the last claim of Theorem 3.3 and its proof below).
Hence the irrationality in the claim is an important issue. Ideally we would like to sharpen
the claim by requiring the coordinates of ξ ∈ C to be Q-linearly independent together with
{1}. We may infer this strengthened version if any hyperplane in Rd intersects C in at most
countably many points; however, this assumption seems unnatural.

Remark 2. It is possible to relax the assumption that the contraction maps fi are one-to-
one in various ways. However, we are unable to provide a very natural assumption and
do not further elaborate on it here. The condition appears to be unrelated to the OSC, and
we believe the OSC is not sufficient to imply the alternative assumption either; however,
we are not aware of any concrete example. See Sidorov [29] for similarity Cantor sets in
which all but finitely many elements have uncountably many addresses, which however do
not satisfy the OSC.

While not satisfied in general, the condition of the rational fixed point in Theorem 3.2
holds if C is a rational-preserving affine Cantor set, derived from an IFS as in (1), as then
clearly α j =−(A j − Id)

−1b j ∈Qd (note that 1 is not an eigenvalue of A j since it induces
a contraction). We may choose A j rational scalar multiples of the identity matrix to obtain
an IFS that consists of similarity contractions

f j (y)= τ j y + b j , τ j ∈Q ∩ (−1, 1) \ {0}, b j ∈Q
d . (9)

Recall that a Liouville number is an irrational real number with the property that
|ξ − p/q|< q−N has a rational solution p/q for arbitrarily large N . We call ξ ∈ Rd a
Liouville vector if accordingly |ξ − p/q|< q−N has infinitely many solutions for every N .
Theorem 3.2 is essentially equivalent to requiring that C contains points that are arbitrarily
well approximable by rational vectors inside C (in particular, C must contain ‘intrinsic
Liouville vectors’). Indeed, the proof of Theorem 3.2 relies on the construction of such
intrinsic Liouville vectors. Combining these observations, from Theorems 3.1 and 3.2 we
immediately deduce the following result.

THEOREM 3.3. Let C ⊆ Rd be a rational-preserving similarity Cantor set, for instance
derived from an IFS of contractions as in (9). Assume either that the OSC is satisfied and
there is a vector v ∈ Zd such that C contains no line segment parallel to v, or D < 1/2
with D as in Theorem 3.1. Then there exists K > 0 such that for any ξ ∈ C and any Q > 1
the inequality

‖ξ − p/q‖ ≤
K
Q
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has a solution p/q ∈Qd
\ C with 1≤ q ≤ Q. On the other hand, for any function 8 :

N→ (0,∞) that tends to 0, there exists ξ ∈ C \Q for which

‖ξ − p/q‖>
8(Q)

Q
holds for certain arbitrarily large Q and any p/q ∈Qd

\ C with 1≤ q ≤ Q. Finally,
for 9 : N→ (0,∞) any function, there are intrinsically 9-approximable vectors in C,
defined as the vectors ξ ∈ C for which the inequality

‖ξ − p/q‖<9(q)

admits infinitely many solutions p/q ∈Qd
∩ C. In particular, C contains Liouville vectors.

As observed in §1.1 a wider class of suitable IFSs can be readily found with the aid
of [20]. Any reasonable one-dimensional rational-preserving Cantor set with the OSC (in
particular, any missing-digit Cantor set Cb,W (with W ( {0, 1, . . . , b − 1})) satisfies the
assumptions of Theorem 3.3. This first claim does not require the rationality of the IFS;
however, for the other claims it is probably needed. Intuitively, (similarity) Cantor sets
containing no Liouville vector should exist when we drop the rationality condition. For
d = 1 and the class of topological Cantor sets, the existence was shown in [1]. See also [4]
for fat Cantor sets without rational elements. We remark further that for rational-preserving
similarity Cantor sets induced by diagonal matrices A j that satisfy the OSC, the existence
of very well-approximable vectors that are not Liouville vectors was shown by Baker [2,
Theorem 5.6]. Notice also that the claim concerning Liouville vectors cannot be derived
from standard metric results as in [13] even for Cb,W , as the set of Liouville numbers has
Hausdorff dimension 0 due to Jarnı́k [17].

3.2. Ordinary extrinsic approximation. We use Theorems 1.1 and 1.2 to obtain a lower
bound on the distance of certain one-dimensional Cantor sets to a rational number not
contained in it. This can be viewed as a reverse of Theorem 1.3. For A, B ⊆ R we write
d(A, B)= inf{|a − b| : a ∈ A, b ∈ B} and denote by e = 2.7182 . . . Euler’s number.

THEOREM 3.4. Let C be a one-dimensional, affine, rational-preserving monic Cantor
set, derived from an IFS as in (4) with p j ∈ {−1, 1}, that satisfies the OSC. Denote its
Hausdorff dimension by 1. Then, for sufficiently large ρ = ρ(C), we have the estimate

d
(

C,
p
q

)
> e−ρq1 (10)

for every p/q ∈Q \ C.
In the special case of missing-digit Cantor sets C = Cb,W , we have 1= log |W |/log b

and the inequality

d
(

C,
p
q

)
>

b−(2b)1q1

2q
(11)

holds for every p/q ∈Q \ C. In particular, for every ξ ∈ Cb,W and any δ > (2b)1, the
inequality ∣∣∣∣ξ − p

q

∣∣∣∣≤ b−δq
1

(12)

has only finitely many solutions p/q ∈Q \ C.
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We remark that in view of Theorem 2.1, it is possible to provide a variant of Theorem 3.4
that does not require the OSC, at the cost of (possibly) increasing 1 slightly. We do not
believe that the bounds are optimal. It might be true that there is an absolute upper bound
for the order of extrinsic approximation, equivalently λext(ξ)�C 1 in the notation of §4.3
below. However, a metric result of Fishman and Simmons [14, Theorem 3.9] demonstrates
that we cannot hope for an improvement of Theorems 1.1 and 1.2 underlying our proof.
Hence the bounds in Theorem 3.4 are the limit of our method. Our proof does not extend
to non-monic Cantor sets, as we require that the right-hand side in Theorem 1.2 decays
faster than q−1. This can only be guaranteed if γ in (5) vanishes. Also for d > 1 we see
that Cantor sets as in Theorem 2.1 do not fulfil the requirement. In these cases, no bound
seems to be known. We formulate resulting open problems.

Problem 1. Improve the bounds in Theorem 3.4. Do there exist extrinsic Liouville
numbers, that is, numbers with λext(ξ)=∞ in the notation of §4.3 below?

Problem 2. Let C be a one-dimensional, affine, rational-preserving Cantor set which is
not necessarily monic. For p/q /∈ C , find a lower bound for d(C, p/q) dependent on q.
What about Cantor sets in higher-dimensional Euclidean space?

We believe the latter problem is related to Problem 3 in §4.2 below. For C = Cb,W , an
elementary approach, using the fact that the base b expansion of a rational number p/q in
lowest terms has period length� q, indicates the bound

d
(

C,
p
q

)
> b−cq for any

p
q
∈Q \ C, (13)

with a suitable constant c = c(b, W ) > 0. See §4.4 below, in particular Proposition 4.10,
for more details. However, the conclusion (11) is stronger than (13) since 1< 1.

We remark that similar patterns to that in Theorem 3.4 are known concerning extrinsic
rational approximation to algebraic sets in Rn . See [6, Lemma 1], [9, Lemma 1], [10,
Lemma 4.1.1], [27, Theorem 2.1]. However, the lower bounds typically decay like a
negative power of q in that case. In [27] it is shown that, for an algebraic variety S defined
by an implicit integral polynomial equation of total degree k, there are no rational numbers
outside S that approximate S of order greater than k. We refer to [12] for approximation to
manifolds by rationals within the manifold.

4. Related topics
4.1. Rational/algebraic vectors in Cantor sets. As a byproduct of the proof of
Theorem 2.1, we show the following upper bound for the number of rational elements
with denominator at most N in a Cantor set.

THEOREM 4.1. Let C ⊆ Rd be any Cantor set as in Definition 1. Let τ =max1≤ j≤J τ j ∈

(0, 1) be the maximum contraction rate of the IFS and denote by diam the diameter
max{‖x − y‖ : x, y ∈ C} of the compact Cantor set. Let D =− log J/log τ > 0. Then the
set of rational vectors in C up to height N ,

S(C, N )= {r/s ∈ C : (r1, . . . , rd , s)= 1, 1≤ s ≤ N },

has cardinality at most J 2diamD N 2D .
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We require D < 1 or equivalently Jτ < 1 for the result to be non-trivial. When C =
C3,{0,2} is the Cantor middle-third set, the bound becomes 4N 2 log 2/log 3. The exponent
has twice the expected magnitude; indeed, in view of numeric evidence it was conjectured
in [5] that S(C, N )�ε N log 2/log 3+ε for any ε > 0. We can extend our claim to algebraic
vectors.

THEOREM 4.2. With the assumptions and notation of Theorem 4.1, let S(C, N , n) be the
set of vectors in C whose entries are real algebraic numbers of degree at most n and height
at most N . Then

|S(C, N , n)| �C,n N 2nD.

Clearly the trivial bound on S(C, N , n) is of order N d(n+1), so if D ≤ d/2 or Jτ d/2 < 1
we obtain an improvement simultaneously for every n ≥ 1. For the Cantor middle-third set
we get an improvement for n ∈ {1, 2, 3}. In the case of affine, rational-preserving Cantor
sets one might expect S(C, N , n)= S(C, N ) for any n ≥ 1, that is, that there are no
irrational algebraic vectors in C . For the Cantor middle-third set C3,{0,2} this is a famous
open conjecture of Mahler [21]. It seems that even in this case no non-trivial bound on
S(C, N , n) had previously been established.

4.2. Addresses of rational vectors in certain Cantor sets. We wish to discuss addresses
of rational vectors in C , as the above sections indicate that they are directly linked to
the order of rational approximation to Cantor sets. This topic has already been addressed
in [13], and Theorem 4.3 below generalizes [13, Lemma 4.2] to certain multi-dimensional
settings. We also provide a quantitative version for period lengths. While our proof strategy
resembles that in [13] to some extent, we proceed slightly differently.

Definition 5. We call an affine, rational-preserving IFS unimodular if the contraction maps
are of the form f j (y)= A j y/q j + b j/s j , where A j ∈ Zd×d with det(A j ) ∈ {1,−1}, and
b j ∈ Zd and q j , s j ∈ N. We call a Cantor set C unimodular if it is induced by a unimodular
IFS.

Unimodularity generalizes the concept of a monic, affine IFS for d = 1 from §1.2. Note
that our set-up is more general than assuming f j (y)= (A j y + b j )/q j , that is, s j = q j ,
with all parameters as in the definition, as the determinant condition is relaxed. Therefore
our next theorem in fact even generalizes [13, Lemma 4.2] when d = 1.

THEOREM 4.3. Let C ⊆ Rd be an affine, rational-preserving Cantor set. Then any vector
in C that admits an ultimately periodic address is in Qd . If C is unimodular, the rational
vectors in C are precisely those vectors in C that have an ultimately periodic address.
Moreover, in this case the period length (including the preperiod) of p/q ∈Q ∩ C can be
chosen�C min{q D, qd

} with D =− log J/log τ as in Theorem 4.1.

We remark that the bound supposedly can be reasonably improved, potentially up to
� log q. See the remark after the proof and also [13, Theorem 5.3, Conjecture 5.6]. For
d = 1, the question whether the assumption of C being unimodular (=monic) is necessary
for the conclusion was already raised in [13, §5]. We have no new contribution to this
interesting question, but wish to formulate the corresponding generalization.
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Problem 3. In a Cantor set C derived from an affine rational-preserving IFS, does every
rational vector in C have an ultimately periodic address? If yes, can it be arranged that the
period length of p/q ∈Q ∩ C is of order�C min{q D, qd

}?

From Theorem 4.3 we get some information on the structure of rational numbers in
missing-digit Cantor sets. We only highlight special consequences; more information can
be extracted from its proof below.

COROLLARY 4.4. Let b ≥ 3 and W ( {0, 1, . . . , b − 1}. If S = {q1, . . . , qv} is any finite
set of prime numbers not dividing b, then there are only finitely many rational numbers
r/s in Cb,W with s consisting only of prime factors in S. In particular, only finitely many
integer powers of a rational number p/q with (b, q)= 1 can lie in Cb,W . Moreover, Cb,W

contains at most finitely many rational numbers p/q where q is a safe prime, that is, q and
(q − 1)/2 are both prime numbers.

Results of this type (restrictions on rationals in Cb,W ) appear to be rare. The author is
only aware of a succession of papers by Wall [30], Nagy [24] and Bloshchitsyn [3], treating
rationals with very smooth denominators. The first claim of Corollary 4.4 extends [3,
Theorem 2] (and thus also [24]) where the finiteness implication was proved for S = {q} a
single prime greater than b2. For the second claim about powers of a rational in fact we only
require that the denominator q has a prime divisor that does not divide b, or equivalently
the radical of q does not divide b. This condition is easily seen to be necessary in general,
as for example any positive integer power of 1/3 belongs to C3,{0,1}. For irrational numbers
we state the analogous question as an open problem.

Problem 4. Does there exist a real number ξ which is not a root of a rational number and
with infinitely many integral powers belonging to a missing-digit Cantor set Cb,W ?

4.3. Exponents. We define several exponents to measure the quality of intrinsic and
extrinsic rational approximation in a Cantor set. We restrict to the one-dimensional setting
in this paper. In what follows, for convenience we agree on sup(∅)= 0 and 1/0=+∞.

Definition 6. Let S ⊆ R and ξ ∈ R \Q. Define the ordinary exponent of rational
approximation λ(ξ) as the supremum of λ such that∣∣∣∣ξ − p

q

∣∣∣∣≤ q−1 Q−λ (14)

has a solution p/q ∈Q with 1≤ q ≤ Q for arbitrarily large values of Q. Define the
uniform exponent λ̂(ξ) as the supremum of λ for which (14) holds for every large
Q. Define similarly the ordinary and uniform exponents of intrinsic and extrinsic
approximation denoted by λint(ξ), λext(ξ) and λ̂int(ξ), λ̂ext(ξ) respectively, by replacing
p/q ∈Q by p/q ∈Q ∩ S and p/q ∈Q \ S in the definitions accordingly.

The exponents λ(ξ), λ̂(ξ) are classical exponents of Diophantine approximation and are
usually denoted by λ1(ξ) and λ̂1(ξ), respectively. The following properties can be readily
checked. We leave the verification to the reader.
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PROPOSITION 4.5. Let S ⊆ R. For any irrational ξ ∈ S we have

λ(ξ)≥ λ̂(ξ)= 1, λint(ξ)≥ λ̂int(ξ)≥ 0, λext(ξ)≥ λ̂ext(ξ)≥ 0. (15)

Further, we have
λ(ξ)=max{λint(ξ), λext(ξ)}

and
max{̂λint(ξ), λ̂ext(ξ)} ≤ λ̂(ξ)= 1. (16)

Remark 3. The ordinary exponent of approximation λ(ξ) can equivalently be defined as
the supremum of λ such that ∣∣∣∣ξ − p

q

∣∣∣∣≤ q−1−λ

has infinitely many solutions p/q ∈Q. However, for the intrinsic and extrinsic exponents,
for certain sets S the definition leads to different exponents than those defined above.
Several inequalities in (15) may turn out to be false with this altered definition.

The identity λ̂(ξ)= 1 is due to Khintchine [18]. In general there is no equality in the
last inequality. Some inequalities concerning special types of Cantor sets can be inferred
from [13, 14], quoted above. For example, by Theorem 1.3, in any one-dimensional Cantor
set C that satisfies the OSC we have λext(ξ)≥ 1 for any ξ ∈ C \Q. Our main result is
inspired by Theorem 3.2 and admits a similar proof.

THEOREM 4.6. Let S ⊆ R be any set and ξ ∈ S. We have

λ̂ext(ξ)≤
1

λint(ξ)
, λ̂int(ξ)≤

1
λext(ξ)

. (17)

If S = C ⊆ R is any one-dimensional Cantor set that satisfies the OSC and ξ ∈ C \Q, then

λ̂ext(ξ)=min
{

1
λint(ξ)

, 1
}
. (18)

Define the spectrum of an exponent as the set of values taken when inserting any
irrational real ξ . Bugeaud [8] provided a construction of ξ with λ(ξ)= λint(ξ)= τ for any
given τ ≥ 1 in missing-digit Cantor sets Cb,W . See also [19, 26]. Therefore the spectrum
of λ in Cb,W equals [1,∞], and the spectrum of λint contains this interval. Further, in
the case where b is prime and W contains 0 and b − 1 but does not contain two successive
digits, the metrical result [13, Theorem 3.10] implies that for r ≥ 0 the set of ξ ∈ Cb,W with
λint(ξ)= r (or λint(ξ)≥ r ) has Hausdorff dimension1/(r + 1), where1= log |W |/log b
is the Hausdorff dimension of Cb,W . Thus from Theorem 4.6 we deduce at once the
following results.

COROLLARY 4.7. Consider the missing-digit Cantor set Cb,W of Hausdorff dimension
1= log |W |/log b. The spectrum of λ̂ext with respect to Cb,W equals [0, 1]. Assume b
is prime and W contains {0, b − 1} but does not contain two successive digits. Then for
τ ∈ [0, 1) the sets {ξ ∈ Cb,W : λ̂ext(ξ)= τ } and {ξ ∈ Cb,W : λ̂ext(ξ)≤ τ } have Hausdorff
dimension 1 · τ/(τ + 1), whereas for τ = 1 the Hausdorff dimension equals 1. In
particular, the set {ξ ∈ Cb,W : λ̂ext(ξ) < 1} has Hausdorff dimension 1/2.
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We pose the problem of deciding whether the claims of Corollary 4.7 generalize to one-
dimensional Cantor sets that satisfy the OSC. Finally, we point out that numbers with the
property λ̂int(ξ)= 1 do exist in any missing-digit Cantor set Cb,W . Indeed, it is easy to
verify this identity for the numbers constructed in [25] which have almost all convergents
in Cb,W . The identity can further be checked for Liouville type numbers ξ =

∑
n≥0 wb−n!,

0 6= w ∈W ; compare with [26, Lemma 3.10]. Thus, in view of the metric result rephrased
above, we believe that the spectrum of λ̂int equals [0, 1] as well. However, we are unable
to show this at present.

4.4. Base expansions. For missing-digit Cantor sets C = Cb,W , Theorems 4.3 and 3.4
have implications for the base b digit patterns of rational numbers that can be stated without
the framework of Cantor sets. Related considerations concerning the period lengths of base
b representations of rational numbers in Cb,W have been addressed in [13, §5]. However,
the results there are almost all conditional in nature. We start with a consequence of
Theorem 4.3.

THEOREM 4.8. Let W ⊆ {0, 1, . . . , b − 1} and 1= log |W |/log b. Let c0, . . . , cN−1 ∈

W and assume that the infinite word (c0c1 · · · cN−1)
∞ has period length N. Then we have

gcd(c0bN−1
+ c1bN−2

+ · · · + cN−1, bN
− 1)�

bN

N 1/1 .

Proof. Write p/q for the fraction (c0bN−1
+ c1bN−2

+ · · · + cN−1)/(bN
− 1) in lowest

terms. Then the rational number p/q has base b expansion (0.c0c1 · · · cN−1)b, and by
assumption it has period length N , which by Theorem 4.3 is � q1. Thus q � N 1/1,
which implies that the common factor is of size� bN/N 1/1. �

The natural assumption that the period length is not shorter than expected is necessary,
since if we let c0 = c1 = · · · = cN−1 ∈W then the greatest common divisor in question is a
multiple of (bN

− 1)/(b − 1) and thus� bN . We now turn to implications of Theorem 3.4.

THEOREM 4.9. Let b ≥ 3 and W ⊆ {0, 1, . . . , b − 1}. Further, let1= log |W |/log b. Let

ξ = (0.c0c1 · · · ckck+1ck+2 · · · cN−1)b, (19)

with N > k ≥ 0 and ci ∈ {0, 1, . . . , b − 1} be a rational number in (0, 1) expanded in
base b. Then ξ = p/q with

p =
N−1∑
i=0

ci bN−1−i
−

k−1∑
j=0

c j bk−1− j , q = bN
− bk . (20)

Assume there exists an index i with ci /∈W and let φ(ξ) ∈ {0, 1, 2, . . . , N − 1} be the
smallest index with this property. Further, let p0/q0 be the fraction p/q in lowest terms.
Then φ(ξ)� q10 . Equivalently, if for ξ in (19) the first s base b digits c0, c1, . . . , cs lie in
W , but not all ci belong to W , then its reduced denominator q0 is� s1/1.

The relation to Theorem 3.4 arises from the fact that the rational numbers in Cb,W

are precisely those where ci ∈W in (19). For a generic rational ξ in (19) we expect that
q0 is of exponential order, that is, log q0� N ≥ s, stronger than in our claim. However,
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elementary methods only yield a bound of order q0� s that is valid for all ξ in (19), as
we will see from Proposition 4.10 below. The bound s1/1 of our Theorem 4.9 is stronger
since 1< 1. The special case of rationals where b is a primitive root of the denominator
illustrates the improvement well. We denote by ϕ the Euler totient function. For A, B
coprime integers, as usual ordA mod B denotes the smallest positive integer m with Am

≡

1 mod B. The next proposition comprises results on the ϕ-function and period lengths of
rational numbers in a base.

PROPOSITION 4.10. We have ϕ(q)� q/log log q. Let A, B, C be integers with
(A, C)= 1. Write C = C1C2 with (C2, B)= 1 and C1 consisting only of factors of B.
Then ξ = A/C written in base B has preperiod of length P(ξ) equal to the smallest
integer v with C1|Bv , followed by a period of length L(ξ)= ordB mod C2. In particular, if
(A, B)= 1, then A/C has purely periodic base B expansion of period length ordB mod C.
In any case, the total period length P(ξ)+ L(ξ) of ξ is of order� C.

We omit the proof as the claims are well known. The first claim can be found in the
book of Hardy and Wright [15, Theorem 328]. The identities for periods can be checked
in an elementary way. The bounds on period lengths follow from L(ξ)≤ ordB mod C2 ≤

ϕ(C2)≤ C2 − 1≤ C − 1 and P(ξ)≤ v� log C1 ≤ log C , or alternatively directly from
Theorem 4.3. Recall that A is called a primitive root modulo B if ordA mod B = ϕ(B).

COROLLARY 4.11. Let b, W, 1 be as in Theorem 4.9. Let p0, q0 be coprime integers and
assume that b is a primitive root modulo q0. Let (19) be the base b expansion of ξ = p0/q0.
Assume that not all c j belong to W and let i be the smallest index for which the digit ci

lies outside W . Then i � N1(log log N )1, that is, ci /∈W for some i � N1(log log N )1

with an absolute implied constant. In particular, any digit v ∈ {0, 1, 2, . . . , b − 1} that
occurs among the ci in (19) already occurs within the first� N log(b−1)/log b places.

Proof. If b is a primitive root modulo q0 then by Proposition 4.10 the number ξ =
p0/q0 has no preperiod (i.e. k = 0) and the period length N satisfies N = ordb mod q0 =

ϕ(q0)� q0/log log q0. Thus, using the notation of Theorem 4.9, from its claim we
infer i = φ(ξ)� q10 � (N log log N )1, as desired. For the particular case, apply the
above observation to W = {0, 1, . . . , b − 1} \ {v} of cardinality b − 1, which induces
1= log(b − 1)/log b. �

An equivalent way to state the claim of Theorem 4.9 is that the numbers p, q as in (20)
have greatest common divisor at most� bN/φ(ξ)1/1. If we let k = 0, another variant on
the base b expansion of large divisors of numbers of the form bN

− 1 is obtained.

COROLLARY 4.12. Let b, W and 1< 1 as in Theorem 4.9. Let ψ and φ be positive
integers with the property φ ≥ c1ψ

1 for sufficiently large c1 = c1(b) > 0. Assume for some
integer N ≥ 1 that d ′ ≥ bN/ψ divides bN

− 1 and is written in base b as

d ′ = (u0u1 · · · uN−1)b = u0bN−1
+ u1bN−2

+ · · · + uN−2b + uN−1, (21)

with possibly c0 = c1 = · · · = cs = 0 for some s ≥ 0, and assume that all ci ∈W . Then for

W1 = {u j : 0≤ j ≤ φ}, W2 = {u j : 0≤ j ≤ N − 1},

the letters occurring in the first φ and all digits of d ′, respectively, we have W1 =W2.
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In particular, if φ = φ(N )= br N1
c for some r ∈ (0, 1], and ψ = ψ(N )= RN for

sufficiently small R = R(b, r) > 0, the following statement holds. Assume that bN
− 1

has a small divisor dN ≤ RN, and write the complementary divisor d ′N = (b
N
− 1)/dN as

in (21). The sets of digits that occur within {u0, u1, . . . , ubN1rc} and {u0, u1, . . . , uN−1}

coincide.

In particular, if we take W of cardinality b − 1, we see that for any large divisor of
bN
− 1, all digits occurring in its base b expansion can already be found in a relatively

short initial sequence. Generically, for large N we expect W1 =W2 = {0, 1, . . . , b − 1}.
However, d ′N = (b

N
− 1)/(b − 1) in base b reads (1N )b, so W1 =W2 = {1}. In this case

we easily verify the claim. We end this section with an example.

Example 1. Let b = 3, W = {0, 1} with 1= log 2/log 3. Then

gcd(ε03N−1
+ ε13N−2

+ · · · + εN−231
+ 2, 3N

− 1)�
3N

N 1/1 ,

for any choice of ε j ∈ {0, 1}, 0≤ j ≤ N − 2 (observe that εN−1 = 2 /∈W ). Thus, 3N
− 1

cannot have a very large divisor given by the sum expression. Consider special cases. First,
assume that ε j = 0 for 0≤ j ≤ N − m and ε j = 1 for N − m + 1≤ j ≤ N − 2, for some
integer 2≤ m ≤ N + 1. Then the sum expression results in (3m

+ 1)/2, thus

gcd
(

3m
+ 1
2

, 3N
− 1

)
�

3N

N 1/1 , 0≤ m ≤ N − 2.

In particular, the assumption (3m
+ 1)|(2 · (3N

− 1)) implies that 3m
� 3N/N 1/1, or

equivalently m < N − log N/log 2+ c for c ∈ R. In this particular example, in fact the
divisibility condition implies the stronger (sharp) estimate m ≤ N/2, since (3m

+ 1)|(2 ·
(3N
− 1)) is equivalent to (3m

+ 1)|(2 · (3N−m
+ 1)). As a second special case let ε j = 1

precisely for j a power of 2 and ε j = 0 otherwise. We are unable to find an elementary
proof that confirms our implication

gcd(32k
+ 32k−1

+ · · · + 320
+ 2, 3N

− 1)�
3N

N 1/1 , k <
log N
log 2

.

5. Proofs
5.1. Proof of Theorem 2.1. The crucial step for the proof of Theorem 2.1 is to
extend [13, Lemma 2.2]. Fortunately, this can be derived quite easily. Compared to [13],
it does not involve the measure supported on C , which might not be nice in our general
setting, but stems from the following elementary counting argument.

PROPOSITION 5.1. Let C be any Cantor set as in Definition 1 and let τ =max1≤ j≤J τ j

be the maximum contraction ratio of the IFS. If l ≥ 1 is an integer and E a subset of
C of cardinality greater than J l , then there are two elements x, y in E with distance
‖x − y‖ ≤ diam · τ l , where diam is the diameter of the compact set C.

Proof. For any α ∈ E let (ω1,α, ω2,α, . . .) be any address of α and let π j,α = fω j,α . Then
by the pigeonhole principle, since |E |> J l , there are two elements x, y whose prefixes
(ω1,x , . . . , ωl,x ) and (ω1,y, . . . , ωl,y) coincide, so π j := π j,x = π j,y for 1≤ j ≤ l. Let

a = lim
n→∞

πl+1,x ◦ πl+2,x · · · ◦ πl+n,x (0), b = lim
n→∞

πl+1,y ◦ πl+2,y · · · ◦ πl+n,y(0).
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Clearly a, b ∈ C . Then we have

‖x − y‖ = ‖π1 ◦ π2 ◦ · · · ◦ πl(a)− π1 ◦ π2 ◦ · · · ◦ πl(b)‖ ≤ τ l
‖a − b‖.

Since a, b ∈ C their distance is bounded above by diam and the claim follows. �

From the proposition we immediately obtain the required variant of [13, Lemma 2.2].

LEMMA 5.2. Let C, τ be as in Proposition 5.1. Then, if N ≥ 1 is an integer and
ξ1, . . . , ξ N

belong to C, there exist a constant K1 > 0 and two indices 1≤ i < j ≤ N
with

‖ξ
i
− ξ

j
‖ ≤ rN := (N/K1)

log τ/log J .

We may choose K1 = (diam/τ)− log J/log τ .

Proof. For given N , choose the integer l ≥ 0 so that J l < N ≤ J l+1. By Proposition 5.1
there are two elements in the sequence with distance at most diam · τ l

≤ diam ·
τ log N/log J−1

= (diam/τ) · N log τ/log J , which leads to K1 in the theorem. �

In what follows, we denote by ‖A‖∞ :=maxx 6=0{‖A j x‖/‖x‖} the norm of a matrix
A ∈ Rd×d .

Proof of Theorem 2.1. We proceed essentially as in the proof of [13, Theorem 2.1]. Let
ξ ∈ C be arbitrary. Fix an address ω = (ω1, . . .) ∈ {1, 2, . . . , J }N of it, so that with π j =

fω j we have ξ = limk→∞ π1 ◦ π2 ◦ · · · πk(0). If σ is the left shift on the space of infinite
formal words, for every large N we consider {σ n(ω)(0) : 0≤ n ≤ N }, a finite sequence
in C . By Lemma 5.2 there are two integers 0≤ n < m + n ≤ N so that if

y := σ n(ω)(0)= lim
k→∞

πn+1 ◦ · · · ◦ πn+k(0),

z := σm+n(ω)(0)= lim
k→∞

πm+n+1 ◦ · · · ◦ πm+n+k(0),

then ‖y − z‖ ≤ rN . Define endomorphisms on Rd by u(1) = π1 ◦ · · · ◦ πn and u(2) =
πn+1 ◦ · · · ◦ πm+n , so that ξ = u(1)(y) and y = u(2)(z). Consider Aω j ∈ Zd×d and qω j ∈ Z
as in the theorem. Then let

P(1) = Aω1 · · · Aωn , P(2) = Aωn+1 · · · Aωn+m ,

q(1) = qω1 · · · qωn , q(2) = qωn+1 · · · qωn+m .

Further, with S :=
∏

1≤ j≤J s j , define the integer vectors

r (1) =
n∑

i=1

Aω1 · · · Aωi−1rωi
qωi+1 · · · qωn ,

and

r (2) =
m∑

i=1

Aωn+1 · · · Aωn+i−1rωn+i

S
sωn+i

qωn+i · · · qωn+m .
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In r(2) the additional factor S/(qωn+1sωn+i ) compared to [13] has entered according to the
notational difference s j 6= q j for the shift vector. By the recursive process, the maps u(i)
are accordingly given as

u(i)(t)=
P(i)t
q(i)
+

r (i)
Sq(i)

, i = 1, 2.

The unique fixed point of u(2) denoted by F2 is given by the solution of

F2 =
P(2)
q(2)

F2 +
r (2)
Sq(2)

,

which yields

F2 =
1
S
(q(2) Id − P(2))−1r (2).

We show that the inverse matrix is well defined. All A j have norm ‖A j‖∞ < q j since
A j/q j are contractions for 1≤ j ≤ J , thus their product which is P(2) has norm less than
q(2), that is,

‖P(2)‖∞ < q(2). (22)

Consequently, all eigenvalues of P(2) are of absolute value smaller than q(2), proving the
regularity of q(2) Id − P(2). We also observe that F2 ∈Qd by Cramer’s rule, hence this
applies to u(1)(F2) as well so we may write

p/q = u(1)(F2)=
P(1)(q(2) Id − P(2))−1r (2) + r (1)

Sq(1)
,

with p ∈ Zd and q ∈ N. Concretely, by Cramer’s rule the inverse matrix contributes a
factor det(q(2) Id − P(2)) > 0 in the denominator, so the total denominator will be q =
Sq(1) det(q(2) Id − P(2)) if we do not simplify the vector p/q to lowest terms. For any
matrix A ∈ Rd×d we have |det A| ≤ ‖A‖d∞ (the determinant is at most the product of
column norms, and columns are images of canonical base vectors), and from (22) we
infer ‖q(2) Id − P(2)‖∞ ≤ ‖q(2) Id‖∞ + ‖P(2)‖∞ ≤ 2q(2). Applied to A = q(2) Id − P(2),
we derive

0< q ≤ Sq(1) · (2q(2))d ≤ S(2q(1)q(2))d . (23)

Taking logarithms yields

log q ≤ d
m+n∑
i=1

log qωi + c, (24)

with the constant c = d log 2+ log S. Let τ(i) be the contraction rates on u(i), i = 1, 2.
Then, on the other hand,

‖y − F2‖ ≤ τ(2)‖z − F2‖ ≤ τ(2)‖y − F2‖ + τ(2)‖z − y‖,

hence
‖y − F2‖ ≤

µ(2)

1− µ(2)
‖z − y‖.

Applying u(1) gives

‖ξ − p/q‖ ≤
τ(1)τ(2)

1− τ(2)
‖z − y‖ ≤

τ(1)τ(2)

1− τ(2)
rN .
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Now τ(2) ≤max1≤ j≤J τ j = τ , thus with K2 = (1− τ)−1 we infer that

log ‖ξ − p/q‖ ≤ log K2 + log rN + µ

m+n∑
i=1

log τωi + c.

By assumption, log τωi = µωi log qi ≤ µ log qi for every 1≤ i ≤ m. Thus from (24) and
since µ≤ 0, further,

log ‖ξ − p/q‖ ≤ log K2 + log rN +
µ

d
log q +

c
d
,

and after exponentiating again we get

‖ξ − p/q‖ ≤ K3rN qµ/d , (25)

for some constant K3. On the other hand, again from (23) we derive

log q ≤ d
m+n∑
i=1

log qωi + d log 2+ log S.

Let qmax =max1≤ j≤J q j . Finally since q ≤ S · 2dqd(m+n)
max ≤ S · 2d N qd N

max = S ·
(2qmax)

d N , for N := blog Q/(d(log(2qmax))+ log S)c and Q ≥ S2dqd
max we conclude

that q ≤ Q and

rN ≤

(
N
K1

)log τ/log J

≤ K4

(
log Q

2d K1 log qmax

)log τ/log J

= K5 log Qlog τ/log J .

Putting K1 = K3 K5, we derive the claim from (25). �

5.2. Proofs from Section 3. For the proof of Theorem 3.1 we utilize an auxiliary
result established within the proof of [14, Theorem 1.1]. It deals with almost arithmetic
sequences in Cantor sets. While originally formulated only for similarity Cantor sets, as
pointed out in §1.2 we may extend its claim to Cantor sets as in Definition 1. We do not
rephrase the notion of almost arithmetic from [14] and restrict to the arithmetic sequence
setting that suffices for our proof.

LEMMA 5.3. (Fishman and Simmons [14]) Let C ⊆ Rd be a Cantor set which satisfies
the OSC. There exists a positive integer N = N (C) with the property that if the set C
contains an arithmetic progression of length N, then the entire line segment joining these
points is contained in C. In particular, if C contains no line segment, then no non-constant
arithmetic progression of length N is contained in C.

The lemma will apply to the first condition of Theorem 3.1. For the implication from
the latter condition, we will employ our counting result Theorem 4.1.

Proof of Theorem 3.1. As pointed out, the claim is almost an immediate consequence
of Lemma 5.3. In our situation, given ξ ∈ C and Q > 1, we consider p/bQc for p =
(p1, . . . , pd) chosen such that pi/bQc is the rational number with denominator bQc that
is closest to the i th coordinate ξi of ξ ∈ C . Clearly ‖ξ − p/bQc‖ � Q−1. Assume the first
condition of the theorem. Let N = N (C) be large enough that C contains no arithmetic

https://doi.org/10.1017/etds.2020.7 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.7


1578 J. Schleischitz

sequence of length N as in Lemma 5.3. Then with v ∈ Zd as in the theorem, the rational
vectors

p/bQc, p/bQc +
1
bQc

v, p/bQc +
2
bQc

v, . . . , p/bQc +
N
bQc

v

have common denominator at most bQc ≤ Q and form an arithmetic progression. Thus
not all can belong to C as otherwise by Lemma 5.3 the line segment joining p/q and
p/bQc + N/bQc · v would be contained in C , contradicting our hypothesis. On the other
hand, we easily see that any element of the progression has distance�N ,v Q−1

�C,v Q−1

from ξ .
Finally, assume the second condition D < 1/2. Then for every prime number N with

Q/2≤ N < Q again let p
N
/N be the rational vector with numerator coordinates pN ,i

chosen so that pN ,i/N is closest to ξi . We see that ‖p
N
/N − ξ‖� Q−1. Moreover, for

Q > diam these vectors are clearly pairwise distinct and by the prime number theorem
there are � Q/log Q such vectors. On the other hand, by Theorem 4.1 there are only
� Q2D rational vectors in C with denominator at most Q. Thus if D < 1/2, for large Q
some must lie outside C and satisfy the desired property. �

The proof of Theorem 3.2 requires more preparation. The next lemma comprises some
estimates on continued fractions and is partly well known.

LEMMA 5.4. Let ξ be a real number with sequence of convergents (ut/vt )t≥1. Then

1
2vtvt+1

≤

∣∣∣∣ξ − ut

vt

∣∣∣∣≤ 1
vtvt+1

, t ≥ 1. (26)

Moreover, if t ≥ 2 is given and r/s 6= ut/vt is any rational number with 0< s < vt+1/2,
then

|sξ − r | ≥
1

2vt
. (27)

For the proof, recall that for an origin-symmetric convex set K ⊆ Rh and a lattice 3⊆
Rh , the i th successive minimum λi (K , 3) of3with respect to K is defined as the infimum
of real numbers λ such that 3 ∩ K contains i linearly independent vectors (for 1≤ i ≤
h). Minkowski’s second convex body theorem then bounds the product of all successive
minima in terms of the volume of K , the fundamental area of the lattice 3 and h. In
particular, the case h = 2 we will require reads

2 det3
V (K )

≤ λ1(K , 3)λ2(K , 3)≤
4 det3
V (K )

. (28)

Proof of Lemma 5.4. The inequalities of (26) are in fact well known. Recall that two
consecutive covergents have distance ut+1/vt+1 − ut/vt = (−1)t/(vtvt+1). In particular,
convergents lie alternately on the left and right of the limit, and the right inequality follows.
The left estimate follows similarly, incorporating also the well-known fact that ut+1/vt+1

lies closer to ξ than ut/vt . We have to show the second claim involving (27). Define the
convex body

K = [−vt , vt ] × [−v
−1
t+1, v

−1
t+1],
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and the lattice
3ξ = {(m, mξ − n) ∈ R2

: m, n ∈ Z}.

The lattice has determinant det(3ξ )= 1 and the rectangular convex body has volume
vol(K )= 4vt/vt+1. We may assume that ξ ∈ (0, 1) and thus 0< ul < vl for all large l.
Since we know from the theory of continued fractions and (26) that

|ut+1ξ − vt+1|< |utξ − vt | ≤
1
vt+1

,

we see that the point (ut , utξ − vt ) lies in 3ξ ∩ K . Hence the first successive minimum
λ1(K , 3ξ ) of 3 with respect to K satisfies λ1(K , 3ξ )≤ 1. By Minkowski’s second
convex body theorem (28) we conclude that the second successive minimum satisfies

λ2(K , 3ξ )≥
2 det(3ξ )

V (K )λ1(3ξ , K )
≥
vt+1

2vt
.

Thus there is no lattice point linearly independent of (ut , utξ − vt ) in the region
vt+1

2vt
· K =

[
−
vt+1

2
,
vt+1

2

]
×

[
−

1
2vt

,
1

2vt

]
.

In other words, for any (r, s) linearly independent of (ut , vt ) and with |s| ≤ vt+1/2 we
have |sξ − r | ≥ 1/(2vt ). The proof of the second claim is finished. �

For the density result in Theorem 3.2 we utilize the following lemma.

LEMMA 5.5. Let C ⊆ Rd be a Cantor set. Assume for every function 9 : N→ R>0 that
there exists ξ ∈ C so that

‖ξ − p/q‖ ≤9(q)

has infinitely many solutions p/q ∈Q ∩ C. Then the set of ξ with the same property is
dense in C.

Proof of Lemma 5.5. Let ξ ∈ C be arbitrary with address (ω1, ω2, . . .) and write πi =

fωi so that ξ = limk→∞ π1 ◦ . . . ◦ πk(0). For given 9 and ε > 0, we construct a 9-
approximable point ξ

ε
with ‖ξ

ε
− ξ‖< ε. Again for τ ∈ (0, 1) the largest absolute value

of the contraction factors and diam the diameter of C , take an integer u large enough so
that τ udiam< ε. Then consider the function 8(t) :=9(Nt) · N−1 for a large integer N
dependent only on u (and thus ε) to be chosen later. By assumption there exists ζ ∈ C that
is 8-approximable. Define ξε = π1 ◦ π2 ◦ · · · πu(ζ ). Then we have

‖ξ
ε
− ξ‖ ≤ τ udiam< ε,

as the addresses of ξ and ξ
ε

coincide up to the uth place. On the other hand, we claim
that ξ

ε
is 9-approximable if N was chosen large enough. To see this, first notice that as

π j are linear maps with rational coefficients, also T := π1 ◦ π2 ◦ · · · πu induces a linear,
rational transformation T (y)= (Ay + b)/s, with A ∈ Zd×d , b ∈ Zd and s ∈ N. It is not
hard to see that if some y ∈ R is h-approximable for some function h(t), then T (y) (with
T as above) is Nh(t/N )-approximable, for sufficiently large N depending only on s.
This is readily derived from the facts that ‖T (y)− T (p/q)‖ ≤ ‖y − p/q‖ (since T is
a contraction) and den(T (p/q))≤ sq, where den denotes the common denominator of a
rational vector. Application to h(t)=8(t) and y = ζ , starting with some suitable value
N = N (ε), yields that ξ

ε
= T (ζ ) is N8(t/N )=9(t)-approximable. �
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We can now prove Theorem 3.2.

Proof of Theorem 3.2. We recursively define a fast-growing lacunary sequence (an)n≥1

of positive integers that will induce ξ ∈ C satisfying (8), via a procedure described
below. Assume for the moment that this sequence is fixed. Write b1 = a1 − 1 and bl =

al − al−1 − 1 for integers l ≥ 2. Let f = f1, g = f2 be two different contractions in our
IFS and without loss of generality assume that f is the map whose fixed point α = α j is
rational. Let τi , for i = 1, 2, be the contraction factors of f and g respectively, and let
τ =maxi=1,2 |τi |< 1. We define ξ by

ξ := lim
i→∞

f b1 ◦ g ◦ f b2 ◦ g ◦ · · · ◦ f bi (0). (29)

This means that the contraction is g at the ai th positions and f otherwise. Assume that
we have chosen a1 < a2 < · · ·< ak and wish to construct the remaining sequence with the
property stated in the theorem. Take

θk := f b1 ◦ g ◦ f b2 ◦ g ◦ · · · ◦ f bk ◦ g ◦ f∞(0). (30)

This vector clearly lies in C . Then clearly the suffix vector f∞(0) of θk is the fixed
point of f , so that f∞(0)= f (α)= α, and recall α is assumed to be rational. Since
both f, g are rational-preserving, we see that θk = f b1 ◦ g ◦ f b2 ◦ g ◦ · · · ◦ f bk ◦ g(α)
is also a rational vector (if the IFS is affine then with denominator � N dak if N is the
largest denominator among the contraction factors, but we will not need this). Write
θk = p

k
/qk = (pk,1, . . . , pk,d)/qk in lowest terms, with qk � N dak . Next, we claim that

‖p
k
/qk − ξ‖ ≤ diam · τ ak+1 , (31)

where diam denotes the diameter of our compact Cantor set C . Observe that

‖p
k
/qk − ξ‖ = ‖ f b1 ◦ g ◦ · · · ◦ g ◦ f bk+1(α)− f b1 ◦ g ◦ · · · ◦ g ◦ f bk+1(β)‖

≤ τ ak+1‖α − β‖,

for
β = lim

L→∞
f bk+1 ◦ g ◦ · · · ◦ f bL (0)

some well-defined limit in C , since f, g are contractions with factor at most τ and there are
a total of ak+1 contractions applied. To derive (31) it then suffices to notice that ‖ξ − β‖ ≤
diam as they both belong to C . From (31) we see that ‖ξ − p

k
/qk‖ can be made arbitrarily

small when taking ak+1 large enough, which is all we need for what follows.
Since τ < 1 by definition, we may assume ak+1 is large enough that pk,i/qk is a

convergent (not necessarily in lowest terms!) to ξi for any 1≤ i ≤ d . Let sk,i/tk,i be
the preceding convergent and yk,i/zk,i be the convergent following pk,i/qk , for 1≤ i ≤ d.
We have to justify that this is well defined, in the sense that sk,i/tk,i and yk,i/zk,i only
depend on ak+1 but not on the exact choices of ak+2, ak+3, . . . , for any given sufficiently
large ak+1 and much larger ak+2. This is clear for the preceding convergent sk,i/tk,i . For
yk,i/zk,i , notice that when we choose ak+2 much larger than ak+1 as well then we can
guarantee that pk+1,i/qk+1 is a convergent to ξi as well, by the same argument as above.
We can thus reconstruct the convergents of ξi up to θk+1,i = pk+1,i/qk+1. Now zk,i ≤ qk+1

by definition of yk,i/zk,i as the subsequent convergent of pk,i/qk . Hence, indeed, once we
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have chosen large ak+1 and assume that ak+2 exceeds ak+1 by a large amount, everything
is well defined. Since, by Lemma 5.4,

zk,i ≥
1

2qk |ξi − pk,i/qk |
,

and qk is fixed, we infer from (31) that we can make zk,i arbitrarily large by choosing ak+1

accordingly large (note that for this argument we do not require pk,i/qk to be in lowest
terms; the same applies to any argument below).

By Lemma 5.4 we know that∣∣∣∣ξi −
sk,i

tk,i

∣∣∣∣≥ 1
2tk,i qk

,

∣∣∣∣ξi −
pk,i

qk

∣∣∣∣≥ 1
2zk,i qk

,

and for any rational number ri/s 6= pk,i/qk with 0< s < zk,i/2 we have

|sξi − ri | ≥
1

2qk
.

So let Qk = zk,i/3. Thus, for any ri/s as above,∣∣∣∣ξi −
ri

s

∣∣∣∣≥ 1
2sqk

≥
1

2qk
·

1
zk,i

. (32)

Recall that qk is fixed so 1/(2qk) is a constant as well. On the other hand,
8(Qk)

Qk
= 3 ·

8(zk/3)
zk,i

. (33)

Now by assumption 8 tends to 0, and we have observed above that we may choose ak+1

and consequently Qk arbitrarily large. Thus we may choose ak+1 large enough so that
8(Qk) < 1/(6qk), and (32) and (33) imply that∣∣∣∣ξi −

ri

s

∣∣∣∣> 8(Qk)

Qk

for any ri/s 6= pk,i/qk = θk,i with s < Qk . Since this holds for any 1≤ i ≤ d and θk ∈ C ,
this means that any r/s /∈ C with s < Qk satisfies

‖ξ −
r
s
‖ ≥ |ξi −

ri

/
s|>

8(Qk)

Qk
.

The desired property holds for Q = Qk . Repeating this process, we get a sequence of
values (Qn)n≥1→∞ with property (8) for ξ defined in (29).

To finish the proof, we show that all vectors ξ = (ξ1, . . . , ξd) derived from our
construction are irrational, and that we can construct uncountably many distinct ones
among them. The density is then also implied by Lemma 5.5. Clearly the method is flexible
enough to provide uncountably many formal elements f b1 ◦ g ◦ f b2 ◦ g ◦ · · · with the
given property. If we assume any element has at most countably many addresses, we are
done. If not, by hypothesis we may assume that f, g are one-to-one. This case requires
more work. We first show that any ξ constructed above is irrational. Observe that by the
fast growth of the ai , we may assume that the approximating rational vectors θk = p

k
/qk

to ξ satisfy

‖ξ −
p

k
qk
‖<

1

2q3
k
. (34)
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In particular, any θk,i = pk,i/qk is a convergent to ξi (not necessarily in lowest terms).
Note that the denominators qk tend to infinity, since we divide by some integer at each
contraction step. If some coordinate ξi = ri/si were rational, then clearly any rational
number pk,i/qk has distance ≥ (si qk)

−1
� q−1

k unless ξi = pk,i/qk . Hence, in view of
(34), if ξi were rational, then we must have ξi = pk,i/qk for all large k. In particular, θk,i =

θk+1,i for large k. Hence, if all coordinates ξi are rational, by increasing k if necessary we
have the identity for all coordinates i = 1, 2, . . . , d, that is, θk = θk+1 = ξ for any large k.
Since the addresses of θk, θk+1 share the same prefix up to f bk ◦ g and f, g are one-to-one
by assumption, applying inverse functions repeatedly, we infer an identity

f bk+1 ◦ g(α)= α, α = f∞(0). (35)

Recall that f fixes α. In fact, y = α is the only solution to f (y)= α since f is one-to-
one. Now note that if all contractions of the IFS fix the same element α ∈Qd , it is easy to
check that the Cantor set collapses to a single point C = {α}, but then α has uncountably
many addresses, which we have dealt with before. Thus we may assume that g does not
fix α, that is, g(α) 6= α. Then, by the above observation that the preimage α under f is
only α, we see that (35) cannot hold for any choice of bk+1. Thus we have confirmed that
any ξ in our construction is irrational. Lemma 5.5 and its proof show that taking the finite
forward orbit π1 ◦ · · · ◦ πm(ξ) of some ξ under the IFS essentially preserves the property,
so we obtain a countably infinite set of suitable ξ that is dense in C . We only sketch the
proof of why the set is actually uncountable and omit rigorous calculations. Assume ξ1, ξ2

are two ξ as in (29) arising from sequences (a1
n)n≥1 and (a2

n)n≥1, respectively. We claim
that if they are ordered a1

1 < a2
1 < a1

2 < a2
2 < a1

3 < · · · with very large gaps between two
consecutive elements, then ξ1

6= ξ2. If true, this clearly implies that we get an uncountable
family of suitable ξ . The claim is obvious if there is some coordinate i for which ξ1

i is
rational and ξ2

i is irrational, or vice versa. Thus, as we have shown above that both vectors
ξ1, ξ2 are irrational, we may assume that there is an index i with both ξ1

i , ξ
2
i irrational. To

show the claim, observe that the respective rational approximations θ j
k,i = p j

k,i/q
j

k,i as in

(30) are again very good approximating convergents to ξ j
i . If we choose the gaps between

two consecutive elements of a1
1, a2

1, a1
2, a2

2, . . . sufficiently large in each step, then we will
have q1′

k,i < q2′
k,i < q1′

k+1,i for any k ≥ 1, where p j ′
k,i/q

j ′
k denotes p j

k,i/q
j

k written in lowest
terms. Here we use the well-known fact from the theory of continued fractions that the
denominators of convergents grow fast when the approximation is good; see (26). In fact,
with a proper choice the convergent y2

k,i/z
2
k,i of ξ2 following p2

k−1,i/q
2
k−1 will still have

larger denominator than q1
k,i . Hence p1

k,i/q
1
k,i is a convergent to ξ1

i but not convergent to
ξ2

i , thus the continued fraction expansions of ξ1
i and ξ2

i are not the same, consequently
ξ1

i 6= ξ
2
i and ξ1

6= ξ2. �

We turn to the proof of Theorem 3.4. For convenience, we will use the framework of
parametric geometry of numbers introduced in [28], essentially a parametric logarithmic
version of Minkowski’s second lattice point theorem. We only need the special case of
approximation to a single number, which corresponds to n = 2 in the notation of [28].
This means essentially that we use a parametric, logarithmic version of formula (28) above.
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Concretely, for given ξ ∈ R, similarly to the proof of Lemma 5.4 we consider the lattice
3ξ and the family of convex bodies K (T ) parametrized by T ≥ 1 of the form

3ξ = {(m, mξ − n) ∈ R2
: m, n ∈ Z}, K (T )= [−T, T ] × [−T−1, T−1

]. (36)

Observe that a point in 3ξ ∩ K (T ) corresponds to the system of inequalities

|m| ≤ T, |mξ − n| ≤ T−1.

Denote by λ1,ξ (T ), λ2,ξ (T ) the successive minima of K (T ) with respect to the lattice3ξ ,
that is, λi,ξ is the minimum value for which λi,ξ (T )K (T ) contains i linearly independent
points of 3ξ , for i ∈ {1, 2}. According to Minkowski’s second convex body theorem (28),
in view of vol(K (T ))= 4 and det3ξ = 1, we infer that

1
2
= 2

det3ξ
vol K (T )

≤ λ1,ξ (T )λ2,ξ (T )≤ 4
det3ξ

vol K (T )
= 1.

If we let t = log T and L i,ξ (t)= log λi,ξ (T ) for i ∈ {1, 2}, then we obtain

− log 2≤ L1,ξ (t)+ L2,ξ (t)≤ 0, t ≥ 0. (37)

The functions L i,ξ (t) are piecewise linear with slopes in {−1, 1}. More precisely, if
(mi , ni ) ∈ Z2, with mi > 0, are the vectors realizing the i th minimum at the given position
t = log T for i ∈ {1, 2}, then

L i,ξ (t)= L(mi ,ni )(t), i ∈ {1, 2},

where for (m, n) ∈ Z2 we denote

L(m,n)(t) :=max{log m − t, log |mξ − n| + t}. (38)

In particular, L(m,n)(t) has its minimum at the point position (t0, L(m,n)(t0)) with t = t0 =
(log m − log |mξ − n|)/2, where the expressions in the maximum coincide. This set-up
will suffice for our purpose to prove Theorem 3.4; we refer to [28] for parametric geometry
of numbers with respect to simultaneous rational approximation to ξ1, . . . , ξd .

Proof of Theorem 3.4. First consider the special case C = Cb,W . Fix any p/q ∈Q \ C .
Let Q = 2bq. Further, let ξ ∈ C \Q be given. Note that we are in the situation of
Theorem 1.1. Application of Theorem 1.1 to Q ≥ 2b ≥ 1 yields that the system

1≤ m ≤ bQ1

, |mξ − n| ≤
b
Q

has a solution in positive integers m, n such that n/m ∈Q ∩ C . Write |mξ − n| = σ/Q
with σ ∈ [0, b]. Since ξ is irrational in fact σ > 0. Transition to logarithmic scale yields
that the minimum of the function L(m,n)(t) is attained for

t = t0 :=
log m + log Q − log σ

2
,

and at this position we have

L(m,n)(t0)= log m − t0 =
log m − log Q + log σ

2
.
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Clearly the (p, q) ∈ Z2 we started with is linearly independent of (m, n) ∈ Z2, since this
just rephrases as m/n 6= p/q, which is true since m/n ∈ C but p/q /∈ C . Hence by (37)
we have

L(p,q)(t0)≥
log Q − log m − log σ

2
− log 2,

as the reverse estimate would imply that L1,ξ (t0)+ L2,ξ (t0)≤ L(p,q)(t0)+ L(m,n)(t0) <
− log 2, contradicting (37). In view of the definition of L(p,q) in (38), equivalently at least
one of the inequalities

log q − t0 ≥
log Q − log m − log σ

2
− log 2

and
log |qξ − p| + t0 ≥

log Q − log m − log σ
2

− log 2

holds. Thus, if the first estimate is violated, which just becomes

q ≤
Q
2σ
, (39)

then the second one is correct, which yields

|qξ − p| ≥
1

2m
.

However, (39) is satisfied since q = Q/2b ≤ Q/2σ , therefore we conclude that

|qξ − p| ≥
1

2m
≥

b−Q1

2
=

b−(2b)1q1

2
. (40)

Notice that the bound is independent of the choice of ξ ∈ C \Q. Assume that the distance
d(C, p/q) for some p/q ∈Q \ C was smaller than the right-hand side of (40) divided
by q. Then by compactness of C there is ξ0 ∈ C realizing this distance d(C, p/q)=
d(ξ0, p/q). Clearly ξ0 /∈ C \Q, since for these numbers we have (40). However, since
C \Q is dense in C , we get a contradiction to (40) anyway by choosing ξ ∈ C \Q
sufficiently close to ξ0. Hence the right-hand side in (40) divided by q is a lower bound
for d(C, p/q), which means (11) is true. Since p/q ∈Q \ C and ξ ∈ C \Q were chosen
arbitrary, we readily infer (12) from (40) as well. This finishes the proof of the special case
C = Cb,W .

For the general case of any monic, rationally generated Cantor set C with the OSC, by
Theorem 1.2 for any ξ ∈ C \Q the estimates

1≤ m ≤ eQ1

,

∣∣∣∣ξ − m
n

∣∣∣∣≤ K
Q

admit a solution m/n ∈ C for any large Q and some constant K . For given p/q ∈Q \ C ,
we proceed as above for Q = 2K q to obtain

|qξ − p| ≥
1

2m
≥

e−Q1

2
=

e−(2K )1q1

2
,

and the claim follows again by choosing ρ > (2K )1 sufficiently large to guarantee

e−ρq1 <
e−(2K )1q1

q
simultaneously for any q ≥ 1. �

A similar strategy is applied for the proof of Theorem 4.6 below, indeed the right-hand
claim of (17) rewritten as λext(ξ)≤ 1/̂λint(ξ) resembles the assertion of Theorem 3.4.
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5.3. Proofs from Section 4. We start this section with the proof of the counting results.
For this purpose we employ Proposition 5.1 above.

Proof of Theorem 4.1. Let l ≥ 0 be an integer. Assume that there are more than J l distinct
rational vectors in C , each with common denominator at most N . Then by Proposition 5.1
there are two vectors α, α′ among them that differ by at most ‖α − α′‖ ≤ diam · τ l . On
the other hand, if we write α′ = p/q, α′ = r/s, then

‖α − α′‖ = ‖p/q − r/s‖ ≥
1

qs
≥ N−2. (41)

We conclude that N ≥ diam−1/2τ−l/2. In other words, if N < diam−1/2τ−l/2 then there
are at most J l

= τ−Dl rational vectors with common denominator at most N . Now, for
given N , let l be the unique integer with diam−1/2τ−l/2+1

≤ N < diam−1/2τ−l/2. Then
by the above argument there are at most J l

= τ−Dl < diamD(N/τ)2D
= J 2diamD

· N 2D

rational vectors with common denominator at most N . �

The estimate extends to bounding the cardinality of vectors (r1/s1, . . . , rd/sd) with
each denominator max1≤ j≤d s j ≤ N . The proof of Theorem 4.2 employs Liouville’s
inequality.

Proof of Theorem 4.2. Let α = (α1, . . . , αd), α
′
= (α′1, . . . , α

′

d) be distinct algebraic
vectors with entries of degree at most n and heights H(α)=max H(α j ), H(α′)=
max H(α′j ) at most N , respectively. Since the vectors are distinct there is an index j with
α j 6= α

′

j . Then Liouville’s inequality [7, Theorem A.1, Corollary A.2] yields

‖α − α′‖ ≥ |α j − α
′

j | �n H(α j )
−n H(α′j )

−n
≥ N−2n .

Using this estimate in place of (41), the claim follows very similarly to Theorem 4.1. �

Next we show Theorem 4.3.

Proof of Theorem 4.3. Let (ω1, ω2, . . .) be an address of ξ ∈ C and πi = fωi , so that ξ =
limn→∞ π1 ◦ π2 · · · ◦ πn(0). Assume that (ω1, . . . , ωl) is the (possibly empty) preperiod
and (ωl+1, . . . , ωu)

∞ is the successive period. Let ζ := (πl+1 ◦ · · · ◦ πu)
∞(0), so that

ξ = π1 ◦ · · · ◦ πl(ζ ). By construction, ζ = πl+1 ◦ · · · ◦ πu(ζ ). For simplicity write C j =

Aω j /qω j ∈Qd×d and c j = bω j
/sω j ∈Qd , with A j , b j as in Definition 5, so that π j (y)=

C j y + c j . Therefore from the concatenation we obtain an identity Cl+1Cl+2 · · · Cuζ +

c′ = ζ , for some c′ ∈Qd . Since C j induce contractions, so does any product, so 1 is not an
eigenvalue and we see that ζ is given by ζ =−(CuCu−1 · · · Cl − Id)

−1c′. Hence ζ ∈Qd

as C j ∈Qd×d and c′ ∈Qd . Thus also ξ = π1 ◦ · · · ◦ πl(ζ ) is rational since the π j ∈ F are
rational-preserving.

Conversely, assume that the IFS is unimodular and take arbitrary ξ = p/q ∈Qd
∩ C .

Again assume that π1 ◦ π2 · · · (0) is any formal representation of ξ . Consider the sequence
a0 = ξ, a1 = π

−1
1 (ξ), a2 = π

−1
2 ◦ π

−1
1 (ξ), . . ., which is well defined as clearly π j are

bijective if the IFS is unimodular. Then obviously an ∈Qd
∩ C for any n ≥ 0. Moreover,

when building the inverses to derive an+1 from an , it follows from the rational IFS being
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unimodular that the denominators that occur are divisors of q S with S :=
∏

1≤ j≤J s j .
Here we use the fact that when building the inverses π−1

j with Cramer’s rule we do
not get additional factors in the denominator by unimodularity of the matrices, and the
shift vectors b j/s j can possibly only cause a factor that divides S. Since C is compact
with some finite diameter diam> 0, there are at most (q S · diam+ 1)d �C qd rational
vectors in C with this property. Moreover, since an ∈Qd

∩ C with denominator �C q
we infer from Theorem 4.1 and its proof that there are at most �C q D such vectors (we
may remove the factor 2 in the exponent since all denominators divide q; see the proof
of Theorem 4.1). Hence the number is�C min{q D, qd

}. By this finiteness, some rational
vector must occur twice, that is, ai = a j for some i < j �C min{q D, qd

}. This means that
a j = πi+1 ◦ πi+2 ◦ . . . ◦ π j (ai )= ai . Hence

ξ = π1 ◦ · · · ◦ πi (ai )= π1 ◦ · · · ◦ πi ◦ (id)∞(ai )

= π1 ◦ · · · ◦ πi ◦ (πi+1 ◦ πi+2 ◦ . . . ◦ π j )
∞(ai )

= π1 ◦ · · · ◦ πi ◦ (πi+1 ◦ πi+2 ◦ . . . ◦ π j )
∞(0).

In the last identity we used the fact that πi ∈ F are contractions. Thus (ω1, . . . , ωi )

composed with (ωi+1, ωi+2, . . . , ω j )
∞ is a periodic address of ξ . �

The estimate on rationals in C whose denominator divides q we used is potentially very
crude; we believe in fact log q should be the correct order of period lengths.

Proof of Corollary 4.4. For the first claim let qi be as in the theorem and Q = q1q2 · · · qv
be their product. We notice that for a given prime q - b it follows directly from [3,
Lemma 3] that ordb mod qn

= mqn−O(1)
� qn for some m dividing q − 1 and all n. Thus,

since for s = qα1
1 qα2

2 · · · q
αv
v we have that ordb mod s is the lowest common multiple of

the orders ordb mod qαi
i over 1≤ i ≤ v and qi are distinct primes not dividing b, we see

that ordb mod s is divisible by s/QO(1) and thus ordb mod s� s. On the other hand,
according to Proposition 4.10 the period length of r/s ∈ Cb,W equals ordb mod s, which
is �C s D

= s1 by Theorem 4.3. For large s we get a contradiction as 1< 1. For the
second claim, again since the period length of p/q is ordb mod q, it divides ϕ(q)= q − 1.
Since (q − 1)/2 is prime the only possible divisors are {1, 2, (q − 1)/2, q − 1}. On the
other hand, by Theorem 4.3 the period length is� q D

= q1. Since 1< 1 for large q the
divisors (q − 1)/2, q − 1 can be ruled out, so q|b2

− 1, which only gives finitely many
values of q as well. In both claims, since Cb,W ⊆ [0, 1], this yields only finitely many
potential rational numbers of the stated form. �

As indicated above, the proof of Theorem 4.6 is similar to that of Theorem 3.4.

Proof of Theorem 4.6. As in Lemma 5.4, let ut/vt be the convergents of ξ ∈ S. We only
show the left inequality of (17); the right is proved analogously. We may assume that
λint(ξ) > 1, as otherwise the claim is trivial. For simplicity write a = λint(ξ). Let ε > 0.
Recall from the theory of continued fractions that any fraction p/q that is not convergent
to ξ satisfies |ξ − p/q|> (2q)−1. Thus, our assumption implies that there exist arbitrarily
large indices l such that the convergent ul/vl lies in S and has the property

v−a−ε
l ≤ |vlξ − ul | ≤ v

−a+ε
l . (42)
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By Lemma 5.4 we have vl+1 � |vlξ − ul |
−1, so for large l we infer that

va−ε
l � vl+1� va+ε

l . (43)

Moreover, again Lemma 5.4 shows that for any r/s 6= ul/vl with s < vl+1/2 we have
|sξ − r | ≥ v−1

l /2. In particular, this estimate holds for any r/s /∈ S with s < vl+1/2. Thus
for Ql := vl+1/3 and any such r/s /∈ S with s < Q we have

|sξ − r | ≥ 1
2v
−1
l .

On the other hand, from (43) we know that vl � v
1/(a+ε)
l+1 � Q1/(a+ε)

l . Thus the left-hand

side is� Q−1/(a+ε)
l for any r/s /∈ S with s < Q. The left inequality in (17) follows since

clearly Ql →∞ as l→∞ and ε can be taken arbitrarily small. As indicated above, an
analogous argument starting with a = λext(ξ) yields the right estimate in (17).

In the case where S = C is a Cantor set as in the last claim, we now provide the reverse
of the left estimate of (17) in order to show (18). First assume that λint(ξ)=: a ≥ 1. We
may again assume strict inequality a > 1 as if otherwise a = 1, the claimed estimate is a
consequence of (17) and (16). This again implies that certain convergents satisfy ul/vl ∈ C
as above. Let Q be an arbitrary, large real number. Let l be the index such that vl ≤ Q <

vl+1. Then by Lemma 5.4 we have

Q−1 > v−1
l+1 ≥ |vlξ − ul |. (44)

If ul/vl /∈ C , then since 1> 1/a we may simply choose r/s = ul/vl . Now assume that
ul/vl ∈ C . Then by (43), for large l additionally to (44) we have

Q−1/(a+ε)
≥ v
−1/(a+ε)
l+1 � v−1

l ≥ |vl−1ξ − ul−1|.

Combining, for any given natural number N and any 1≤ n ≤ N , we have

|(vl + nvl−1)ξ − ul − nul−1| ≤ |vlξ − ul | + n|vl−1ξ − ul−1|

�N max{Q−1, Q−1/(a+ε)
} = Q−1/(a+ε).

Now, from Lemma 5.3 we see that for large N = N (C) and some 1≤ n ≤ N the expression
(ul + nul−1)/(vl + nvl−1) does not belong to C . By the above estimate, as ε can be chosen
arbitrarily small and Q was chosen arbitrarily, we verify the reverse inequality

λ̂ext(ξ)≥
1
a
=

1
λint(ξ)

,

so by (17) we must have equality. Hence (18) holds in this case.
Finally, assume that λint(ξ) < 1. Then we have |qξ − p| � q−1+δ for some δ > 0

and any p/q ∈Q ∩ C . On the other hand, by Dirichlet’s theorem we know that for any
parameter Q there is a rational number p/q with q ≤ Q and |qξ − p| ≤ Q−1

≤ q−1.
Combining these observations, for large Q these rationals p/q must lie outside C . Hence
λ̂ext(ξ)= λ̂(ξ)= 1, where the last identity is Khintchine’s result already mentioned in (16).
Again we conclude (18). �

The question arises whether we can reverse the argument of the proof to infer ‘good’
intrinsic rational approximations to ξ from ‘bad’ uniform extrinsic approximation of
ξ ∈ C , corresponding to a hypothetical inequality like λint(ξ)≥ 1/̂λext(ξ) if λ̂ext(ξ) is
small enough (it is in general false by a metrical argument if λ̂ext(ξ)= 1). The problem is
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that in the lattice point problem studied above, both successive minima may be throughout
realized by vectors (mi , ni ) ∈ Z2 that lead to rational numbers mi/ni in C , for i = 1, 2, in
which case can only infer λint(ξ)≥ 1. Nevertheless, as this seems to be a rather exceptional
situation that may not occur, the estimate λint(ξ)≥ 1/̂λext(ξ) may be true if λ̂ext(ξ) < 1.

Problem 5. Assume that λ̂ext(ξ) < 1. Does it follow that λint(ξ)≥ 1/̂λext(ξ)?

We now turn to the verification of Theorem 4.9.

PROPOSITION 5.6. Let b ≥ 3 an integer and W ( {0, 1, . . . , b − 1}. Assume that ξ =
(0.c1c2 · · · ckck+1 · · · cN−1)b is the base b representation of a rational number. If
c1, . . . , ck+1 belong to W and cm /∈W for some m > k + 1, then ξ /∈ Cb,W .

Proof. If ξ has a unique base b expansion then the claim follows from c j /∈W . If the
representation is not unique then there are two base b representations of ξ , one ending in 0
and the other ending in b − 1. However, since ck+1 ∈W and c j /∈W for some j > k + 1
and both letters appear in the period above, clearly ξ is not of this form, and we have a
contradiction. �

Proof of Theorem 4.9. Clearly any ξ ∈Q has ultimately periodic base b expansion, and
the representation of ξ in (19) via ξ = p/q with p, q in (20) is carried out straightforwardly
as in [5, Lemma 2.3]. Let m = φ(ξ). If m ≤ k + 1 so that the first digit outside W
belongs to the preperiod or equals the first period digit, then the estimate follows from
the elementary estimate m ≤ k + 1� log q0� q10 , as discussed in §4.4. Thus we may
assume that m > k + 1. Obviously ξ has distance at most b · b−m from r := c0b−1

+

c1b−2
+ · · · + cm−1b−m

∈Q. By definition of m, clearly r ∈ Cb,W . On the other hand, by
our assumption cm /∈W and by Proposition 5.6, we have ξ /∈ Cb,W . Hence, by Theorem 3.4
the rational number ξ has distance at least b−δ0q10 from any element of C = Cb,W for some
uniform δ0, in particular from r . Comparison yields φ(ξ)= m� q10 . �

Proof of Corollary 4.12. Obviously W1 ⊆W2, and if W1 = {0, 1 . . . , b − 1} the claim is
obvious. Otherwise there is some w /∈W1. If w ∈W2, by taking W = {0, 1, . . . , b − 1} \
{w}, from Theorem 4.9 we get d ′ ≥ c(b) · φ1/1. We get a contradiction by our assumptions
on φ, ψ as soon as c1 ≥ c(b)1. Hence w /∈W2, and since w /∈W1 was arbitrary the sets
are equal. �
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