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THE NONHOMOGENEOUS FROG MODEL ON Z

JOSH ROSENBERG,∗ University of Pennsylvania

Abstract

We examine a system of interacting random walks with leftward drift on Z, which begins
with a single active particle at the origin and some distribution of inactive particles
on the positive integers. Inactive particles become activated when landed on by other
particles, and all particles beginning at the same point possess equal leftward drift. Once
activated, the trajectories of distinct particles are independent. This system belongs to a
broader class of problems involving interacting random walks on rooted graphs, referred
to collectively as the frog model. Additional conditions that we impose on our model
include that the number of frogs (i.e. particles) at positive integer points is a sequence
of independent random variables which is increasing in terms of the standard stochastic
order, and that the sequence of leftward drifts associated with frogs originating at these
points is decreasing. Our results include sharp conditions with respect to the sequence of
random variables and the sequence of drifts that determine whether the model is transient
(meaning the probability infinitely many frogs return to the origin is 0) or nontransient.
We consider several, more specific, versions of the model described, and a cleaner, more
simplified set of sharp conditions will be established for each case.
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1. Introduction

The frog model is a system of interacting random walks on a rooted graph. It begins
with a single ‘active’ frog at the root and some distribution of sleeping frogs (either random
or deterministic) at the nonroot vertices. The active frog performs a discrete-time nearest-
neighbor random walk on the graph (biased or unbiased) and any time an active frog lands on
a vertex containing sleeping frogs, all of these frogs become active and begin performing their
own discrete-time nearest-neighbor random walks, activating sleeping frogs along the way.
Previous work on the frog model has included investigating the model on infinite n-ary trees [4]
as well as on Euclidean lattices; see [2] and [6]. In particular, a number of authors have studied
a variety of different versions of the frog model on Z, often focusing on establishing conditions
that determine whether the model is recurrent or transient with respect to the number of distinct
frogs that visit the root. In this paper we will focus on exploring several of these models while
building on, expanding, and synthesizing some of the existing results pertaining to them.

There are three existing results, each addressing a different version of the frog model on Z,
that serve as a jumping off point for the present work. The first concerns a model in which all non-
zero vertices contain an independent and identically distributed (i.i.d.) number of sleeping frogs,
and activated frogs perform mutually independent random walks that go left with probability p

Received 30 August 2017; revision received 6 November 2018.
∗ Current address: School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Email address: rjos@math.upenn.edu

1093

https://doi.org/10.1017/jpr.2018.73 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:rjos@math.upenn.edu ?subject=J. Appl. Prob.%20paper%2016759
https://doi.org/10.1017/jpr.2018.73


1094 J. ROSENBERG

(where 1
2 < p < 1) and right with probability 1 − p. Gantert and Schmidt [3] proved that if η

represents a random variable with the same distribution as the number of sleeping frogs at each
nonzero vertex, then

Pη(the origin is visited i.o.) =
{

0 if E[log+ η] < ∞,

1 if E[log+ η] = ∞,
(1.1)

where we abbreviate infinitely often to i.o. (note that this condition does not depend on the
particular value of p).

The second result that served to motivate the present investigations involved a model in
which negative integer vertices contain no sleeping frogs and positive integer vertices each
contain a single sleeping frog. For each n > 0, the frog at x = n (if activated) performs a
random walk (independently of the other active frogs) that goes left with probability pn (with
1
2 < pn < 1), and right with probability 1−pn (i.e. the particular drift value depends on where
the frog originated). Bertacchi et al. [1] established (in addition to a number of other results)
that if there exists some increasing sequence of positive integers {nk}k∈N such that

∞∑
k=0

nk∏
i=0

(
1 −

(
1 − pi

pi

)nk+1−i)
< ∞, (1.2)

then the model is nontransient (i.e. infinitely many frogs hit the origin with positive probability).
The third and final result we build on again looks at a frog model on Z for which no sleeping

frogs reside to the left of the origin, and activated frogs perform random walks with leftward
drift. This time the number of sleeping frogs Xj at x = j (for j ≥ 1) has Poisson distribution
Poi(ηj ), where the Xj are mutually independent and {ηj } is an increasing sequence. At each
step activated frogs go left with probability p (for 1

2 < p < 1) and right with probability 1−p.
This model was introduced in [5], where it was established that the model is nontransient if and
only if

∞∑
j=1

exp

(
− 1 − p

2p − 1
ηj

)
< ∞. (1.3)

Statement and discussion of results. In our first result we establish a sharp condition
distinguishing between transience and nontransience for a more general frog model on Z that
subsumes all three of the models described above. In this model points to the left of the
origin contain no sleeping frogs and, for j ≥ 1, the number of sleeping frogs at x = j is
a random variable Xj , where the Xj are independent, nonzero with positive probability, and
where Xj+1 � Xj (here ‘�’ represents stochastic dominance). In addition, for each j ≥ 1,

frogs originating at x = j (if activated) go left with probability pj (where 1
2 < pj < 1)

and right with probability 1 − pj , where the pj are decreasing and the random walks are all
mutually independent (the frog beginning at the origin goes left with probability p0, where p0
also satisfies 1

2 < p0 < 1). This model will be referred to as the nonhomogeneous frog model
on Z, and the sharp condition we eluded to will come in the form of the following theorem.

Theorem 1.1. Let fj be the probability generating function of Xj for the nonhomogeneous
frog model on Z. The model is transient if and only if

∞∑
n=2

n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
= ∞. (1.4)
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The nonhomogeneous frog model on Z 1095

After establishing Theorem 1.1, the focus will shift towards showing how it can be applied
in a number of more specific cases. The first application of the theorem will involve the
Gantert and Schmidt model from [3], and will entail showing how (1.1) can be achieved quite
easily using (1.4). Following this, we use Theorem 1.1 to obtain a formula (see Theorem 3.1)
that provides a sharp condition distinguishing between transience and nontransience in the
case where the Xj are i.i.d. and which, for the particular case where Xj = 1, builds on the
result from [1] by giving a sharp result that supersedes the soft condition in (1.2) and, for the
case where pj = 1

2 + C/ log j (for all but finitely many j ), implies the existence of a phase
transition at C = 1

24π2. Finally, we also employ Theorem 1.1 to obtain a formula that builds
on the result from [5] by generalizing (1.3) to cases where the pj are not constant. For these
last two results, the proofs will require some light assumptions relating to the concavity of the
sequences {p−1

j } and {λj }, where λj represents the Poisson mean of the distribution of Xj in
the final model discussed.

2. Transience versus nontransience for the general case

2.1. Constructing Mj and Nj

In order to move towards a proof of Theorem 1.1, we begin by defining the process {Mj },
where, for each j ≥ 1, Mj represents the number of frogs originating in {0, 1, . . . , j − 1} that
ever hit the point x = j . We now identify {Mj } with a triple (�, F , P ) defined as follows: �

represents the set of all functions ω : Z
+ → N (i.e. the set of all possible trajectories of {Mj }),

F represents the σ -field on � generated by the finite-dimensional sets, and P refers to the
probability measure induced on (�, F ) by the process {Mj }. Since P(Xn ≥ 1) ≥ P(X1 ≥ 1)

> 0 for all n ≥ 1 (recall that Xj+1 � Xj for all j ≥ 1) and the Xj are independent, it
follows from the second Borel–Cantelli lemma (BC2) that {Xj ≥ 1 i.o.} almost surely (a.s.).
Additionally, since each activated frog performs a random walk with nonzero leftward drift, this
means that each activated frog will eventually hit the origin with probability 1. Coupling this
with the fact that {Xj ≥ 1 i.o.} a.s. implies that

∑∞
j=1Xj = ∞ a.s., along with the implication

Ml = 0 �⇒ Mj = 0 for all j > l, we find that

{infinitely many frogs hit the origin} ⇐⇒ min Mj > 0. (2.1)

Now, on account of (2.1), it follows that in order to establish Theorem 1.1, it suffices to show that

min Mj = 0, P -a.s. ⇐⇒
∞∑

n=2

n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
= ∞. (2.2)

With this in mind, we define a new model which we call the F+ model. This model resembles
the nonhomogeneous frog model on Z in that the distribution of the number of frogs beginning
at every vertex is the same in the two cases, as are the drifts of the active frogs. The only
difference is that in the F+ model all frogs begin as active frogs (i.e. they do not need to be
landed on to be activated). The next step is to use the F+ model to define the process {Nj },
where, for each j ≥ 1, Nj is equal to the number of frogs originating in {0, 1, . . . , j − 1} that
ever hit the point x = j in the F+ model (i.e. {Nj } is identical to {Mj } except that the F+
model replaces the nonhomogeneous frog model on Z in the definition). We identify {Nj } with
the triple (�, F , Q), where Q refers to the probability measure induced on (�, F ) by the
process {Nj }. Having defined this construction, we establish the following proposition which
will serve as the key step in proving Theorem 1.1.
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Proposition 2.1. Define the random variable K(ω) = #{j ∈ Z
+ : ω(j) = 0}. Then Q(K =

∞) = 1 if and only if
∞∑

n=2

n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
= ∞. (2.3)

If (2.3) does not hold then Q(K = ∞) = 0.

Remark 2.1. It is worth noting that we cannot assume that {Mj } and {Nj } are Markov processes
since Mj (respectively, Nj ) gives only the number of frogs originating to the left of the point
x = j that ever hit x = j , rather than also providing the information about where each such
frog originated (a significant detail, since frog origin determines the drift). Nevertheless, since
the only conditioning we will do with respect to these two processes will involve conditioning
on Mj (respectively, Nj ) equalling 0, they prove to be sufficient for our purposes.

Proof of Proposition 2.1. By a simple martingale argument, the probability that a frog
starting at x = j ever hits x = n (for n > j ) is ((1 − pj )/pj )

n−j . Hence, the probability that
no frogs beginning at x = j ever hit x = n is

∞∑
i=0

P(Xj = i)

(
1 −

(
1 − pj

pj

)n−j)i

= fj

(
1 −

(
1 − pj

pj

)n−j)
.

It then follows that for every n ≥ 1, we have

Q(ω(n) = 0) =
(

1 −
(

1 − p0

p0

)n) n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)

�⇒ E[K] = 2p0 − 1

p0
+

∞∑
n=2

(
1 −

(
1 − p0

p0

)n) n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
,

where E refers to expectation with respect to the probability measure Q. Since (1 − ((1 −
p0)/p0)

n) → 1 as n → ∞, this means

E[K] < ∞ ⇐⇒
∞∑

n=2

n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
< ∞. (2.4)

It now immediately follows that if the right-hand side of (2.4) holds then Q(K = ∞) = 0.
Hence, to prove the proposition it suffices to establish the implication Q(K = ∞) < 1 �⇒
E[K] < ∞ (note this is just the contrapositive of E[K] = ∞ �⇒ Q(K = ∞) = 1).

Now, since the event {K = ∞} cannot depend on the behavior of the frogs from any finite
collection of vertices (for the process {Nj }), it follows that Q(K = ∞ | ω(1) = 0) = Q(K =
∞ | ω(1) = 1), which, in turn, establishes the implication

Q(K = ∞) < 1 �⇒ Q(1 ≤ K < ∞) > 0. (2.5)

Next define Vn = {ω ∈ � : ω(j) > 0 for all j > n} and assume that Q(K = ∞) < 1.
Letting Q(n) denote the probability measure obtained by conditioning on the event ω(n) = 0,
(2.5) then implies that there must exist L ≥ 1 such that Q(L)(VL) > 0. Additionally, because
Xi1+i2 � Xi1 for all i1, i2 ≥ 1 (since Xi+1 � Xi for all i ≥ 1 and � is transitive) and because
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the sequence of drifts {pj } is decreasing with respect to j , this implies that for any L′ > L

there exists a coupling of the models (F+ | NL = 0) and (F+ | NL′ = 0) (i.e. the F+ model
with all frogs to the left of the point x = L′ removed) with the following properties:

(i) every frog originating atx = L+j in (F+ | NL = 0)has a particular frog that corresponds
to it originating at x = L′ + j in the coupled model (F+ | NL′ = 0) (note that unless
XL+j and XL′+j are identically distributed, there can be frogs originating at x = L′+j in
(F+ | NL′ = 0) that do not correspond to frogs originating at x = L+ j in (F+ | NL =
0)), and

(ii) whenever a frog in (F+ | NL = 0) takes a step to the right, the corresponding frog in
(F+ | NL′ = 0)does as well (and where if a frog with driftpL+j in (F+ | NL = 0) takes a
step to the left, then the corresponding frog in (F+ | NL′ = 0) must have its step go to the
right with probability (pL+j − pL′+j )/pL+j ). Letting Kn(ω) = #{j > n : ω(j) = 0},
the above coupling then implies that

(KL | ω(L) = 0) � (KL′ | ω(L′) = 0) �⇒ Q(L′)(VL′) ≥ Q(L)(VL). (2.6)

Now, if we define the stopping times Tn where T1(ω) = min{j ≥ 1 : ω(L + j) = 0} and, for
n ≥ 2, Tn(ω) = min{j > Tn−1(ω) : ω(L + j) = 0}, we find that for every n ≥ 2,

Q(L)(KL ≥ n) =
∞∑

j=1

Q(L)(Tn−1 = j)Q(L+j)(V c
L+j ) ≤ Q(L)(V c

L)Q(L)(KL ≥ n − 1),

where the inequality follows from (2.6). From this, it then follows that for n ≥ 1,

Q(L)(KL ≥ n) ≤ (1 − Q(L)(VL))n

�⇒ E[KL | ω(L) = 0] ≤
∞∑

n=1

(1 − Q(L)(VL))n = 1 − Q(L)(VL)

Q(L)(VL)
< ∞.

Since E[KL] ≤ E[KL | ω(L) = 0] and E[K] ≤ L + E[KL], we find that

E[K] ≤ L + 1 − Q(L)(VL)

Q(L)(VL)
< ∞.

Hence, we have established the implication Q(K = ∞) < 1 �⇒ E[K] < ∞, which then
gives the implication E[K] = ∞ �⇒ Q(K = ∞) = 1, thus completing the proof of
the proposition. �
2.2. Proof of Theorem 1.1

Coupling the fact that Theorem 1.1 is equivalent to (2.2) and that P (min ω(j) = 0) = 1 if
and only if Q(K ≥ 1) = 1, we find the task of proving Theorem 1.1 is reduced to establishing

Q(K ≥ 1) = 1 ⇐⇒
∞∑

n=2

n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
= ∞.

Noting that the implication

∞∑
n=2

n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
= ∞ �⇒ Q(K ≥ 1) = 1
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follows immediately from Proposition 2.1, as does

∞∑
n=2

n−1∏
j=1

fj

(
1 −

(
1 − pj

pj

)n−j)
< ∞ �⇒ Q(K < ∞) = 1,

it suffices to establish the implication Q(K < ∞) = 1 �⇒ Q(K = 0) > 0. We begin by
defining (�̃, F̃ , Q̃), where �̃ := � × N, F̃ is the σ -field generated by the finite-dimensional
sets, and Q̃ is the probability measure induced on (�̃, F̃ ) by {Nj } and R0 (where R0 represents
the largest x-value attained by the frog starting at the origin), and we observe that for any event
A ∈ F , we have Q̃(A) = Q(A), where A, when interpreted as an event in F̃ , represents
A × N. In addition, we note that (2.5) implies that if Q(K < ∞) = 1 then there exists L

such that Q(VL | ω(L) = 0) > 0, and we also note that if we define Un := {R0 ≥ n} then
UL ∩ VL ⊆ {K = 0}. Combining these observations with

Q̃(UL ∩ VL) =
(

1 − p0

p0

)L

Q̃(VL | UL)

≥
(

1 − p0

p0

)L

Q̃(VL | ω(L) = 0)

=
(

1 − p0

p0

)L

Q(VL | ω(L) = 0)

> 0

(where Q̃(UL) = ((1 − p0)/p0)
L), we have

Q(K < ∞) = 1 �⇒ Q(K = 0) = Q̃(K = 0) ≥ Q̃(UL ∩ VL) > 0,

thus completing the final step of the proof.

2.3. A simple proof of Gantert and Schmidt’s result

In order to demonstrate the utility of Theorem 1.1, in this section we show how it can be used
to obtain a simple two-step proof of the result from [3] described in the introduction. In part 1
we use a method similar to Gantert and Schmidt’s, while in part 2 we employ a more novel
approach which simplifies matters considerably.

Part 1: E[log+ η] = ∞ �⇒ recurrence. We begin by defining the process {Aj }, where,
for every j ∈ Z/{0}, Aj represents the number of distinct frogs originating at x = j that
ever hit the origin in the Gantert–Schmidt model. Next we define the triple (�∗, F ∗, P ∗),
where �∗ represents the set of functions ω : Z/{0} → N (i.e. the possible trajectories of {Aj }),
F ∗ represents the σ -field on �∗ generated by the finite-dimensional sets, and P ∗ represents the
probability measure induced on (�∗, F ∗) by the process {Aj }. Additionally, denoting the two-
sided sequence {. . . , η−2, η−1, η1, η2, . . . } that gives the number of sleeping frogs beginning at
every nonzero vertex as H , we define the process {A(H)

j } in the same way as {Aj }, but where the
number of sleeping frogs starting at each vertex is given by the terms of H . As with {Aj }, each
such process can be identified with a triple (�∗, F ∗, P ∗

H ), where P ∗
H represents the probability

measure that {A(H)
j } induces on (�∗, F ∗). Now, since the activated frogs in this model all have

nonzero leftward drift, this means that all frogs that begin to the left of the origin are activated
with probability 1. Hence, for j ≥ 1 and H = {. . . , η−2, η−1, η1, η2, . . . }, we find that

P ∗
H (ω(−j) > 0) = 1 −

(
1 −

(
1 − p

p

)j)η−j

.
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Now, defining U(ω) = #{j ∈ Z
+ : ω(−j) > 0}, noting that the random variables ω(−j) are

independent with respect to P ∗
H , and noting that if η−j ≥ (p/(1−p))j then P ∗

H (ω(−j) > 0) =
1 − (1 − ((1 − p)/p)j )η−j ≥ 1 − e−1 > 0, we see that the implication

{
η−j ≥

(
p

1 − p

)j

i.o.

}
�⇒ P ∗

H (U = ∞) = 1 (2.7)

follows from BC2. Furthermore, if we define � = {H ∈ (ηj )j∈Z∗ : η−j ≥ (p/(1 − p))j i.o.}
and let μ represent the probability measure associated with (ηj )j∈Z∗ , then, since

∞∑
j=1

P

(
η ≥

(
p

1 − p

)j)
=

∞∑
j=1

P

(
log+ η ≥ j log

(
p

1 − p

))

≥
∞∑

j=1

P

(
log+ η ≥ j

⌈
log

[
p

1 − p

]⌉)

≥ 1

�log[p/(1 − p)]�
(

E[log+ η] −
⌈

log

[
p

1 − p

]⌉)
,

we find that another application of BC2 yields the implication E[log+ η] = ∞ �⇒ μ(�) = 1.
Alongside (2.7), this establishes part 1.

Part 2: E[log+ η] < ∞ �⇒ transience. We choose a constant C such that 0 < C < 1
and C(p/(1 − p)) > 1. Noting that

∞∑
j=1

μ

(
η−j ≥ Cj

(
p

1 − p

)j)
=

∞∑
j=1

P

(
log+ η ≥ j log

[
Cp

1 − p

])

≤ 1

log[Cp/(1 − p)]E[log+ η],

it follows from the Borel–Cantelli lemma (BC1) that

E[log+ η] < ∞ �⇒ μ

(
η−j ≥ Cj

(
p

1 − p

)j

i.o.

)
= 0. (2.8)

In addition, since, for j ≥ 1, we have P ∗
H (ω(−j) > 0) = 1 − (1 − ((1 − p)/p)j )η−j (see just

before (2.7)) and

1 −
(

1 −
(

1 − p

p

)j)Cj (p/(1−p))j

= (1 + o(1))Cj as j → ∞,

we find that if η−j ≥ Cj (p/(1 − p))j at only finitely many points, then
∑∞

j=1P
∗
H (ω(−j) >

0) < ∞. Now coupling this with (2.8) and employing BC1, we obtain (for j ≥ 1)

E[log+ η] < ∞ �⇒ P ∗(ω(−j) > 0 i.o.) = 0. (2.9)

Letting A = ∑∞
j=1ω(−j), it follows from (2.9) that

E[log+ η] < ∞ �⇒ P ∗(A < ∞) = 1.
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If we now let B = ∑∞
j=1ω(j), we find that in order to prove that E[log+ η] < ∞ implies tran-

sience, it suffices to establish that, for each k with 0 ≤ k < ∞, the following implication holds:

E[log+ η] < ∞ �⇒ P ∗(B < ∞ | A = k) = 1. (2.10)

Now, note that in terms of whether or not B = ∞, the only relevant detail regarding the
frogs beginning to the left of the origin is how far the one(s) that travels the furthest to the
right of the origin get. Denoting this value as C, if we assume P ∗(B = ∞) > 0, then
there would have to exist r ≥ 0 such that P ∗(B = ∞ | C = r) > 0. Since the frog
beginning at the origin reaches the point x = r with positive probability, it would follow that
P ∗(B = ∞ | A = 0) > 0. Hence, in order to establish (2.10), it suffices to establish the
implication E[log+ η] < ∞ �⇒ P ∗(B < ∞ | A = 0) = 1.

The next step is to observe that (B | A = 0) has the same distribution as the number of
distinct (initially sleeping) frogs that hit the origin in the nonhomogeneous model on Z (in the
case where pj = p for each j ≥ 0 and the Xj are i.i.d. copies of η). Using Theorem 1.1, it
then follows that in order to establish that E[log+ η] < ∞ implies transience, it is sufficient to
establish the implication

E[log+ η] < ∞ �⇒
∞∑

n=2

n−1∏
j=1

f

(
1 −

(
1 − p

p

)j)
= ∞, (2.11)

where f represents the probability generating function of η. Now, noting that

∞∑
n=2

n−1∏
j=1

f

(
1 −

(
1 − p

p

)j)
= E

[ ∞∑
n=2

exp

(n−1∑
j=1

log

[
1 −

(
1 − p

p

)j]
Xj

)]
, (2.12)

we observe that due to

log

[
1 −

(
1 − p

p

)j]
= −(1 + o(1))

(
1 − p

p

)j

as j → ∞,

it follows that if we have 0 < C < 1 such that Cp/(1 − p) > 1 and Xj ≤ (Cp/(1 − p))j for
all but finitely many j , then

∞∑
n=2

exp

(n−1∑
j=1

log

[
1 −

(
1 − p

p

)j]
Xj

)
= ∞.

When coupled with (2.8) (where we replace η−j with ηj on the right) and (2.12), this establishes
(2.11), which, as we saw, indicates that the left-hand side of (2.11) implies transience, thus
completing the proof.

3. Applications of Theorem 1.1

3.1. Sharp conditions for the i.i.d. case

Having shown in Section 2.3 how Theorem 1.1 can be used to obtain a concise proof of
Gantert and Schmidt’s result from [3], this subsection is devoted to establishing a new result
that involves a model similar to the one from [3], but where the drifts of the individual frogs
are dependent on where they originated (it will be assumed that no sleeping frogs reside to the
left of the origin). Before presenting this result however, we will first need to give a simple
definition and lemma regarding concave sequences.
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Definition 3.1. A positive real-valued sequence {rn} will be referred to as concave if and
only if

(i) r1 ≥ r2 − r1, and

(ii) ri+1 − ri ≥ ri+2 − ri+1 for every i ≥ 1.

Lemma 3.1. If {rn} is a positive real-valued concave sequence then for every j, n such that
1 ≤ j ≤ n, it satisfies rj /rn ≥ j/n.

Proof. Based on the concavity of our sequence, we know that

rn = rj + (rn − rj )

= rj +
n∑

i=j+1

ri − ri−1

≤ rj +
n∑

i=j+1

rj+1 − rj

= rj + n − j

j

j−1∑
i=0

rj+1 − rj

≤ rj + n − j

j
rj .

Hence, it follows that rn ≤ (n/j)rj , which can be written as rj /rn ≥ j/n. �

Having established the above definition and lemma, we now present the main result of this
subsection.

Theorem 3.1. For any version of the nonhomogeneous frog model on Z for which the Xj are
i.i.d. with E[X1] < ∞, pj = 1

2 +aj with g(j) = 1/aj being concave, and d = min{j : P(X1 =
j) > 0}, the model is transient if and only if

∞∑
n=1

exp(−K/4an)

(an)d/2 = ∞,

where f represents the generating function of Xj and K = −∫ ∞
0 log[f (1 − e−x)] dx.

Remark 3.1. Since X1 has a finite first moment (as stated in the theorem), we have

E[X1] < ∞ �⇒ f ′(1) = E[X1] < ∞
�⇒ log[f (1 − e−x)] = −qe−x + o(e−x)

�⇒ K < ∞,

where q = f ′(1).

Remark 3.2. One noteworthy (and immediate) consequence of Theorem 3.1 is that for fixed
f , an = (K/4)/ log n (for all but finitely many n) represents a natural critical case in the sense
that, for an = C/ log n, the model is transient if and only if C ≥ 1

4K . An instance of particular
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significance is the case where Xj = 1 for all j (i.e. each positive integer point begins with
exactly one sleeping frog). Since, in this scenario, f (x) = x, we find that

K =
∫ ∞

0
| log[1 − e−x]| dx =

∫ ∞

0

∞∑
n=1

e−nx

n
dx =

∞∑
n=1

∫ ∞

0

e−nx

n
dx =

∞∑
n=1

1

n2 = π2

6
.

Hence, it follows that if an = C/ log n then the model is transient if and only if C ≥ 1
24π2,

thus providing a new phase transition for the model from [1] mentioned in the introduction.

Proof of Theorem 3.1. Given our result in Theorem 1.1, it follows that in order to establish
this new result, it will suffice to show that

∞∑
n=1

exp(−K/4an)

(an)d/2 = ∞ ⇐⇒
∞∑

n=2

n−1∏
j=1

f

(
1 −

(
1 − 4an−j

1 + 2an−j

)j)
= ∞, (3.1)

where the expression on the right in (3.1) is obtained by substituting 1
2 +aj for pj and switching j

and n − j in (1.4). Furthermore, if we define wn = 4an/(1 + 2an) and note that(
exp(−K/wn)

(wn)d/2

)(
exp(−K/4an)

(an)d/2

)−1

→ Ae−K/2 as n → ∞ (3.2)

(where A = (limn→∞ 1
4 (1 + 2an)

d/2), we find that (3.1) is equivalent to

∞∑
n=1

exp(−K/wn)

(wn)d/2 = ∞ ⇐⇒
∞∑

n=2

n−1∏
j=1

f (1 − (1 − wn−j )
j ) = ∞. (3.3)

We first establish (3.1) (via (3.3)) under the condition that a−1
n is O(

√
n) (see steps 1–4),

following which we address the general case.
Step 1:

∑∞
n=2

∏n−1
j=1f (1 − (1 −wn)

j ) = ∞ ⇐⇒ ∑∞
n=2

∏n−1
j=1f (1 − (1 −wn−j )

j ) = ∞.
Since an is decreasing this means that wn is also decreasing, from which it follows that

n−1∏
j=1

f (1 − (1 − wn−j )
j ) ≥

n−1∏
j=1

f (1 − (1 − wn)
j ) for all n.

Hence, in order to establish this step, it suffices to show that

lim sup
n−1∑
j=1

log[f (1 − (1 − wn−j )
j )] − log[f (1 − (1 − wn)

j )] < ∞. (3.4)

We can now express (3.4) (see below) as

lim sup
n−1∑
j=1

log[f (1 − (1 − wn)
j + ((1 − wn)

j − (1 − wn−j )
j ))] − log[f (1 − (1 − wn)

j )]

≤ lim sup
n−1∑
j=1

log[f (1 − (1 − wn)
j + ((j (wn−j − wn)) ∧ (1 − wn))(1 − wn)

j−1)]

− log[f (1 − (1 − wn)
j )]. (3.5)
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Since a−1
n is O(

√
n) implies that w−1

n is as well, this mean that the first expression in the sum
on the left-hand side of (3.5) is equal to

lim sup
n−1∑
j=1

log[f (1 − (1 − wn)
j + ((j (wn−j − wn)) ∧ (1 − wn))(1 − wn)

j−1)]

− log[f (1 − (1 − wn)
j )]

≤ lim sup
∑

j≤1/wn

log[f (1 − (1 − wn)
j + ((j (wn−j − wn)) ∧ (1 − wn))(1 − wn)

j−1)]

− log[f (1 − (1 − wn)
j )]

+ lim sup
∑

1/wn<j≤n−1

q(wn−j − wn)j (1 − wn)
j−1

f (1 − (1 − wn)1/wn)
(3.6)

(recall that q = f ′(1)). The second expression on the right-hand side of (3.6) can now be
bounded above by

q

f (1 − e−1)
lim sup

∑
1/wn<j≤n−1

(wn−j − wn)j (1 − wn)
j−1

≤ q

f (1 − e−1)
lim sup

∑
1/wn<j≤n−1

(
1 − wn

wn−j

)
wn−j

wn

wnje−wn(j−1)

≤ qe

f (1 − e−1)
lim sup

∑
1/wn<j≤n−1

1

wn(n − j)
(wnj)2e−wnj , (3.7)

where the final inequality in (3.7) follows from wn−j /wn ≤ n/(n − j), which follows from
the concavity of 1/wn, which, in turn, follows from the concavity of 1/an. Next we bound the
final term in (3.7) by

qe

f (1 − e−1) lim inf nw2
n

lim sup
∑

1/wn<j≤n−1

1

1 − j/n
wn(wnj)2e−wnj

≤ qe

f (1 − e−1) lim inf nw2
n

lim sup
∑

1/wn<j≤n−1

wn(wnj)2e−3wnj/4 (3.8)

where the above inequality follows from the fact that on account of w−1
n being O(

√
n), we know

that for sufficiently large n, we have 1/(1 − j/n) ≤ exp(n−2/3j) ≤ exp( 1
4wnj) for 1 ≤ j ≤

n − 1. Finally, comparing the last sum to the integral of x2 exp(− 3
4x), we see there must exist

K < ∞ (independent of n) such that the sum is bounded above by
∫ ∞

0 x2 exp(− 3
4x) dx + K .

Combining this with w−1
n being O(

√
n) then implies that the expression on the right-hand side

of (3.8) is finite, which when coupled with (3.7) and (3.8) establishes that the second term on
the right of the inequality in (3.6) is also finite.

To complete the proof of this step, we just need to show that the first term on the right-hand
side of (3.6) is also finite. Since for any probability generating function f of a nonnegative
integer-valued random variable with finite mean, the function f ′(x)/f (x) is O(1/x), this means
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there must exist a constant C < ∞ such that f ′(x)/f (x) ≤ C/x for all x ∈ (0, 1], from which
it follows that the term in question is bounded above by

lim sup
∑

j≤1/wn

C(wn−j − wn)j (1 − wn)
j−1

1 − (1 − wn)j
. (3.9)

Next noting that, for x ∈ (0, 1] and m ∈ Z
+, we have

1 − (1 − x)m

mx
= 1

m
(1 + (1 − x) + · · · + (1 − x)m−1) ≥ (1 − x)m−1,

it follows that (3.9) can be bounded above by

C lim sup
∑

j≤1/wn

(wn−j − wn)

wn

= C lim sup
∑

j≤1/wn

wn−j

wn

− 1.

On account of the concavity of 1/wn, this last expression can itself be bounded above by

C lim sup
∑

j≤1/wn

j

n − j
= C

2
lim sup

1

nw2
n

< ∞,

where the equality along with the finiteness of the term on the right-hand side both follow from
the fact that w−1

n is O(
√

n). Hence, this establishes that (3.9), as well as the first term on the
right-hand side of (3.6), is finite. Now, if we combine this with the finiteness of the second
expression on the right-hand side of (3.6), along with the inequality in (3.5), we see that (3.4)
follows, thus completing the proof of step 1.

Step 2:
∑∞

n=2
∏n−1

j=1 f (1 − e−wnj ) = ∞ ⇐⇒ ∑∞
n=2

∏n−1
j=1 f (1 − (1 − wn)

j ) = ∞.
Since we know that

1 − wn ≤ e−wn �⇒
∞∑

n=2

n−1∏
j=1

f (1 − e−wnj ) ≤
∞∑

n=2

n−1∏
j=1

f (1 − (1 − wn)
j ),

it follows that in order to establish this step, it suffices to show (much like in the case of
step 1) that

lim sup
n−1∑
j=1

log[f (1 − (1 − wn)
j )] − log[f (1 − e−wnj )] < ∞. (3.10)

Defining Cn = (e−wn − (1 − wn))/w
2
n, we have the following string of inequalities (where the

expression on the first line is equal to the expression in (3.10), and with S(n, j) representing
the summand on the second line):

lim sup
n−1∑
j=1

log[f (1 − e−wnj + ((1 − wn + Cnw
2
n)

j − (1 − wn)
j )] − log[f (1 − e−wnj )]

≤ lim sup
n−1∑
j=1

log[f (1 − e−wnj + ((jCnw
2
n) ∧ (1 − wn))e

−wn(j−1))]

− log[f (1 − e−wnj )]

≤ lim sup
∑

j≤1/wn

S(n, j) + lim sup
∑

1/wn<j≤n−1

S(n, j). (3.11)
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If we can show that both of the expressions on the last line of (3.11) are finite then (3.10)
will immediately follow. Beginning with the first expression, observe that if we use the fact
(referenced in the proof of step 1) that there must exist C < ∞ such that f ′(x)/f (x) ≤ C/x

for all x ∈ (0, 1], then we can obtain the string of inequalities

lim sup
∑

j≤1/wn

S(n, j) ≤ lim sup
∑

j≤1/wn

CCnjw2
ne−wn(j−1)

1 − e−wnj

≤ C

2
lim sup

∑
j≤1/wn

jw2
n

1 − e−wnj
, (3.12)

where the second inequality follows from the fact that Cn ≤ 1
2 for all n. Now, using the fact

that

1 − e−wnj = (1 − e−wn)(1 + e−wn + · · · + (e−wn)j−1) ≥ j (1 − e−wn)(e−wn)j−1

and that (1 − e−wn)/wn ≥ 1 − e−1 (since 0 < wn < 1 for all n), we find that the expression
on the second line in (3.12) is bounded above by

C

2(1 − e−1)
lim sup

∑
j≤1/wn

jw2
n

jwne−1 = Ce

2(1 − e−1)
lim sup

∑
j≤1/wn

wn ≤ Ce

2(1 − e−1)
< ∞,

thus establishing that the first sum on the last line of (3.11) is finite.
In order to establish (3.10), and, thus, complete the proof of this step, it remains only to

show that the second sum on the last line of (3.11) is also finite. We accomplish this via the
following string of inequalities:

lim sup
∑

1/wn<j≤n−1

S(n, j) ≤ C

2(1 − e−1)
lim sup

∑
1/wn<j<∞

wn(wnj)e−wn(j−1)

≤ Ce

2(1 − e−1)

∫ ∞

0
xe−x dx + K,

where the first inequality follows from the same argument used in (3.12). Hence, the proof of
step 2 is complete.

Step 3:
∑∞

n=2
∏∞

j=1 f (1 − e−wnj ) = ∞ ⇐⇒ ∑∞
n=2

∏n−1
j=1 f (1 − e−wnj ) = ∞. Since

one direction is immediate, it just remains to show that

lim sup
∞∑

j=n

− log[f (1 − e−wnj )] < ∞. (3.13)

Observing that

lim sup
∞∑

j=n

− log[f (1 − e−wnj )] = lim sup
1

wn

∞∑
j=n

−wn log[f (1 − e−wnj )]

≤ lim sup
1

wn

∫ ∞

(n−1)wn

− log[f (1 − e−x)] dx,
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we find that, as a consequence of the fact that f ′(1) = q < ∞ and w−1
n is O(

√
n),

lim sup
1

wn

∫ ∞

(n−1)wn

− log[f (1 − e−x)] dx = lim sup
1

wn

∫ ∞

(n−1)wn

qe−x dx

= lim sup
1

wn

qe−(n−1)wn

≤ lim sup

√
n√
l
q exp

(
−n − 1

n

√
n
√

l

)
= 0,

where l denotes the value of lim inf nw2
n. Hence, this establishes (3.13), thus completing the

proof of step 3.
Step 4:

∑∞
n=1 e−K/wn/(wn)

d/2 = ∞ ⇐⇒ ∑∞
n=2

∏∞
j=1 f (1 − e−wnj ) = ∞. Denoting

cd = P(X1 = d) (recall d = min{j : P(X1 = j) > 0}), observe that

d(log[f (x)])
dx

= f ′(x)

f (x)

= dcd + (d + 1)cd+1x + · · ·
cdx + cd+1x2 + · · ·

= d

x

1 + ((d + 1)/d)/((cd+1)/cd)/x + · · ·
1 + ((cd+1)/cd)x + · · ·

= d

x
+ O(1). (3.14)

Now we want to approximate

− K

wn

− log

[ ∞∏
j=1

f (1 − e−wnj )

]

= 1

wn

∫ �1/wn�wn

0
log[f (1 − e−x)] dx − 1

wn

�1/wn�∑
j=1

wn log[f (1 − e−wnj )]

+ 1

wn

∫ ∞

�1/wn�wn

log[f (1 − e−x)] dx − 1

wn

∞∑
�1/wn�

wn log[f (1 − e−wnj )] (3.15)

to within an order of O(1). First noting that the expression on the second line of (3.15) is
O(1) as n → ∞ (this follows from the fact that it is bounded above by 0 and below by
log[f (1 − e−wn�1/wn�)]), we see that our task is reduced to approximating

1

wn

∫ �1/wn�wn

0
log[f (1 − e−x)] dx − 1

wn

�1/wn�∑
j=1

wn log[f (1 − e−wnj )]

= 1

wn

�1/wn�∑
j=2

∫ wn

0
log[f (1 − e−(wn(j−t)))] − log[f (1 − e−wnj )] dt + O(1), (3.16)
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where the O(1) term represents (1/wn)
∫ wn

0 log[f (1 − e−x)] dx − log[f (1 − e−wn)]. Using
(3.14), we then see that the integrand on the right-hand side of (3.16) is equal to

−
∫ 1−e−wnj

1−e−(wn(j−t))

d

x
+ O(1) dx = d log

[
1 − e−(wn(j−t))

1 − e−wnj

]
+ O(e−(wn(j−t)) − e−wnj )

= d log

[
1 − e−(wn(j−t))

1 − e−wnj

]
+ O(t)

= d log

[
1 + e−wnj (1 − et )

1 − e−wnj

]
+ O(t)

= d log

[
1 − t

wnj
+ O(t)

]
+ O(t)

= d log

[
1 − t

wnj

]
+ O(t)

with the final equality following from the fact that n ≥ 2 implies that 1 − t/wnj ≥ 1
2 > 0 for

all t . Substituting this back into the expression on the second line of (3.16) now yields

1

wn

�1/wn�∑
j=2

∫ wn

0
d log

[
1 − t

wnj

]
+ O(t) dt

= d

wn

�1/wn�∑
j=2

−(j − 1)wn log

[
1 − 1

j

]
− wn + O(w2

n)

= d

�1/wn�∑
j=2

−(j − 1) log

[
1 − 1

j

]
− 1 + O(wn)

= d

�1/wn�∑
j=2

− 1

2j
+ O

(
1

j2

)
+ O(wn)

= −d

2
log

[
1

wn

]
+ O(1),

where the O(t) expressions indicate that the absolute value of the term in question is bounded
above by ct for some c < ∞ that is independent of both n and t . Returning to the first line of
(3.15), we find that

− K

wn

− log

[ ∞∏
j=1

f (1 − e−wnj )

]
= −d

2
log

[
1

wn

]
+ O(1)

�⇒ C1
e−K/wn

(wn)d/2 ≤
∞∏

j=1

f (1 − e−wnj ) ≤ C2
e−K/wn

(wn)d/2

(for some C1, C2 independent of n with 0 < C1 < C2 < ∞), thus completing the proof of
step 4.

Having now established (3.1) via steps 1–4 when a−1
n is O(

√
n), our final task is to address

the general case. To do this, we first note that because in the proof of step 4 we did not use the

https://doi.org/10.1017/jpr.2018.73 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.73


1108 J. ROSENBERG

fact that a−1
n is O(

√
n), it follows that it continues to hold without this assumption. Coupling

this with (3.2), along with the fact that

∞∑
n=2

∞∏
j=1

f (1 − e−wnj ) ≤
∞∑

n=2

n−1∏
j=1

f (1 − e−wnj )

≤
∞∑

n=2

n−1∏
j=1

f (1 − (1 − wn)
j )

≤
∞∑

n=2

n−1∏
j=1

f (1 − (1 − wn−j )
j ),

we find that the implication going from left to right in (3.1) holds regardless of whether or
not a−1

n is O(
√

n). Hence, to complete the proof of the theorem we simply need to show that
when a−1

n is not O(
√

n), finiteness of the expression on the left-hand side of (3.1) still implies
finiteness of the expression on the right-hand side.

If we define the sequence ãn so that

1

ãn

=
⎧⎨
⎩

1

an

if 1/an < 3
√

n,

3
√

n otherwise,

it then follows that 1/ãn is concave and O(
√

n) (also note 1
2 < 1

2 + ãn < 1 still holds).
In addition, since we assume that the expression on the left-hand side of (3.1) is finite, this means

∞∑
n=1

e−K/4ãn

(ãn)d/2 ≤
∞∑

n=1

e−K/4an

(an)d/2 +
∞∑

n=1

e−K3
√

n/43d/2nd/4 < ∞.

Hence, the proof of (3.1), for the case where a−1
n is O(

√
n), implies that

∞∑
n=2

n−1∏
j=1

f

(
1 −

(
1 − 4ãn−j

1 + 2ãn−j

)j)
< ∞.

Coupling this with the fact that an ≤ ãn, we now conclude that

∞∑
n=2

n−1∏
j=1

f

(
1 −

(
1 − 4an−j

1 + 2an−j

)j)
< ∞,

which, along with the argument in the previous paragraph, establishes that (3.1) continues to
hold when a−1

n is not O(
√

n). Hence, the proof of the theorem is complete. �

3.2. Sharp conditions for the (Poi λj ) scenario

In this section we address the final model discussed in the introduction (see [5]), and establish
sharp conditions for the case where the drift values of individual frogs are dependent on where
they originate. Our result is as follows.
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Theorem 3.2. For Xj = Poi(λj ) and pj = 1
2 +aj (with the sequences 1/aj and λj both being

concave), the nonhomogeneous frog model on Z is transient if and only if

∞∑
n=1

exp

(
−λn

(
1

4an

− 1

2

))
= ∞.

Proof. Since Poi(λj ) has the generating function eλj (x−1), applying Theorem 1.1 reduces
our task to showing that

∞∑
n=1

exp

(
−λn

(
1

4an

− 1

2

))
= ∞ ⇐⇒

∞∑
n=2

exp

(
−

n−1∑
j=1

λn−j

(
1− 4an−j

1 + 2an−j

)j)
= ∞.

Noting also that

∞∑
n=2

exp

(
−λn

(
1

4an

− 1

2

))
=

∞∑
n=2

exp

(
−

∞∑
j=1

λn

(
1 − 4an

1 + 2an

)j)

≤
∞∑

n=2

exp

(
−

n−1∑
j=1

λn

(
1 − 4an

1 + 2an

)j)

≤
∞∑

n=2

exp

(
−

n−1∑
j=1

λn−j

(
1 − 4an−j

1 + 2an−j

)j)
,

we see that it is, in fact, sufficient to establish the implication

∞∑
n=1

exp

(
−λn

(
1

4an

− 1

2

))
< ∞

�⇒
∞∑

n=2

exp

(
−

n−1∑
j=1

λn−j

(
1 − 4an−j

1 + 2an−j

)j)
< ∞. (3.17)

To do this we begin by proving (3.17) for the case where λn and a−1
n are both O(n1/3). Similarly

to the proof of Theorem 3.1, we accomplish this by showing that

lim sup λn

(
1

4an

− 1

2

)
−

n−1∑
j=1

λn−j

(
1 − 4an−j

1 + 2an−j

)j

< ∞. (3.18)

As a first step towards establishing (3.18), we observe the following string of inequalities
(with εj denoting aj /(1 + 2aj )):

lim sup
n−1∑
j=1

λn(1 − 4εn−j )
j −

n−1∑
j=1

λn−j (1 − 4εn−j )
j

= lim sup
n−1∑
j=1

(λn − λn−j )(1 − 4εn−j )
j

≤ lim sup
n−1∑
j=1

(λn − λn−j )(1 − 4εn)
j
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≤ lim sup
n−1∑
j=1

j

n
λne−4jεn

≤ lim sup
λn/ε

2
n

n

∞∑
j=1

εn(εnj)e−4jεn

< ∞, (3.19)

where the second inequality follows from the fact that λj is concave and (1 − 4εn)
j ≤ e−4jεn ,

and where the finiteness of the last expression is derived from the fact that λn and ε−1
n are both

O(n1/3), along with the fact that the sum is bounded above by
∫ ∞

0 xe−4x dx + K for some
K < ∞. Next, we present another string of inequalities:

lim sup
n−1∑
j=1

λn(1 − 4εn)
j −

n−1∑
j=1

λn(1 − 4εn−j )
j

= lim sup λn

n−1∑
j=1

(1 − 4εn)
j − (1 − 4εn−j )

j

≤ lim sup 4λn

n−1∑
j=1

(εn−j − εn)j (1 − 4εn)
j−1

= lim sup 4λn

n−1∑
j=1

(ε−1
n − ε−1

n−j )εnεn−j j (1 − 4εn)
j−1. (3.20)

Since ε−1
n is concave (since it is equal to a−1

n + 2), it follows that the expression on the second
line of (3.20) is less than or equal to

lim sup 4λn

n−1∑
j=1

j

n
εn−j j (1 − 4εn)

j−1 ≤ lim sup 4λn

n−1∑
j=1

εn−j

j2

n
e−4(j−1)εn

≤ lim sup 4eλn

n−1∑
j=1

εn

1 − j/n

j2

n
e−4jεn

= lim sup
4eλn/ε

2
n

n

n−1∑
j=1

1

1 − j/n
(jεn)

2e−4jεnεn

≤ lim sup
4eλn/ε

2
n

n

∞∑
j=1

εn(εnj)2e−3jεn

< ∞,

where the third inequality follows from the fact that, for sufficiently large n, we have 1/(1 −
j/n) < ejεn for all j with 1 ≤ j < n, and where the finiteness of the last term follows from λn

and ε−1
n both being O(n1/3), together with the fact that the sum is once again bounded above by∫ ∞

0
x2e−3x dx + K for some K < ∞.
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Combining the above string of inequalities with (3.20), we see that

lim sup
n−1∑
j=1

λn(1 − 4εn)
j −

n−1∑
j=1

λn(1 − 4εn−j )
j < ∞. (3.21)

Finally, we observe that

lim sup λn

(
1

4an

− 1

2

)
−

n−1∑
j=1

λn(1 − 4εn)
j = lim sup

∞∑
j=1

λn(1 − 4εn)
j −

n−1∑
j=1

λn(1 − 4εn)
j

= lim sup
∞∑

j=n

λn(1 − 4εn)
j

= lim sup λn

(1 − 4εn)
n

4εn

≤ lim sup
λn

4εn

e−4nεn

= 0, (3.22)

where the last equality again follows from λn and ε−1
n both being O(n1/3). Now combining

(3.19), (3.21), and (3.22), we see that (3.18) (and, therefore, (3.17)) does indeed hold if λn and
a−1
n are O(n1/3).

To complete the proof of the theorem, we just need to prove (3.17) for the general case
(i.e. without the condition that λn and a−1

n are O(n1/3)). To do this, we begin by defining λ̃n

and ãn as

λ̃n =
{

λn if λn < n1/3,

n1/3 otherwise,
and

1

ãn

=
⎧⎨
⎩

1

an

if 1/an < 3n1/3,

3n1/3 otherwise

(again the coefficient 3 has been chosen so that 1
2 < 1

2 + ãn < 1 for all n). Now, noting that

∞∑
n=1

exp

(
−λ̃n

(
1

4ãn

− 1

2

))

≤
∞∑

n=1

exp

(
−n1/3

(
3n1/3

4
− 1

2

))
+

∞∑
n=1

exp

(
−n1/3

(
1

4an

− 1

2

))

+
∞∑

n=1

exp

(
−λn

(
3n1/3

4
− 1

2

))
+

∞∑
n=1

exp

(
−λn

(
1

4an

− 1

2

))

< ∞
(where the finiteness of the middle two sums on the right of the inequality follows from the fact
that an < 1

2 and λn > 0 for all n ≥ 1), it follows from the proof of (3.17), in the case where λn

and a−1
n are O(n1/3), that

∞∑
n=2

exp

(
−

n−1∑
j=1

λn−j

(
1 − 4an−j

1 + 2an−j

)j)
≤

∞∑
n=2

exp

(
−

n−1∑
j=1

λ̃n−j

(
1 − 4ãn−j

1 + 2ãn−j

)j)
< ∞,
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where the first inequality follows from the fact that λ̃j ≤ λj and ã−1
j ≤ a−1

j . Hence, this
establishes (3.17) for the general case, and thus completes the proof of the theorem. �
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