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In the distributed Deutsch–Jozsa promise problem, two parties are to determine whether their

respective strings x, y ∈ {0, 1}n are at the Hamming distance H(x, y) = 0 or H(x, y) = n
2
.

Buhrman et al. (STOC’ 98) proved that the exact quantum communication complexity of this

problem is O(log n) while the deterministic communication complexity is Ω(n). This was the

first impressive (exponential) gap between quantum and classical communication complexity.

In this paper, we generalize the above distributed Deutsch–Jozsa promise problem to

determine, for any fixed n
2

� k � n, whether H(x, y) = 0 or H(x, y) = k, and show that an

exponential gap between exact quantum and deterministic communication complexity still

holds if k is an even such that 1
2
n � k < (1 − λ)n, where 0 < λ < 1

2
is given. We also deal

with a promise version of the well-known disjointness problem and show also that for this

promise problem there exists an exponential gap between quantum (and also probabilistic)

communication complexity and deterministic communication complexity of the promise

version of such a disjointness problem. Finally, some applications to quantum, probabilistic

and deterministic finite automata of the results obtained are demonstrated.

1. Introduction

Since the topic of communication complexity was introduced by Yao (1979), it has been

extensively studied (Brassard 2003; Buhrman et al. 2010; Hromkovič 1997; Kushilevitz

and Nisan 1997). In the setting of two parties, Alice is given an x ∈ {0, 1}n, Bob is given

a y ∈ {0, 1}n and their task is to communicate in order to determine the value of some

given Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, while exchanging as small number of

bits as possible. In this setting, local computations of the parties are considered to be free,

but communication is considered to be expensive and has to be minimized. Moreover, for

computation, Alice and Bob have access to arbitrary computational power.

There are usually three types of communication complexities considered for the above

communication task: deterministic, probabilistic or quantum.

Two of the most often studied communication problems are that of equality and

disjointness (Kushilevitz and Nisan 1997), defined as follows:
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— Equality: EQ(x, y) = 1 if x = y and 0 otherwise.

— Disjointness: DISJ(x, y) = 1 if there is no index i such that xi = yi = 1 and 0 if such

an index exists. Equivalently, this function can be defined also as DISJ(x, y) = 1 if∑n
i=1 xi ∧ yi = 0 and 0 if

∑n
i=1 xi ∧ yi > 0. (We can view x and y as being subsets of

{1, . . . , n} represented by characteristic vectors and to have DISJ(x, y) = 1 iff these two

subsets are disjoint.)

Deterministic communication complexities of the above problems EQ and DISJ are both

n (Kushilevitz and Nisan 1997).

Buhrman et al. (1998, 2010) proved that the exact quantum communication complexity

of the distributed Deutsch–Jozsa promise problem, for x, y ∈ {0, 1}n and n is even, that is

for

EQ′(x, y) =

{
1 if H(x, y) = 0

0 if H(x, y) = n
2
,

(1)

is O(log n). This was the first impressively large (exponential) gap between quantum and

classical communication complexity†.

It has been so far a folklore belief that the promise H(x, y) = n
2

is essential for the above

result. However, we prove that the result holds also for the following generalizations of

this promise problem

EQk(x, y) =

{
1 if H(x, y) = 0

0 if H(x, y) = k,
(2)

for any fixed k � n
2
. That is the exact quantum communication complexity of EQk is

O(log n) while the classical deterministic communication complexity is Ω(n) if k is an even

such that 1
2
n � k < (1 − λ)n, where 0 < λ < 1

2
is given. Our proof has been inspired by

methods used in Ambainis (2013).

Let us consider also the following problem. Namely, an analogue of the Deutsch–Jozsa

promise problem:

DJk(x) =

{
1 if W (x) = 0

0 if W (x) > k,
(3)

where k � n
2

is fixed and W (x) is the Hamming weight of x. We prove that the exact

quantum query complexity of DJk is 1 while the deterministic query complexity is n−k+1.

If errors can be tolerated, both quantum and probabilistic communication complexities

of the equality problem are O(log n).

Concerning disjointness problem, the probabilistic communication complexity is Ω(n)

(Bar-Yossef et al. 2002; Kalyanasundaram and Schintger 1992; Razborov 1992) even if

errors are tolerated. In the quantum cases, Buhrman et al. (1998) proved that quantum

communication complexity of DISJ is O(
√
n log n). This bound has been improved to

O(
√
n) by Aaronson and Ambainis (2003). Finally, Razborov showed that any bounded-

error quantum protocol for DISJ needs to communicate about
√
n qubits (Razborov

2003). Situation is different from the EQ problem, for which there is an exponential gap

between quantum (and also probabilistic) communication complexity and deterministic

† In fact, both n and n
2 must be even in order to obtain an exponential quantum speed-up. We will justify this

claim in the Remark 3.1 in Section 3.
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communication complexity as shown in Kushilevitz and Nisan (1997) and Buhrman et al.

(1998, 2010). All known gaps for DISJ are not larger than quadratic. It is therefore of

interest to find out whether there are some promise versions of the disjointness problem

for which bigger communication complexity gaps can be obtained. We give a positive

answer to such a question. In order to do that, we consider the following set of promise

problems where 0 < λ � 1
4

DISJλ(x, y) =

{
1 if

∑n
i=1 xi ∧ yi = 0

0 if λn �
∑n

i=1 xi ∧ yi � (1 − λ)n.
(4)

We prove that quantum communication complexity of DISJλ is not more than log 3
3λ

(3 +

2 log n) while the deterministic communication complexity is Ω(n). For example, if λ = 1
4
,

then the quantum communication complexity of DISJλ is not more than 3 + 2log n while

the deterministic communication complexity is more than 0.007n. We prove also that

probabilistic communication complexity of DISJλ is not more than log 3
λ

log n. Therefore,

there is an exponential gap between quantum (and also probabilistic) communication

complexity and deterministic communication complexity of the above promise problem.

Number of states is a natural complexity measure for all models of finite automata and

state complexity of finite automata is one of the research fields with many applications (Yu

2005). There is a variety of methods how to prove lower bounds on the state complexity

and methods as well as the results of communication complexity are among the main

ones (Hromkovič and Schintger 2001; Klauck 2000; Kushilevitz and Nisan 1997). In this

paper, we also show how to make use of our new communication complexity results to

get new state complexity bounds.

The paper is structured as follows. In Section 2, basic needed concepts and notations

are introduced and models involved are described in details. Communication complexities

and query complexities of the promise problems EQk and DJk are investigated in Section

3. Communication complexity of the promise problem DISJλ is dealt with in Section

4. Applications to finite automata are explored in Section 5. Some open problems are

discussed in Section 6.

2. Preliminaries

In this section, we recall some basic definitions about communication complexity, query

complexity and quantum finite automata. Concerning basic concepts and notations of

quantum information processing, we refer the reader to Gruska (1999) and Nielsen and

Chuang (2000).

2.1. Communication complexity

We recall here only very basic concepts and notations of communication complexity, and

we refer the reader to Buhrman et al. (2010) and Kushilevitz and Nisan (1997) for more

details. We will deal with the situation that there are two communicating parties and

with very simple tasks of computing two-argument Boolean functions for the case one

argument is known to one party and the other argument is known to the other party. We
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x ∈ {0, 1}nInputs: y ∈ {0, 1}n

f(x, y) ∈ {0, 1}Output:

Alice Bob

messages

· · ·

Fig. 1. Communication protocol.

will completely ignore computational resources needed by parties and focus solely on the

amount of communication that is need to be exchanged between both parties in order to

compute the value of a given Boolean function.

More technically, let X = Y = {0, 1}n. We will consider two-argument functions

f : X × Y → {0, 1} and two communicating parties. Alice will be given an x ∈ X and

Bob a y ∈ Y . They want to compute f(x, y). If f is defined only on a proper subset of

X × Y , f is said to be a partial function or a promise problem.

The computation of f(x, y) will be done using a communication protocol, presented

in Figure 1. During the execution of the protocol, parties alternate roles in sending

messages. Each of these messages will be a bit string. The protocol, whose steps are based

on the communication so far, also specifies for each step whether the communication

terminates (in which case it also specifies what is the output). If the communication does

not terminate, the protocol also specifies what kind of message the sender (Alice or Bob)

should send next as a function of its input and communication so far.

A deterministic communication protocol P computes a (partial) function f, if for every

(promise) input pair (x, y) ∈ X × Y the protocol terminates with the value f(x, y) as its

output. In a probabilistic protocol, Alice and Bob may also flip coins during the protocol

execution and proceed according to their outputs and the protocol can also have an

erroneous output with a small probability. In a quantum protocol, Alice and Bob may

use also quantum resources for communication.

Let P(x, y) denote the output of the protocol P . We will consider two kinds of protocols

for computing a function f:

— An exact protocol, that always outputs the correct answer (that is Pr(P(x, y) =

f(x, y)) = 1).

— A two-sided error (bounded error) protocol P such that Pr(P(x, y) = f(x, y)) � 2
3
.

The communication complexity of a protocol P is the worst-case number of (qu)bits ex-

changed. The communication complexity of f is, with which respect to the communication

mode used, the complexity of an optimal protocol for f.

We will use D(f) and R(f) to denote the deterministic communication complexity and

the two-sided error probabilistic communication complexity of a function f, respectively.
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Similarly, we use notations QE(f) and Q(f) for the exact and two-sided error quantum

communication complexity of a function f.

Let us also summarize already known communication complexity results concerning

communication problems EQ, DISJ and EQ′:

1. D(EQ) = n, D(DISJ) = n (Kushilevitz and Nisan 1997), D(EQ′) ∈ Ω(n) (Buhrman et

al. 1998).

2. QE(EQ′) ∈ O(log n) (Buhrman et al. 1998).

3. R(EQ) ∈ O(log n) (Kushilevitz and Nisan 1997), R(DISJ) ∈ Ω(n) (Bar-Yossef et al.

2002; Kalyanasundaram and Schintger 1992; Razborov 1992).

4. Q(DISJ) ∈ Θ(
√
n) (Aaronson and Ambainis 2003; Razborov 2003).

2.2. Exact query complexity

The exact quantum query complexity for partial functions was dealt with also in Brassard

and Høyer (1997) and Deutsch and Jozsa (1992) and for total functions in Ambainis

(2013), Ambainis et al. (2013, 2015) and Montanaro et al. (2015).

In the next, we recall definitions of two exact query complexity models. For more

concerning basic concepts and notations related to query complexity, we refer the reader

to Buhrman and de Wolf (2002).

Exact classical (deterministic) query algorithms to compute a Boolean function f :

{0, 1}n → {0, 1} can be described using decision trees, in the following way:

Let the input string be x = x1x2 . . . xn. A decision tree Tf for x is a rooted binary tree

in which each internal vertex has exactly two children. Moreover, each internal vertex

is labelled with a variable xi (1 � i � n) and each leaf is labelled with a value 0 or 1.

Tf should be designed in such a way that it can be used to compute function f in the

following way: Let us start at the root. If this is a leaf then stop and the value of f is that

assigned to that leaf. Otherwise, query the value of the variable xi that labels the root.

If xi = 0, then evaluate recursively the left subtree, if xi = 1 then the right subtree. The

output of the tree is then the value of the leaf that is reached eventually. The depth of Tf
is the maximal length of any path from the root to any leaf (i.e. the worst-case number of

queries used for all inputs). The minimal depth over all decision trees computing f is the

exact classical query complexity (deterministic query complexity, decision tree complexity)

DT (f) of f.

Let f : {0, 1}n → {0, 1} be a Boolean function and x = x1x2 · · · xn be an input bit string.

Each exact quantum query algorithm for f works in a Hilbert space with some fixed basis,

called standard. Each of the basis states corresponds to either one or none of the input

bits. It starts in a fixed starting state, then performs on it a sequence of transformations

U1, Q, U2, Q, . . . , Ut, Q, Ut+1. Unitary transformations Ui do not depend on the input

bits, while Q, called the query transformation, does, in the following way. If a basis state

|ψ〉 corresponds to the ith input bit, then Q|ψ〉 = (−1)xi |ψ〉. If it does not correspond to

any input bit, then Q leaves it unchanged: Q|ψ〉 = |ψ〉. Finally, the algorithm performs

a measurement in the standard basis. Depending on the result of the measurement, the

algorithm outputs either 0 or 1 which must be equal to f(x). The exact quantum query
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complexity QTE(f) is the minimum number of queries used by any quantum algorithm

which computes f(x) exactly for all x.

2.3. Lower bound methods for deterministic communication complexity

There are quite a few of lower bound methods to determine deterministic communication

complexity. We just recall so-called ‘rectangles’ method in this subsection. Concerning more

on lower bound methods, see Buhrman et al. (2010), Hromkovič (1997) and Kushilevitz

and Nisan (1997).

A rectangle in X ×Y is a subset R ⊆ X ×Y such that R = A×B for some A ⊆ X and

B ⊆ Y . A rectangle R = A×B is called 1(0)-rectangle of a function f : X ×Y → {0, 1} if

for every (x, y) ∈ A×B the value of f(x, y) is 1(0). For a partial function f : X×Y → {0, 1}
with domain D, a rectangle R = A × B is called 1(0)-rectangle if the value of f(x, y) is

1(0) for every (x, y) ∈ D∩ (A×B) – we do not care about values for (x, y) �∈ D. Moreover,

Ci(f) is defined as the minimum number of i-rectangles that partition the space of i-inputs

(such inputs x and y that f(x, y) = i) of f.

We now recall a lemma on ‘rectangles’ method from Kushilevitz and Nisan (1997):

Lemma 2.1. For every (partial) function f, D(f) � max{logC1(f), logC0(f)}.

2.4. Measure-once one-way finite automata with quantum and classical states

In this subsection, we recall the definition of 1QCFA. Concerning more on classical and

quantum automata see Gruska (1999), Gruska (2000), Hopcroft and Ullman (1979) and

Qiu et al. (2012).

Two-way finite automata with quantum and classical states (2QCFA) were introduced

by Ambainis and Watrous (2002) and explored also by Yakaryılmaz, Zheng and others

(Li and Feng 2015; Yakaryılmaz and Cem Say 2010; Zheng et al. 2013, 2014, 2015).

Informally, a 2QCFA can be seen as a two-way deterministic finite automaton (2DFA)

with an access to a quantum memory for states of a fixed Hilbert space upon which

at each step either a unitary operation is performed or a projective measurement and

the outcomes of which then probabilistically determine the next move of the underlying

2DFA. 1QCFA are one-way versions of 2QCFA Zheng et al. (2012). In this paper, we

only use 1QCFA in which a unitary transformation is applied in every step after scanning

a symbol and a measurement is performed at the end of the computation. Such model is

called a measure-once 1QCFA (MO-1QCFA) and corresponds to a variant of measure-

once quantum finite automata, which can also be seen as a special case of one-way quantum

finite automata together with classical states defined in Qiu et al. (2015).

Definition 2.1. An MO-1QCFA A is specified by a 8-tuple

A = (Q, S,Σ,Θ, δ, |q0〉, s0, Qa), (5)

where

1. Q is a finite set of orthonormal quantum (basis) states;

2. S is a finite set of classical states;
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3. Σ is a finite alphabet of input symbols and let Σ′ = Σ ∪ {|c, $}, where symbol |c will be

used as the left end-marker and symbol $ as the right end-marker;

4. |q0〉 ∈ Q is the initial quantum state;

5. s0 is the initial classical state;

6. Qa ⊆ Q denotes the set of accepting quantum basis states;

7. Θ is a quantum transition function

Θ : S × Σ′ → U(H(Q)), (6)

where U(H(Q)) is the set of unitary operations on the Hilbert space generated by

quantum states from Q;

8. δ is a classical transition function

δ : S × Σ′ → S, (7)

such that δ(s, σ) = s′, then the new classical state of the automaton is s′.

The computation of an MO-1QCFA A = (Q, S,Σ,Θ, δ, |q0〉, s0, Qa) on an input w =

σ1 · · · σn ∈ Σ∗ starts with the string |cw$ on the input tape. At the start, the tape head

of the automaton is positioned on the left end-marker and the automaton begins the

computation in the initial classical state and in the initial quantum state. After that, in

each step, if the classical state of the automaton is s, its tape head reads a symbol σ and

its quantum state is |ψ〉, then the automaton changes its quantum state to Θ(s, σ)|ψ〉 and

its classical state to δ(s, σ). At the end of the computation, the projective measurement

{Pa, Pr} is applied on the current quantum state, where Pa =
∑

|i〉∈Qa |i〉〈i| and Pr = I−Pa.

If the classical outcome is a (r), then the input is accepted (rejected).

For any state s, any string w ∈ (Σ′)∗ and any σ ∈ Σ, let δ̂(s, σw) = δ̂(δ(s, σ), w); if

|w| = 0, δ̂(s, w) = s. Let σ0 = |c and σn+1 = $. The probability that the automaton A
accepts the input w is

Pr[A accepts w] = ‖PaΘ(sn+1, σn+1) · · · Θ(s1, σ1)Θ(s0, σ0)|q0〉‖2, (8)

where si+1 = δ̂(s0, σ0 · · · σi). The probability that A rejects the input w is Pr[A rejects w] =

1 − Pr[A accepts w].

The language acceptance is a special case of so-called promise problem solving. A

promise problem (Goldreich 2006) over an alphabet Σ is a pair A = (Ayes, Ano), where Ayes,

Ano ⊂ Σ∗ are disjoint sets. Languages over an alphabet Σ may be viewed as promise

problems that obey the additional constraint Ayes ∪ Ano = Σ∗.

A promise problem A = (Ayes, Ano) is solved exactly by a finite automaton A if

— ∀w ∈ Ayes, Pr[A accepts w] = 1, and

— ∀w ∈ Ano, Pr[A rejects w] = 1.

On the other side, a finite automaton A is said to solve a promise problem A = (Ayes, Ano)

with a one-sided error ε ( 0 < ε � 1
2
) if

— ∀w ∈ Ayes, Pr[A accepts w] = 1, and

— ∀w ∈ Ano, Pr[A rejects w] � 1 − ε.
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3. Generalizations of the distributed Deutsch–Jozsa promise problem

We will explore communication complexity of several generalizations of the distributed

Deutsch–Jozsa promise problem.

Theorem 3.1. QE(EQk) ∈ O(log n) for any fixed k � n
2
.

Proof. Assume that Alice is given an input x = x1 · · · xn and Bob an input y = y1 · · · yn.
The following quantum communication protocol P computes EQk(x, y) using n + 1

quantum basis states |0〉, |1〉, . . . , |n〉 as follows:

1. Alice begins with the initial quantum state |0〉 and performs on it the unitary map Uk

such that Uk|0〉 =
√

2k−n
2k

|0〉 +
√

n
2k

|1〉, where

Uk =

⎛⎜⎜⎝
√

2k−n
2k

−
√

n
2k

0√
n
2k

√
2k−n
2k

0

0 0 In−1,n−1

⎞⎟⎟⎠ . (9)

2. Alice then performs the unitary map Uh on her quantum state such that Uh|0〉 = |0〉
and Uh|1〉 = 1√

n

∑n
i=1 |i〉, i.e. the first column of Uh is (1, 0, . . . , 0)T , the second column

of Uh is (0, 1√
n
, . . . , 1√

n
)T , and the other entries are arbitrary, but such that the resulting

matrix is unitary what is clearly always possible.

3. Alice then applies to the current state, the unitary map Ux such that Ux|0〉 = |0〉 and

Ux|i〉 = (−1)xi |i〉 for i > 0.

4. Afterwards, Alice sends her current quantum state |ψ4〉 = UxUhUk|0〉 =
√

2k−n
2k

|0〉 +√
n
2k

√
1
n

∑n
i=1(−1)xi |i〉 to Bob.

5. Bob then applies to the state that he has received the unitary map Uy such that

Uy|0〉 = |0〉 and Uy|i〉 = (−1)yi |i〉 for i > 0.

6. Bob applies the unitary map U−1
k U−1

h to his quantum state.

7. Afterwards Bob measures the resulting state in the standard basis and outputs 1 if the

measurement outcome is |0〉 and outputs 0 otherwise.

The state after the step 5 will be

|ψ5〉 = UyUxUhUk|0〉 =

√
2k − n

2k
|0〉 +

√
n

2k

√
1

n

n∑
i=1

(−1)xi+yi |i〉. (10)

Therefore, if x = y, then the state after the step 6 will be

|ψ6〉 = U−1
k U−1

h UyUxUhUk|0〉 = U−1
k U−1

h UhUk|0〉 = |0〉. (11)
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If x �= y, then H(x, y) = k and the state after the step 6 is

|ψ6〉 = U−1
k U−1

h UyUxUhUk|0〉 = U−1
k U−1

h

(√
2k − n

2k
|0〉 +

√
n

2k

√
1

n

n∑
i=1

(−1)xi+yi |i〉
)

(12)

= U−1
k

(√
2k − n

2k
|0〉 +

√
n

2k

1

n

n∑
i=1

(−1)xi+yi |1〉 +

n∑
i=2

αi|i〉
)

(13)

= U−1
k

(√
2k − n

2k
|0〉 +

√
n

2k

n− 2k

n
|1〉 +

n∑
i=2

αi|i〉
)

(14)

=

(√
2k − n

2k

√
2k − n

2k
+

√
n

2k

√
n

2k

n− 2k

n

)
|0〉 +

n∑
i=1

βi|i〉 (15)

=

n∑
i=1

βi|i〉, (16)

where αi, βi are amplitudes that we do not need to be specified more exactly.

Because the amplitude of |0〉 is 0, we can get the exact result after the measurement in

the step 7.

It is clear that this protocol communicates only �log(n+ 1)� qubits.

Obviously, D(EQk) � n− k + 1. For the case that k = n
2

and k is even, EQk = EQ′ and

D(EQk) ∈ Ω(n) (Buhrman et al. 1998, 2010). For the cases that 1
2
n � k < (1 − λ)n, where

0 < λ < 1
2

is given, we can prove, using a similar proof method as in Buhrman et al.

(1998, 2010), the following theorem:

Theorem 3.2. Suppose 0 < λ < 1
2

is given and k is an even. Then D(EQk) ∈ Ω(n) for all k

such that 1
2
n � k < (1 − λ)n.

Proof. In order to prove the theorem, we introduce a lemma (Theorem 1 in Frankl and

Rodl (1987)) first.

For x, y ∈ {0, 1}n, let us denote |x∧y| =
∑n

i=1 xi∧yi. Let alsoM(n, l) denote the maximum

of the sets cardinality |F |, where F ⊂ {0, 1}n subject to the constraint: |x ∧ y| �= l holds

for all distinct x, y ∈ F .

Lemma 3.1 (Frankl and Rodl (1987)). If 0 < η < 1
4

is given, then there exists a positive

constant ε0 = ε0(η) such that M(n, l) � (2 − ε0)
n for all l such that ηn < l < ( 1

2
− η)n.

Let P be a deterministic protocol for EQk . Let us consider the set E = {(x, x) |W (x) =

� n
2
�}. For every (x, x) ∈ E, we have P(x, x) = 1. Suppose now that there is a 1-

monochromatic rectangle R = A × B ⊆ {0, 1}n × {0, 1}n such that P(x, y) = 1 for every

promise pair (x, y) ∈ R. Let S = R∩E. We now prove that for any distinct (x, x), (y, y) ∈ S ,

|x ∧ y| �= � n−k
2

�.
If |x ∧ y| = � n−k

2
�, then H(x, y) = 2(� n

2
� − � n−k

2
�) = k and P(x, y) = 0. Since (x, x) ∈ R

and (y, y) ∈ R, we have (x, y) ∈ R and P(x, y) = 0, which is a contradiction.

Because of the assumption, we have λ
2
n < � n−k

2
� � 1

4
n < ( 1

2
− λ

2
)n. Let η = λ

2
. According

to Lemma 3.1, there exists a constant ε0 such that |S | � (2 − ε0)
n.
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Let us now continue the proof of Theorem 3.2. The minimum number of

1-monochromatic rectangles that partition the space of inputs is

C1(EQk) �
|E|
|S | �

(
n

�n/2�
)

(2 − ε0)n
>

2n/n

(2 − ε0)n
. (17)

According to Lemma 2.1, the deterministic communication complexity of the problem

EQk then holds:

D(EQk) � logC1(EQk) > log
2n/n

(2 − ε0)n
= n− log n− n log(2 − ε0). (18)

Since 1−u � e−u � 2−u, for any real number u > 0, we have log(2−ε0) = 1+log(1−ε0/2) <

1 − ε0/2. Therefore

D(EQk) � n− log n− n(1 − ε0

2
) =

ε0

2
n− log n. (19)

Thus, D(EQk) ∈ Ω(n).

Remark 3.1. If k is odd, we can prove that D(EQk) ∈ O(1) as follows:

1. Alice calculates W (x) and then sends one bit information of W (x)’s parity to Bob (for

example, Alice sends ‘1’ if W (x) is even and ‘0’ otherwise).

2. After receiving Alice’s information, Bob calculates W (y). If the parities of W (y) and

W (x) are the same, then EQk(x, y) = 1; otherwise, EQk(x, y) = 0.

The above protocol computes EQk since if H(x, y) = 0, W (x) +W (y) must be even; if

H(x, y) = k, then the parity of W (x) +W (y) must be the same as the parity of k.

We can now explore also the exact quantum query complexity of DJk .

Theorem 3.3. The exact quantum query complexity QTE(DJk) = 1 for any fixed k � n
2
.

Proof. Let us consider a query algorithm A that will solve the promise problem DJk
using n+ 1 quantum basis states |0〉, |1〉, . . . , |n〉 and works as follows: (where the unitary

transformations Uk and Uh are the same ones as in the proof of the Theorem 3.1.)

1. A begins in the state |0〉 and performs on it the unitary transformation U1 = UhUk .

2. A performs a query Q.

3. A performs the unitary transformation U2 = U−1
k U−1

h .

4. A measures the resulting state in the standard basis and outputs 1 if the measurement

outcome is |0〉 and outputs 0 otherwise.

The rest of the proof is similar to that of Theorem 3.1.

Obviously, the exact classical query complexity of DJk is n− k + 1.

4. Communication complexity of a promise version of the disjointness problem

It may seem that if we consider DISJ′
k as a similar promise version to the problem DISJ

as we did with EQk , we get a similar result.
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However, the reality is a bit different. Indeed, let us denote

DISJ′
k(x, y) =

{
1 if

∑n
i=1 xi ∧ yi = 0

0 if
∑n

i=1 xi ∧ yi = k,
(20)

where k � n
2

is fixed. Using an analogous proof method as in Section 3, we can prove

that QE(DISJ′
k) ∈ O(log n). But, when comparing to the deterministic communication

complexity, this is no improvement at all. Actually, we can prove that for k > n
2
,

D(DISJ′
k) ∈ O(1). Indeed, let us consider the following protocol:

1. Alice calculates W (x). If W (x) < k, Alice sends 1 as the outcome of DISJ′
k(x, y) to

Bob; otherwise, she sends 0 to Bob.

2. After receiving Alice’s information, if Bob did not get 1 as the result of DISJ′
k(x, y)

from Alice, he then calculates W (y). If W (y) < k, then Bob outputs 1 as the result of

DISJ′
k(x, y); otherwise, DISJ′

k(x, y) = 0.

For the case k = n
2
, we can prove that D(DISJ′

k) ∈ O(1) using the following protocol:

1. Alice calculates W (x). If W (x) < n
2
, then Alice sends 1 as the outcome of DISJ′

k(x, y)

to Bob; if W (x) = n
2
, Alice sends 0 and x1 to Bob; otherwise, she sends 0 to Bob.

2. After receiving Alice’s information, if Bob did not get 1 as the result of DISJ′
k(x, y)

from Alice, he then calculates W (y). If W (y) < n
2
, then Bob outputs the result 1 as

the of DISJ′
k(x, y). If W (y) = n

2
= W (x), Bob compares y1 with x1 and then outputs

the result DISJ′
k(x, y) = 0 if y1 = x1 and DISJ′

k(x, y) = 1 if y1 �= x1. Otherwise,

DISJ′
k(x, y) = 0.

Obviously, the above protocol computes DISJ′
k(x, y) and uses for communication only

O(1) bits.

4.1. Quantum protocol

Let us now explore how much of advantages can be obtained when quantum resources

can be used for dealing with such communication problems as DISJλ. We give at first

a quantum communication protocol for DISJ 1
4
(x, y). From this protocol, we can get the

following result.

Theorem 4.1. Q(DISJ 1
4
) � 3 + 2 log n.

Proof. Assume that Alice is given an input x = x1 · · · xn and Bob an input y = y1 · · · yn.
The quantum communication protocol P which computes DISJ 1

4
using 2n quantum basis

states {|i, j〉 : 1 � i � n, 0 � j � 1} (the basis state |i, j〉 is a 2n-dimensional column vector

with the (nj + i)th entry being 1 and others being 0’s.) will work as follows:

1. Alice starts with the quantum state |ψ0〉 = |1, 0〉 = (1,

2n−1︷ ︸︸ ︷
0, . . . , 0)T and applies to it the

following unitary transformation Us:

Us|ψ0〉 =

n∑
i=1

1√
n

|i, 0〉 =
1√
n
(

n︷ ︸︸ ︷
1, . . . , 1,

n︷ ︸︸ ︷
0, . . . , 0)T . (21)
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Alice then applies the following unitary transformation Ux when x = x1 · · · xn is the

input word:

Ux = Uxn · · ·Ux1
(22)

where

Uxi =

{
I, if xi = 0

|i, 1〉〈i, 0| + |i, 0〉〈i, 1| +
∑

j �=i |j, 0〉〈j, 0| +
∑

j �=i |j, 1〉〈j, 1|, if xi = 1.
(23)

Ux is therefore a unitary transformation that exchanges the amplitudes of |i, 0〉 and

|i, 1〉 if xi = 1. The resulting quantum state, after performing Ux, will be

|ψ1〉 =
1√
n

n∑
i=1

(
(1 − xi)|i, 0〉 + xi|i, 1〉

)
=

1√
n
(x1, . . . , xn, x1, . . . , xn)

T , (24)

where xi = 1 − xi.

Alice then sends the resulting quantum state |ψ1〉 to Bob.

2. Bob applies to the state received the unitary mapping Vy , defined for each y as follows

Vy|i, 0〉 = |i, 0〉, (25)

and

Vy|i, 1〉 = (−1)yi |i, 1〉. (26)

The quantum state after applying Vy will therefore be

|ψ2〉 =
1√
n
(x1, . . . , xn, (−1)y1x1, . . . , (−1)ynxn)

T . (27)

If xi = yi = 1, then (−1)yixi = −1 = (−1)xi∧yi; if xi = 1 and yi = 0, then (−1)yixi =

1 = (−1)xi∧yi; otherwise (−1)yixi = 0.

Bob then sends his quantum state |ψ2〉 to Alice.

3. Alice applies the unitary transformation Ux to the state |ψ2〉 received from Bob and

gets a new quantum state:

|ψ3〉 =
1√
n
(z1, . . . , zn,

n︷ ︸︸ ︷
0, . . . , 0)T . (28)

If xi = 0, then zi = xi = 1 = (−1)xi∧yi . If xi = 1, then zi = (−1)yixi = (−1)xi∧yi .

Therefore, zi = (−1)xi∧yi for 1 � i � n.

Alice then applies the unitary transformation Uf (to be specified later) to get the

following state:

Uf |ψ3〉 =

⎛⎝1

n

n∑
i=1

(−1)xi∧yi ,

2n−1︷ ︸︸ ︷
∗, . . . , ∗

⎞⎠T

. (29)

and then she measures the resulting quantum state with the observable {|i, 0〉〈i, 0|,
|i, 1〉〈i, 1|}ni=1. If the measurement outcome is |1, 0〉, Alice sends 1 otherwise 0 to Bob.

It is clear that this protocol uses for communication 1 + 2(log 2n) = 3 + 2 log n qubits.

Unitary transformations Us and Uf do exist. The first column of Us is 1√
n

(

n︷ ︸︸ ︷
1, . . . , 1,

n︷ ︸︸ ︷
0, . . . , 0)T
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and the first row of Uf is 1√
n
(

n︷ ︸︸ ︷
1, . . . , 1,

n︷ ︸︸ ︷
0, . . . , 0). It is easy to verify that Vy ’s are unitary

transformations.

If
∑n

i=1 xi ∧ yi = 0, then 1
n

∑n
i=1(−1)xi∧yi = 1. After the measurement, Alice gets the

quantum outcome |1, 0〉 and sends 1 to Bob. Thus,

Pr(P(x, y) = DISJ 1
4
(x, y)) = 1. (30)

If n/4 �
∑n

i=1 xi∧yi � 3n/4, then | 1
n

∑n
i=1(−1)xi∧yi | � 1/2 and Alice gets as the quantum

outcome |1, 0〉 with the probability not more than | 1
n

∑n
i=1(−1)xi∧yi |2 = 1/4. Thus,

Pr(P(x, y) = DISJ 1
4
(x, y)) = 1 −

∣∣∣∣∣1n
n∑
i=1

(−1)xi∧yi

∣∣∣∣∣
2

�
3

4
. (31)

Therefore P is a bounded error protocol for DISJ 1
4

and Q(DISJ 1
4
) � 3 + 2 log n.

Now, we are in position to deal with the general case.

Theorem 4.2. Q(DISJλ) � log 3
3λ

(3 + 2 log n), where 0 < λ � 1
4
.

Proof. For the general case, the new quantum protocol P ′ works as follows: Repeat

the protocol P from the proof of previous theorem k times (k will be specified later). If

all measurement outcomes in Step 3 are |1, 0〉, then P ′(x, y) = 1; otherwise, P ′(x, y) = 0.

If
∑n

i=1 xi ∧ yi = 0, then

Pr(P(x, y) = 1) = 1, (32)

and

Pr(P(x, y) = 0) = 0. (33)

Therefore,

Pr(P ′(x, y) = DISJλ(x, y) = 1) = 1. (34)

If λn �
∑n

i=1 xi ∧ yi � (1 − λ)n, then

p0 = Pr(P(x, y) = DISJλ(x, y) = 0) = 1 − |1
n

n∑
i=1

(−1)xi∧yi |2 � 1 − |1 − 2λ|2 (35)

= 4λ− λ2 = 4λ(1 − λ) � 4λ(1 − 1

4
) = 3λ. (36)

If k = log 1/3
log(1−3λ)

, and the protocol P is repeated k times, then

Pr(P ′(x, y) = DISJλ(x, y) = 0) = 1 − (1 − p0)
k � 1 − (1 − 3λ)k � 1 − (1 − 3λ)

log 1/3
log(1−3λ) (37)

= 1 − 2log((1−3λ)
log 1/3

log(1−3λ) ) = 1 − 2
log 1/3

log(1−3λ) ×log((1−3λ) = 1 − 2log 1/3 =
2

3
. (38)

Since 1 − u � e−u � 2−u, for any real number u > 0, we have

k =
log 1/3

log(1 − 3λ)
�

log 1/3

log 2(−3λ)
=

log 3

3λ
. (39)

Thus, Q(DISJλ) � log 3
3λ

(3 + 2 log n).
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4.2. Deterministic lower bound

To prove the main result, we will use a modification of the lower bound proof method

from Buhrman et al. (1998, 2010).

Theorem 4.3. D(DISJλ) ∈ Ω(n), where 0 < λ � 1
4
.

Proof. Let P be a deterministic protocol for DISJλ. Let us consider the set Fλ = {x ∈
{0, 1}n | λn � W (x) � (1 − λ)n}. If x ∈ Fλ, then also x ∈ Fλ, where x = x1 . . . xn. Let

E = {(x, x) | x ∈ Fλ}. For every (x, x) ∈ E, we then have P(x, x) = 1. Suppose now that

there is a 1-monochromatic rectangle R = A× B ⊆ {0, 1}n × {0, 1}n such that P(x, y) = 1

for every pair of promise input (x, y) ∈ R. For S = R ∩ E, we now prove that |S | < 1.99n.

Suppose |S | � 1.99n. According to Corollary 1.2 from Frankl and Rodl (1987), there

exist (x, x) ∈ S and (z, z) ∈ S such that |x ∧ z| = n
4
. Since S ⊆ E, we have x, x, z, z ∈ Fλ.

Without a loss of generality, let

x =

n/4︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
0 · · · 0

λn︷ ︸︸ ︷
1 · · · 1

3n/4−2λn︷ ︸︸ ︷
∗ · · · ∗ and (40)

z =

n/4︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
0 · · · 0

3n/4−2λn︷ ︸︸ ︷
∗ · · · ∗ (41)

such that |x ∧ z| = n
4
. In such a case

x =

n/4︷ ︸︸ ︷
0 · · · 0

λn︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
0 · · · 0

3n/4−2λn︷ ︸︸ ︷
∗ · · · ∗ (42)

and therefore λn � |z ∧ x| � 3n/4 − λn < (1 − λ)n. Thus, P(z, x) = 0. Since S ⊂ R and R

is a 1-rectangle, we get (x, x) ∈ R, (z, z) ∈ R and also (z, x) ∈ R. Since (z, x) is a pair of

the promise input, it holds P(z, x) = 1, which is a contradiction.

Therefore, the minimum number of 1-monochromatic rectangles that partition the space

of inputs is

C1(DISJλ) �
|E|
|S | =

|Fλ|
|S | �

|F1/4|
|S | >

2n/2

1.99n
. (43)

According to Lemma 2.1, the deterministic communication complexity then holds:

D(DISJλ) � logC1(DISJλ) > log (
2n/2

1.99n
) = n− 1 − n log 1.99 (44)

> n− 1 − 0.9927n = 0.0073n− 1. (45)

Thus, D(DISJλ) ∈ Ω(n).

Remark 4.1. The lower bound proved in the previous theorem is quite a weak bound. We

expect that a better lower bound will be relative to λ. When λ is close to 0, then the lower

bound is expected to be close to n instead of 0.007n.
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4.3. Probabilistic protocol

As already mentioned, the two-sided error probabilistic communication complexity

R(DISJ) ∈ Ω(n). However, for DISJλ, the communication complexity can be dramatically

improved as will now be shown.

Let us first deal with the case λ = 1
4
.

Theorem 4.4. R(DISJ 1
4
) � 5 log n.

Proof. Let us consider the probabilistic protocol P which works as follows (where

integer k will be specified later).

1. If W (x) < k, then Alice sends 1 as the result of DISJ 1
4
(x, y) to Bob. Otherwise, Alice

chooses randomly k 1’s of her input, says xi1 , . . . , xik , and sends their positions i1, . . . , ik
to Bob.

2. If Bob does not receive 1 as the result from Alice, then he checks the positions i1, . . . , ik
of his input. If there exists a 1 � j � k such that yij = 1 , then P(x, y) = 0; otherwise

P(x, y) = 1.

If
∑n

i=1 xi ∧ yi = 0, then

Pr(P(x, y) = DISJ 1
4
(x, y) = 1) = 1. (46)

If n/4 �
∑n

i=1 xi ∧ yi � 3n/4, then for any i ∈ {i1, . . . , ik}

Pr(yi = xi) �
1

4
. (47)

Therefore,

Pr(P(x, y) = 0) � 1 − (1 − 1

4
)k = 1 − (

3

4
)k. (48)

If k = 5, then Pr(P(x, y) = 0) > 0.76 > 2
3
. Since Alice needs log n bits to specify every

position, we have R(DISJ 1
4
) � 5 log n.

A more general result we get for all problems R(DISJλ) where 0 < λ � 1
4
.

Theorem 4.5. R(DISJλ) � log 3
λ

log n, where 0 < λ � 1
4

Proof. For this general cases, we will use almost the same protocol as in the proof of

the previous theorem, only Alice will send to Bob more positions of 1’s in her input. It

holds:

If
∑n

i=1 xi ∧ yi = 0, then

Pr(P(x, y) = DISJλ(x, y) = 1) = 1. (49)

If λn �
∑n

i=1 xi ∧ yi � (1 − λ)n, then for any i ∈ {i1, . . . , ik}

Pr(yi = xi) � λ. (50)

Therefore

Pr(P(x, y) = 0) � 1 − (1 − λ)k. (51)
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If k = log 1/3
log (1−λ) , then (1 − λ)

log 1/3
log (1−λ) = 1

3
and Pr(P(x, y) = 0) � 2

3
. Thus, R(DISJλ) �

log 1/3
log (1−λ) log n � log 3

λ
log n.

Remark 4.2. We can also define two-sided error mode as tolerating an error probability

ε instead of 1
3
. Modifying our proof in Theorems 4.2 and 4.5, we can get Q(DISJλ) �

log ε
3λ

(3 + 2 log n) and R(DISJλ) � log ε
λ

log n for any error probability ε.

5. Applications to quantum, probabilistic and deterministic finite automata

It has been known, since the paper (Ambainis and Freivalds 1998), that for some regular

languages 1QFA can be more succinct than their classical counterparts. However, Klauck

(2000) proved, for any regular language L, that the state complexity of the exact one-way

quantum finite automata for L is not less than the state complexity of an equivalent one-

way DFA. Surprisingly, situation is again different for some promise problems (Ambainis

and Yakaryılmaz 2012; Gruska et al. 2014; Zheng et al. 2014).

For any n ∈ Z+, let us consider the promise problem AEQk
(n) over an alphabet

Σ = {0, 1,#}, corresponding to the EQk problem, that is defined as follows:

AEQk
(n) :

{
Ayes(n) = {x#y |H(x, y) = 0, x, y ∈ {0, 1}n}
Ano(n) = {x#y |H(x, y) = k, x, y ∈ {0, 1}n}, (52)

where k is a fixed even such that k � n/2.

The quantum protocol for EQk which is described in Theorem 3.1 can be implemented

on an MO-1QCFA as shown below. Therefore, we get the following result:

Theorem 5.1. The promise problem AEQk
(n) can be solved exactly by an MO-1QCFA

A(n) with n + 1 quantum basis states and O(n) classical states, whereas the sizes of the

corresponding DFA are 2Ω(n) if k is an even such that 1
2
n � k < (1 − λ)n, where 0 < λ < 1

2

is given.

Proof. Let x = x1 . . . xn and y = y1 . . . yn. Let us consider an MO-1QCFA A(n) =

(Q, S,Σ,Θ, δ, |0〉, s0, Qa), where Q = {|i〉}ni=0, S = {si}n+1
i=0 and Qa = {|0〉}. A(n) will start in

the initial quantum state |0〉 and then perform the unitary transformation Θ(s0, |c) = U|c =

UhUk to the state |0〉, where Uh,Uk are the ones defined in the proof of Theorem 3.1. We

use classical states si ∈ S (1 � i � n+ 1) to point out the positions of the tape head that

will provide some information for quantum transformations. If the classical state of A(n)

is si (1 � i � n), then the next scanned symbol of the tape head is the ith symbol of x(y)

and sn+1 means that the next scanned symbol of the tape head is #($). The automaton

proceeds as shown in Figure 2, where

Ui,σ|i〉 = (−1)σ|i〉 and Ui,σ|j〉 = |j〉 for j �= i. (53)

The rest of the proof is analogues to the proof in Theorem 3.1.
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1. Read the left end-marker |c, perform Θ(s0, |c) = U|c = UhUk on the initial quantum

state |0 , change its classical state to δ(s0, |c) = s1, and move the tape head one cell

to the right.

2. While the currently scanned symbol σ is not #, do the following:

2.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

2.2 Change the classical state si to si+1 and move the tape head one cell to the right.

3. Change the classical state sn+1 to s1 and move the tape head one cell to the right.

4. While the currently scanned symbol σ is not the right end-marker $, do the following:

4.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

4.2 Change the classical state si to si+1 and move the tape head one cell to the right.

5. When the right end-marker is reached, perform Θ(sn+1, $) = U$ = U−1
k U−1

h on the

current quantum state and measure the current quantum state with the projective

measurement {Pa = |0 0|, Pr = I − |0 0|}. If the outcome is |0 , accept the input;

otherwise reject the input.

Fig. 2. Description of the behaviour of A(n) when solving the promise problem AEQk (n).

The deterministic communication complexity of EQk is Ω(n). Therefore, the sizes of the

corresponding DFA are 2Ω(n) (Kushilevitz and Nisan 1997).

We now apply also to finite automata the communication complexity results for DISJλ.

Let us consider the following promise problem

AD(n) :

{
Ayes(n) = {x#y#x |

∑n
i=1 xi ∧ yi = 0, x, y ∈ {0, 1}n}

Ano(n) = {x#y#x | 1
4
n �

∑n
i=1 xi ∧ yi � 3

4
n, x, y ∈ {0, 1}n}. (54)

We implement the protocols used in Section 4 for an MO-1QCFA and for a one-way

probabilistic finite automaton (1PFA) and get the following result:

Theorem 5.2. The promise problem AD(n) can be solved with one-sided error 1
4

by an

MO-1QCFA A(n) with 2n quantum basis states and O(n) classical states and also by a

1PFA P(n) with O(n5) states, whereas the sizes of the corresponding DFA are 2Ω(n).

Proof. Let x = x1 . . . xn and y = y1 . . . yn. Let us consider an MO-1QCFA A(n) =

(Q, S,Σ,Θ, δ, |q0〉, s0, Qa), where Q = {|i, 0〉, |i, 1〉}ni=1, |q0〉 = |1, 0〉 and Qa = {|1, 0〉}. The

automaton proceeds as shown in Figure 3, where Us, Uf are the ones defined in the proof

of Theorem 4.1 and

Ui,σ|j, 0〉 = |j, 1〉 and Ui,σ|j, 1〉 = |j, 0〉 if σ = 1 and j = i, otherwise Ui,σ|j, k〉 = |j, k〉;
(55)

Vi,σ|j, 1〉 = (−1)σ|j, 1〉 if j = i, otherwise Vi,σ|j, k〉 = |j, k〉; (56)

It is easy to verify that for 1 � i � n, Ui,σ and Vi,σ are unitary transformations.

According to the analysis in the proof of Theorem 4.1, if the input string w ∈ Ayes(n),
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1. Read the left end-marker |c, perform Us on the initial quantum state |1, 0 , change its

classical state to δ(s0, |c) = s1, and move the tape head one cell to the right.

2. While the currently scanned symbol σ is not #, do the following:

2.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

2.2 Change the classical state si to si+1 and move the tape head one cell to the right.

3. Move the tape head one cell to the right.

4. While the currently scanned symbol σ is not #, do the following:

4.1 Apply Θ(sn+i, σ) = Vi,σ to the current quantum state.

4.2 Change the classical state sn+i to sn+i+1 and move the tape head one cell to the

right.

5. Change the classical state s2n+1 to s1 and move the tape head one cell to the right.

6. While the currently scanned symbol σ is not the right end-marker $, do the following:

6.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

6.2 Change the classical state si to si+1 and move the tape head one cell to the right.

7. When the right end-marker $ is reached, perform Uf on the current quantum

state, measure the current quantum state with the projective measurement {Pa =

|1, 0 1, 0|, Pr = I − Pa}. If the outcome is |1, 0 , accept the input; otherwise reject

the input.

Fig. 3. Description of the behaviour of A(n) when solving the promise problem AD(n).

then the automaton will get the outcome |1, 0〉 in Step 7 with certainty and therefore

Pr[A accepts w] = 1. (57)

If the input string w ∈ Ano(n), the automaton gets the outcome |1, 0〉 with probability not

more than 1/4. Thus,

Pr[A rejects w] �
3

4
. (58)

Using the protocol from the proof of Theorem 4.4 and the proof that its probabilistic

communication complexity is not more than 5 log n, it is easy to design a 1PFA with O(n5)

states to solve the promise problem.

The deterministic state complexity lower bound can now be proved as follows.

Let an N-states DFA A′(n) = (S,Σ, δ, s0, Sacc) solves the promise problem AD(n), then

we can get a deterministic protocol for DISJ 1
4
(x, y) as follows:

1. Alice simulates the computation of A′(n) on the input ‘x#’ and then sends her state

δ̂(s0, x#) to Bob.

2. Bob simulates the computation of A′(n) on the input ‘y#’ starting at the state δ̂(s0, x#),

and then sends his state δ̂(s0, x#y#) to Alice.

3. Alice simulates the computation of A′(n) on the input ‘x’ starting at the state

δ̂(s0, x#y#). If δ̂(s0, x#y#x) ∈ Sacc, then Alice sends the result 1 to Bob, otherwise

Alice sends the result 0 to Bob.
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The deterministic complexity of the above protocol is 1+2 logN and therefore D(DISJ 1
4
)

� 1 + 2 logN. According to the analysis in Theorem 4.3, we have

1 + 2 logN � D(DISJ 1
4
) > 0.0073n− 1 (59)

⇒ N ∈ 2Ω(n). (60)

6. Conclusion

We have explored generalizations of the Deutsch–Jozsa promise problem and its com-

munication and also query complexities. We have proved that the exact quantum

communication complexity QE(EQk) ∈ O(log n) for any fixed k � n
2
, whereas the

exact classical communication complexity D(EQk) ∈ Ω(n) if k is an even such that
1
2
n � k < (1 − λ)n, where 0 < λ < 1

2
is given. We have also shown that the exact quantum

query complexity QTE(DJk) = 1 for any fixed k � n
2
, whereas the exact classical query

complexity DT (DJk) = n− k + 1. Promise versions of the disjointness problem also have

been discussed. We have proved that for some promise versions of the disjointness problem

that there exist exponential gaps between quantum (and also probabilistic) communication

complexity and deterministic communication complexity.

Using results of the communication complexity to prove lower bounds of the state

complexity of finite automata is one of the important methods (Hromkovič and Schintger

2001; Klauck 2000; Kushilevitz and Nisan 1997). In this paper, we have used them not

only to prove lower bounds but also upper bounds. Two communicating parties Alice and

Bob are supposed to have access to arbitrary computational power in communication

complexity models. However, we have also designed communication protocols in Section 3

and Section 4 in which both Alice and Bob are using very limited computational power.

The computations of both Alice and Bob can even be simulated by finite automata.

Some problems for future work are as follows:

1. We have generalized the distributed Deutsch–Jozsa promise problem to determine

whether H(x, y) = 0 or H(x, y) = k, where k is a fixed integer such that k � n
2
. Does

there exist similar results for some cases where k < n
2
?

2. Does there exist a promise version of the disjointness problem such that its exact

quantum communication complexity can be exponential better than its deterministic

communication complexity?
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