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Abstract
A comprehensive dynamic modeling and actuator torque minimization of a new symmetrical three-degree-of-
freedom (3-DOF) 3-PRR spherical parallel manipulator (SPM) is presented. Three actuating systems, each of which
composed of an electromotor, a gearbox and a double Rzeppa-type driveshaft, produce input torques of the manip-
ulator. Kinematics of the 3-PRR SPM was recently studied by the author (Zarkandi, Proc. Inst. Mech. Eng. Part
C J. Mech. Eng. Sci. 2020, https://doi.org/10.1177%2F0954406220938806). In this paper, a closed-form dynamic
equation of the manipulator is derived with the Newton–Euler approach. Then, an optimization problem with kine-
matic and dynamic constraints is presented to minimize torques of the actuators for implementing a given task. The
results are also verified by the SimMechanics model of the manipulator.

1. Introduction

Due to the direct proportional relationship between joint torques/forces of a manipulator and its con-
sumed energy, minimizing the torques/forces required for a task would inevitably reduce the power
consumption of the manipulator. For this reason, some scholars have addressed torque/force minimiza-
tion of robot manipulators. The main approaches are (i) trajectory planning of the manipulator [2, 3, 4],
(ii) actuation or kinematic redundancy [2, 5, 6, 7]. For instance, Park et al. [2] proposed an optimiza-
tion procedure to optimize both the end-effector trajectory and actuating torque distribution of a 2-DOF
redundantly actuated parallel mechanism. Segota et al. [3] studied torque minimization of a two 6-DOF
robotic manipulators cooperating and carrying a weight in a point-to-point trajectory using evolutionary
algorithms. Yao et al. [6] added a drive to change the passive constraint branch of a 5UPS/PRPU parallel
manipulator into the redundant actuation branch and optimizes the driving torque of the parallel manip-
ulator. The letters R, P, U and S denote a revolute joint, a prismatic joint, a universal joint and a spherical
joint, respectively, and underline denotes an actuated joint. They showed that adding the redundant actu-
ation branch can reduce the peak value of other non-redundant branch driving forces and improve its
dynamic performance. Boudreau et al. [7] developed an optimization approach to minimize the actua-
tor torques of a 3-PRPR planar parallel manipulator when following a specified trajectory and proved
that the redundant manipulator requires smaller torques compared with those of the non-redundant
counterpart.

Several three-degree-of-freedom (3-DOF) spherical parallel manipulators (SPMs) have been pro-
posed and their mechanical properties have been studied before; see for instance [1, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20]. But, in the case of torque minimization of 3-DOF SPMs, the literature is so
limited. To the best knowledge of the author, the only work that addressed this issue was presented by
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Figure 1. A 3D CAD model of the star-shaped base 3-PRR SPM.

Saafi et al. [5] in which an optimal torque distribution approach is studied for a redundant 3-RRR SPM
with haptic capabilities.

Dynamic modeling (or dynamic analysis) plays an important role in investigating mechanical behav-
ior of parallel manipulators. The result of the dynamic analysis can be applied for computer simulations,
calculating joint reaction forces and moments, sizing links, selecting bearings and actuators, vibration
analysis, motion planning and real-time control strategies. Dynamic analysis of parallel manipulators
has two branches [12]: (i) the inverse dynamic analysis in which the desired trajectory of the moving
platform and the mass distribution of each link is given, and the aim is to find actuator torques to generate
the trajectory and (ii) the forward (or direct) dynamic analysis in which initial actuated joint positions
and velocities, applied actuated torques, applied external forces to the moving platform are given, and
the aim is to find the resulting motion of the moving platform.

Many methods have been proposed to formulate dynamic equation of parallel manipulators such as
the Newton-Euler method [21, 22], principle of virtual work [9, 10, 11, 12], Euler-Lagrange method
[24], Kane’s method [19, 25] and some other methods [26, 27, 28]. Essentially, all the methods for
obtaining dynamic equations of motion have their own advantages and disadvantages [23]. The ease of
use of the various methods differs and depends on the type and complexity of the manipulator structure.

A small number of works have been done on dynamic analysis of 3-DOF SPMs, and most of them
are based on the principle of virtual work [9, 10, 11, 12]. Staicu [9, 10] analyzed the inverse dynamics
of 3-RRR (or Agile wrist) and 3UPS+S SPMs using the virtual work principle and recursive matrix
relations. Akbarzadeh et al. [11, 12] used the virtual work principle and the concept of link Jacobian
matrices for the inverse and direct dynamic analyses of a Star-Triangle SPM.

A novel 3-PRR SPM was recently introduced by the author [1], and its kinematics and workspace
were analyzed in detail. A 3D CAD model of the 3-PRR SPM is shown in Fig. 1. The manipulator
has a symmetrical architecture with an equiangular star-shaped base and an equilateral triangle-shaped
moving platform. Three identical PRR legs connect the base to the moving platform. The base itself
consists of three curved guides on which proximal links of the PRR legs move freely through curved
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Figure 2. Kinematic model and unit vectors of the star-shaped base 3-PRR SPM.

prismatic joints. Distal links of the PRR legs are connected to the proximal links via revolute joints.
Each of these revolute joints is actuated by an actuating system having an electromotor fixed to the base,
a gearbox and a double Rzeppa-type driveshaft [1]. The driveshaft is composed of an input shaft, an
output shaft and two intermediate shafts (a cylinder and a piston) connected to each other through two
Rzeppa joints and a prismatic joint.

The 3-PRR SPM has closed-form solutions for the inverse and forward position kinematics problems,
leading to eight working modes and eight assembly modes, respectively [1]. In contrast to the traditional
3-DOF SPM with 3-RRR topology [8, 18, 20, 29] in which all the joints are of revolute (R) type and the
first R joint of each leg is actuated, in the 3-PRR SPM, the first joint of each leg is a curved prismatic
(P) joint, and not actuated. This especial structure admits several superiorities of the 3-PRR SPM; for
instance, it has no forward kinematic singularity in its workspace for a wide range of rotation of the
moving platform around its central axis. Moreover, the uniquely acceptable working and assembly modes
of the manipulator can be easily tracked during its motion [1].

The main contribution of this paper is actuator torque minimization of the 3-PRR SPM for a given
task. To this aim, first, a complete dynamic modeling of the manipulator is developed via the Newton-
Euler method, and actuator torques of the manipulator are calculated. Then, through a constrained
optimization problem, an optimum design of the manipulator is determined with minimum values of
actuator torques required for the task.

2. Description of the 3-PRR SPM and notations

A kinematic model of the symmetrical 3-PRR SPM is represented in Fig. 2. Three curved guides of
the star-shaped base located on the surface of a sphere. The guides are concurrent at point C, and the
angle between them is 2π /3. Throughout this paper, we take subscript i = 1, 2, 3 in a cyclic manner.
Subscripts “mp” refers to the moving platform, subscripts “pro,i” and “dis,i” refer to the proximal link
and distal link of the ith PRR leg, and subscripts “cyl,i”, “pis,i” and “sh,i” refer to the piston, cylinder
and intermediate shafts of the ith driveshaft, respectively. Point Ai (Bi) locates at the intersection of the
axis of actuated (passive) revolute joint of the distal link AiBi and central arc of the curved solid bar of
the same link, see Fig. 6. It is assumed that the moving platform, the proximal link and the distal link of
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the ith PRR leg move on the surface of three concentric spheres. Centers of these spheres are coincident
with the center of the sphere of the star-shaped base at point O. The ith proximal link rotates around the
unit vector normal to the plane of the ith curved guide, which is given as

ni = [ cosψi sinψi 0 ]T (1)

where ψ1 = 2π /3, ψ2 = −2π /3 and ψ3 = 0. Rotation of the ith proximal link around ni is given by angle
β i ∈ [0, βmax] which is the angle from k to ui. Two unit vectors ui = [uix uiy uiz]T and vi = [vix viy viz]T

represent rotation axes of the first and the second revolute joints at Ai and Bi, respectively. Unit vector
wi = [wix, wiy, wiz]T is perpendicular to the plane passing through vectors ui and vi. The angle between
ui and vi of the ith distal link is shown by α. Angle θ i is the rotation angle of the actuated revolute joint
at Ai, and is the angle from ni to wi around ui. Angle ηi is the rotation angle of the second revolute joint
at Bi and is equal to the angle from the plane passing through ui and vi to the plane passing through vi
and vi+1 modulo 3 [1]. The angles β i, θ i and ηi are taken positive if measured counterclockwise around
ni, ui and vi, respectively.

The central point S of the moving platform is chosen as its operating point. Unit vector s = [sx sy sz]T

is along
−→
OS. Angle γ of the moving platform is the angle between s and vi.

A fixed coordinate frame O-xyz is attached at the centered point O, while its z-axis is along the vector−→
OC, and its y-axis locates in the plane passing through the arc of the third curved guide and point O.
Three unit vectors i, j and k are considered along the x, y and z axes, respectively. All the above unit
vectors pass through the center of rotation, that is, point O, of the manipulator.

The author [1] showed that the inverse position kinematics of the 3-PRR SPM leads to two solutions
(or working modes) for θ i, while the orientation of the moving platform is known. On the other hand,
the forward position kinematics of the manipulator gives eight solutions (or assembly modes) for the
orientation of the moving platform, when the rotation angles θ i are given. Two simple techniques were
also presented in ref. [1] to find unique and acceptable working and assembly modes of the 3-PRR SPM.
Therefore, unique postures of the manipulator can be easily traced during its motion.

3. Local coordinates frames and rotation matrices of the moving links

A local coordinate frame O−xmpympzmp is attached to the moving platform (Fig. 2), whose zmp axis is
along a vector

−→
OS, and the ymp axis locates in the plane passing through s and v3. Three unit vectors imp,

jmp and kmp are defined along the xmp, ymp and zmp axes, respectively; thus s ≡ kmp. Pose of the moving
platform with respect to the base coordinate frame O-xyz is completely determined by three successive
rotation angles (or Euler angles[30]) ϕx, ϕy and ϕz around the fixed x, y and z axes, respectively, while ϕx,
ϕz ∈ (−π , π ] and ϕy ∈ [−π /2, π /2]. Therefore, the rotation matrix of the moving platform with respect
to the base platform will be formed by multiplying the corresponding rotation matrices as follows:

Rmp =
⎡
⎢⎣

cϕzcϕy cϕzsϕysϕx − sϕzcϕx cϕzsϕycϕx + sϕzsϕx

sϕzcϕy sϕzsϕysϕx + cϕzcϕx sϕzsϕycϕx − cϕzsϕx

−sϕy cϕysϕx cϕycϕx

⎤
⎥⎦ (2)

where c(.) and s(.) stand for cos(.) and sin(.), respectively. We can also define the rotation matrix of the
moving platform based on unit vectors imp, jmp and kmp as follows:

Rmp = [ imp jmp kmp ]T (3)

As a result, the first, the second and the third columns of Rmp in Eq. (2) represent unit vectors imp,
jmp and kmp respectively.

Two additional coordinate frames O−xpro,iypro,izpro,i and O−xdis ,iydis ,izdis ,i are defined for the prox-
imal and distal links of ith PRR leg of the manipulator, respectively (Fig. 3). In the coordinate frame
O−xpro,iypro,izpro,i, the zpro,i and xpro,i axes are along ui and ni, respectively. In the coordinate frame
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Figure 3. Local coordinate frames and unit vectors of the ith kinematic chain of the 3-PRR SPM.

O−xdis ,iydis ,izdis ,i, the zdis ,i and xdis ,i axes are along ui and −wi, respectively. The ypro,i and ydis ,i axes
are determined by the right-hand rule. Three unit vectors ipro,i (idis,i), jpro,i (jdis,i) and kpro,i (kdis,i) are
considered along the xpro,i (xdis ,i), ypro,i (ydis ,i) and zpro,i (zdis ,i) axes, respectively.

Using coordinate frames O−xpro,iypro,izpro,i and O−xdis ,iydis ,izdis ,i, the 3×3 rotation matrices of
proximal link and distal link of the ith PRR leg are defined respectively as

Rpro,i =
[
ipro,i jpro,i kpro,i

]= [ni ui × ni ui] (4a)
Rdis,i =

[
idis,i jdis,i kdis,i

]= [−wi wi × ui ui] (4b)

The ith double Rzeppa-type driveshaft is also shown in Fig. 3. The Rzeppa joints locate at points Di and
Ei. The axis of input (output) shaft of the driveshaft is parallel to k (ui). Unit vector ei = [eix eiy eiz]T is
along the common axis of the cylinder and piston of the ith driveshaft. For the ith double Rzeppa-type
driveshaft, a local coordinate frame Di−xiayiazia is attached at point Di (Fig. 3), while the xia axis is
along the vector ei, yia axis is along the vector ei × k, and the zia axis is determined by the right-hand
rule. Since the cylinder and piston of the ith driveshaft has no rotational motion with respect to each
other, we can define a common rotation matrix for these two links, as follows:

Rsh,i =
[
ei

ei × k
‖ei × k‖

ei × (ei × k)
‖k × (ei × k)‖

]
(5)

Using the above rotation matrices, positions of mass centers of the moving platform (cmp) and the
proximal link (cpro,i) and distal link (cdis ,i) of the ith PRR leg (Fig. 4) are determined respectively as

rmp = −−→
Ocmp = Rmpr̄mp (6a)

rpro,i = −−−→
Ocpro,i = Rpro,i r̄pro (6b)

rdis,i = −−−→
Ocdis,i = Rdis,i r̄dis (6c)

where r̄mp, r̄pro and r̄dis are position vectors of mass centers of the moving platform, proximal links
and distal links in the local coordinate frames O−xmpympzmp, O−xpro,iypro,izpro,i and O−xdis ,iydis ,izdis ,i,
respectively.
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Figure 4. Mass centers of the moving platform, the ith proximal and distal links and of the ith actuating
system.

Positions of mass centers of the cylinder and piston of the ith double Rzeppa-type driveshaft (Fig. 4)
are obtained by the following relations, respectively:

rcyl,i = −−−→
Occyl,i = di + lcylei (7a)

rpis,i = −−−→
Ocpis,i = δi − lpisei (7b)

where di = [dix diy diz]T and δi = [δix δiy δiz]T are

di = −−→
ODi = [−d sinψi d cosψi h]T (8a)

δi = −→
OEi = rpro,i − Eicpro,iui (8b)

and lcyl (lpis) is the distance between point Di (Ei) and mass center ccyl ,i (cpis ,i). Stroke of prismatic joint
of the ith driveshaft is represented by qi =

∥∥∥−−→DiEi

∥∥∥, and unit vector ei is given as

ei =
−−→
DiEi∥∥∥−−→DiEi

∥∥∥ = δi − di

‖δi − di‖ (9)

4. Velocity analysis and jacobian matrices

4.1. Jacobian matrices of the manipulator

Referring to Fig. 2, the angular velocity of the moving platform, ωmp, can be calculated through angular
velocities of links of the ith PRR leg, as follows:

niβ̇i + ui θ̇i + viη̇i = ωmp (10)

Dot multiplying both sides of Eq. (10) by ni × vi and rearranging the resultant equation gives

nT
i (ui × vi)θ̇i + (ni × vi)Tωmp = 0 (11)

Writing Eq. (11) for i = 1, 2, 3, and assembling the resultant equations into a matrix form yields

Jinvθ̇ + Jfwdωmp = 0 (12)
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where θ̇ = [ θ̇1 θ̇2 θ̇3 ]T is the velocity vector of the actuated joints, and Jinv and Jfwd are the inverse
and forward Jacobian matrices of the 3-PRR SPM, respectively, as follows [1]:

Jinv =
⎡
⎢⎣

nT
1 (u1 × v1) 0 0

0 nT
2 (u2 × v2) 0

0 0 nT
3 (u3 × v3)

⎤
⎥⎦ (13)

Jfwd =
⎡
⎢⎣

(n1 × v1)T

(n2 × v2)T

(n3 × v3)T

⎤
⎥⎦ (14)

4.2. Jacobian matrix of the moving platform

To find the Jacobian matrix, Jmp, of the moving platform, Eq. (12) is rewritten as

ωmp = Jmpθ̇ (15)

where

Jmp = −J−1
fwdJinv (16)

4.3. Jacobian matrices of the ith PRR leg

For the proximal link of the ith PRR leg, first, the parameter β̇i is calculated through dot multiplying
both sides of Eq. (10) by ui × vi, which gives

nT
i (ui × vi)β̇i = (ui × vi)Tωmp (17)

Therefore

β̇i = (ui × vi)Tωmp

nT
i (ui × vi)

(18)

The ith proximal link rotates about unit vector ni, so its angular velocity can be expressed as

ωpro,i = niβ̇i (19)

Introducing β̇i and ωmp from Eqs. (18) and (15) into Eq. (19), and doing some manipulations, yields

ωpro,i = Jpro,iθ̇ (20)

where Jpro,i is the 3×3 link Jacobian matrix of the proximal link of the ith PRR leg, as

Jpro,i = 1
nT

i (ui × vi)

⎡
⎢⎣

nix(ui × vi)T Jmp

niy(ui × vi)T Jmp

niz(ui × vi)T Jmp

⎤
⎥⎦ (21)

The ith distal link rotates about unit vector ui, and its angular velocity can be expressed by

ωdis,i = ωpro,i + ui θ̇i (22)

Introducing ωpro,i from Eq. (20) into Eq. (22) yields

ωdis,i = Jdis,iθ̇ (23)
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where Jdis,i is the 3×3 link Jacobian matrix of the distal link of the ith PRR leg, as

Jdis,i = Jpro,i +
⎡
⎢⎣

uix1i×(1−3)

uiy1i×(1−3)

uiz1i×(1−3)

⎤
⎥⎦ (24)

and 1i×(1−3) denotes the ith row of 3×3 identity matrix 13×3.

4.4. Jacobian matrix of the ith intermediate shafts

The cylinder and piston of the ith driveshaft (Fig. 4) have a relative translational motion with velocity
q̇iei. They also have two common rotational motions, one of which is around point Di with angular
velocity ωi and another one is around the axis of the ith driveshaft with angular velocity θ̇iei.

The velocity of point Ei can be obtained in terms of velocities of the ith proximal link and of the ith
driveshaft, as follows:

vEi = ωpro,i × δi (25)

vEi = qiωi × ei + q̇iei (26)

Equating right-hand sides of Eqs. (25) and (26), and then substituting ωpro,i from Eq. (20) into the
resultant equation results in

Jpro,iθ̇ × δi = qiωi × ei + q̇iei (27)

Since ωi has no component along the axis of the shaft, we have ei × (ωi × ei) = ωi, and cross multiplying
both sides of Eq. (27) by ei yields

ωi = (1/qi)(ei × (Jpro,iθ̇ × δi)) (28)

From linear algebra, we know that

a × (b × c) = (aT c)b − (aT b)c (29)

Considering relation (29), we can rewrite Eq. (28) as follows:

ωi = (1/qi)((eT
i δi)Jpro,iθ̇ − (eT

i Jpro,iθ̇)δi) (30)

or

ωi = Jωiθ̇ (31)

where

Jωi = (1/qi)(eT
i δi)Jpro,i − (1/qi)

⎡
⎢⎣

eT
i Jpro,iδix

eT
i Jpro,iδiy

eT
i Jpro,iδiz

⎤
⎥⎦ (32)

The total angular velocity of the ith intermediate shafts is determined as

ωsh,i = ωi + θ̇iei (33)

Substituting ωi from Eq. (31) into Eq. (33) results in

ωsh,i = Jsh,iθ̇ (34)

where

Jsh,i = Jωi +
⎡
⎢⎣

eix1i×(1−3)

eiy1i×(1−3)

eiz1i×(1−3)

⎤
⎥⎦ (35)
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Equation (33) can be rewritten for the cylinder and piston of the ith driveshaft as

ωcyl,i = Jcyl,iθ̇ (36a)
ωpis,i = Jpis,iθ̇ (36b)

where

Jcyl,i = Jpis,i = Jsh,i (37)

5. Acceleration analysis

In acceleration analysis of the 3-PRR SPM, the relations between angular accelerations of the moving
links and acceleration of actuated joints θ̈ = [ θ̈1 θ̈2 θ̈3 ]T are determined.

5.1. Angular acceleration of the moving platform

Differentiating both sides of Eq. (10) with respect to time yields

niβ̈i + ui θ̈i + niβ̇i × ui θ̇i + viη̈i + ui θ̇i × viη̇i = ω̇mp (38)

To eliminate angular accelerations of the passive curved prismatic joint and the passive revolute joint,
that is β̈i and η̈i, both sides of Eq. (38) are dot multiplied by ni × vi, which simplifies to

uT
i (ni × vi)θ̈i + (ni × ui)T (ni × vi)β̇i θ̇i + (ui × vi)T (ni × vi)θ̇iη̇i = ω̇T

mp(ni × vi) (39)

To obtain the passive joint rate η̇i, both sides of Eq. (10) is dot multiplied by ni × ui, as

vT
i (ni × ui)η̇i = ωT

mp(ni × ui) (40)

Therefore

η̇i = (ni × ui)Tωmp

(ni × ui)T vi
(41)

Substituting η̇i, β̇i and ωmp from Eqs. (41), (18) and (15) into Eq. (39) and writing the resultant equation
for i = 1, 2, 3, leads to the acceleration equation of the manipulator as follows:

Jinvθ̈ + �θ̇ + Jfwdω̇mp = 0 (42)

where

� =
⎡
⎢⎣
�1 0 0

0 �2 0

0 0 �3

⎤
⎥⎦ (43)

with

�i = − ((ui × vi)T Jmpθ̇(ni × ui) + (ni × ui)T Jmpθ̇(ui × vi))T (ni × vi)
nT

i (ui × vi)
(44)

Therefore, the angular acceleration of the moving platform is obtained in terms of θ̇ and θ̈, as follows:

ω̇mp = Jω̇,mp,1θ̈ + Jω̇,mp,2θ̇ (45)

where

Jω̇,mp,1 = Jmp (46a)
Jω̇,mp,2 = −J−1

fwd� (46b)
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5.2. Angular accelerations of proximal and distal links of the ith PRR leg

To calculate β̈i, both sides of Eq. (38) is dot multiplied by ui × vi, which gives

(ui × vi)T niβ̈i + (ui × vi)T (ni × ui)β̇i θ̇i + θ̇iη̇i = (ui × vi)T ω̇mp (47)

Thus

β̈i = (ui × vi)T ω̇mp

(ui × vi)T ni
− (ui × vi)T (ni × ui)

(ui × vi)T ni
β̇i θ̇i − θ̇iη̇i

(ui × vi)T ni
(48)

The ith proximal link rotates about unit vector ni, so its angular acceleration will be

ω̇pro,i = niβ̈i (49)

Substituting β̈i and then β̇i, η̇i, ωmp and ω̇mp from Eqs. (48), (18), (41), (15) and (45) into Eq. (49) and
rearranging the resultant equation gives ω̇pro,i in terms of θ̇ and θ̈, as follows:

ω̇pro,i = Jω̇,pro,i,1θ̈ + Jω̇,pro,i,2θ̇ (50)

where the 3×3 matrices Jω̇,pro,i,1 and Jω̇,pro,i,2 are obtained in Appendix A. The angular acceleration of
the ith distal link is obtained as

ω̇dis,i = ω̇pro,i + ui θ̈i (51)

Substituting ω̇pro,i from Eq. (50) into Eq. (51) yields ω̇dis,i in terms of θ̇ and θ̈, as follows:

ω̇dis,i = Jω̇,dis,i,1θ̈ + Jω̇,dis,i,2θ̇ (52)

where the 3×3 matrices Jω̇,dis,i,1 and Jω̇,dis,i,2 are given respectively by

Jω̇,dis,i,1 = Jω̇,pro,i,1 +
⎡
⎢⎣

uix1i×(1−3)

uiy1i×(1−3)

uiz1i×(1−3)

⎤
⎥⎦ (53a)

Jω̇,dis,i,2 = Jω̇,pro,i,2 (53b)

5.3. Angular accelerations of the ith intermediate shafts

Angular accelerations of the cylinder and piston of the ith driveshaft around point Di and around their
common axis are represented by ω̇i and θ̈iei, respectively. Differentiating Eqs. (25) and (26) with respect
to time and equating the resultant equations yields

ω̇pro,i × δi + ωpro,i × (ωpro,i × δi) = 2q̇iωi × ei + qiω̇i × ei + qiωi × (ωi × ei) + q̈iei (54)

The angular acceleration ω̇i has no component along the axis of the ith intermediate shafts, and we have
ei × (ω̇i × ei) = ω̇i. As a result, through cross multiplying both sides of Eq. (54) by ei, we can find ω̇i, as

ω̇i = (1/qi)(ei × (ω̇pro,i × δi) + ei × (ωpro,i × (ωpro,i × δi)) − 2q̇iωi − qiei × (ωi × (ωi × ei))) (55)

Dot multiplying both sides of Eq. (27) by ei yields

q̇i = δi × eT
i Jpro,iθ̇ (56)

Substituting ωi, ωpro,i, ω̇pro,i and q̇i from Eqs. (31), (20), (50) and (56) into Eq. (55), and doing a
rearranging leads to ω̇i in terms of θ̇ and θ̈, as follows:

ω̇i = Jω̇i,1θ̈ + Jω̇i,2θ̇ (57)

where Jω̇i,1 and Jω̇i,2 are obtained in Appendix B. The total angular acceleration of the ith intermediate
shafts is

ω̇sh,i = ω̇i + θ̈iei (58)
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Figure 5. A moving platform of the 3-PRR SPM and its differential volume dvmp.

After substituting ω̇i from Eq. (57) into Eq. (58), and doing a rearranging, we get

ω̇sh,i = Jω̇,sh,i,1θ̈ + Jω̇,sh,i,2θ̇ (59)

where

Jω̇,sh,i,1 = Jω̇i,1 +
⎡
⎢⎣

eix1i×(1−3)

eiy1i×(1−3)

eiz1i×(1−3)

⎤
⎥⎦ (60a)

Jω̇,sh,i,2 = Jω̇i,2 (60b)

Consequently, we can obtain angular accelerations of the cylinder and piston of the ith driveshaft in
terms of θ̇ and θ̈, as

ω̇cyl,i = Jω̇,cyl,i,1θ̈ + Jω̇,cyl,i,2θ̇ (61a)

ω̇pis,i = Jω̇,pis,i,1θ̈ + Jω̇,pis,i,2θ̇ (61b)

where

Jω̇,cyl,i,1 = Jω̇,pis,i,1 = Jω̇,sh,i,1 (62a)

Jω̇,cyl,i,2 = Jω̇,pis,i,2 = Jω̇,sh,i,2 (62b)

6. Masses and inertia properties of the 3-PRR SPM

In the following sections, Īa, a ∈ {mp, pro, dis, cyl, pis} is inertia matrix of the link a in the local
coordinate frame attached to its mass center, and ma is mass of link a.

6.1. Mass and inertia properties of the moving platform

The detailed explanations of the following formulations for mmp, r̄mp and Īmp are presented in
Appendix C. Figure 5 shows the equilateral triangle-shaped moving platform of the manipulator. The
mass of the moving platform is calculated using the following formula:

mmp = 3
√

3
4
ρmp

�r
2
mp tmp sin2 γ (63)
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where
�r mp is the radius of the moving platform spherical plate, tmp is the thickness of the moving platform

spherical plate, and ρmp is the density of the moving platform. The position vector of the mass center of
the moving platform in O–xmpympzmp frame is given as

r̄mp = [ x̄mp ȳmp z̄mp ]T (64)

where

x̄mp = ȳmp = 0 (65a)

z̄mp = 3
√

3
4mmp

ρmp
�r

3
mp tmp sin2 γ (65b)

As well, the 3×3 inertia matrix Īmp is

Īmp =
⎡
⎢⎣

Ixx,mp Ixy,mp Ixz,mp

Ixy,mp Iyy,mp Iyz,mp

Ixz,mp Iyz,mp Izz,mp

⎤
⎥⎦ (66)

where

Ixx,mp = 3
√

3
32

ρmp
�r

4
mp tmp sin4 γ + 3

√
3

4
ρmp

�r
4
mp tmp sin2 γ +

√
3

16
ρmp

�r
2
mp t3

mp sin2 γ (67a)

Iyy,mp = Ixx,mp (67b)

Izz,mp = 3
√

3
16

ρmp
�r

4
mp tmp sin4 γ (67c)

Ixy,mp = 3
√

3
4
ρmp

�r
4
mp tmp sin2 γ +

√
3

16
ρmp

�r
2
mp t3

mp sin2 γ (67d)

Ixz,mp = Iyz,mp = 1
2

Izz,mp (67e)

Subsequently, the inertia matrix of the moving platform in the base coordinate frame O-xyz is
calculated as

Imp = RmpĪmpRT
mp (68)

6.2. Mass and inertia matrix of the ith distal link

The detailed explanations of the following formulations for mdis, r̄dis and Īdis are presented in
Appendix D. Figure 6 shows the distal link of the ith PRR leg of the manipulator as a curved solid
bar with arc radius

�r dis and cross-section radius rcs. The mass of the distal link is

mdis = πρdisr2
cs
�r dis α (69)

where ρdis is the density of the distal link. r̄dis will be

r̄dis = [ x̄dis ȳdis z̄dis ]T (70)
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Figure 6. The ith distal link of 3-PRR SPM and its volume differential dvdis.

where

x̄dis = 0 (71a)

ȳdis = πρdisr2
cs
�r

2
dis (1 − cos α)
mdis

(71b)

z̄dis = πρdisr2
cs
�r

2
dis sin α

mdis
(71c)

The 3×3 inertia matrix Īdis is given by

Īdis =
⎡
⎢⎣

Ixx,dis Ixy,dis Ixz,dis

Ixy,dis Iyy,dis Iyz,dis

Ixz,dis Iyz,dis Izz,dis

⎤
⎥⎦ (72)

where

Ixx,dis = πρdisr2
cs
�r

3
dis α (73a)

Iyy,dis = πρdisr2
cs
�r

3
dis

(
α

2
+ sin 2α

4

)
(73b)

Izz,dis = πρdisr2
cs
�r

3
dis

(
α

2
− sin 2α

4

)
(73c)

Ixy,dis = Iyy,dis (73d)
Ixz,dis = Izz,dis (73e)
Iyz,dis = 0 (73f)

Consequently, the inertia matrix of the ith distal link in the base coordinate frame O-xyz is calculated as

Idis,i = Rdis,i ĪdisRT
dis,i (74)

6.3. Mass and inertia matrices of the other moving links

Other required quantities in dynamic analysis of the manipulator are masses mpro, mcyl, mpis, mass center
positions r̄pro, lcyl and lpis and inertia matrices Īpro, Icyl and Ipis. These quantities are obtained from the
CAD model of the corresponding link in SolidWorks software.
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Table I. The identified parameters of Stribeck’s friction in the curved prismatic joints [32].

Fc Fs Fv vs ξ

0.1151 0.1759 0.66493 0.005 1.00

Inertia matrices of the proximal link and of the cylinder and piston of the ith driveshaft in the base
coordinate frame O-xyz are calculated, respectively, as

Ipro,i = Rpro,i ĪproRT
pro,i (75a)

and

Icyl,i = Rsh,i
[
Icyl + mcyll2cyl

(
eT

i ei13×3 − eieT
i
)]

RT
sh,i (75b)

Ipis,i = Rsh,i
[
Ipis + mpis(qi − lpis)2 (eT

i ei13×3 − eieT
i
)]

RT
sh,i (75c)

7. Dynamic equation of the 3-PRR SPM

In Section 9, values of internal moments between links are constrained to avoid large deflections of
the links. To this aim, the Newton–Euler approach is adopted here to formulate the dynamic equation
of the 3-PRR SPM, and the internal moments between links are computed necessarily. It is assumed
that the gravitational forces are the only external forces acting on the proximal and distal links of the
manipulator. The magnitude of frictional moment between the ith proximal link and its curved guide is
computed using the Stribeck’s formula [31, 32] as

τf ,pro,i =
⎛
⎝Fc + (Fs − Fc)e

−
∣∣∣∣ rpro,i β̇i

vs

∣∣∣∣
ξ

+ Fvrpro,iβ̇i

⎞
⎠ rpro,i (76)

where rpro,i =
∥∥rpro,i

∥∥, and Fc, Fs and Fv are coefficients of Coulomb friction, static friction, viscous
friction, respectively. Moreover, vs is called Stribeck velocity and exponent ξ is a given constant. The
values of these parameters are given in Table I.

Taking moments about the reference point O, Euler’s equation for the intermediate shafts of the ith
driveshaft will be

τact,ik + τdis,sh,i + mcylrcyl,i × g + mpisrpis,i × g − mcylrcyl,i × acyl,i − mpisrpis,i × apis,i

−Icyl,iω̇cyl,i − Ipis,iω̇pis,i − ωcyl,i × Icyl,iωcyl,i − ωpis,i × Ipis,iωpis,i = 0 (77a)

Let τ f ,i,1 and τ f ,i,2 be magnitudes of frictional moments of the revolute joints at Ai and Bi, respectively.
Euler’s equations for the proximal and distal links of the ith PRR leg are, respectively, as

τdis,pro,i − τf ,pro,ini + τf ,i,1ui + mprorpro,i × g − mprorpro,i × apro,i − Ipro,iω̇pro,i − ωpro,i × Ipro,iωpro,i = 0
(77b)

τmp,dis,i − τdis,sh,i − τdis,pro,i − τf ,i,1ui + τf ,i,2vi + mdisrdis,i × g − mdisrdis,i × adis,i

−Idis,iω̇dis,i − ωdis,i × Idis,iωdis,i = 0 (77c)

where g = [0 0 −9.81]T is the vector of gravitational acceleration, and τa,b,i, a, b ∈ {mp, pro, dis, sh} is
the internal moment that link a of the ith leg acts on its link b. Taking moments about point O, Euler’s
equation for the moving platform becomes

τext + mmprmp × g −
3∑

i=1

τmp,dis,i −
3∑

i=1

τf ,i,2vi − mmprmp × amp − Impω̇mp − ωmp × Impωmp = 0 (78)
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where τext is the external moment acting on the moving platform. We obtain τmp,dis ,i from Eq. (77c) and
introduce it into Eq. (78), as follows:

τext + mmprmp × g − mmprmp × amp − Impω̇mp − ωmp × Impωmp −
3∑

i=1

τdis,pro,i −
3∑

i=1

τdis,sh,i

−
3∑

i=1

τf ,i,1ui+
3∑

i=1

(mdisrdis,i × g − mdisrdis,i × adis,i − Idis,iω̇dis,i − ωdis,i × Idis,iωdis,i) = 0 (79)

Then, we obtain τdis ,sh ,i and τdis ,pro,i from Eqs. (77a) and (77b), and introduce them into Eq. (79) which
yields

3∑
i=1

τact,ik + τext −
3∑

i=1

τf ,pro,ini + mmprmp × g − mmprmp × amp − Impω̇mp − ωmp × Impωmp

+
3∑

i=1

(mcylrcyl,i × g + mpisrpis,i × g + mprorpro,i × g + mdisrdis,i × g)

−
3∑

i=1

(mcylrcyl,i × acyl,i + mpisrpis,i × apis,i + mprorpro,i × apro,i + mdisrdis,i × adis,i) (80)

−
3∑

i=1

(Icyl,iω̇cyl,i + Ipis,iω̇pis,i + Ipro,iω̇pro,i + Idis,iω̇dis,i)

−
3∑

i=1

(ωcyl,i × Icyl,iωcyl,i + ωpis,i × Ipis,iωpis,i + ωpro,i × Ipro,iωpro,i + ωdis,i × Idis,iωdis,i) = 0

Where the acceleration of mass centers of the manipulator’s moving links are given by

aκ = ω̇κ × rκ + ωκ × (ωκ × rκ ) (81)

while subscript κ ∈ {“mp”, “cyl,i”, “pis,i”, “pro,i”, “dis,i”}. Finally, substituting ωmp, ωpro,i, ωdis,i, ωcyl.i,
ωpis,i, ω̇mp, ω̇pro,i, ω̇dis,i, ω̇cyl.i, ω̇pis,i and aκ from Eqs. (15), (20), (23), (36), (45), (50), (52), (61) and (81)
into Eq. (80) and doing a rearranging leads to the closed-form dynamic equation of the 3-PRR SPM in
terms of θ̇ and θ̈, as follows:

I(θ)θ̈ + C(θ, θ̇)θ̇ + T(θ) + τact = 0 (82)

where τact = [τ act ,1 τ act ,2 τ act ,3]T is the vector of actuator torques. Moreover,

I(θ) = K−1

(
ImpJω̇,mp,1 +

3∑
i=1

(
Ipro,iJω̇,pro,i,1 + Idis,iJω̇,dis,i,1 − Icyl,iJω̇,cyl,i,1 + Ipis,iJω̇,pis,i,1

)+ G1

)

(83a)

C(θ, θ̇) = K−1

(
ImpJω̇,mp,2 +

3∑
i=1

(
Ipro,iJω̇,pro,i,2 + Idis,iJω̇,dis,i,2 − Icyl,iJω̇,cyl,i,2 + Ipis,iJω̇,pis,i,2

)+ G2

)

(83b)

T(θ) = K−1

(
τext −∑3

i=1 τf ,pro,ini + mmprmp × g

+∑3
i=1
(
mprorpro,i × g + mdisrdis,i × g + mcylrcyl,i × g + mpisrpis,i × g

)
)

(83c)
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with 3×3 matrices G1 and G2 given in Appendix E, and

K =
⎡
⎢⎣

0 0 0
0 0 0
1 1 1

⎤
⎥⎦ (84)

I(θ) and C(θ, θ̇) are 3×3 the inertia and Coriolis matrices of the manipulator, and T(θ) is the 3×1 vector
of the external moment and the gravitational forces.

8. Dynamic dexterity of the 3-PRR SPM

Dynamic dexterity of a high-speed manipulator can be interpreted as the ability of changing acceleration
(or deceleration) by actuator forces/torques [33]. Conventionally, the condition number of the inertia
matrix of the dynamic equation is proposed to evaluate the dynamic dexterity of manipulators when the
difference between the easiest direction and the hardest direction is the main issue [34]. For the 3-PRR
SPM, the condition number of the inertia matrix is defined as

1 ≤ κI = σI,max

σI,min
≤ ∞ (85)

where σ I,max and σ I,min are the maximum and minimum singular values of the inertia matrix I(θ ) at a
given configuration of the manipulator. In order to bound κI, one may consider its inverse value, that is
1/κI, which is defined as dynamic conditioning index (DCI) and ranges between 0 and 1. Particularly, in
a pose where DCI is equal to 1, the manipulator has a dynamic isotropy, indicating that the acceleration
of the moving platform is insensitive to variation of actuator torques. In contrast, if DCI is equal to 0,
small changes of actuator torques lead to a big change of the acceleration of the moving platform. In
other words, the less the DCI is the more shock the moving platform experience during the motion of
the manipulator.

DCI of the 3-PRR SPM is plotted in Fig. 7 for three sets of α, γ and ϕz showing that the manipulator
has a larger dynamic dexterity near the central region of the workspace than at its boundaries. Thus,
DCI should also be considered in the design process of the manipulator, so that the moving platform
avoids the workspace boundaries as much as possible.

9. Torque minimization of the 3-PRR SPM

In order to reduce actuator loads, the magnitude of the maximum torque experienced by the manipulator
actuators should be minimized. To this aim, a constrained optimization problem is presented to find an
optimal design of the manipulator for a given repetitive task, while the values of actuator torques are
minimal. The above formulations are programmed in Matlab software. Moreover, to verify the math-
ematical results, dynamics of the manipulator are also simulated using the SimMechanics toolbox of
Matlab software.

The following relations define the orientation of the moving platform as the function of time

ϕx(t) = π/8 rad
ϕy(t) = 0 rad (86)
ϕz(t) = t rad

where 0 ≤ t ≤ 2π s. If it is assumed that the moving platform moves on a surface of a sphere with
a radius of unity (

�r mp= 1 m), then with relations (86), point S of the moving platform moves on a
circle centered at point C′ (0, 0, 0.924) with radius 0.383 m (Fig. 8), and returns to its initial location
after 2πs.
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Figure 7. DCI of the 3-PRR SPM for (a) α = 25◦, γ = 8.5◦, ϕz = 0◦, (b) α = 22◦, γ = 10◦, ϕz = 30◦,
(c) α = 17◦, γ = 12◦, ϕz = −40◦.

Figure 8. The given circular trace of point S of the moving platform.

The objective function to be minimized is defined as

f (x) =
∑3

i=1
(
τ 2

act,i,min + τ 2
act,i,max

)
6τ 2

all
(87)

where τact,i,min (τact,i,max) is the minimum (maximum) value of τact,i along the circular path, and τ all is
the maximum allowable value of actuator torques. Here we take τ all = 100 N.m. Note that 0 ≤ f (x) ≤
1, and the closer the value of f (x) is to zero, the smaller the values of actuator torques are along the
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circular path. The actuator torques τact,i,min and τact,i,max depend on values of parameters mmp, Īmp, mdis
and Īdis, and also on the positions of gearboxes, that is, d and h (Fig. 4). As represented in Eqs. (63),
(66), (69) and (72), the first four parameters depend on γ and α, and h is a known dimension of the
gearboxes. Thus, for the optimization problem, we take x = [γ , α, d]T as the vector of design variables.
These design parameters should be between their minimum and maximum allowable values:

ct1:γmin ≤ γ ≤ γmax (88a)
ct2:αmin ≤ α ≤ αmax (88b)
ct3:dmin ≤ d ≤ dmax (88c)

The following kinematic constraints [1] should also be considered during the design of the manipulator.
The inverse position kinematics should have a real solution for each leg of the manipulator; this leads to

ct4:(Ã2
i − C̃2

i + B̃2
i ) ≥ 0 (89)

where [1]

Ãi = sinψ1
mvT

i Rmp,1×(1−3) − cosψ1
mvT

i Rmp,2×(1−3)

B̃i = mvT
i Rmp,3×(1−3) (90)

C̃i = cos α

with Rmp,i×(1−3) denoting the ith row of matrix Rmp in Eq. (2), and mvi representing vector vi in the local
frame O–xmpympzmp, such that

mvi = [ cosψi sin γ sinψi sin γ cos γ ]T (91)

For each point in the workspace, the stroke of the ith curved prismatic joint should be between 0 and its
maximum allowable value, βmax:

ct5: 0 ≤ βi ≤ βmax (92)

To eliminate any void in the workspace of each PRR leg of the manipulator, the following constraint
equation is imposed:

ct6: α <
βmax

2
(93)

To avoid leg interferences between distal links, the below conditions are also considered for i = 1, 2, 3:

ct7: α′
i >α or α′

i+1 >α modulo 3 (94)

where α′
i =∠(ui, pi) and α′

i+1 =∠(ui, pi+1) and pi is a unit vector along the intersection line of the
planes passing through distal links AiBi and Ai+1Bi+1 modulo 3 (Fig. 9). The method to compute α′

i and
α′

i+1 are presented in Appendix F.
The smaller angle between axes of the driving and driven shafts of a Rzeppa joint should be less

than its maximum allowable value, λmax. For two Rzeppa joints of the ith actuating system at Di and Ei
(Fig. 10), this condition is written respectively as

ct8: λDi <λmax (95a)

ct9: λEi <λmax (95b)

where λDi =∠(k, ei) and λEi =∠(ui, ei). It is assumed that the kinematic conditioning index (KCI) and
DCI satisfy minimum values during the motion of the manipulator, such that

ct10: KCI ≥ kcimin (96a)

ct11: DCI ≥ dcimin (96b)
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Figure 9. The intersection line of the planes passing through distal links AiBi and Ai+1Bi+1
modulo 3 [1].

Figure 10. Axis angles of the ith double Rzeppa-type driveshaft: (a) lower Rzeppa joint at Di and (b)
upper Rzeppa joint at Ei [1].

KCI is the ratio of the smallest to the largest singular values of the Jacobian matrix Jmp at a configuration
of the manipulator [1]. The larger the kcimin is, the farther the point S is from singularities [1]. Moreover,
the larger the dcimin is, the nearer the point S will be to the central region of the manipulator workspace.

To avoid large deflections in intermediate shafts of the driveshafts and distal links, the moments
inserted on these links are constrained respectively as follows:

ct12: (τact,ik + τdis,sh,i)T ei ≤ 100 N.m (97a)
ct13: (τmp,dis,i − τdis,sh,i)T idis,i ≤ 100 N.m (97b)
ct14: (τmp,dis,i − τdis,sh,i)T kdis,i ≤ 100 N.m (97c)

where the moments τdis ,sh ,i and τmp,sh ,i are calculated from Eqs. (77) easily. In addition, the actuator
torques should be less than τ all along the circular path, namely

ct15: τact,i < τall (98)

Using the objective function in Eq. (87) and design constraints (88)–(98), the constrained optimization
problem of 3-PRR PPM is formulated as follows:

Minimize f(x) (99)

subject to ctj , j = 1, 2, 3, . . . , 15 (100)
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Figure 11. Rotation angles of actuated revolute joints for non-optimal (NOD) and optimal (OD) designs.

Figure 12. Torques of actuators for non-optimal (NOD) and optimal (OD) designs.

The moving platform and distal links are made up of aluminum alloy with uniform densities ρmp =
ρdis = 2810 kg/m3. Other geometrical and mass properties of the manipulator are given in Appendix G.

In the first step, we solve inverse dynamics of the manipulator with architectural parameters: γ =
8.5◦, α = 25◦, d = 0.5 m. It is assumed that no external moment acts on the moving platform (τext = 0).
To calculate the actuator torques, Eq. (82) is rewritten as

τact = −I(θ)θ̈ − C(θ, θ̇)θ̇ − T(θ) (101)

Rotation angles of actuators θi for this non-optimal design (NOD) are computed as functions of time
using the inverse position kinematic analysis [1], as presented in Fig. 11; then velocity and acceleration
vectors θ̇ and θ̈ are computed using Eqs. (15) and (45) as

θ̇ = J−1
mpωmp (102)

θ̈ = J−1
ω̇,mp,1ω̇mp − J−1

ω̇,mp,1Jω̇,mp,2θ̇ (103)

Now, we can compute all terms on the right-hand side of Eq. (101), which leads to time history of τact ,
as shown in Fig. 12.

In the second step, we consider the optimization problem with γ min = 10◦, γ max = 30◦, αmin = 10◦,
αmax = 45◦, dmin = 0.35 m, dmax = 0.60 m, βmax = 60◦ and λmax = 45◦. Values of other geometrical and
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Table II. Values of τi,min (N.m), τi,max(N.m) and f(x) (N2.m2) for non-optimal and optimal designs of
3-PRR PPM.

Design type τ act,1,min τ act,1,max τ act,2,min τ act,2,max τ act,3,min τ act,3,max f (x)

Non-optimal design −41.85 97.76 −28.17 42.97 −20.24 60.23 0.30
Optimal design −20.47 59.26 −20.51 24.92 −17.13 37.43 0.12

Figure 13. Convergence graph of the optimization process for the best result.

Figure 14. KCI and DCI of the optimal design of 3-PRR SPM along the circular path.

mass properties are the same as the ones used in previous step. The PSO algorithm [35] is applied here
to minimize the objective function f (x). The optimization problem is solved for different values of kcimin
and dcimin ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55}. The best result of 15 independent runs is f (x) = 0.16 for
kcimin = 0.45 and dcimin = 0.4. The corresponding values of design parameters are γ = 12.02◦, α = 21.69◦,
d = 0.54 m. Convergence graph of the optimization process is shown in Fig. 13 revealing that the GEO
algorithm yields the best result after 5.178×104 objective function evaluations (OFE). Time histories of
rotation angles and actuator torques for this optimal design (OD) are also represented in Figs. 11 and 12.
As well, the resultant values of τact,i,min, τact,i,max and f (x) for both optimal and non-optimal designs are
also listed in Table II. Comparing these values, one can see that the values of τact,i,min, τact,i,max and
f (x) have decreased significantly after optimization. KCI and DCI are plotted in Fig. 14 for the optimal
design revealing that KCI ≥ 0.45 and DCI ≥ 0.4 along the circular path.
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Figure 15. SimMechanics model for forward dynamics of the 3-PRR SPM.

Figure 16. The given, calculated and simulated traces of point S of the moving platform.

To further verify the results, outputs of the inverse dynamic analysis (i.e., the calculated actuator
torques in Fig. 12) of the optimal design are applied as the input for the forward dynamic analysis. To
this aim, we rewrite Eq. (82) as

θ̈ = −I−1(θ)(τact + C(θ, θ̇)θ̇ + T(θ)) (104)

Initial conditions of actuators (at t = 0) are obtained using the inverse position kinematic analysis [1]
and Eq. (102), as follows:

θ1(0) = −0.18 rad, θ2(0) = −0.07 rad, θ3(0) = −0.01 rad

θ̇1(0) = 0.23 rad/s2, θ̇2(0) = 0.81 rad/s2, θ̇3(0) = −0.09 rad/s2

The SimMechanics model for the forward dynamic analysis is presented in Fig. 15. With the above-
calculated actuator torques and initial conditions, the terms on the right-hand side of Eq. (103) and
consequently θ̈ is calculated. Then, we can compute new values of θ̇ and θ through the integration of θ̈.
With the obtained value of θ, the unique and acceptable pose of the moving platform is identified using
the method presented in ref. [1]. This process is repeated to obtain orientations (ϕx(t), ϕy(t), ϕz(t)) of
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the moving platform during motion. As a consequence, the trace of point S of the moving platform can
be obtained by the following relation:

s(t) = [ Rmp,13(t) Rmp,23(t) Rmp,33(t) ]T (105)

where Rmp,i3(t) for i = 1, 2, 3 denotes the third column of matrix Rmp. The given and calculated traces of
point S along with the trace obtained by the SimMechanics model are plotted in Fig. 16. Investigating
the results in Fig. 16 reveals that the calculated trace of point S by the forward dynamic analysis is
coincident with the trace obtained by the SimMechanics model. This verifies correctness and efficiency
of the presented dynamic modeling of the star-shaped base 3-PRR SPM. However, there is a slight
difference of 0.012 m between a radius of those two traces and of the given trace. This variation is due
to the simplifications which were made in calculating inertia matrices of the moving platform and distal
links.

10. Conclusion

This paper addressed dynamic analysis and torque minimization of a novel symmetrical 3-PRR SPM.
After description of the manipulator structure, the local coordinate frames and rotation matrices were
established for its moving links. Complete velocity and acceleration analyses were performed to obtain
velocity and acceleration of the manipulator moving links in terms of θ̇ and θ̈. The dynamic equation of
the 3-PRR SPM was formulated in a closed form using the Newton–Euler method. It was shown that the
Newton–Euler approach is an efficient method to find values of internal moments between links of the
manipulator. A constrained optimization problem was also presented to minimize actuator torques, while
the moving platform of the manipulator moves along a given circular path. Many kinematic and dynamic
constraints including KCI, DCI and internal moments between links were considered. The closeness of
given trace of point S of the moving platform to the trace obtained by mathematical and SimMechanics
models verified correctness and efficiency of the proposed dynamic modeling. The author hopes that the
present study provides a robust framework for future research in areas of control and motion planning
of the proposed 3-PRR SPM.
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Appendix A
Considering β̇i , η̇i , ωmp and ω̇mp in Eqs. (18), (41), (15) and (45), the terms at the right-hand side of Eq. (48) become

The first term:
(ui × vi)T (Jω̇,mp,1θ̈ + Jω̇,mp,2θ̇)

(ui × vi)T ni
ni = Jω̇,pro,i,1θ̈ + J1

ω̇,pro,i,2θ̇ (A1)

where

Jω̇,pro,i,1 = 1
(ui × vi)T ni

⎡
⎢⎢⎣

nix(ui × vi)T Jω̇,mp,1

niy(ui × vi)T Jω̇,mp,1

niz(ui × vi)T Jω̇,mp,1

⎤
⎥⎥⎦ (A2)

J1
ω̇,pro,i,2 = (1/(ui × vi)T ni)

⎡
⎢⎢⎣

nix(ui × vi)T Jω̇,mp,2

niy(ui × vi)T Jω̇,mp,2

niz(ui × vi)T Jω̇,mp,2

⎤
⎥⎥⎦ (A3)

The second term:

− (ui × vi)T (ni × ui)
(ui × vi)T ni

(
(ui × vi)T Jmpθ̇

nT
i (ui × vi)

)
1i×(1−3)θ̇ni = J2

ω̇,pro,i,2θ̇ (A4)

where

J2
ω̇,pro,i,2 = − (ui × vi)T (ni × ui)

(ui × vi)T ni

(
(ui × vi)T Jmpθ̇

nT
i (ui × vi)

)⎡⎢⎢⎣
nix1i×(1−3)

niy1i×(1−3)

niz1i×(1−3)

⎤
⎥⎥⎦ (A5)

The third term:

− 1
(ui × vi)T ni

(
(ni × ui)T Jmpθ̇

(ni × ui)T vi

)
1i×(1−3)θ̇ni = J3

ω̇,pro,i,2θ̇ (A6)

where

J3
ω̇,pro,i,2 = − 1

(ui × vi)T ni

(
(ni × ui)T Jmpθ̇

(ni × ui)T vi

)⎡⎢⎢⎣
nix1i×(1−3)

niy1i×(1−3)

niz1i×(1−3)

⎤
⎥⎥⎦ (A7)

Note that

Jω̇,pro,i,1 = Jpro,i (A8)

where Jpro,i was defined before in Eq. (21), and Jω̇,pro,i,2 is computed as follows:

Jω̇,pro,i,2 =
3∑

k=1
Jk
ω̇,pro,i,2 (A9)

Appendix B
Considering relation (29), Eq. (55) is rewritten as

ω̇i = (1/qi)
((

eT
i δi
)
ω̇pro,i − (

eT
i ω̇pro,i

)
δi
)+ (

eT
i
(
ωpro,i × δi

))
ωpro,i − (

eT
i ωpro,i

)
ωpro,i × δi

−2q̇iωi + qi
(
eT

i ωi
)
ωi × ei

)
(B1)

Now, substituting ωpro,i , ω̇pro,i , ωi and q̇i from Eqs. (20), (50), (31) and (56) into Eq. (B1), the terms at the right-hand side of this
latter equation are summarized as follows: The first term:

(1/qi)(eT
i δi)ω̇pro,i = (1/qi)(eT

i δi)(Jω̇,pro,i,1θ̈ + Jω̇,pro,i,2θ̇) = J1
ω̇i,1θ̈ + J1

ω̇i,2θ̇ (B2)

where

J1
ω̇i,1 = (1/qi)(eT

i δi)Jω̇,pro,i,1 (B3)

J1
ω̇i,2 = (1/qi)(eT

i δi)Jω̇,pro,i,2 (B4)
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The second term:

−(1/qi)(eT
i ω̇pro,i)δi = −(1/qi)eT

i (Jω̇,pro,i,1θ̈ + Jω̇,pro,i,2θ̇)δi = J2
ω̇i,1θ̈ + J2

ω̇i,2θ̇ (B5)

where

J2
ω̇i,1 = −(1/qi)

⎡
⎢⎢⎣
δixeT

i Jω̇,pro,i,1

δiyeT
i Jω̇,pro,i,1

δizeT
i Jω̇,pro,i,1

⎤
⎥⎥⎦ (B6)

J2
ω̇i,2 = −(1/qi)

⎡
⎢⎢⎣
δixeT

i Jω̇,pro,i,2

δiyeT
i Jω̇,pro,i,2

δizeT
i Jω̇,pro,i,2

⎤
⎥⎥⎦ (B7)

The third term:

(1/qi)(eT
i (ωpro,i × δi))ωpro,i = (1/qi)(eT

i (Jpro,i θ̇ × δi))Jpro,i θ̇ = J3
ω̇i,2θ̇ (B8)

where

J3
ω̇i,2 = (1/qi)(eT

i (Jpro,i θ̇ × δi))Jpro,i (B9)

The fourth term:

−(1/qi)(eT
i ωpro,i)ωpro,i × δi = −(1/qi)(eT

i Jpro,i θ̇)Jpro,i θ̇ × δi = J4
ω̇i,2θ̇ (B10)

where

J4
ω̇i,2 = −(1/qi)

⎡
⎢⎢⎣

(eT
i Jpro,i θ̇)(Jpro,i,2×(1−3)δiz − Jpro,i,3×(1−3)δiy)

(eT
i Jpro,i θ̇)(Jpro,i,3×(1−3)δix − Jpro,i,1×(1−3)δiz)

(eT
i Jpro,i θ̇)(Jpro,i,1×(1−3)δiy − Jpro,i,2×(1−3)δix)

⎤
⎥⎥⎦ (B11)

The fifth term:

−(2/qi)q̇iωi = −(2/qi)((δi × ei)T Jpro,i θ̇)Jωi θ̇ = J5
ω̇i,2θ̇ (B12)

where

J5
ω̇i,2 = −(2/qi)((δi × ei)T Jpro,i θ̇)Jωi (B13)

The sixth term:

(eT
i ωi)ωi × ei = (eT

i Jωi θ̇)Jωi θ̇ × ei = J6
ω̇i,2θ̇ (B14)

where

J6
ω̇i,2 =

⎡
⎢⎢⎣

(eT
i Jωi θ̇)(Jωi,2×(1−3)eiz − Jωi,3×(1−3)eiy)

(eT
i Jωi θ̇)(Jωi,3×(1−3)eix − Jωi,1×(1−3)eiz)

(eT
i Jωi θ̇)(Jωi,1×(1−3)eiy − Jωi,2×(1−3)eix)

⎤
⎥⎥⎦ (B15)

Finally, Jω̇i,1 and Jω̇i,2 are computed by the following relations:

Jω̇i,1 = J1
ω̇i,1 + J2

ω̇i,1 (B16)

Jω̇i,2 =
6∑

k=1
Jk
ω̇i,2 (B17)

Appendix C
Figure C.1 shows the projection of the moving platform on the xy plane.

Regarding Figs. 5 and C.1, equations of the lines, constituting boundaries of the moving platform projection on the xy
plane, are:

y1 = −(
�r mp sin γ )/2 (C1)

y2 = √
3x+ �r mp sin γ (C2)

y3 = −√
3x+ �r mp sin γ (C3)
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Figure C.1. Projection of the moving platform on xy plane.

Using these boundary equations, the mass of the moving platform in Eq. (63) is calculated through the following triple integral:

mmp =
∫∫∫

ρmpdvmp = ρmp

∫ �r mp+tmp/2

�r mp−tmp/2

∫ �r mpsin γ

−(
�r mpsin γ )/2

∫ −√
3(y−�r mpsin γ )/3

√
3(y−�r mpsin γ )/3

dxdydz

= 3
√

3
4
ρmp

�r
2
mp tmp sin2 γ (C4)

where differential dvmp = dxdydz denotes an infinitesimal volume of the moving platform. Then, components of the position vector
r̄mp in Eq. (65) are obtained via the following integrals:

x̄mp = 1
mmp

∫∫∫
xρmpdvmp = 0 (C5)

ȳmp = 1
mmp

∫∫∫
yρmpdvmp = 0 (C6)

z̄mp = 1
mmp

∫∫∫
zρmpdvmp = 3

√
3

4mmp
ρmp

�r
3
mp tmp sin2 γ (C7)

The first array of an inertial matrix Īmp in Eq. (67a) is calculated by the following triple integral:

Ixx,mp =
∫∫∫

(y2 + z2)ρdvmp = ρmp

∫ �r mp+tmp/2

�r mp−tmp/2

∫ �r mpsin γ

−(
�r mpsin γ )/2

∫ −√
3(y−�r mpsin γ )/3

√
3(y−�r mpsin γ )/3

(y2 + z2)dxdydz

= 3
√

3
32

ρmp
�r

4
mp sin γ 4tmp + 3

√
3

4
ρmp

�r
4
mp sin γ 2tmp +

√
3

16
ρmp

�r
2
mp sin γ 2t3mp (C8)

Other arrays of the matrix Īmp are computed in a similar manner using the following triple integrals:

Iyy,mp =
∫∫∫

(x2 + z2)ρdvmp (C9)

Izz,mp =
∫∫∫

(x2 + y2)ρdvmp (C10)

Ixy,mp =
∫∫∫

z2ρdvmp (C11)

Ixz,mp =
∫∫∫

y2ρdvmp (C12)

Iyz,mp =
∫∫∫

x2ρdvmp (C13)

https://doi.org/10.1017/S026357472100062X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472100062X


502 Soheil Zarkandi

Appendix D
According to Fig. 6, the volume of each differential of the curved solid bar of the ith distal link is obtained as

dvdis = πr2
cs
�r dis d

�
α (D1)

Therefore, the mass of the distal link in Eq. (69) can be calculated using the following triple integral:

mdis =
∫∫∫

ρdisdvdis = ρdis

∫ α

0
πr2

cs
�r dis d

�
α= πρdisr2

cs
�r dis α (D2)

Similarly, components of the vector r̄dis in Eq. (71) are calculated as

x̄dis = 1
mdis

∫∫∫
yρdisdvdis = 0 (D3)

ȳdis = 1
mdis

∫∫∫
yρdisdvdis = ρdis

mdis

∫ α

0
(
�r dis sin

�
α )πr2

cs
�r dis d

�
α= πρdisr2

cs
�r

2
dis (1 − cos α)
mdis

(D4)

z̄dis = 1
mdis

∫∫∫
zρdisdvdis = ρdis

mdis

∫ α

0
(
�r dis cos

�
α )πr2

cs
�r dis d

�
α= πρdisr2

cs
�r

2
dis sin α

mdis
(D5)

Moreover, arrays of inertia matrix Īdis in Eq. (73) are computed as follows:

Ixx,dis =
∫∫∫

(y2 + z2)ρdisdvdis = πρdisr2
cs
�r dis

∫ α

0
(
�r

2
dis sin2 �α + �r

2
dis cos2 �α )d

�
α= πρdisr2

cs
�r

3
dis α (D6)

Iyy,dis =
∫∫∫

(x2 + z2)ρdisdvdis = πρdisr2
cs
�r dis

∫ α

0

�r
2
dis cos2 �α d

�
α= πρdisr2

cs
�r

3
dis

(
α

2
+ sin 2α

4

)
(D7)

Izz,dis =
∫∫∫

(x2 + y2)ρdisdvdis = πρdisr2
cs
�r dis

∫ α

0
(
�r

2
dis sin2 �α )d

�
α= πρdisr2

cs
�r

3
dis

(
α

2
− sin 2α

4

)
(D8)

Ixy,dis =
∫∫∫

z2ρdisdvdis = Iyy,dis (D9)

Ixz,dis =
∫∫∫

y2ρdisdvdis = Izz,dis (D10)

Iyz,dis =
∫∫∫

x2ρdisdvdis = 0 (D11)

Appendix E
With amp in Eq. (81) and the algebraic relation (29), the term mmprmp × amp in Eq. (80) becomes

mmprmp × amp = mmprmp × (ω̇mp × rmp) + mmprmp × (ωmp × (ωmp × rmp))

= mmpω̇mp − mmp(rT
mpω̇mp)rmp − mmp(rT

mpωmp)(ωmp × rmp) (E1)

After substituting ωmp and ω̇mp from Eqs. (15) and (45), the right-hand side of the above equation will change to

mmprmp × amp =mmp(Jω̇,mp,1θ̈ + Jω̇,mp,2θ̇) − mmp(rT
mp(Jω̇,mp,1θ̈ + Jω̇,mp,2θ̇))rmp

− mmp(rT
mpJmpθ̇)(Jmpθ̇ × rmp) (E2)

Eq. (E2) can be summarized in a matrix form as

mmprmp × amp = mmpGmp,1θ̈ + mmpGmp,2θ̇ (E3)

where

Gmp,1 = Jω̇,mp,1 −

⎡
⎢⎢⎣

rmp,xrT
mpJω̇,mp,1

rmp,yrT
mpJω̇,mp,1

rmp,zrT
mpJω̇,mp,1

⎤
⎥⎥⎦ (E4)
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Gmp,2 = Jω̇,mp,2 −

⎡
⎢⎢⎣

rmp,xrT
mpJω̇,mp,2

rmp,yrT
mpJω̇,mp,2

rmp,zrT
mpJω̇,mp,2

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

(rT
mpJmpθ̇)(rmp,zJmp,2×(1−3) − rmp,yJmp,3×(1−3))

(rT
mpJmpθ̇)(rmp,xJmp,3×(1−3) − rmp,zJmp,1×(1−3))

(rT
mpJmpθ̇)(rmp,yJmp,1×(1−3) − rmp,xJmp,2×(1−3))

⎤
⎥⎥⎦ (E5)

The above procedure can be easily repeated for other similar terms in Eq. (80) which results in

mcylrcyl,i × acyl,i = mcylGcyl,i,1 + mcylGcyl,i,2 (E6)

mpisrpis,i × apis,i = mpisGpis,i,1 + mpisGpis,i,2 (E7)

mprorpro,i × acyl,i = mproGpro,i,1 + mproGpro,i,2 (E8)

mdisrdis,i × adis,i = mdisGdis,i,1 + mdisGdis,i,2 (E9)

where 3×3 matrices Gpro,i,1, Gdis,i,1, Gcyl,i,1 and Gpis,i,1 are obtained through replacing subscripts “mp” in Eqs. (E4) and (E5)
with “cyl,i”, “pis,i”, “pro,i” and “dis,i”, respectively. Finally, matrices G1 and G2are given as

G1 = −mmpGacc,mp − mproGacc,pro,i − mdisGacc,dis,i − mcylGacc,cyl,i − mpisGacc,pis,i (E10)

G2 = −mmpGcor,mp − mproGcor,pro,i − mdisGcor,dis,i − mcylGcor,cyl,i − mpisGcor,pis,i (E11)

Appendix F
Unit vector pi = [pix piy piz]T is located in the plane passing through vectors ui and vi , and also located in the plane passing
through vectors ui+1 and vi+1 (Fig. 9), so we can write

pT
i (ui × vi) = 0 (F1)

pT
i (ui+1 × vi+1) = 0 (F2)

Eqs. (F1) and (F2) can be rewritten as

b1pix + b2piy + b3piz = 0 (F3)

b4pix + b5piy + b6piz = 0 (F4)

where

b1 = uiyviz − uizviy, b2 = −uixviz + uizvix , b3 = uixviy − uiyvix

b4 = ui+1,yvi+1,z − ui+1,zvi+1,y, b5 = −ui+1,xvi+1,z + ui+1,zvi+1,x , b6 = ui+1,xvi+1,y − ui+1,yvi+1,x (F5)

Equations (F3) and (F4) constitute a system of two linear equations in three unknowns qix , qiy and qiz , which can be solved in
terms qiz as

pix = piz(b2b6 − b3b5)
b1b5 − b2b4

(F6)

piy = piz(b3b4 − b1b6)
b1b5 − b2b4

(F7)

On the other hand, for the unit vector pi , we have

p2
ix + p2

iy + p2
iz = 1 (F8)

In this paper, we take piz ≥ 0, so Eq. (F8) gives the value of piz , as

piz =
√

1 − p2
ix − p2

iy (F9)

With Eqs. (F6), (F7) and (F9), the unique position of vector pi is obtained for a given configuration of the manipulator.
Subsequently, the smallest angles between pi and ui and ui+1, that is, α′

i and α′
i+1, are obtained as

α′
i = Arc cos (pT

i ui) (F10)

α′
i+1 = Arc cos (pT

i ui+1) (F11)
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Appendix G
Given geometrical properties:

�r mp = 1 m,
�r dis= 0.92 m, tmp = 0.008 m, rcs = 0.018 m

lcyl = 0.19 m, lpis = 0.21 m, Eicpro,i = 0.09 m, h = 0.18 m

and given mass properties:

mcyl = 0.4kg, Icyl =

⎡
⎢⎢⎣

0.68 0.45 0.08

0.45 0.59 0.35

0.08 0.35 0

⎤
⎥⎥⎦ kg.m2

mpis = 0.3kg, Ipis =

⎡
⎢⎢⎣

0.56 0.41 0.06

0.41 0.46 0.37

0.06 0.37 0

⎤
⎥⎥⎦ kg.m2

mpro = 0.1kg, r̄pro = [ 0 0 0.872 ]T m, Ipro =

⎡
⎢⎢⎣

0.43 0.31 0

0.31 0.41 0.15

0 0.15 0.54

⎤
⎥⎥⎦ kg.m2
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