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Abstract

Answer-set programming (ASP) is a truly declarative programming paradigm proposed in the

area of non-monotonic reasoning and logic programming, which has been recently employed

in many applications. The development of efficient ASP systems is, thus, crucial. Having in

mind the task of improving the solving methods for ASP, there are two usual ways to reach

this goal: (i) extending state-of-the-art techniques and ASP solvers or (ii) designing a new

ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art

solvers, and to apply machine learning techniques for choosing automatically the “best”

available solver on a per-instance basis.

In this paper, we pursue this latter direction. We first define a set of cheap-to-compute

syntactic features that characterize several aspects of ASP programs. Then, we apply

classification methods that, given the features of the instances in a training set and the

solvers’ performance on these instances, inductively learn algorithm selection strategies to

be applied to a test set. We report the results of a number of experiments considering

solvers and different training and test sets of instances taken from the ones submitted to

the “System Track” of the Third ASP Competition. Our analysis shows that by applying

machine learning techniques to ASP solving, it is possible to obtain very robust performance:

our approach can solve more instances compared with any solver that entered the Third ASP

Competition.

KEYWORDS: answer-set programming, automated algorithm selection, multi-engine solvers

� This is an extended and revised version of Maratea et al. (2012a, 2012b).
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1 Introduction

Answer-set programming (ASP) (Gelfond and Lifschitz 1988; Gelfond and Lifschitz

1991; Eiter et al. 1997; Marek and Truszczyński 1998; Niemelä 1998; Lifschitz 1999;

Baral 2003) is a truly declarative programming paradigm proposed in the area of

non-monotonic reasoning and logic programming. The idea of ASP is to represent a

given computational problem by a logic program whose answer sets correspond to

solutions, and then use a solver to find such solutions (Lifschitz 1999). The language

of ASP is very expressive, indeed all problems in the second level of the polynomial

hierarchy can be expressed in ASP (Eiter et al. 1997). Moreover, in the last years

ASP has been employed in many applications (Nogueira et al. 2001; Baral 2003;

Brooks et al. 2007; Friedrich and Ivanchenko 2008; Gebser et al. 2011; Balduccini

and Lierler 2012), and even in industry (Ricca et al. 2009, 2010, 2012; Rullo et al.

2009; Marczak et al. 2010; Smaragdakis et al. 2011). The development of efficient

ASP systems is, thus, a crucial task, made even more challenging by existing and

new-coming applications.

Having in mind the task of improving the robustness, i.e., the ability to perform

well across a wide set of problem domains, and the efficiency, i.e., the quality of

solving a high number of instances, of solving methods for ASP, it is possible to

extend existing state-of-the-art techniques implemented in ASP solvers, or design

from scratch a new ASP system with powerful techniques and heuristics. An

alternative to these trends is to build on top of state-of-the-art solvers, leveraging

on a number of efficient ASP systems (Simons et al. 2002; Leone et al. 2006;

Giunchiglia et al. 2006; Gebser et al. 2007; Mariën et al. 2008; Janhunen et al. 2009),

and applying machine learning techniques for inductively choosing, among a set of

available ones, the “best” solver on the basis of the characteristics, called features, of

the input program. This approach falls in the framework of the algorithm selection

problem (Rice 1976). Related approaches, following this per-instance selection, have

been exploited for solving propositional satisfiability (SAT), (Xu et al. 2008),

and Quantified SAT (QSAT) (Pulina and Tacchella 2007) problems. In ASP, an

approach for selecting the “best” clasp internal configuration is followed in Gebser

et al. (2011), while another approach that imposes learned heuristics ordering to

smodels is Balduccini (2011).

In this paper, we pursue this direction and propose a multi-engine approach

to ASP solving. We first define a set of cheap-to-compute syntactic features that

describe several characteristics of ASP programs, paying particular attention to ASP

peculiarities. We then compute such features for the grounded version of all bench-

marks submitted to the “System Track” of the Third ASP Competition (Calimeri

et al. 2012) falling in the “NP” and “Beyond NP” categories of the competition:

this track is well suited for our study given that (i) contains many ASP instances,

(ii) the language specification, ASP-Core, is a common ASP fragment such that (iii)

many ASP systems can deal with it.

Then, we apply classification methods that, starting from the features of the in-

stances in a training set, and the solvers’ performance on these instances, inductively

learn general algorithm selection strategies to be applied to a test set. We consider
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six well-known multinomial classification methods, some of them considered in

Pulina and Tacchella (2007). We perform a number of analyses considering different

training and test sets. Our experiments show that it is possible to obtain a very robust

performance, by solving many more instances than all the solvers that entered the

Third ASP Competition and DLV (Leone et al. 2006).

This paper is structured as follows. Section 2 contains preliminaries about ASP

and classification methods. Section 3 then describes our benchmark setting, in terms

of dataset and solvers employed. Section 4 defines how features and solvers have been

selected, and presents the classification methods employed. Section 5 is dedicated

to the performance analysis, while Sections 6 and 7 end the paper with discussion

about related work and conclusions, respectively.

2 Preliminaries

In this section, we recall some preliminary notions concerning ASP and machine

learning techniques for algorithm selection.

2.1 Answer-set programming

In the following, we recall both the syntax and semantics of ASP. The presented

constructs are included in ASP-Core (Calimeri et al. 2012), which is the language

specification that was originally introduced in the Third ASP Competition (Calimeri

et al. 2012) as well as the one employed in our experiments (see Section 3). Hereafter,

we assume the reader is familiar with logic programming conventions and refer the

reader to Gelfond and Lifschitz (1991), Baral (2003), and Gelfond and Leone (2002)

for complementary introductory material on ASP, and to Calimeri et al. (2011) for

obtaining the full specification of ASP-Core.

Syntax. A variable or a constant is a term. An atom is p(t1, . . . , tn), where p is a

predicate of arity n and t1, . . . , tn are terms. A literal is either a positive literal p or a

negative literal not p, where p is an atom. A (disjunctive) rule r is of the form:

a1 ∨ · · · ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an, b1, . . . , bm are atoms. The disjunction a1 ∨ . . . ∨ an is the head of r,

while the conjunction b1, . . . , bk, not bk+1, . . . , not bm is the body of r. We denote by

H(r) the set of atoms occurring in the head of r, and we denote by B(r) the set of

body literals. A rule s.t. |H(r)| = 1 (i.e., n = 1) is called a normal rule; if the body is

empty (i.e., k = m = 0) it is called a fact (and the :– sign is omitted); if |H(r)| = 0

(i.e., n = 0) is called a constraint. A rule r is safe if each variable appearing in r also

appears in some positive body literal of r.

An ASP program P is a finite set of safe rules. A not -free (resp., ∨-free) program

is called positive (resp., normal). A term, an atom, a literal, a rule, or a program is

ground if no variable appears in it.

Semantics. Given a program P, the Herbrand Universe UP is the set of all constants

appearing in P, and the Herbrand Base BP is the set of all possible ground atoms
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which can be constructed from the predicates appearing in P with the constants

of UP. Given a rule r, Ground(r) denotes the set of rules obtained by applying all

possible substitutions from the variables in r to elements of UP. Similarly, given a

program P, the ground instantiation of P is Ground(P) =
⋃

r∈P Ground(r).

An interpretation for a program P is a subset I of BP. A ground positive literal

A is true (resp., false) w.r.t. I if A ∈ I (resp., A �∈ I). A ground negative literal not A

is true w.r.t. I if A is false w.r.t. I; otherwise not A is false w.r.t. I .

The answer sets of a program P are defined in two steps using its ground

instantiation: first, the answer sets of positive disjunctive programs are defined;

then, the answer sets of general programs are defined by a reduction to positive

ones and a stability condition.

Let r be a ground rule, the head of r is true w.r.t. I if H(r) ∩ I �= ∅. The body of

r is true w.r.t. I if all body literals of r are true w.r.t. I , otherwise the body of r is

false w.r.t. I . The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its

body is false w.r.t. I .

Given a ground positive program Pg , an answer set for Pg is a subset-minimal

interpretation A for Pg such that every rule r ∈ Pg is true w.r.t. A (i.e., there is no

other interpretation I ⊂ A that satisfies all the rules of Pg).

Given a ground program Pg and an interpretation I , the (Gelfond–Lifschitz)

reduct (Gelfond and Lifschitz 1991) of Pg w.r.t. I is the positive program P I
g ,

obtained from Pg by (i) deleting all rules r ∈ Pg whose negative body is false w.r.t.

I , and (ii) deleting the negative body from the remaining rules of Pg .

An answer set (or stable model) of a general program P is an interpretation I of

P such that I is an answer set of Ground(P)I .

As an example consider the program P = { a ∨ b :– c., b :– not a, not c., a ∨
c :– not b., k :– a., k :– b. } and I = {b, k}. The reduct PI is {a ∨ b :– c., b. k :– a.,

k :– b.}. I is an answer set of PI , and for this reason it is also an answer set of P.

2.2 Multinomial classification for algorithm selection

With regard to empirically hard problems, there is rarely a best algorithm to solve

a given combinatorial problem, while it is often the case that different algorithms

perform well on different problem instances. In this work, we rely on a per-instance

selection algorithm in which, given a set of features – i.e., numeric values that

represent particular characteristics of a given instance – it is possible to choose the

best (or a good) algorithm among a pool of them – in our case, ASP solvers. In

order to make such a selection in an automatic way, we model the problem using

multinomial classification algorithms, i.e., machine learning techniques that allow

automatic classification of a set of instances, given some instance features.

In more detail, in multinomial classification we are given a set of patterns, i.e.,

input vectors X = {x1, . . . xk} with xi ∈ �n, and a corresponding set of labels, i.e.,

output values Y ∈ {1, . . . , m}, where Y is composed of values representing the m

classes of the multinomial classification problem. In our modeling, the m classes

are m ASP solvers. We think to the labels as generated by some unknown function
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Table 1. Problems and instances

Problem Class No. of instances

DisjunctiveScheduling NP 10

GraphColouring NP 60

HanoiTower NP 59

KnightTour NP 10

MazeGeneration NP 50

Labyrinth NP 261

MultiContextSystemQuerying NP 73

Numberlink NP 150

PackingProblem NP 50

SokobanDecision NP 50

Solitaire NP 25

WeightAssignmentTree NP 62

MinimalDiagnosis Beyond NP 551

StrategicCompanies Beyond NP 51

Total 1462

f : �n → {1, . . . , m} applied to the patterns, i.e., f(xi) = yi for i ∈ {1, . . . , k} and

yi ∈ {1, . . . , m}. Given a set of patterns X and a corresponding set of labels Y , the

task of a multinomial classifier c is to extrapolate f given X and Y , i.e., construct c

from X and Y so that when we are given some x� ∈ X we should ensure that c(x�)

is equal to f(x�). This task is called training and the pair (X,Y ) is called the training

set.

3 Benchmark data and settings

In this section, we report the benchmark settings employed in this work, which

is needed for properly introducing the techniques described in the remainder of

the paper. In particular, we report some data concerning: benchmark problems,

instances, and ASP solvers employed, as well as the hardware platform, and the

execution settings for reproducibility of experiments.

3.1 Dataset

The benchmarks considered for the experiments belong to the suite of the Third ASP

Competition (Calimeri et al. 2011). This is a large and heterogeneous suite of hard

benchmarks encoded in ASP-Core, which was already employed for evaluating the

performance of state-of-the-art ASP solvers. That suite includes planning domains,

temporal and spatial scheduling problems, combinatorial puzzles, graph problems,

and a number of application domains, i.e., databases, information extraction, and
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molecular biology field.1 In more detail, we have employed the encodings used in

the System Track of the competition, and all the problem instances made available

(in form of facts) from the contributors of the problem submission stage of the

competition, which are available from the competition website (Calimeri et al.

2011). Note that this is a superset of the instances actually selected for running (and

thus evaluated in) the competition itself. Hereafter, with instance we refer to the

complete input program (i.e., encoding+facts) to be fed to a solver for each instance

of the problem to be solved.

The techniques presented in this paper are conceived for dealing with propositional

programs; thus, we have grounded all the mentioned instances by using GrinGo

(v.3.0.3) (Gebser et al. 2007) to obtain a setup very close to the one of the

competition. We considered only computationally hard benchmarks, corresponding

to all problems belonging to the categories NP and Beyond NP of the competition.

The dataset is summarized in Table 1, which also reports the complexity classification

and the number of available instances for each problem.

3.2 Executables and hardware settings

We have run all the ASP solvers that entered the System Track of the Third ASP

Competition (Calimeri et al. 2011) with the addition of DLV (Leone et al. 2006)

(which did not participate in the competition since it is developed by the organizers

of the event). In this way, we have covered – to the best of our knowledge –

all the state-of-the-art solutions fitting the benchmark settings. In detail, we have

run: clasp (Gebser et al. 2007), claspD (Drescher et al. 2008), claspfolio (Gebser

et al. 2011), idp (Wittocx et al. 2008), cmodels (Lierler 2005), sup (Lierler 2008),

Smodels (Simons et al. 2002), and several solvers from both the lp2sat (Janhunen

2006) and lp2diff (Janhunen et al. 2009) families, namely lp2gminisat, lp2lminisat,

lp2lgminisat, lp2minisat, lp2diffgz3, lp2difflgz3, lp2difflz3, and lp2diffz3.

More in detail, clasp is a native ASP solver relying on conflict-driven nogood

learning; claspD is an extension of clasp that is able to deal with disjunctive logic

programs, while claspfolio exploits machine learning techniques in order to choose

the best-suited execution options of clasp; idp is a finite model generator for

extended first-order logic theories, which is based on MiniSatID (Mariën et al.

2008); Smodels is one of the first robust native ASP solvers that have been

made available to the community; DLV (Leone et al. 2006) is one of the first

systems able to cope with disjunctive programs; cmodels exploits a SAT solver

as a search engine for enumerating models, and also verifies model minimality

with SAT, whenever needed; sup exploits nonclausal constraints, and can be seen

as a combination of the computational ideas behind cmodels and Smodels; the

lp2sat family employs several variants (indicated by the trailing g, l, and lg) of

a translation strategy to SAT and resorts to MiniSat (Eén and Sörensson 2003)

for actually computing the answer sets; the lp2diff family translates programs in

1 An exhaustive description of the benchmark problems can be found in Calimeri et al. (2011).
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difference logic over integers (smt-lib-web 2011) and exploit Z3 (de Moura and

Bjørner 2008) as underlying solver (again, g, l, and lg indicate different translation

strategies). DLV was run with default settings, while remaining solvers were run on

the same configuration (i.e., parameter settings) as in the competition.

Concerning the hardware employed and the execution settings, all the experiments

were carried out on CyberSAR (Masoni et al. 2009), a cluster comprised of 50 Intel

Xeon E5420 blades equipped with 64 bit GNU Scientific Linux 5.5. Unless otherwise

specified, the resources granted to the solvers are 600 s of CPU time and 2GB of

memory. Time measurements were carried out using the time command shipped

with GNU Scientific Linux 5.5.

4 Designing a multi-engine ASP solver

The design of a multi-engine solver involves several steps: (i) design of (syntactic)

features that are both significant for classifying the instances and cheap-to-compute

(so that the classifier can be fast and accurate); (ii) selection of solvers that are

representative of the state of the art (to be able to possibly obtain the best

performance in any considered instance); and (iii) selection of the classification

algorithm, and fair design of training and test sets, to obtain a robust and unbiased

classifier.

In the following, we describe the choices we have made for designing me-asp,

which is our multi-engine solver for ground ASP programs.

4.1 Features

Our features selection process started by considering a very wide set of candidate

features that correspond, in our view, to several characteristics of an ASP program

that, in principle, should be taken into account.

The features that we compute for each ground program are divided into four

groups (such a categorization is borrowed from Nudelman et al. (2004)):

• Problem size features. Number of rules r, number of atoms a, ratios r/a, (r/a)2,

(r/a)3 and ratios reciprocal a/r, (a/r)2 and (a/r)3. These types of features are

considered to give an idea of what is the size of the ground program.

• Balance features. Ratio of positive and negative atoms in each body, and

ratio of positive and negative occurrences of each variable; fraction of unary,

binary and ternary rules. These features can help to understand what is the

“structure” of the analyzed program.

• “Proximity to horn” features. Fraction of horn rules and number of atoms

occurrences in horn rules. These features can give an indication on “how much”

a program is close to be horn: this can be helpful, since some solvers may take

advantage of this setting (e.g., minimum or no impact of completion (Clark

1978) when applied).

• ASP peculiar features. Number of true and disjunctive facts, fraction of normal

rules and constraints, head sizes, occurrences of each atom in heads, bodies and
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rules, occurrences of true negated atoms in heads, bodies and rules; Strongly

Connected Components (SCC) sizes, number of Head-Cycle Free (HCF) and

non-HCF components, degree of support for non-HCF components.

For the features implying distributions, e.g., ratio of positive and negative atoms

in each body, atoms occurrences in horn rules, and head sizes, five numbers are

considered: minimum, 25% percentile, median, 75% percentile and maximum. The

five numbers are considered given that we can not a priori consider the distributions

to be Gaussians; thus, mean and variance are not that informative.

The set of features reported above seems to be adequate for describing an ASP

program.2 On the other hand, we have to consider that the time spent computing

the features will be integral part of our solving process: the risk is to spend too

much time in calculating the features of a program. This component of the solving

process could result in a significant overhead in the solving time in the case of

instances that are easily solved by (some of) the engines, or can even cause a time

out on programs otherwise solved by (some of) the engines within the time limit.

Given these considerations, our final choice is to consider syntactic features that

are cheap-to-compute, i.e., computable in linear time in the size of the input, also

given that in previous work (e.g., Pulina and Tacchella 2007) syntactic features have

been profitably used for characterizing (inherently) ground instances. To this end,

we implemented a tool able to compute the above-reported set of features and

conducted some preliminary experiments on all the benchmarks we were able to

ground with GrinGo in less than 600 s: 1,425 instances out of a total of 1,462, of

which 823 out of 860 NP instances.3 On the one hand, the results confirmed the

need for avoiding the computation of “expensive” features (e.g., SCCs): indeed, in

this setting we could compute the whole set of features only for 665 NP instances

within 600 s; and, on the other hand, the results helped us in selecting a set of

“cheap” features that are sufficient for obtaining a robust and efficient multi-engine

system. In particular, the features that we selected are a subset of the ones reported

above:

• Problem size features. Number of rules r, number of atoms a, ratios r/a, (r/a)2,

(r/a)3 and ratios reciprocal a/r, (a/r)2 and (a/r)3;

• Balance features. Fraction of unary, binary and ternary rules;

• “Proximity to horn” features. Fraction of horn rules;

• ASP peculiar features. Number of true and disjunctive facts, fraction of normal

rules and constraints c.

This final choice of features, together with some of their combinations (e.g.,

c/r), amounts for a total of 52 features. Our tool for extracting features from

ground programs can then compute all these features (in less than 600 s) for 1,371

programs out of 1,462. The distribution of the CPU times for extracting features

is characterized by the following five numbers: 0.24, 1.74, 2.40, 4.37, and 541.92

2 Observations concerning existing proposals are reported in Section 6.
3 The exceptions are 10 and 27 instances of DisjunctiveScheduling and PackingProblem, respectively.
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Table 2. Results of a pool of ASP solvers on the NP instances of the Third ASP Competition.

The table is organized as follows: the column “Solver” reports the solver name, column “Solved”

reports the total amount of instances solved with a time limit of 600 seconds, and, finally, in

column “Unique” we report the total amount of uniquely solved instances by the corresponding

solver

Solver Solved Unique Solver Solved Unique

clasp 445 26 lp2diffz3 307 –

cmodels 333 6 lp2sat2gminisat 328 –

dlv 241 37 lp2sat2lgminisat 322 –

idp 419 15 lp2sat2lminisat 324 –

lp2diffgz3 254 – lp2sat2minisat 336 –

lp2difflgz3 242 – smodels 134 –

lp2difflz3 248 – sup 311 1

s. It has to be noticed that high CPU times correspond to extracting features for

ground programs whose size is in the order of gigabytes. Our set of chosen features

is relevant, as will be shown in Section 5.

4.2 Solvers selection

The target of our selection is to collect a pool of solvers that is representative

of the state-of-the-art solver (sota), i.e., considering a problem instance, the oracle

that always fares the best among available solvers. Note that, in our settings, the

various engines available employ (often substantially) different evaluation strategies,

and (it is likely that) different engines behave better in different domains; or, in

other words, the engines’ performance is “orthogonal”. As a consequence, one can

find that there are solvers that solve a significant number of instances uniquely (i.e.,

instances solved by only one solver), which have a characteristic performance and

are a fundamental component of the sota. Thus, a pragmatic and reasonable choice,

given that we want to solve as much instances as possible, is to consider a solver

only if it solves a reasonable amount of instances uniquely, since this solver cannot

be, in a sense, subsumed performance wise by another behaving similarly.

In order to select the engines, we ran preliminary experiments, and we report the

results (regarding the NP class) in Table 2. Looking at the table, first we notice that

we do not report results related to both claspD and claspfolio. Concerning the

results of claspD, we report that – considering the NP class – its performance, in

terms of solved instances, is subsumed by the performance of clasp. Considering

the performance of claspfolio, we exclude such system from this analysis because

we consider it as a yardstick system, i.e., we will compare its performance against

the performance of me-asp.

Looking at Table 2, we can see that only 4 solvers out of 16 are able to solve a

noticeable number of instances uniquely, namely clasp, cmodels, DLV, and idp.4

4 The picture of uniquely solved instances does not change even considering the entire family of lp2sat

(resp. lp2diff) as a single engine that has the best performance among its variants.
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Concerning Beyond NP instances, we report that only three solvers are able to cope

with such class of problems, namely claspD, cmodels, and DLV. Considering that

both cmodels and DLV are involved in the previous selection, that claspD has

a performance that does not overlap with the other two in Beyond NP instances,

the pool of engines used in me-asp will be composed of five solvers, namely clasp,

claspD, cmodels, DLV, and idp.

The experiments reported in Section 5 confirmed that this engine selection policy is

effective in practice considering the ASP state of the art. Nonetheless, it is easy to see

that in scenarios where the performance of most part of the available solvers is very

similar on a common pool of instances, i.e., their performance is not “orthogonal”,

choosing a solver for the only reason it solves a reasonable amount of instances

uniquely may not be an effective policy. Indeed, the straightforward application of

that policy to “overlapping” engines could result in discarding the best ones, since

it is likely that several of them can solve the same instances. An effective possible

extension of the selection policy presented above to deal with overlapping engines

is to remove dominated solvers, i.e., a solver s dominates a solver s′ if the set of

instances solved by s is a superset of the instances solved by s′. Ties are broken

choosing the solver that spends the smaller amount of CPU time. If the resulting

pool of engines is still not reasonably distinguishable, i.e., there are not enough

uniquely solved instances by each engine of the pool, then one may compute such

pool, say E, as follows: starting from the empty set (E = ∅), and trying iteratively

to add engine candidates to E from the one that solves more instances, and faster,

to the less efficient. At each iteration, an engine e is added to E if both the set

of uniquely solved instances by the engines in E ∪ {e} is larger than in E and the

resulting set E ∪ {e} is reasonably distinguishable.

We have applied the above extended policy, which is to be considered as a

pragmatic strategy more than a general solution, obtaining good results in a specific

experiment with overlapping engines; more details will be found in Section 5.4.

4.3 Classification algorithms and training

In the following, we briefly review the classifiers that we use in our empirical

analysis. Considering the wide range of multinomial classifiers described in the

scientific literature, we test a subset of algorithms, some of them considered in

Pulina and Tacchella (2007). Particularly, we can limit our choice to the classifiers

able to deal with numerical attributes (the features) and multinomial class labels (the

engines). Furthermore, in order to make our approach as general as possible, our

desiderata is to choose classifiers that allow us to avoid “stringent” assumptions on

the features distributions, e.g., hypotheses of normality or independence among the

features. At the end, we also prefer classifiers that do not require complex parameter

tuning, e.g., procedures that are more elaborated than standard parameters grid

search. The selected classifiers are listed as follows.

• Aggregation pheromone density based pattern classification (apc). It is a pattern

classification algorithm modeled on the ants colony behavior and distributed

adaptive organization in nature. Each data pattern is considered as an ant,
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and the training patterns (ants) form several groups or colonies depending

on the number of classes present in the dataset. A new test pattern (ant) will

move along the direction where average aggregation pheromone density (at

the location of the new ant) formed due to each colony of ants is higher and,

hence, eventually it will join that colony. We refer the reader to Halder et al.

(2009) for further detail.

• Decision rules (furia). A classifier providing a set of rules that generally takes

the form of a Horn clause wherein the class labels is implied by a conjunction

of some attributes; we use furia (Hühn and Hüllermeier 2009) to induce

decision rules.

• Decision trees (j48). A classifier arranged in a tree structure and used to

discover decision rules. Each inner node contains a test on some attributes

and each leaf node contains a label; we use j48, an optimized implementation

of c4.5 (Quinlan 1993).

• Multinomial logistic regression (mlr). A classifier providing a hyperplane of

the hypersurfaces that separate the class labels in the feature space; we use

the inducer described in Le Cessie and Van Houwelingen (1992).

• Nearest-neighbor (nn). It is a classifier yielding the label of the training instance

which is closer to the given test instance, whereby closeness is evaluated using,

e.g., Euclidean distance (Aha et al. 1991).

• Support vector machine (svm). It is a supervised learning algorithm used for

both classification and regression tasks. Roughly speaking, the basic training

principle of svms is finding an optimal linear hyperplane such that the expected

classification error for (unseen) test patterns is minimized. We refer the reader

to Cortes and Vapnik (1995) for further detail.

The rationale of our choice is twofold. On the one hand, the selected classifiers

are “orthogonal”, i.e., they build on different inductive biases in the computation

of their classification hypotheses, since their classification algorithms are based on

very different approaches. On the other hand, building me-asp on top of different

classifiers allows to draw conclusions about both the robustness of our approach

and the proper design of our testing set. Indeed, as shown in Section 5, performance

is positive for each classification method.

As mentioned in Section 2.2, in order to train the classifiers, we have to select

a pool of instances for training purpose, called the training set. Concerning such

selection, our aim is twofold. On the one hand, we want to compose a training

set in order to get a robust model; while, on the other hand, we want to test the

generalization performance of me-asp also on instances belonging to benchmarks

not “covered” by the training set.

As result of the considerations above, we designed three training sets. The first

one – ts in the following – is composed of the 320 instances uniquely solved by the

pool of engines selected in Section 4.2, i.e. such that only one engine, among the ones

selected, solves each instance (without taking into account the instances involved in

the competition). The rationale of this choice is to try to “mask” noisy information

during model training to obtain a robust model. The remaining training sets are
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Fig. 1. (Colour online) Training set coverage: two-dimensional space projection of (a) the

whole dataset, (b) ts, (c) tsS1, and (d) tsS2.

subsets of ts, and they are composed of instances uniquely solved considering only

the ones belonging to the problems listed in the following:

- tsS1: 297 instances uniquely solved considering:

GraphColouring, Numberlink, Labyrinth, MinimalDiagnosis.
- tsS2: 59 instances uniquely solved considering:

SokobanDecision, HanoiTower, Labyrinth, StrategicCompanies.

Note that both tsS1 and tsS2 contain one distinct Beyond NP problem to ensure

a minimum coverage of this class of problems. The rationale of these additional

training sets is thus to test our method on “unseen” problems, i.e., on instances

coming from domains that were not used for training: a “good” machine learning

method should generalize (to some degrees) and obtain good results also in such

setting. In this view, both training sets are composed of instances coming from a

limited number, i.e., 4 out of 14, of problems. Moreover, tsS2 is also composed of
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a very limited number of instances. Such setting will further challenge me-asp to

understand what is the point in which we can have degradation in performance: we

will see that while it is true that tsS2 is a challenging situation in which performance

decreases, even in this setting me-asp has reasonable performance and performs

better than its engines and rival systems.

In order to give an idea of the coverage of our training sets and outline differences

among them, we depict in Figure 1 the coverage of: the whole available dataset

(Fig. 1a), ts (Fig. 1b), and its subsets tsS1 (Fig. 1c) and tsS2 (Fig. 1d). In particular,

the plots report a two-dimensional projection obtained by means of a principal

components analysis (PCA), and considering only the first two principal components

(PC). The x-axis and the y-axis in the plots are the first and the second PCs,

respectively. Each point in the plots is labeled by the best solver on the related

instance. In Figure 1(a) we add a label denoting the benchmark name of the

depicted instances, in order to give a hint about the “location” of each benchmark.

From the picture it is clear that tsS1 covers less space than ts, which in turn covers

a subset of the whole set of instances. Clearly, tsS2, which is the smallest set of

instances, has a very limited coverage (see Fig. 1d).

Considering the classification algorithms listed above,5 we trained the classifiers

and assessed their accuracy. Referring to the notation introduced in Section 2.2, even

assuming that a training set is sufficient to learn f, it is still the case that different

sets may yield a different f. The problem is that the resulting trained classifier may

underfit the unknown pattern – i.e., its prediction is wrong – or overfit – i.e., be

very accurate only when the input pattern is in the training set. Both underfitting

and overfitting lead to poor generalization performance, i.e., c fails to predict f(x∗)

when x∗ �= x. However, statistical techniques can provide reasonable estimates of

the generalization error. In order to test the generalization performance, we use

a technique known as stratified 10-times 10-fold cross validation to estimate the

generalization in terms of accuracy, i.e., the total amount of correct predictions with

respect to the total amount of patterns. Given a training set (X,Y ), we partition X

in subsets Xi with i ∈ {1, . . . 10} such that X =
⋃10

i=1 Xi and Xi ∩ Xj = ∅ whenever

i �= j; we then train c(i) on the patterns X(i) = X \ Xi and corresponding labels Y(i).

We repeat the process 10 times, to yield 10 different c and we obtain the global

accuracy estimate.

We report an accuracy greater than 92% for each classification algorithm trained

on ts, while concerning the remaining training sets, just for the sake of completeness

we report an average 85% as accuracy result. The main reason for this result is that

the training sets different from ts are composed of a smaller number of instances

with respect to ts; thus, the classification algorithms are not able to generalize with

the same accuracy. This result is not surprising, also considering the plots in Figure 1

and, as we will see in the experimental section, this will influence the performance

of me-asp.

5 For all algorithms but apc, we use the the tool rapidminer (Mierswa et al. 2006).
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5 Performance analysis

In this section, we present the results of the analysis we have performed. We consider

different combinations of training and test sets, where the training sets are the ones

introduced in Section 4, and the test set ranges over the Third ASP Competition

ground instances. In particular, the first (resp. second) experiment has ts as training

set, and the successfully grounded instances evaluated (resp. submitted) to the Third

ASP Competition as test set: the goal of this analysis is to test the efficiency of

our approach on all the evaluated (resp. submitted) instances when the model is

trained on the whole space of the uniquely solved instances. The third experiment

considers tsS1 and tsS2 as training sets, and all the successfully grounded instances

submitted to the competition as test set: in this case, given that the models are not

trained on all the space of the uniquely solved instances, but on a portion, and

that the test set contains “unseen” problems (i.e., belonging to domains that were

left unknown during training), the goal is to test, in particular, the robustness of

our approach. We devoted one subsection to each of these experiments, where we

compare me-asp to its component engines. In detail, for each experiment the results

are reported in a table structured as follows: the first column reports the name of the

solver and (when needed) its inductive model in a subcolumn, where the considered

inductive models are denoted by modts, modS1, and modS2, corresponding to the

test sets ts, tsS1, and tsS2 introduced before, respectively; the second and third

columns report the result of each solver on NP and Beyond NP classes, respectively,

in terms of the number of solved instances within the time limit and sum of their

solving times (a subcolumn is devoted to each of these numbers, which are “–” if the

related solver was not among the selected engines). We report the results obtained

by running me-asp with the six classification methods introduced in Section 4.3, and

their related inductive models. In particular, me-asp (c) indicates me-asp employing

the classification method c ∈ {apc, furia, j48, mlr, nn, svm }. We also report the

component engines employed by me-asp on each class as explained in Section 4.2,

and as reference sota, which is the ideal multi-engine solver (considering the engines

employed).

An additional subsection summarizes results and compares me-asp with state-of-

the-art solvers that won the Third ASP Competition.

We remind the reader that the compared engines were run on all the 1,425

instances grounded in less than 600 s, whereas the instances on which me-asp was

run are limited to the ones for which we were able to compute all features (i.e., 1,371

instances), and the timings for multi-engine systems include both the time spent

for extracting the features from the ground instances and the time spent by the

classifier.

5.1 Efficiency on instances evaluated at the competition

In the first experiment, we consider ts introduced in Section 4 as training set, and

as test set all the instances evaluated at the Third ASP Competition (a total of

88 instances). Results are shown in Table 3. We can see that on problems of the
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Table 3. Results of the various solvers on the grounded instances evaluated at the Third ASP

Competition. me-asp has been trained on the ts training set

Solver NP Beyond NP

Ind. model No. solved Time (s) No. solved Time (s)

clasp 60 5,132.45 – –

claspD – – 13 2,344.00

cmodels 56 5,092.43 9 2,079.79

DLV 37 1,682.76 15 1,359.71

idp 61 5,010.79 – –

me-asp (apc) modts 63 5,531.68 15 3,286.28

me-asp (furia) modts 63 5,244.73 15 3,187.73

me-asp (j48) modts 68 5,873.25 15 3,187.73

me-asp (mlr) modts 65 5,738.79 15 3,187.57

me-asp (nn) modts 66 4,854.78 15 3,187.31

me-asp (svm) modts 60 4,830.70 15 2,308.60

sota 71 5,403.54 15 1,221.01

NP class, me-asp (j48) solves the highest number of instances, seven more than idp

and eight more than clasp. Note also that me-asp (svm) (our worst performing

version) is basically on par with clasp (with 60 solved instances) and is very close

to idp (with 61 solved instances). Nonetheless, five out of six classification methods

lead me-asp to have better performance than each of its engines. On the Beyond

NP problems, instead, all versions of me-asp and DLV solve 15 instances (DLV

having best mean CPU time), followed by claspD and cmodels, which solve 13 and

9 instances, respectively. Among the me-asp versions, me-asp (j48) is, in sum, the

solver that solves the highest number of instances: here it is very interesting to note

that its performance is very close to the sota solver (solving only three instances

less) which, we remind, has the ideal performance that we could expect in these

instances with these engines.

5.2 Efficiency on instances submitted to the competition

In the second experiment, we consider the ts training set (as for the previous

experiment), and the test set is composed of all successfully grounded instances

submitted to the Third ASP Competition. The results are now shown in Table 4.

Note here that in both NP and Beyond NP classes, all me-asp versions solve more

instances (or in shorter time in one case) than the component engines: in particular,

in the NP class, me-asp (apc) solves the highest number of instances, 52 more than

clasp, which is the best engine in this class, while in the Beyond NP class me-asp

(mlr) solves 519 instances and three me-asp versions solve 518 instances, i.e., 86

and 85 more instances than claspD, respectively, which is the engine that solves

more instances in the Beyond NP class. Also, in this case me-asp (svm) solves less

instances than other me-asp versions; nonetheless, me-asp (svm) can solve as much
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Table 4. Results of the various solvers on the grounded instances submitted to the 3rd ASP

Competition. me-asp has been trained on the ts training set

Solver NP Beyond NP

Ind. model No. solved Time (s) No. solved Time (s)

clasp 445 47,096.14 – –

claspD – – 433 52,029.74

cmodels 333 40,357.30 270 38,654.29

DLV 241 21,678.46 364 9,150.47

idp 419 37,582.47 – –

me-asp (apc) modts 497 55,334.15 516 60,537.67

me-asp (furia) modts 480 48,563.26 518 60,009.23

me-asp (j48) modts 490 49,564.19 510 59,922.86

me-asp (mlr) modts 489 49,569.77 519 58,287.31

me-asp (nn) modts 490 46,780.31 518 55,043.39

me-asp (svm) modts 445 40,917.70 518 52,553.84

sota 516 39,857.76 520 24,300.82

NP instances as clasp, and is effective on Beyond NP, where it is one of the versions

that can solve 518 instances.

As far as the comparison with the sota solver is concerned, the best me-asp

version, i.e., me-asp (apc) solves, in sum, only 23 out of 1,036 instances less than the

sota solver, mostly from the NP class.

In order to give a different look at the magnitude of improvements of our approach

in this experiment, whose test set we remind is a super-set of the one in Section 5.1,

in Figure 2 we present the results of me-asp (apc), its engines, claspfolio and sota

on NP instances in a cumulative way as customary in, e.g., Max-SAT and ASP

competitions. The x-axis reports a CPU time, while the y-axis indicates the number

of instances solved within a certain CPU time.

Results clearly show that me-asp (apc) performs better, in terms of the total

number of instances solved, than its engines clasp, claspD, and claspfolio; also,

me-asp (apc) it is very close to the sota. Looking more in detail at the figure, we

can note that along the x-axis the distance of me-asp (apc) with respect to the sota

decreases: this is due, for a small portion of instances (given that we have seen

that these two steps are efficient), to the time spent to compute features and on

classification, and to the fact that we may not always predict the best engine to

run. The convergence of me-asp (apc) toward sota confirms that even if we may

sometimes miss to predict the best engine, most of the time we predict an engine

that allows us to solve the instance within the time limit.

5.3 Robustness on instances submitted to the competition

In this experiment, we use the two smaller training sets tsS1 and tsS2 introduced in

Section 4, while the same test set as that of the previous experiment. The rationale of

this last experiment is to test the robustness of our approach on “unseen” problems,
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Fig. 2. (Colour online) Results of claspfolio, me-asp engines, me-asp (apc) (trained on ts)

and sota on the NP instances submitted to the competition.

i.e., in a situation where the test set does not contain any instance from some

problems. Note that tsS1 contains 297 uniquely solved instances, covering 4 domains

out of 14; and tsS2 is very small, since it contains only 59 instances belonging

to 4 domains. We can thus expect this experiment to be particularly challenging

for our multi-engine approach. Results are presented in Table 5, from which it is

clear that me-asp (apc) trained on tsS1 performs better than the other alternatives

and solves 46 instances more than clasp in the NP class, and 11 instances more

than claspD in the Beyond NP class (clasp and claspD being the best engines in

NP and Beyond NP classes, respectively). As expected, if we compare the results

with those obtained with the larger training set ts, we note a general performance

degradation. In particular, the performance now is less close to the sota solver,

which solves in total 40 more instances than the best me-asp version trained on tsS1,

with additional unsolved instances coming mainly from the Beyond NP class in this

case. This can be explained considering that tsS1 does not contain instances from

the Strategic Companies problem and, thus, it is not always able to select DLV on

these instances where DLV is often a better choice than claspD. However, me-asp

can also solve in this case far more instances than all the engines, demonstrating a

robust performance.

These findings are confirmed when the very small test set tsS2 is considered. In

this very challenging setting, there are still me-asp versions that can solve more

instances than the component engines.

5.4 Discussion and comparison to the state of the art

Summing up the three experiments, it is clear that me-asp has a very robust and

efficient performance: it often can solve (many) more instances than its engines, even

considering the single NP and Beyond NP classes.
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Table 5. Results of the various solvers on the grounded instances submitted to the Third ASP

Competition. me-asp has been trained on training sets tsS1 and tsS2

Solver NP Beyond NP

Ind. model No. solved Time (s) No. solved Time (s)

clasp 445 47,096.14 – –

claspD – – 433 52,029.74

cmodels 333 40,357.30 270 38,654.29

DLV 241 21,678.46 364 9,150.47

idp 419 37,582.47 – –

me-asp (apc) modS1 491 54,126.87 505 56,250.96

me-asp (furia) modS1 479 49,226.42 507 55,777.67

me-asp (j48) modS1 477 46,746.65 507 55,777.67

me-asp (mlr) modS1 471 48,404.11 507 52,499.83

me-asp (nn) modS1 476 47,627.06 507 49,418.67

me-asp (svm) modS1 459 38,686.16 507 51,462.13

me-asp (apc) modS2 445 48,290.97 433 53,268.62

me-asp (furia) modS2 414 37,902.37 363 10,542.85

me-asp (j48) modS2 487 51,187.66 431 57,393.61

me-asp (mlr) modS2 460 42,385.66 363 10,542.01

me-asp (nn) modS2 487 48,889.21 363 10,547.81

me-asp (svm) modS2 319 32,162.37 364 10,543.00

sota 516 39,857.76 520 24,300.82

We also report that all versions of me-asp have reasonable performance, so – from

a machine learning point of view – we can conclude that, on the one hand, the set of

cheap-to-compute features that we selected is representative (i.e., they allow to both

analyze a significant number of instances and drive the selection of an appropriate

engine) independently from the classification method employed. On the other hand,

the robustness of our inductive models lets us conclude that we made an appropriate

design of our training set ts.

Additional observations can be drawn by looking at Figure 3, where three plots

are depicted, one for each inductive model, showing the number of calls to the

internal engines for each variant of me-asp. In particular, by looking at Figure 3(a),

we can conclude that the selection of the engines was also fair. Indeed, all of them

were employed in a significant number of cases and, as one would expect, the

engines that solved a larger number of instances in the Third ASP Competition (i.e.,

clasp and claspD) are called more often. Nonetheless, the ability of exploiting all

solvers from the pool made a difference in performance, e.g., looking at Figure 3(a)

one can note that our best version me-asp (apc) exploits all engines, and it is

very close to the ideal performance of sota. It is worth noting that the me-asp

versions that select DLV more often (note that DLV solves uniquely a high number

of StrategicCompanies instances) performed better on Beyond NP. Note also that

Figure 3 allows us to explain the performance of me-asp (svm), which often differs

from the other methods; indeed, this version often prefers DLV over the other

engines also on NP instances. Despite the fact that choosing DLV is often decisive
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Fig. 3. Number of calls to the component engines of the various versions of me-asp on the

instances submitted to the Third ASP Competition.
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Table 6. Comparison to the state of the art. me-asp trained on training set ts

Solver Evaluated Submitted

Ind. model NP Beyond NP Total NP Beyond NP Total

claspD – 52 13 65 402 433 835

claspfolio Competition 62 – – 431 – –

me-asp (apc) modts 63 15 78 497 516 1,013

me-asp (furia) modts 63 15 78 480 518 998

me-asp (j48) modts 68 15 83 490 510 1,000

me-asp (mlr) modts 65 15 80 489 519 1,008

me-asp (nn) modts 66 15 81 490 518 1,008

me-asp (svm) modts 60 15 75 445 518 963

on Beyond NP, it is not always a good choice on NP as well. As a consequence,

me-asp (svm) is always very fast on Beyond NP but does not show overall the same

performance of me-asp equipped with other methods.

Figure 3(a) also gives some additional insight concerning the differences among

our inductive models. In particular, the me-asp versions trained with tsS2 (containing

only StrategicCompanies in Beyond NP) prefer more often DLV (see Fig. 3c); thus,

the performance is good on this class but deteriorates a bit on NP. Concerning tsS1

(see Fig. 3b), we note that idp is less exploited than in the other cases, even by

me-asp (mlr), which is the alternative that chooses idp more often: this is probably

due to the minor coverage of this training set on NP. Overall, as we would expect,

the number of calls for me-asp trained with ts is more balanced among the various

engines than for me-asp trained with the smaller training sets.

We have seen that me-asp almost always can solve more instances than its

component engines. One might wonder how it compares with the state-of-the-

art ASP implementations. Table 6 summarizes the performance of claspD and

claspfolio (the overall winner, and the fastest solver in the NP class that entered

the System Track of the competition, respectively), in terms of the number of solved

instances on both instance sets, i.e., evaluated and submitted, and of the various

versions of me-asp exploiting our inductive model of choice, obtained from the test

set ts.

We observe that all me-asp versions outperform yardstick state-of-the-art solvers

considering all submitted instances.6

Concerning the comparison on the instances evaluated at the Third ASP Compe-

tition, we note that all me-asp versions outperform the winner of the System Track

of the competition claspD that could solve 65 instances, whereas me-asp (j48) (i.e.,

the best solver in this class) solves 83 instances (and is very close to the ideal sota

solver). Even me-asp (svm) (i.e., the worst performing version of our system) could

solve 10 instances more than claspD; moreover, also me-asp (apc) is very effective

here, solving 78 instances.

6 Recall that claspfolio can deal with NP instances only.
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Concerning the comparison on the larger set of instances submitted to the Third

ASP Competition, the picture is similar. All me-asp versions outperform claspD,

which solves 835 instances where the worst performing version of our system,

me-asp (svm), solves 963 instances, and the best version overall me-asp (apc) solvers

1,013 instances, i.e., 178 instances more than the winner of the Third ASP System

Competition. We remind that this holds even considering the most challenging

settings when me-asp is trained with tsS1 and tsS2 (see Table 5).

If we limit our attention to the instances belonging to the NP class, the yardstick

for comparing me-asp with the state of the art is clearly claspfolio. Indeed,

claspfolio was the solver that could solve more NP instances at the Third ASP

Competition, and also claspfolio is the state-of-the-art portfolio system for ASP,

selecting from a pool of different clasp configurations.

The picture that comes out from Table 6 shows that all versions of me-asp

could solve more instances than claspfolio, especially considering the instances

submitted to the competition. In particular, me-asp (apc) solves 497 NP instances,

while claspfolio solves 431. Concerning the comparison on the instances evaluated

at the Third ASP Competition, we note that claspfolio could solve 62 instances

and performs similarly to, e.g., me-asp (svm) (with 60 instances) and me-asp (furia)

(with 63 instances); our best performing version (i.e., me-asp (j48)) could solve 68

instances, i.e., six instances more than claspfolio (i.e., about 10% more).

Up to now, we have compared the raw performance of me-asp with out-of-the-box

alternatives. A more precise picture of the comparison between the two machine

learning based approaches (me-asp and claspfolio) can be obtained by performing

some additional analysis.

First of all, note that the above comparison was made considering as reference

the claspfolio version (trained by the Potassco team) that entered the Third ASP

Competition. One might wonder what is the performance of claspfolio when

trained on our training set ts. As will be discussed in detail in Section 6, claspfolio

exploits a different method for algorithm selection; thus, this datum is reported here

only for the sake of completeness. We have trained claspfolio on ts with the help

of the Potassco team.7 As a result, the performance of claspfolio trained on ts is

analogous to the one obtained by the claspfolio trained for the competition (i.e.,

it solves 59 instances from the evaluated set, and 433 of the submitted set).

On the other hand, one might want to analyze what would be the result of

applying the approach to algorithm selection implemented in me-asp to the setting

of claspfolio. As pointed out in Section 6, the multi-engine approach that we have

followed in me-asp is very flexible, and we could easily develop an ad hoc version

of our system, which we called me-clasp, that is based on the same “algorithms”

portfolio of claspfolio. In practice, we considered as a separate engine each of

the 25 clasp versions employed in claspfolio, and we applied the same steps as

described in Section 4 to build me-clasp. Concerning the selection of the engines,

as one might expect, many engines are overlapping and the number of uniquely

7 Following the suggestion of the Potassco team, we have run claspfolio (ver. 1.0.1 – August 19, 2011),
since the feature extraction tool claspre has been recently updated and integrated in claspfolio.
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solved instances considering all the available engines was very low (we get only ten

uniquely solved instances). Thus, we applied the extended engine selection policy

and we selected five engines, we trained me-clasp on ts, and selected a classification

algorithm, in this case nn. (We also tried other settings with different combinations,

both more and less engines, still obtaining similar overall results.)

The goal of this final experiment is to confirm the prediction power of our

approach. The resulting picture is that me-clasp (nn) solves 458 NP instances,

where the ideal limit that one can reach considering all the 25 heuristics in the

portfolio is 484. This is substantially more than claspfolio, solving 431 instances.

Nonetheless, me-asp (nn) (that solves 490) outperforms me-clasp (nn).

All in all, one can conclude that the approach introduced in this paper, combining

cheap-to-compute features and multinomial classification, also works well when

applied to a portfolio of heuristics. On the other hand, as one might expect,

the possibility to select among several different engines featuring (often radically

different) evaluation strategies with non-overlapping performance, gives additional

advantages with respect to a single-engine portfolio. Indeed, even in the presence

of an ideal prediction strategy, a portfolio approach based on variants of the same

algorithm cannot achieve the same performance of an ideal multi-engine approach.

This is clear observing that the sota solver on NP can solve 516 instances, whereas

the ideal performance for both me-clasp and claspfolio tops at 484 instances. The

comparison of me-clasp and me-asp seems to confirm that me-asp can exploit this

ideal advantage also in practice.

6 Related work

Starting from the consideration that, on empirically hard problems, there is rarely a

“global” best algorithm, while it is often the case that different algorithms perform

well on different problem instances, Rice (1976) defined the algorithm selection

problem as the problem of finding an effective algorithm based on an abstract

model of the problem at hand. Along this line, several works have been done to

tackle combinatorial problems efficiently. In Gomes and Selman (2001) and Leyton-

Brown et al. (2003), the concept of “algorithm portfolio” as a general method for

combining existing algorithms into new ones that are unequivocally preferable to

any of the component algorithms is described. Most related papers to our work

are Xu et al. (2008) and Pulina and Tacchella (2007) for solving SAT and QSAT

problems. Both Xu et al. (2008) and Pulina and Tacchella (2007) rely on a per-

instance analysis, such as the one we have performed in this paper: in Pulina

and Tacchella (2007), which is the work closest to our, the goal is to design a

multi-engine solver, i.e. a tool that can choose among its engines the one which is

more likely to yield optimal results. Pulina and Tacchella (2009) extends Pulina and

Tacchella (2007) by introducing a self-adaptation of the learned selection policies

when the approach fails to give a good prediction. The approach by Xu et al. (2008)

has also the ability to compute features on-line, e.g., by running a solver for

an allotted amount of time and looking “internally” to solver statistics, with the

option of changing the solver on-line: this is a per-instance algorithm portfolio

https://doi.org/10.1017/S1471068413000094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000094


A multi-engine approach to answer-set programming 863

approach. The related solver, satzilla, can also combine portfolio and multi-engine

approaches. The algorithm portfolio approach is employed also in Gomes and

Selman (2001) on Constraint Satisfaction and MIP, Samulowitz and Memisevic

(2007) on QSAT and Gerevini et al. (2009) on planning problems. If we consider

“pure” approaches, the advantage of the algorithm portfolio over a multi-engine is

that it is possible, by combining algorithms, to reach a performance that is better

than that of the best engine, which is an upper bound for a multi-engine solver

instead. On the other hand, a multi-engine treats the engines as a black-box, and

this is a fundamental assumption to have a flexible and modular system: to add

a new engine, one just needs to update the inductive model. Other approaches, an

overview of which can be found in Hoos (2012), work by designing methods for

automatically tuning and configuring the solver parameters: e.g., Hutter et al. (2009,

2010) for solving SAT and MIP problems, and Vallati et al. (2011) for planning

problems.

About the other approaches in ASP, the one implemented in claspfolio (Gebser

et al. 2011) mixes characteristics of the algorithm portfolio approach with others

more similar to this second trend: it works by selecting the most promising clasp

internal configuration on the basis of both “static” and “dynamic” features of

the input program, the latter obtained by running clasp for a given amount of

time. Thus, like the algorithm portfolio approaches, it can compute both static

and dynamic features, while trying to automatically configure the “best” clasp

configuration on the basis of the computed features.

The work presented here is in a different ballpark with respect to claspfolio for

a number of motivations. First, from a machine learning point of view, the inductive

models of me-asp are based on classification algorithms, while the inductive models

of claspfolio are mainly based on regression techniques, as in satzilla, with the

exception of a “preliminary” stage, in which a classifier is invoked in order to

predict the satisfiability result of the input instance. Regression-based techniques

usually need many training instances to have a good prediction while, as shown in

our paper, this is not required for our method that is based on classification. To

highlight consideration of the prediction power, in Section 5.4 we have applied our

approach to claspfolio, showing that relying on classification instead of regression

in claspfolio can lead to better results. Second, as mentioned before, in our

approach we consider the engines as a black-box: me-asp architecture is designed

to be independent from the engines internals. me-asp, being a multi-engine solver,

has thus higher modularity/flexibility with respect to claspfolio: adding a new

solver to me-asp is immediate, while this is problematic in claspfolio, and likely

would boil down to implement the new strategy in clasp. Third, as a consequence

of the previous point, we use only static features: dynamic features, as in the case of

claspfolio, usually are both strongly related to a given engine and possibly costly to

compute, and we avoided such kind of features. For instance, one of the claspfolio

dynamic feature is related to the number of “learnt constraints”, which could be

a significant feature for clasp but not for other systems, e.g., DLV that does not

adopt learning and is based on look-ahead. Lastly, as described in Section 4.1, we

use only cheap-to-compute features, while claspfolio relies one some quite “costly”
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features, e.g., number of SCCs and loops. This was confirmed on some preliminary

experiments: it turned out that the claspfolio feature extractor could compute, in

600 s, all its features for 573 out of 823 NP ground instances.

An alternative approach in ASP is followed in the dors framework of Bal-

duccini (2011), where in the off-line learning phase, carried out on representative

programs from a given domain, a heuristic ordering is selected to be then used in

smodels when solving other programs from the same domain. The target of this work

seems to be real-world problem domains where instances have similar structures,

and heuristic ordering learned in some (possibly small) instances in the domain can

help to improve the performance on other (possibly big) instances. According to

its author,8 the solving method behind dors can be considered “complementary”

more than alternative with respect to the one of me-asp, i.e., they could in principle

be combined. An idea can be the following: while computing features, one can (in

parallel) run one or more engines in order to learn a (possibly partial) heuristic

ordering. Then, in the solving phase, engines can take advantage from the learned

heuristic (but, of course, assuming minimal changes in the engines). This would come

up to having two “sources” of knowledge: the “most promising” engine, learned

with the multi-engine approach, and the learned heuristic ordering.

Finally, we remark that this work is an extended and revised version of Maratea

et al. (2012a), the main improvements include:

(i) the adoption of six classification methods (instead of the only one, i.e., nn,

employed in Maratea et al. 2012a);

(ii) a more detailed analysis of the dataset and the test sets;

(iii) a wider experimental analysis, including (iiia) more systems, i.e., different

versions of me-asp and claspfolio, and (iiib) more investigations on training

and test sets, and

(iv) an improved related work, in particular with respect to the comparison with

claspfolio.

7 Conclusion

In this paper, we have applied machine learning techniques to ASP, solving with the

goal of developing a fast and robust multi-engine ASP solver. To this end, we have

(i) specified a number of cheap-to-compute syntactic features that allow for accurate

classification of ground ASP programs; (ii) applied six multinomial classification

methods to learning algorithm selection strategies; and (iii) implemented these

techniques in our multi-engine solver me-asp, which is available for download at

http://www.mat.unical.it/ricca/me-asp.

The performance of me-asp was assessed on three experiments, which were conceived

for checking efficiency and robustness of our approach, involving different training

and test sets of instances taken from those submitted to the System Track of

8 Personal communications with Marcello Balduccini.
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the Third ASP Competition. Our analysis shows that our multi-engine solver me-

asp is very robust and efficient, and outperforms both its component engines and

state-of-the-art solvers.
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