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Surfactant- and gravity-dependent instability of
two-layer channel flows: linear theory covering

all wavelengths. Part 2. Mid-wave regimes
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The joint effects of an insoluble surfactant and gravity on the linear stability of
a two-layer Couette flow in a horizontal channel are investigated. The inertialess
instability regimes are studied for arbitrary wavelengths and with no simplifying
requirements on the system parameters: the ratio of thicknesses of the two fluid
layers; the viscosity ratio; the base shear rate; the Marangoni number Ma; and the
Bond number Bo. As was established in the first part of this investigation (Frenkel,
Halpern & Schweiger, J. Fluid Mech., vol. 863, 2019, pp. 150–184), a quadratic
dispersion equation for the complex growth rate yields two, largely continuous,
branches of the normal modes, which are responsible for the flow stability properties.
This is consistent with the surfactant instability case of zero gravity studied in
Halpern & Frenkel (J. Fluid Mech., vol. 485, 2003, pp. 191–220). The present paper
focuses on the mid-wave regimes of instability, defined as those having a finite
interval of unstable wavenumbers bounded away from zero. In particular, the location
of the mid-wave instability regions in the (Ma, Bo)-plane, bounded by their critical
curves, depending on the other system parameters, is considered. The changes of the
extremal points of these critical curves with the variation of external parameters are
investigated, including the bifurcation points at which new extrema emerge. Also, it
is found that for the less unstable branch of normal modes, a mid-wave interval of
unstable wavenumbers may sometimes coexist with a long-wave one, defined as an
interval having a zero-wavenumber endpoint.

Key words: instability, low-Reynolds-number flows

1. Introduction
In Frenkel, Halpern & Schweiger (2019) (henceforth referred to as Part 1) and the

present paper, Part 2, we consider the problem of a two-layer plane Couette flow
of two immiscible fluid layers with different densities, viscosities and thicknesses,
bounded by two infinite parallel plates moving at a constant relative velocity to each
other, with an insoluble surfactant monolayer along the interface and in the presence
of gravity. It has been known since Frenkel & Halpern (2002) and Halpern & Frenkel
(2003) (hereafter referred to as FH and HF respectively) that an insoluble surfactant

† Email address for correspondence: dhalpern@ua.edu
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at the interface between fluid layers may destabilize otherwise stable flows even in
the absence of inertia effects, provided the interfacial shear rate is non-zero. For
the horizontal channel flows of two fluids, this inertialess surfactant instability was
studied in such papers as Blyth & Pozrikidis (2004a), Blyth & Pozrikidis (2004b),
Pozrikidis (2004), Wei (2005), Bassom, Blyth & Papageorgiou (2010), Pozrikidis &
Hill (2011), Kalogirou, Papageorgiou & Smyrlis (2012), Kalogirou & Papageorgiou
(2016), Frenkel & Halpern (2017), and Kalogirou (2018). (A review of these papers
can be found in the Introduction of Part 1.) We carry out a linear stability analysis
using the standard normal modes approach applied to the equations governing the
flow disturbances in the two layers. Part 1 focused on long-wave instability regimes,
defined as those having a single interval of unstable wavenumbers (not necessarily all
small) with zero at its left endpoint. The subject of Part 2 is the mid-wave instability
regimes, defined as those having a finite interval of unstable wavenumbers bounded
away from zero, first found in HF, who considered cases with no gravity effects (see
also, e.g. Blyth & Pozrikidis (2004a) and Picardo, Radhakrishna & Pushpavanam
(2016) who did not include gravity but considered some other additional effects).
As was indicated in Frenkel & Halpern (2017), adding gravity in the presence of
surfactants, one can expect a rich landscape of stability properties, in particular since
there are two active normal modes of infinitesimal disturbances corresponding to
the presence of two interfacial functions: the interface displacement function and
the interfacial surfactant concentration (Frenkel & Halpern 2002). Since the growth
rates are the real parts of the normal mode increments which satisfy a quadratic
equation, and thus are relatively simple, in many cases numerical results can be
verified using asymptotic analysis. Unlike HF, where the investigation, including
that of the mid-wave instability regimes, was confined to the case Bo = 0, in the
present work, there is the whole (Ma, Bo)-plane, which is expected to break down
into two-dimensional domains of mid-wave instability, long-wave instability and
stability. Then, one can study how the ‘phase diagram’, made up by the boundaries
between these domains in the (Ma,Bo)-plane, changes depending on the other system
parameters, such as the viscosity ratio.

Thus, different from the long-wave instability of Part 1, basic questions arising in
the present paper have no analogues in the case with no gravity effects. New tools
developed in this investigation may be expected to be helpful in studies of flows
that depend on two ‘external’ parameters, such as Ma and Bo here, corresponding to
distinct physical factors which may cause instability, and multiple internal parameters,
such as the ratio of fluid layer thicknesses, the ratio of viscosities and the shear rate
in the present paper.

In § 2, the stability problem formulation is recalled, followed by the dispersion
equation in § 3. In § 4, we consider normal modes of arbitrary wavelengths and
encounter the mid-wave instability regimes (uncovered in HF but significantly
modified by gravity effects). In § 5, we consider the instability landscape in the
(Ma, Bo)-plane that is determined by the threshold curve of the long-wave instability
and the critical curve of the mid-wave instability, and study how it changes with the
other parameters. Finally, § 6 contains a discussion and concluding remarks. Some of
the more technical information is relegated to appendices.

2. Stability problem formulation

The general framework and governing equations of the problem are discussed in
Part 1, where the sketch of the channel flow is given in figure 1 and whose notations
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Part 2. Mid-wave surfactant–gravity instability of layered channel flows 187

and definitions we adopt here. The governing equations for this problem are found in
Frenkel, Halpern & Schweiger (2018) as well. For convenience, we reproduce some
of the more important ones below, in this section and the next one. In particular,
we assume the dependence of surface tension σ ∗ on the surfactant concentration
Γ ∗, where the star superscript indicates dimensional variables, to be given by the
Langmuir isotherm relation (Edwards, Brenner & Wasan 1991), which for the small
disturbances is

σ ∗ = σ0 − E(Γ ∗ − Γ0), (2.1)

where σ0 is the undisturbed surface tension, Γ0 is the corresponding surfactant
concentration and E :=−(∂σ ∗/∂Γ ∗)|Γ ∗=Γ0 is the elasticity parameter.

We make use of the following dimensionless variables:

(x, z, η)=
(x∗, z∗, η∗)

d1
, t=

t∗

d1µ1/σ0
, vj = (uj,wj)=

(u∗j ,w∗j )

σ0/µ1
, (2.2a−c)

pj =
p∗j
σ0/d1

, Γ =
Γ ∗

Γ0
, σ =

σ ∗

σ0
. (2.3a−c)

The base velocity and pressure profiles in the two layers separated by a flat interface,
η = 0, having a uniform surfactant distribution Γ̄ = 1 and a constant surface tension
σ̄ = 1 (using the over-bar for all base quantities), are (Frenkel & Halpern 2017)

ū1(z)= sz, w̄1 = 0, and p̄1 =−Bo1z for −1 6 z 6 0. (2.4a−c)

ū2(z)=
s
m

z, w̄2 = 0, and p̄2 =−Bo2z for 0 6 z 6 n, (2.5a−c)

where Boj := ρjgd2
1/σ0 is the Bond number of layer j, m=µ2/µ1 is the viscosity ratio

and n = d2/d1 is the ratio of the thicknesses of the two layers. The base interfacial
shear rate of the bottom layer, s= Dū1(0) (where D= d/dz), is used to characterize
the base flow instead of U=µ1U∗/σ0= s(1+ n/m), the relative velocity of the plates.
We express the disturbed state with small deviations from the base flow as follows:

η= η̃ · uj = ūj + ũj, wj = w̃j, pj = p̄j + p̃j, Γ = Γ̄ + Γ̃ . (2.6a−d)

The normal modes are disturbances of the form

(η̃, ũj, w̃j, p̃j, Γ̃ )= [h, ûj(z), ŵj(z), f̂j(z),G]eiαx+γ t, (2.7)

where ûj(z), ŵj(z) and f̂j(z) are complex amplitudes, α is the wavenumber, G and
h are constant amplitudes and γ is the increment, γ = γR + iγI . The flow stability
depends on the sign of the growth rate γR=Re(γ ): the flow is unstable if γR > 0 for
some normal modes; and it is stable if γR < 0 for all normal modes. The linearized
governing equations for the disturbances translate into a system for the amplitudes.
Using the continuity equations, the horizontal velocity amplitudes ûj are eliminated in
terms of ŵj. The pressure disturbances are eliminated from the momentum equations,
in which inertia has been neglected, and we obtain the Orr–Sommerfeld equations for
the vertical velocity disturbances:

mj(D2
− α2)2ŵj = 0, (2.8)

where mj :=µj/µ1 (so that m1= 1 and m2=m). The boundary conditions at the plates
are

Dŵ1(−1)= 0, ŵ1(−1)= 0, Dŵ2(n)= 0, ŵ2(n)= 0. (2.9a−d)
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The kinematic boundary condition and surfactant transport equation, respectively, take
the forms

γ h− ŵ1 = 0 (z= 0) (2.10)

and
γG−Dŵ1 + siαh= 0 (z= 0). (2.11)

Continuity of velocity at the interface gives rise to

ŵ1 − ŵ2 = 0 (z= 0) (2.12)

and

Dŵ2 −Dŵ1 − iαsh
(

1−m
m

)
= 0 (z= 0). (2.13)

The interfacial tangential and normal stress conditions yield, respectively,

mD2ŵ2 −D2ŵ1 + α
2(mŵ2 − ŵ1)− α

2GMa= 0 (z= 0) (2.14)

and (eliminating the pressure disturbances in terms of ŵj by using the horizontal
momentum equations)

mD3ŵ2 − 3mα2Dŵ2 −D3ŵ1 + Boα2h+ 3α2Dŵ1 + α
4h= 0 (z= 0), (2.15)

where Ma := EΓ0/σ0 is the Marangoni number and Bo is the effective Bond number

Bo= Bo1 − Bo2 =
(ρ1 − ρ2)gd2

1

σ0
, (2.16)

which can be negative, unlike the parameters n, m, s and Ma. Equations (2.8)–(2.13),
(2.14) and (2.15) form the eigenvalue boundary value problem for the disturbances,
which determines the growth rate as a function of the wavenumber α and the
parameters s, m, n, Ma and Bo. The eigenvalue, the increment γ , satisfies a quadratic
equation which appears in the next section.

3. Dispersion relation; special points of dispersion curves

In this section, we include a shortened version of the derivation of the dispersion
equation for the increment γ and provide some other important equations. (See Part 1
for more details.) The general solutions of (2.8) are

ŵj(z)= aj cosh(αz)+ bj sinh(αz)+ cjz cosh(αz)+ djz sinh(αz), (3.1)

where aj, bj, cj and dj are determined by the boundary conditions. First, we apply
(2.12) which yields a2 = a1, and then by applying the plate velocity conditions,
equation (2.9), we can express c1 and d1 in terms of a1 and b1, and c2 and d2 in
terms of a1 and b2, so that the velocity expressions are

ŵ1(z) = a1 cosh(αz)+ b1 sinh(αz)+
1
α
[−s2

αb1 + (sαcα + α) a1]z cosh(αz)

+
1
α
[−(sαcα − α)b1 + c2

αa1]z sinh(αz) (3.2)
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Part 2. Mid-wave surfactant–gravity instability of layered channel flows 189

and

ŵ2(z) = a1 cosh(αz)+ b2 sinh(αz)−
1
αn2
[s2
αnb2 + (sαncαn + αn)a1]z cosh(αz)

+
1
αn2
[(sαncαn − αn)b2 + c2

αna1]z sinh(αz), (3.3)

where

cα = cosh(α), sα = sinh(α), cαn = cosh(αn), sαn = sinh(αn). (3.4a−d)

We obtain a linear non-homogeneous system for a1, b1 and b2 by substituting the
above velocity expressions into the interfacial conditions (2.13), (2.14) and (2.15),
which is then solved to obtain a1, b1 and b2 in terms of h and G. Then we can express
the velocities ŵj(z) in terms of h and G. The kinematic boundary condition (2.10) and
the surfactant transport equation (2.11) give rise to a linear homogeneous system for
h and G, [

(γ + A11) A12
A21 (γ + A22)

] [
h
G

]
=

[
0
0

]
, (3.5)

where A11, A12, A21 and A22 are functions of the wavenumber α and the system
parameters given in appendix A. Non-trivial solutions exist only if det(A) =
(γ +A11)(γ +A22)−A12A21=0, which yields a quadratic equation for the increment γ ,

F2γ
2
+ F1γ + F0 = 0. (3.6)

Its solutions are given by

γ =
1

2F2
(−F1 + [F2

1 − 4F2F0]
1/2), (3.7)

where the expressions for F2, F1 and F0 in terms of system parameters and α are
given by (3.8)–(3.13) in Part 1, in which some of their properties are also enumerated.
The ranges of the system parameters are documented there as well. In particular, we
only need to consider n > 1, but allow for −∞ < Bo <∞. As discussed in detail
in Part 1, there are two continuous branches of the increment, given by γ (3.7), as a
function of α and the parameters, and correspondingly two continuous branches of the
growth rate γR. The branch that is non-zero at Ma= 0 is called the ‘robust branch’,
and the other one, that vanishes as Ma ↓ 0, is the ‘surfactant branch’.

We will use the following equations for obtaining the maximum growth rate γR max,
the wavenumber αmax corresponding to the maximum growth rate and the marginal
wavenumber α0 (see also Part 1). The real and imaginary parts of the dispersion
equation yield two real equations quadratic in γR and γI . Eliminating from them γI,
we obtain a quartic equation for γR:

4 F3
2γ

4
R + 8F2

2Re(F1)γ
3
R + F2[4 F2Re(F0)+ Im(F1)

2
+ 5 Re(F1)

2
]γ 2

R

+Re(F1)[Re(F1)
2
+ 4F2Re(F0)+ Im(F1)

2
]γR − F2Im(F0)

2

+Re(F1)
2Re(F0)+Re(F1)Im(F1)Im(F0)= 0. (3.8)

Since γR = 0 at the marginal wavenumber, α0, only the last term in this equation
remains, and we arrive at the following marginal wavenumber equation in terms of
system parameters and α:

k20Ma2
+ k11MaB+ k31Ma3B+ k22Ma2B2

+ k13MaB3
= 0, (3.9)

where B := Bo + α2 and the coefficients kij are functions of α, m, n and s (given
explicitly in Frenkel et al. (2018)).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.991


190 A. L. Frenkel, D. Halpern and A. J. Schweiger

For Ma= 0, equation (3.9) cannot be used. However, the only non-trivial solution of
(3.6) for Ma= 0 is γ =−F1/F2 (since F0= 0), corresponding to the Rayleigh–Taylor
instability mode. Hence, for the marginal wavenumber, we have Re(F1) = 0, which
yields α0 = (−Bo)1/2 provided Bo< 0.

The wavenumber αmax and the maximum growth rate γR max are obtained by
simultaneously solving (3.8) and the following equation which is obtained by
differentiating (3.8) with respect to α, taking into account that dγR/dα = 0 at the
maximum:

γ 4
R

d
dα

C4(α)+ γ
3
R

d
dα

C3(α)+ γ
2
R

d
dα

C2(α)+ γR
d

dα
C1(α)+

d
dα

C0(α)= 0, (3.10)

where Cj denotes the coefficient of the γ j
R term that appears in (3.8).

4. Surfactant effects in the Q sector; mid-wave instability

It was shown in HF (Bo= 0) that for Ma> 5/2 and m> n2 (i.e. in the Q sector;
see figure 3 of Part 1 for the definition of the three sectors Q, R and S), there are
mid-wave instability regimes, defined as those having a finite α-interval, bounded away
from α = 0, with γR > 0 for all its wavenumbers. (Note that the mid-wave instability
was called type I in Cross & Hohenberg (1993) while the long-wave instability was
called type II.) In order to investigate such an instability allowing for non-zero Bond
numbers, we introduce a critical Marangoni number, MacM that corresponds to the
onset (or the turnoff) of the mid-wave instability, and let αcM be the corresponding
wavenumber. Thus, the quantities MacM and αcM satisfy the equations γR = 0 and
∂γR/∂α = 0. In view of the quartic equation (3.8), MacM and αcM (for a given Bo)
can be found by numerically solving (3.9), which we write in the notation used in
(3.10) as

C0(Ma, α, Bo)= 0, (4.1)

along with
∂

∂α
C0(Ma, α, Bo)= 0. (4.2)

To illustrate the change of stability with Ma, in figure 1(a,b) the growth rate in the
Q sector (for n = 2 and m = 5, at s = 1) is plotted for three selected values of the
Marangoni number and Bo = −0.45. The numerical results show that the instability
is a long-wave one provided Ma < MacL (≈2.28 for the figure parameters). This is
then followed by a region of stability when Ma ∈ [MacL,MacM], where MacM ≈ 15.6.
For MacL <Ma<Mam, γR decreases monotonically with α (so that there is no γR max;
such dispersion curves are not shown in figure 1b), but starting from Mam (≈3.70), the
local maximum γR max appears on the dispersion curves. So, the growth rate γR has a
local (negative) maximum γR max at some αmax > 0 provided Ma>Mam; and once Ma
exceeds MacM, γR max becomes positive, i.e. the mid-wave instability switches on. Note
that when Ma>MacM for at least some interval of Ma corresponding to the mid-wave
instability, there are two positive marginal wavenumbers, one on the left at α = α0L
and another one on the right at α=α0R so that the interval of unstable wavenumbers is
α0L<α<α0R. (Cases with both finite and infinite Ma intervals of mid-wave instability
can be seen below in figure 7a and are discussed in the last paragraph of § 5.3.)

Although the stability properties of the normal modes are fully given by the
dispersion curves (see figure 1a,b), the normal modes have additional remarkable
properties, such as the phase speed, the phase difference between the co-travelling
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FIGURE 1. (Colour online) Curves for the four different functions of the wavenumber in
the Q sector (n = 2, m = 5) for s = 1 and Bo = −0.45. The stable mode corresponds
to the panels of the left-hand column, and the less stable mode to the panels of the
right-hand column. For the three values of Ma given in the legend, panels (a,b) show
the growth rates, (c,d) show the wave velocities, (e, f ) show the interface–surfactant phase
shifts and (g,h) show the interface/surfactant amplitude ratio. The transition from the
long-wave instability to stability to the mid-wave instability as Ma increases is evident
in (b).

waves of the interface and the surfactant, and the amplitude ratio of the interface to
the surfactant disturbances. As an example, these quantities are plotted in figure 1 as
functions of the wavenumber α. There, one notices a special value of the wavenumber,
αs, close to 0.7, at which the phase shift of the decaying branch has a jump
discontinuity. The wave speed at αs is zero for any Ma, so all three curves intersect
at the same point (αs, 0); similarly, the amplitude ratio is zero, independent of Ma.
For the other branch, in the right-hand panels (which, as figure 1(b) shows, goes, as
Ma increases, from long-wave unstable, to stable and then to mid-wave unstable), all
three growth rates are equal at the same αs, and the wave speeds are equal as well,
but the amplitude ratios are non-zero and different.
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FIGURE 2. (Colour online) Plots of γR max (left-hand panels) and corresponding αmax, α0R
and α0L (right-hand panels) versus Ma in the Q sector (here at n = 2, m = 5) for s = 1
and the four indicated values of Bo. (For labelled points, see the text.)

These observations concerning the different quantities at the special value α = αs,
which, in particular, imply the existence of normal modes with an undisturbed
interface, h= 0, but G 6= 0, are explained in appendix A. The question arises if there
exist some ‘opposite’ modes, in which only the interface, but not the surfactant, is
disturbed, so that G= 0, but h 6= 0. We answer this in appendix B. It turns out that
such modes are possible, but only in the absence of the basic interfacial shear of
velocity, and that they are due to the Rayleigh–Taylor instability.

In figure 2, γR max, αmax and α0 are plotted versus the Marangoni number for n= 2,
m= 5, s= 1 and for four selected values of Bo. If Bo is sufficiently negative, as in
figure 2(a,c), then γR > 0 for all Ma.

For Ma < MaLM, the instability is a long-wave one; in other words, there is no
α0L, since its definition implies that α0L must be non-zero. However, a mid-wave
instability ensues when Ma > MaLM, and there appears α0L > 0 (as in figure 2b,d).
Initially, α0L increases rapidly, while α0R decreases by a small amount, leading to
the shrinkage of the interval of unstable wavenumbers. After reaching a maximum,
α0L decreases towards zero with increasing Ma but never attains the zero value so
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FIGURE 3. (Colour online) The influence of s on (a) the maximum of γR over all α and
Ma in the Q sector (here at n = 2, m = 5) for two different values of Bo, one positive
and the other one negative. (b,c) The values of α and Ma at which this maximum occurs.
The global maxima of γR max with respect to Ma, present at larger s, become local maxima
between the pairs of dots on each curve. At smaller s, to the left of the end dot on each
curve, there are neither global nor local maxima.

that the instability does not return to the long-wave type, and the interval of unstable
wavenumbers slowly expands. When Bo=−0.51 (see figure 2e, f ), the stability picture
up to Ma=MacM1 is very similar to that displayed in figure 2(b,d). The instability is
of long-wave type provided Ma<MaLM. Starting at Ma=MaLM, corresponding to the
lower left dot in figure 2( f ), the long-wave instability disappears, and the mid-wave
instability mentioned previously emerges. However, as Ma continues to increase, the
interval of unstable wavenumbers quickly shrinks to a single, non-zero, α point,
indicated by the dot at Ma=MacM1 . The flow then becomes stable, with γR < 0 for
a range of Marangoni numbers, MacM1 < Ma < MacM2 . Therefore, in this range, α0L

and α0R are non-existent, but αmax is defined because γR has a local maximum at a
non-zero α. The mid-wave instability reappears at MacM2 (see the rightmost dot in
figure 2f ), starting from γR= 0, which corresponds to the right-hand intersection point
in figure 2(e). As Ma increases beyond MacM2 , the interval of unstable wavenumbers
expands in both directions. In figure 2(g,h), with Bo=−0.1, the flow is stable, and
γR max, αmax and α0 do not exist, in the interval MacL 6Ma6Mam. This is because γR

has no local maximum at any α > 0. Note that, as with the previous set of panels,
the flow is long-wave unstable for Ma<MacL (i.e. to the left of the leftmost dot of
figure 2h) and mid-wave unstable for Ma>MacM (to the right of the rightmost dot).

Thus, we have observed here, for the first time, the existence of another route to
the mid-wave instability: the continuous transition from long-wave instability (see the
marked point (MaLM, 0) in figure 2f ). Only the other route, the onset of mid-wave
instability from stability, was present for the case of zero gravity (see HF). In the
former scenario, the mid-wave instability has a non-zero growth rate and a finite
support interval from the very beginning. A detailed investigation of the boundaries
between the domains of the mid-wave instability, long-wave instability and stability
in the (Ma, Bo)-plane appears in § 5.

Figure 3 shows the dependencies of max γR, defined as the maximum of γR over all
α and Ma, along with the corresponding values of α and Ma at which this maximum
occurs, denoted α(max γR) and Ma(max γR), on the shear parameter s in the Q sector,
similar to those shown in figure 13 of Part 1 for the other two sectors. We observe that
the existence of the global maximum in Ma of the growth rate maxima with respect
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to the wavenumber is less common in the Q sector, especially for Bo> 0. At smaller
values of s, the global maximum becomes a local one like the one in figure 2(a). This
is indicated in figure 3 as the change from the solid to the dashed curve for Bo=−1
and from the dashed to the dotted curve for Bo= 1. At still smaller s, to the left of
the end dot on each curve, there are neither global nor local maxima.

5. Stability diagrams of (Ma, Bo)-plane
5.1. Regions of the long-wave and mid-wave instabilities

Here we present a detailed account of the mid-wave instability changes as the
viscosity ratio is increased, starting from a value in the R sector, 1 < m < n2, then
crossing the m = n2 border and further growing in the Q sector, m > n2. In the R
sector, the robust branch is long-wave unstable provided Bo< BocL where BocL(Ma),

BocL =
3ϕ(m− n2)

4n3(1−m)(n+m)
Ma (5.1)

(see equation (4.36) of Part 1), is positive. If m < n2 and sufficiently far from the
m = n2 border, there exists just one stability boundary, given by Bo = BocL; it is a
straight line (starting at the origin) that separates the long-wave unstable and stable
regions, as shown in figure 4(a).

As m increases and gets sufficiently close to m = n2, the onset of a mid-wave
instability is observed for certain intervals of Ma and Bo. In figure 4(b,c), a mid-wave
instability occurs provided BocL < Bo < BocM, for a finite interval of the Marangoni
numbers, MaLM1 < Ma < MaLM2, as the BocL and BocM curves ‘intersect’ each other
at Ma = MaLM1 and Ma = MaLM2. The ‘quasi-intersection’ points, marked in the
figure as filled squares, are the boundary points for the critical curve but are not the
critical points themselves: the critical wavenumber decreases to zero as Ma→MaLMj,
but the zero value is prohibited for a critical wavenumber. When m is approaching
ever closer to n2, at some m the critical curve of the mid-wave instability acquires
a maximum and a minimum, such as the ones in figure 4(d). Clearly, for each fixed
Ma of the Ma interval MaLM1 <Ma<MaLM2, there are three distinct Bo intervals: a
semi-infinite interval of stability Bo > BocM; a finite interval of mid-wave instability
BocL < Bo< BocM; and a semi-finite interval of long-wave instability Bo< BocL.

In figure 5(a), the wavenumber αcM corresponding to BocM is plotted versus Ma
for the values of m corresponding to figure 4(b,c) and also for m= 15.96, which is
closer to the m= n2 boundary value, m= 16, than m= 15.75 of figure 4(d). With this,
figure 5(a) suggests the hypothesis that in approaching the sector boundary, the larger
quasi-intersection value of Ma tends to infinity. The latter is in accordance with the
stability diagram for the sector boundary value m= 16 (see figure 6).

For all these cases, αcM attains a maximum at Ma such that MaLM1 <Ma<MaLM2.
Figure 5(b) shows, for the parameters of figure 4(c) and Ma= 25, that, as the Bond
number grows, when it reaches the value BocL, the long-wave instability changes into
the mid-wave one by the left endpoint of the interval of unstable α departing from
the zero α point.

The unstable α interval continues to shrink from both ends, and finally becomes a
single non-zero α point at Bo=BocM, the rightmost point of the curve. The maximum
growth rate (not shown) decreases to zero at this point, and there is stability for larger
Bo, in agreement with figure 4(c).

On the m = n2 border (e.g. for m = 16 and n = 4), the robust branch is long-
wave unstable in the half-plane Bo< 0 (with the boundary line BocL = 0), as shown
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FIGURE 4. (Colour online) Stability diagrams in the (Ma,Bo)-plane showing the influence
of the viscosity ratio m as m ↑ n2: (a) m = 10.25, (b) m = 15, (c) m = 15.45 and
(d) m= 15.75. The solid and dashed curves represent long-wave and mid-wave instability
boundaries respectively; S, L and M denote the stable, long-wave unstable and mid-wave
unstable regions. Here s= 1 and n= 4.

in figure 6. Along the Ma-axis (Bo = 0), the stability results of HF that show the
existence of a mid-wave instability for Ma > 5/2 are recovered: MaLM1 = 5/2 and
MaLM2 = ∞. Notably, BocL(Ma) ↓ 0 as Ma→∞. We also note that there is just a
single extremum, a maximum, on the critical curve.

In the Q sector, BocL(Ma) < 0, as given by (5.1). The threshold curves Bo =
BocL(Ma) are plotted in figure 7 for each value of m represented there; all the
threshold curves have the (Bo, Ma)-origin as their left-hand end (with linear scales
on both axes, all the threshold lines would start from the origin and have a negative
slope). The long-wave instability occurs below each threshold curve; the region
of long-wave instability is labelled with an ‘L’ in the figure. At some point on
each L-threshold curve, the critical curve of the mid-wave instability begins, going
unbounded rightward, in the direction of increasing Ma; as Ma↑∞, each critical curve
is asymptotic to Bo= 0 (thus, different from the R sector, but similar to the boundary
between the R and Q sectors, the threshold line of the long-wave instability intersects
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FIGURE 5. (Colour online) (a) The critical wavenumber αcM versus Marangoni number
Ma for the same parameter value choices as in figure 4, except for the largest value of m
being m= 15.96. (b) The marginal wavenumbers α0, α0L and α0R versus Bond number Bo
for s= 1, Ma= 25, n= 4 and m= 15.45. There is mid-wave instability in the Bo region
bounded by the two semicircles on the horizontal axis, long-wave instability to the left of
this region and stability to the right of this region.
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FIGURE 6. (Colour online) (a) Stability diagram in the (Ma,Bo)-plane similar to the ones
shown in figure 4, for a case where m=n2 (here m=16) and (b) the corresponding critical
wavenumber, αcM . The end points have Ma= 5/2. Here s= 1.

the critical curve of the mid-wave instability at a single point); however, in contrast
with the boundary between the R and Q sectors, the critical curve approaches the axis
Bo = 0 from below. Also, at the threshold-critical quasi-intersection, the BocL(Ma)
increases as Ma ↓MaLM1. Since there is still a local maximum on the critical curve,
just as there is one in the R sector and on the sector boundary m= n2, it follows that
there must be at least two local minima as well.

The mid-wave instability occurs below such a critical curve Bo= BocM (and above,
or to the right of, the right-hand part (Ma > MaLM1) of the corresponding threshold
curve Bo= BocL(Ma)). This region is labelled with an ‘M’. Above the critical curve,
as well as above the left-hand part (Ma < MaLM1) of the corresponding threshold
curve, the flow is stable. The critical curve is given by a single-valued function Bo=
BocM(Ma), that is seen in figure 7 to have two local minima and a maximum in
between them, provided the viscosity ratio m is below a certain value mN . These
two minima appear to occur at the same value of Bo, and as m increases all three
extrema move downward, but the single maximum moves faster than the two minima.
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FIGURE 7. (Colour online) (a) Stability diagram showing the regions of mid-wave and
long-wave instability and stability defined by the curves MacL and MacM as m increases
in the Q sector, and (b) the wavenumber corresponding to MacM for the indicated values
of m. Here n= 4 and s= 1.

Eventually, at m= mN , the three extrema merge into a single minimum, such as the
one on the m= 36 critical curve.

In the S sector, as was mentioned at the end of section 5.2 of Part 1, the mid-
wave instability occurs for the robust mode, although it is overshadowed by the long-
wave instability of the surfactant mode. This is illustrated in figure 8 for the parameter
values indicated there. The zoom-in, the upper inset, shows that, in contrast with the
other sectors, the critical curve does not end at its intersection with the threshold curve
of the linear instability, but continues below the intersection, until it meets another
critical curve. On the latter curve, each point corresponds to a dispersion curve having
zero growth rate at a local minimum (as illustrated in figure 9). The lower inset of
figure 8 is a zoom-in near the quasi-intersection point of the lower critical curve and
the threshold line, marked by a small circle, located at Ma slightly above 0.32 and
Bo slightly above −3.45. The quasi-intersection point of the upper critical curve and
the threshold line, marked by a small square, is located at Ma slightly above 0.046
and Bo slightly below −0.5.

Figure 9 illustrates the change of the dispersion curves of the robust mode for the
same values of n, m and s as in figure 8, and Ma fixed at 0.363 for a decreasing
sequence of Bo values corresponding to moving in the upper inset of figure 8 from
the domain of stability (figure 9a) to long-wave instability (figure 9b) to the domain
of coexisting long-wave and mid-wave instabilities (figure 9c) to the lower critical
curve (corresponding to the zero minimum in figure 9d) and finally to the domain
of long-wave instability (see figure 9e, f ). The mid-wave instability starts at a certain
Bo between those of figure 9(b,c) as the maximum, which is negative in figure 9(b),
grows through the zero to positive values as in figure 9(c) near α=0.3. In this process
both intervals of (coexisting) long-wave instability and mid-wave instability expand,
until they coalesce which corresponds to the snapshot shown in figure 9(d). Also, in
going from figure 9(c) to figure 9(d), the local minimum increases from negative to
zero value, and becomes positive, as in figure 9(e). Finally, this minimum disappears,
and the dispersion curve has a single maximum (see figure 9f ).

Figure 10 shows the salient features of the dispersion curves, such as the
maximum growth rate, γR max, the corresponding wavenumber, αmax, and the marginal
wavenumbers, α0, α0L and α0R, as continuous functions of the Bond number for
three different values of the Marangoni number. In particular, figure 9 corresponds
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FIGURE 8. (Colour online) (a) Stability diagram of the less unstable mode for s = 1,
n= 10 and m= 0.1. The long-wave instability is present below the solid line and absent
above it, while the mid-wave instability is present between the dashed curve, and either
the solid line or the dotted curve. The upper and lower insets zoom in on the regions near
the two lower pairwise intersections, marked by the square and the circle, respectively.

to figure 10(e, f ). For smaller values of the Marangoni number, such as Ma = 0.355
in figure 10(c,d), which are to the left of the intersection of the (maximum) critical
curve and the threshold curve, the mid-wave instability emerges before the long-wave
instability as the value of Bo becomes more negative (see the upper inset of figure 8).
For a small range of Bo, both long-wave and mid-wave instabilities can coexist
(indicated by the label ‘LM’ in the upper inset of figure 8). This stage is followed
by a completely long-wave unstable regime. For still smaller Ma, such as Ma= 0.3,
in figure 10(a,b), we observe the emergence of the mid-wave instability, which,
subsequently, turns into a long-wave instability, similar to figure 5(b).

Figure 11 shows a plot of the critical wavenumber corresponding to the two critical
curves in figure 8. It shows, similar to the analogous figures for the other two sectors,
that the critical wavenumber, αc, approaches zero at the quasi-intersection points. It
also reveals that the rate of change of the critical wavenumber approaches infinity at
the common point of the two critical curves. Using small wavenumber expansions as
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FIGURE 9. (Colour online) Dispersion curves for the robust mode in the S sector. Here
n= 10, m= 0.1, s= 1 and Ma= 0.363. The values of Bo are as indicated in each panel.

described in § 5.2, we obtained the cubic equation given by (5.13) below, and solved
it numerically to verify that at the left quasi-intersection point Ma = 0.0458, and at
the other one Ma= 0.321.

5.2. Asymptotics of the critical curves near their boundaries
5.2.1. General considerations

It should be possible to establish the asymptotic behaviour of the critical curves near
their boundaries, in particular the sense of the curve inclination at a finite boundary
point, a priori, using only minimal numerical information. This, as already indicated
above, leads to certain conclusions about the number and sense of possible extrema,
that in their turn facilitate the complete determination of the curve extrema. Near any
finite quasi-intersection point, for both R and Q sectors, we look for the critical point
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FIGURE 10. (Colour online) Plots of γR max, the corresponding αmax and the marginal
wavenumbers α0, α0L and α0R versus Bo in the S sector for the indicated values of Ma.
Here n = 10, m = 0.1 and s = 1. Note that when there are two local maxima on the
dispersion curves, γR max shown here corresponds to the right-hand maximum even if it is
smaller than the left-hand one.

coordinates in the form of generic power expansions

Ma=Ma0 + α
2Ma2 + α

4Ma4 + · · · (5.2)

and
Bo= Bo0 + α

2Bo2 + α
4Bo4 + · · · , (5.3)

where, to simplify notations, Ma0 stands for MaLMj (with j= 1, 2), etc. We substitute
these expansions into the critical curve (4.1) and (4.2) and require the collected
coefficients of each power to vanish. Since the point (Ma0, Bo0) lies on the threshold
curve of the long-wave instability, we have Bo0= κMa0, where κ is the coefficient of
Ma in (5.1). Because of this relation, the leading orders α6 in (4.1) and α5 in (4.2)
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FIGURE 11. (Colour online) Critical α versus Ma corresponding to figure 8.

are satisfied identically. The next order system, given by the orders α8 in (4.1) and
α7 in (4.2), is

k206Ma2 + k116Bo2 = r1, (5.4)
6k206Ma2 + 6k116Bo2 = 8r1, (5.5)

where k206 and k116 are the leading-order coefficients such that k20 ≈ k206α
6 and k11 ≈

k116α
6. In terms of the system parameters,

k206 =
n4

108
ϕ(n− 1)(n+ 1)2(m− n2)s2,

k116 =
n7

81
(n− 1)(n+ 1)2(m− 1)(n+m)s2.

 (5.6)

On the right-hand sides of (5.4) and (5.5), r1 is a cubic polynomial in Ma0 whose
coefficients are known combinations of kpqr (the coefficients of αr in the expansions
of kpq), and which lacks the quadratic term (cf. the discussion around (5.19)). The
consistency of this system requires that r1 = 0, which is a cubic equation for Ma0.
Clearly Bo2 =−(k206/k116)Ma2, which simplifies to

Bo2 = κMa2. (5.7)

The cubic equation for Ma0 can be examined using the well-known Cardano formula
and the underlying theory for the case with real coefficients.

The inclination of a critical curve at any quasi-intersection point is

dBo/dMa= (dBo/dα)/(dMa/dα). (5.8)

Using (5.2) and (5.3) we get dBo/dMa = Bo2/Ma2 = κ , where we have used (5.7).
Thus, at the boundary point, the critical curve is tangent to the threshold curve through
that quasi-intersection point.
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5.2.2. The R sector finite critical curves and the threshold for their existence
We find that in the R sector the cubic equation for Ma0 has two distinct positive

roots, corresponding to the two quasi-intersection points, for m greater than some
threshold value md, and one non-physical negative root. For m=md, the two positive
roots merge into a single double root, which means that the interval of mid-wave
instability shrinks to a single point, so that there is no mid-wave instability for m<md.
If the cubic equation is written in the form Ma3

0+ pMa0+ q= 0, the condition for the
double root is that a certain discriminant is zero, or 27q2

+ 4p3
= 0, whose solution

for given n and s is md, the threshold value above which the mid-wave instability
exists. For example, when n= 4 and s= 1, as in figure 4, md = 10.2783. This value
of m is between those for figure 4(a,b), as it should be. Thus, one can predict also the
location of the boundaries of the critical curves in the R sector. A somewhat different
way for this, leading to a cubic equation for Bo, is as follows. A more explicit form
of the system (4.1)–(4.2) is

C0(Ma, α, Bo)=Ma
(
A1 + A2Ma+ A3Ma2

)
= 0, (5.9)

∂C0

∂α
=Ma(A′1 + A′2Ma+ A′3Ma2)= 0, (5.10)

where
A1 = k11B+ k13B3, A2 = k20 + k22B2, A3 = k31B, (5.11)

and the prime stands for the α-derivative. After dividing these equations by Ma, the
system consists of two quadratic equations, equations (5.9) and (5.10), from which we
obtain two different linear equations for Ma, one by eliminating the quadratic term,
and the other by eliminating the zero-power term. The solvability condition, obtained
by equating the two expressions for Ma, is

(A1A′3 − A′1A3)
2
− (A1A′2 − A′1A2)(A2A′3 − A′2A3)= 0. (5.12)

Since α ↓ 0 near a boundary point, we use the small-α expansions to find, to the
leading order, the standard-form cubic equation

Bo3
+ p1Bo+ q1 = 0, (5.13)

where the coefficients are

p1 = k206(k118k206 − k116k208)/gd (5.14)

and
q1 = k116k2

206/gd, (5.15)

with gd = k2
116k318 − k116k206k228 + k2

206k138. Here k118 is the coefficient of the α8

correction in k11 such that k11 ≈ k116α
6
+ k118α

8. In terms of the system parameters,

k118 =
s2

1215
(m− 1)(n− 1)n7(n+ 1)2(m(n(8n− 3)+ 7)+ n(n(7n− 3)+ 8)). (5.16)

Similarly,

k208 =
1

810
s2(n− 1)n4(n+ 1)3((m2

− n4)(3n2
+ 8n+ 3)− 4m(n2

− 1)n2). (5.17)
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FIGURE 12. (Colour online) Numerical solutions of (5.19) for the representative values
of s given in the legend.

The coefficients k318, k228 and k138 are all of the leading order α8. In terms of the
system parameters,

k318=
n6

324
(n3
+m)2, k228=

n8

486
(n+m)(n3

+m), k138=
n10

2916
(n+m)2. (5.18a−c)

(From these expressions, one can see, in particular, that both the numerator and
denominator of q1 are positive.) The viscosity value md(n, s) satisfies the double-root
condition

27q2
1 + 4p3

1 = 0, (5.19)

which is essentially the same equation as the one found above using a different
approach, where no explicit expressions were shown for p and q (in fact, it is clear
from relation (5.7) that p1 = κ

2p and q1 = κ
3q). Fixing the value of s, we solve

numerically (5.19) for the solution curve m = md(n). In figure 12, we show these
solution curves for several representative values of s, ranging from small, to medium,
to large. For large and small values of s, numerical solutions can be verified with
analytical asymptotics. It is difficult to get numerical solutions for very large s. We
find the asymptotics for s ↑ ∞ in appendix C. In particular, we obtain the point
(n = n0, m = 1) which is approached when s ↑∞ by the md curves of the R and S
sectors (the upper and lower branches in figure 12).

Consider now the asymptotic case s ↓ 0. Here, equation (5.19) simplifies to the
leading-order equation q1= 0, and thus its numerator is also zero. But this contradicts
the fact, mentioned above, that it is strictly positive. Therefore, there is no mid-wave
instability for sufficiently small base shear.

As was established in the last paragraph of § 5.2.1, at any boundary point of a
critical curve, the latter is tangent to the threshold curve through that quasi-intersection
point of the two curves. Hence, since in the R sector the threshold curves have positive
slopes (see figure 4), the same holds for the critical curves near their boundary points.
This means that the critical function BocM(Ma) is increasing near its boundary points.
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Therefore, if there is a maximum, then there must be a minimum between this
maximum and the right-end quasi-intersection point. It transpires that as m rises
through a certain threshold value mt, such a maximum and a minimum appear at
some (Ma,Bo). The latter is an inflection point on the m=mt critical curve, where the
tangent is horizontal. We call it an ‘extrema bifurcation point’ (EBP; see figure 4c).
The EBPs, in both Q and R sectors, are discussed in detail in § 5.4.

5.2.3. The Q sector semi-infinite critical curves and their asymptotic behaviour
Turning next to the Q sector, the cubic equation for Ma0 has a single positive

root and two non-physical complex conjugate roots. The physical root corresponds
to the single ‘quasi-intersection’ points in figure 7(a). Since the threshold curve has
Bo = BocL(Ma) < 0 and for the critical curve Bo→ 0 as Ma→∞, it is clear that
the critical curve of the mid-wave instability lies above this threshold curve of the
long-wave instability. This conclusion agrees with figure 7.

For the Q sector, the fact of the shared direction with the threshold curve at the
boundary point of the critical curve, dBo/dMa=Bo2/Ma2= κ (see the last paragraph
of § 5.2.1), implies that the function BocM(Ma) is decreasing near the (single) quasi-
intersection point. For Ma ↑∞, postulating, from numerical results, that Bo→ 0 and
also α→ 0, we look for asymptotics Ma= c1α

−ζ (with c1 6= 0) and Bo= d1α
ξ (with

d1 6= 0), where ζ and ξ are positive. At leading order, the marginal wavenumber (4.1)
(or, in more detail (3.9), which is convenient to divide by Ma2) becomes

k20 + k31MaB= 0. (5.20)

Since the k20 ∝ α
6, and k31 ∝ α

8, it follows that the product MaB ∝ α−2. Since B =
Bo+ α2 (which, clearly, entails that ∂B/∂α = 0), one can see that necessarily ξ = 2.
This can be proved by showing that the assumption of ξ < 2 or ξ > 2 leads to a
contradiction in the system consisting of (5.20) and

k′20 + k′31MaB+ k31Ma(2α)= 0 (5.21)

(the partial derivative of (5.20) with respect to α).
Also it can be shown that ξ = 2 implies ζ = 4. The omitted justification of these

statements appears in Frenkel et al. (2018). The system for c1 and d1 is now

k206 + k318(1+ d1)c1 = 0 and 3k206 + k318(5+ 4d1)c1 = 0. (5.22a,b)

Eliminating k206 from the last two equations yields d1 =−2. Then

c1 =
k206

k318
=

3(n− 1)(m− n2)(n+ 1)2

n2(n3 +m)2
> 0. (5.23)

Therefore, Bo= c1/2
1 d1Ma−1/2 < 0. This is in excellent quantitative agreement with the

numerical results documented in figure 7(a).

5.3. Local extrema of the critical curves
As figure 7 shows, in the Q sector there is a local maximum on the critical curve for
m sufficiently close to n2, just as there is one at m= n2, the boundary between the Q
and R sectors (see figure 6). Taking into account that BocM(Ma) is increasing at large
Ma (as it is negative and goes up to zero in the limit of infinitely increasing Ma),
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we conclude that there must be at least two local minima on the critical curve, which
is also in agreement with the numerical results shown in figure 7(a). For sufficiently
large m, however, the critical curve is seen numerically to have just a single minimum.

At any extremum, be it in the R or the Q sectors, we have

dBo
dMa
= 0. (5.24)

Also, since substituting the solutions Bo(Ma) and α(Ma) of the system of (4.1) and
(4.2) for the critical curve into the left-hand side of (4.1) makes it true for all Ma,
the total Ma-derivative of C0(Ma, α(Ma),Bo(Ma)) must be zero. Writing the latter in
terms of partial derivatives of C0 with respect to Ma, α and Bo, we use (5.24) and
(4.2) to establish that ∂C0/∂Ma= 0. This is used as the third equation of the system
for the extrema points, in addition to (4.1) and (4.2). Thus, using the explicit forms
(5.9) and (5.10), we have the system of three quadratic equations

A1 + A2Ma+ A3Ma2
= 0, (5.25)

A′1 + A′2Ma+ A′3Ma2
= 0, (5.26)

A1 + 2A2Ma+ 3A3Ma2
= 0, (5.27)

where the last equation is the derivative of (5.9) with respect to Ma. Subtracting (5.25)
from (5.27), we get the linear equation

A2 + 2A3Ma= 0, (5.28)

which can be solved for Ma in terms of the other variables, provided that A3 6= 0,
i.e. since k31 > 0, that B 6= 0. On the other hand, another linear equation for Ma is
obtained by eliminating the quadratic terms by linearly combining the quadratic (5.25)
and (5.27):

2A1 + A2Ma= 0. (5.29)

This can also be solved for Ma in terms of the other variables (provided that A2 6= 0;
also, it is easy to see that one has to assume that B 6= 0 in order to have a non-
zero Ma). The solvability condition of the over-determined system of the two linear
equations for Ma, equations (5.28) and (5.29), is

D := A2
2 − 4A1A3 = 0. (5.30)

Note that D= A2
2 − 4A1A3 is independent of Ma.

One has to distinguish the cases B 6= 0 and B= 0. For B 6= 0, the solution of (5.28)
is

Ma=−
A2

2A3
. (5.31)

Substituting this into the quadratic equation (5.26), we have a system of two
transcendental equations for B and α, which can be written in the following form:

D= 0 and D′ = 0. (5.32a,b)

In the R sector, two solutions, a maximum and a minimum, are found by solving
numerically the system of equations (5.32), and then finding Ma from (5.31). In the Q
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FIGURE 13. The trajectories of the extrema of the critical curves Ma=MacM(Bo) in the
(Ma, Bo)-plane (for n= 4 and s= 1; see figures 4c,d, 6a and 7a) as m changes starting
in the R sector and increasing through the R sector and after that, for m > 16, the Q
sector. In the R sector, for 15.45 < m < 16, there is one maximum, the dashed curve,
and one minimum, the solid curve; for 16< m< 34.31, there is one maximum between
two minima; and finally, for m> 34.31, there is one minimum. The arrows indicate the
increase of m and the dots correspond to the displayed values of m next to them. The
minimum moves to infinite Ma as m→ 16, from either side.

sector, this gives a single solution, which is a maximum for m<mN , and a minimum
for m>mN .

Also, there are, in a certain interval of viscosity ratios, solutions with B= 0. In this
case, the solvability condition (5.30) implies

k20 = 0, (5.33)

which yields the wavenumber. Then the Bond number is determined uniquely as

Bo=−α2. (5.34)

The quadratic equation (5.26), with the now known α and Bo, gives two distinct
solutions for the Marangoni number if the discriminant ζ is positive, where

ζ = A
′2
2 − 4A′1A′3. (5.35)

For the case at hand we have the simplified relations A′2 = k′20, A′1 = 2αk11 and A′3 =
2αk31. Thus, the solutions are

Ma=
−k′20 ±

√
k′220 − 16α2k11k31

4k31α
, (5.36)

corresponding to the two minima on the critical curves in the Q sector (see figure 7).
Figure 13 shows the trajectories of the extrema in the (Ma, Bo)-plane for n= 4 as

the viscosity ratio m increases, starting from m= 15.45, in the R sector, reaching the
Q sector at m = 16, and continuing to increase in the Q sector. Consistent with the
stability diagrams shown in figures 4 and 6, there are two extrema, a maximum and
a minimum, for m < 16, which is in the R sector, provided m > mt = 15.45. In the
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Q sector, there are three extrema as long as m< mN . At m= mN , the three extrema,
one of them a maximum and two of them minima, collapse together into a single
minimum, which then persists through the Q sector. (Recall that we term this point
the EBP.)

In connection with the non-monotonic character of critical curves that have multiple
local extrema, we note the following. In figure 2(e, f ) (where n= 2), we see that as
Ma increases, the long-wave instability gives way to stability at Ma = MacL, which
persists up to Ma = MacM, at which point the mid-wave instability sets in, further
persisting for all larger Ma. For short, we symbolically describe this sequence of Ma
intervals with different stability types as L–S–M (where L indicates the long-wave
instability, S denotes stability and M stands for the mid-wave instability). The same
stability interval sequence is obtained from figure 7 (where n = 4) if, for example,
we fix m = 25 and Bo = −0.1, and go rightwards parallel to the Ma-axis. However,
different sequences occur for other sets of parameters. For example, at m = 20 and
Bo = −0.05, we observe the sequence L–S–M–S–M; at m = 36 and Bo = −0.3, the
sequence is L–M–S–M; and at m= 25 and Bo=−0.2, we have the longer sequence
L–M–S–M–S–M. It appears that for any Bo< 0, any sequence starts with L and ends
with M. In contrast, for positive Bo, e.g. at Bo= 0.05 and m= 18, we have a S–M–S
sequence of Ma intervals.

5.4. Extrema bifurcation points
5.4.1. The EBPs in the Q sector

We turn now to the problem of equations determining the EBPs. In this section,
we consider those in the Q sector, while those in the R sector are examined in the
following section.

Clearly, the bifurcation point of the two minima and one maximum at m= mN in
the Q sector, which has B = 0 (inherited, by continuity, from the B = 0 property of
the two minima existing at the smaller m), must satisfy, in addition to (4.1), (4.2) and
(5.27), the condition that the Ma values of the two minima coalesce to a double root.
It is clear from (5.36) that this means

k′220 − 16α2k11k31 = 0. (5.37)

As we already noted above, the latter corresponds to the discriminant (5.35) being
zero, so that the two solutions of (5.26) for the two minima of Ma merge into just
a single one. For the EBPs in the Q sector, it is convenient to use new variables
n1 = n− 1 and m1 = (m− n2)/(n− 1) so that the Q sector corresponds to the entire
first quadrant. For any given (n1, m1), as we already mentioned above, we can find
the other properties of the EBP as follows: first, α is determined by solving (5.33).
This dependence α(n1,m1) is shown as the contour plot in figure 14.

We observe this unique solution for the extended region of realistic (n1, m1). For
small n1 and α, we find that asymptotically m1= (4/15)α2, independent of n1, so that
the level curves of α intersect the vertical axis at different heights. With corrections,
the equation of the level curves at α � 1 and n1 � 1 is m1 = 4/15α2(1 + 5n1/2 +
2n2

1), where we have suppressed the terms which have powers of α2 higher than one
or powers of n1 higher than two. Keeping the two correction terms in the formula
is necessary for predicting the flip of the sign of the level curve curvature as one
switches between the linear and log scales of the n1-axis.

Having found α from (5.33), the Bond number Bo(n1,m1) is given by (5.34) with
α = α(n1, m1). Next, equation (5.37), after being divided through by s2, is a linear
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FIGURE 14. Level curves of α(n1,m1) for the EBPs in the Q sector. The numbers next
to the curves are the corresponding values of α.

equation in s2, and gives s(n1, m1), provided the derivative of k20 with respect to α
is negative. The argument showing this is the case, which involves some asymptotic
dependencies, is omitted here but appears in Frenkel et al. (2018)

Finally, Ma(n1, m1) of the EBP is given by (5.36) with the discriminant equal to
zero, so that

Ma=
−k′20

4k31α
. (5.38)

For example, there is a solution that corresponds to the EBP in figure 13, with n= 4,
s= 1, m=mN = 34.31, Ma= 13.97, Bo=−0.375 and α= 0.61. These values are also
consistent with figure 7. Note that in figure 14 α(n1,m1) has no external parameters.
The same is true of the other EBP dependencies: Bo(n1,m1), s(n1,m1) and Ma(n1,m1).

5.4.2. The EBPs in the R sector
It was mentioned above, at the end of § 5.2.2, that one maximum and one minimum

appear at the EBP on the critical curve in the R sector corresponding to a threshold
value mt of m. It is clear that for this EBP

d2Bo
dMa2 = 0, (5.39)

where the implicit function Bo(Ma) is given by the system (5.9) and (5.10). (This
EBP corresponds to the inflection point with the horizontal tangent line in figure 4c.)
Using the implicit function differential formulas, we obtain a fourth equation of the
system for the EBP:(

∂2C0

∂α∂Ma

)2

−
∂2C0

∂α2

∂2C0

∂Ma2 = 2Ma(A2 + 3A3Ma)(A′′1 + A′′2Ma+ A′′3Ma2)

− (A′1 + 2A′2Ma+ 3A′3Ma2)2 = 0. (5.40)

(Some omitted intermediate details appear in Frenkel et al. (2018).) We note that Bo>
0 in the R sector and therefore B 6= 0. The four equations, given by (5.32), (5.31)
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and (5.40), are solved numerically. As an example, for n= 4 and s= 1, we find α=
0.21, Bo= 0.35, Ma= 33.81 and m=mt = 15.45. These numbers are consistent with
figure 4(c) and figure 13.

Similarly to the Q sector procedure used above, for the four EBP equations in the R
sector, an algebraic reduction is possible where a single equation is used to solve for
one variable, and then the three other parameters of the EBP are found (with given
values of n and m). For this, we note the algebraic identity k2

22 − 4k13k31 = 0 which
can be verified using the explicit expressions of k22, k13 and k31 in terms of α and the
system parameters (as given in Frenkel et al. (2018)). Hence, the first and the second
equations of (5.32) can be written, explicitly showing the s and B dependencies, as,
respectively,

k2
20ss

2
+ 2B2ksB = 0 and k20sk′20ss

2
+ B2k′sB + 4BαksB = 0. (5.41a,b)

Here we have defined the quantity ksB as ksB = k20sk22 − 2k11sk31, where k20s and k11s
are defined by k20s = k20/s2 and k11s = k11/s2 (so that they are independent of s). The
last two displayed equations are linear equations for s2, so s2 is obtained explicitly in
terms of the quantities α, m, n and B. Moreover, the solvability condition of the over-
determined system of the two linear equations for s2 yields (after dividing through by
Bk20s) a linear equation for B:

B(k20sk′sB − 2k′20sksB)+ 4k20sαksB = 0, (5.42)

whose coefficients depend on α, m and n. Solving it (provided that the coefficient of B
is non-zero) yields B in terms of α, m and n; using this expression in (5.41), we obtain
s2 in terms of α, m and n, and then, from (5.31), an expression for Ma in terms of α,
m and n. We substitute these expressions into (5.40) to obtain an equation containing
α, m and n, which can be numerically solved for α giving it as a function of n1 and
m1. Then, for the given values of n1 and m1, we find sequentially B, s2 and Ma, in that
order, using the linear-equations solutions for them described above. Thus, for given
n1 and m1, we determine all the parameters, α, B, s and Ma, of the corresponding EBP
in the R sector. The level curves of α are seen in figure 15 as the monotonically rising
curves. Through the upper point of each curve passes the level curve, with the same
value of α, of the α function which makes identically vanish the coefficient Bd of B in
(5.42). It is clear that the envelope of the family of level curves for Bd= 0 is the locus
of the upper ends of the level curves for the EBPs. (The envelope curve shown in the
figure was obtained by solving the system Bd= 0 and ∂Bd/∂α= 0.) When approaching
the envelope curve, the values of B grow to infinity. The EBP level curves can be
formally continued above the envelope curve, but lead to unphysical negative values
of B and Ma. (Note that the R sector is completely mapped into the region of the
(n1, −m1)-plane bounded above by the line −m1 = n1 + 2, corresponding to m = 1;
however, this line is outside the range of figure 15.)

6. Summary and discussion
In Part 2 of our work, we considered the mid-wave regimes of linear instability,

defined as those having a finite interval of unstable wavenumber bounded away from
zero, for two immiscible Newtonian fluid layers flowing in a horizontal channel
between parallel plates that move steadily with respect to each other driving a
Couette flow. As in Part 1, we investigated, by using the normal modes for the
linearized equations under conditions of negligible inertia, the joint effects of insoluble

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.991


210 A. L. Frenkel, D. Halpern and A. J. Schweiger

1.0

å = 0.1
å = 0.2
å = 0.4

0.5

0 5 10
n1

-m1

15

FIGURE 15. (Colour online) Level curves of α(n1, m1) for the EBPs in the R sector. (For
other curves here, see the text.)

surfactants and gravity on the flow stability. Without any restrictions on the system
parameters, such as the smallness of the thickness ratio (see e.g. Frenkel & Halpern
(2006) and Kalogirou & Papageorgiou (2016), where nonlinear and/or inertial effects
were included), the differential eigenvalue problem, involving the instability increment
and the normal amplitudes, enjoys an analytical reduction to a low-dimensional
algebraic eigenvalue problem, and then to a quadratic equation for the increment
(unlike, for example, Picardo et al. (2016), where the numerical solution of a full
differential eigenvalue problem was necessary). The latter yields two continuous
increment branches, and hence two continuous growth rate branches. As in FH and
subsequent papers, one of the branches, that is present even when Ma= 0, is called
the ‘robust’ branch, and the other one, that vanishes as Ma ↓ 0, is the ‘surfactant’
branch.

The mid-wave instability, the subject of Part 2, turns out to emerge in two distinct
ways (as a control parameter increases): it starts either from a stability stage, which
we call the true onset of the mid-wave instability, or, alternatively, from a long-wave
instability stage. The latter occurs when the left endpoint of the interval of the
unstable wavenumbers, which is zero for the long-wave instability, starts moving
away from zero (as shown in figure 5b), the maximum growth rate remaining
positive all along. In the alternative scenario of the onset of the mid-wave instability,
the maximum growth rate is equal to zero at a certain positive wavenumber, for which,
therefore, the marginal wavenumber equation holds. But in view of the maximum,
the partial derivative of the growth rate equals zero as well. Thus, we have a system
of two equations, whose solution gives the critical values of the Marangoni number
and the wavenumber as a function of the Bond number, for arbitrarily fixed values
of the remaining three parameters. We follow, as the viscosity ratio is increased in
the R sector towards its boundary with the Q sector, the emergence of the critical
curve, and its consequent change, in the (Ma, Bo)-plane (figure 4). The critical curve
has its two endpoints on the threshold curve of the long-wave instability. The latter
is rightward-increasing in the R sector, horizontal at the boundary with the Q sector
(figure 6) and a decreasing curve in the Q sector (figure 7). The right-side endpoint of
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the critical curve moves away to infinity as we cross into the Q sector. The critical
wavenumber is small near a critical curve endpoint, and so one can look for the
critical solutions in the form of asymptotic power series. This gives rise to a cubic
equation for the endpoint locations. Analysis of this equation leads to conclusions
which are in agreement with the numerical observations, such that the critical curve
in the R sector exists only above a certain value of the viscosity ratio and has two
endpoints, while there is just one single endpoint in the Q sector. In all cases, the
critical curve at its endpoint is tangent to the long-wave threshold curve. We also
obtain and solve equations for the extrema of the critical curve, obtaining conclusions
that agree with the numerical results. In the R sector, there is a certain value of
the viscosity ratio below which the critical curve has no extrema, but above which
it has exactly two extrema: a maximum and a minimum. The latter disappears into
the right-side infinity at the boundary with the Q sector, and so we have just one
extremum at this boundary, a maximum. Moving into the Q sector as the viscosity
ratio increases, there are at first one maximum in between two minima on the critical
curve. These extrema coalesce into a single minimum at a certain value of the
viscosity ratio m, and this minimum persists for the larger values of m.

As we go from an arbitrary critical point to a critical extremum, one more constraint
is added, which decreases the number of free parameters by one. The EBPs, at which
the number of extrema changes, correspond to another reduction of the number of
free parameters. Thus, for given n and m, they determine all the other values: the
wavenumber; Marangoni number; Bond number; and the shear parameter of the
corresponding EBP (figure 15). Thus, figures 1, 2, 7, 13 and 15 represent different
levels of information about the stability properties. Namely, going from one of the
figures to the next, in the given order, the description gets more refined. On the other
hand, the amount of data in the description decreases, in a certain sense. Figure 1
gives the growth rates at every wavenumber, but all the parameters are fixed at certain
values. So, out of the seven quantities, α, γR, Ma, Bo, m, n and s, six are independent
variables, and just one quantity is a dependent variable. Thus, these data make up a
six-dimensional hypersurface in the seven-dimensional space. Figure 2 corresponds to
some five independent variables determining the values of the other two quantities,
thus resulting in a five-dimensional manifold of data. Figure 7 corresponds to a
four-dimensional manifold, figure 13 implies a three-dimensional manifold of data
and figure 15 corresponds to a two-dimensional manifold parameterized by the
independent variables m and n, whose values determine α, γR, Ma, Bo and s (where
γR= 0 since our consideration here is confined to the critical conditions of mid-wave
instability). The envelope curve in figure 15 corresponds to a one-dimensional curve
in the seven-dimensional space of the relevant quantities. Finally, for the inflection
point of the envelope curve in figure 15, there are no independent variables, and all
seven quantities are uniquely determined.

There is the mid-wave instability of the robust branch in the S sector too, albeit
the long-wave instability of the surfactant branch is the stronger of the two there. In
the (Ma, Bo)-plane, in the vicinity of the threshold line of the long-wave instability,
in addition to the more usual critical mid-wave curve which consists of the points
that correspond to dispersion curves with zero maximum growth rate, there is, below
the latter, another critical mid-wave curve, consisting of the points corresponding to
dispersion curves with zero minimum growth rate (see figure 8). Correspondingly, as
the Bond number decreases (to larger-magnitude negative values), it is possible that
at some point after the onset of the mid-wave instability, the long-wave instability
starts, whose wavenumber interval is initially small and does not intersect the mid-
wave interval of unstable wavenumbers. The coexistence of the mid-wave and the
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long-wave instabilities lasts until their intervals coalesce, corresponding to the critical
curve of zero minimum growth rates in the (Ma, Bo)-plane. After this coalescence,
there is just one long-wave continuous interval of the unstable wavenumbers, with
the dispersion curve having two positive local maxima of the growth rate at first, but
just one single maximum eventually, at the most negative Bond number values. For
another range of Marangoni number, an alternative scenario is possible, which differs
from the one described above solely in that the long-wave instability starts first and
the mid-wave one at the smaller (more negative) values of the Bond number. The
consequent coalescence into purely long-wave instability is the same in both scenarios
(figures 9 and 10).

Appendix A. On the special value αs in figure 1
The zero amplitude ratio at α = αs in figure 1(g), independent of Ma, implies that

if h is zero and G is not zero, then from the first equation of (3.5),

A12 = 0. (A 1)

In terms of α and the system parameters, the coefficients A11, A12, A21 and A22 of (3.5)
are

Re(A11)= (m(s2
α − α

2)(sαncαn − αn)+ (s2
αn − α

2n2)(sαcα − α))
1

2α5F2
B, (A 2)

Im(A11)=−
(m− 1)s
α2F2

(n2(sαcα − α)+ sαncαn − αn), (A 3)

A12 = (s2
αn − α

2n2
−mn2(s2

α − α
2))

Ma
2α2F2

, (A 4)

Re(A21)= (s2
αn − α

2n2
−mn2(s2

α − α
2))

1
2α2F2

B, (A 5)

Im(A21) =
(
m((sαcα − α)(sαncαn + αn)+ c2

αn(s
2
α − α

2)+ α2n2s2
α)

+ (sαcα + α)(sαncαn + αn)+ c2
α(s

2
αn − α

2n2)+ α2s2
αn

) s
α3F2

, (A 6)

A22 = (m((s2
α − α

2)(sαncαn + αn))+ (s2
αn − α

2n2)(sαcα + α))
Ma

2α3F2
, (A 7)

where

F2 =
1
α4

{
(c2
αn + α

2n2)(s2
α − α

2)m2
+ 2(sαcαsαncαn − α

2n+ α4n2)m

+ (s2
αn − α

2n2)(c2
α + α

2)
}
. (A 8)

In view of (A 4), equation (A 1) implies that s2
αn−α

2n2
−mn2(s2

α−α
2)= 0. This yields

αs in terms of n and m (but independent of Ma). The second equation of (3.5) with
h= 0 yields γ =−A22, which by (A 7) is real, negative and proportional to Ma. This
agrees with figure 1(a). The wave speed is zero because Im(γ )= 0.

The other mode, which features different instabilities for different Ma, corresponds
to the right-hand panels of figure 1, and must have h 6= 0. Since A12 = 0 for α = αs,
we must have γ + A11 = 0. This implies Im(γ ) > 0, i.e. a negative wave speed value,
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independent of Ma, corresponding to the triple intersection in figure 1(d). The growth
rate, γR=−Re(A11), is seen to be negative and independent of Ma, which explains the
triple intersection in figure 1(b). However, since h 6= 0 for this branch, the amplitude
ratio is found to be ∣∣∣∣ h

G

∣∣∣∣= ∣∣∣∣A11 − A22

A21

∣∣∣∣ . (A 9)

Only A22 depends on Ma, and |h/G| changes with Ma, so the three curves in figure 1
go through different points at α = αs.

Appendix B. Normal modes with undisturbed surfactant
Assuming that the surfactant is undisturbed, G = 0, which implies that h 6= 0, it

follows from the second equation of (3.5) that A21= 0. This implies in particular that
Im(A21) = 0. However, in expression (A 6), each term is positive, since each of the
expressions sαcα − α, s2

α − α
2 and s2

αn− α
2n2 is positive. This contradiction shows that

there are no normal modes with G= 0 if s 6= 0.
If, however, s = 0, but B is non-zero, then Im(A21) = 0 identically. However,

Re(A21)= 0 yields, from (A 5), that

m=
s2
αn − α

2n2

n2(s2
α − α

2)
. (B 1)

This equation gives a two-dimensional manifold of normal modes (parameterized with
variables n and α). Thus, the normal modes with G= 0 (and h 6= 0) do exist, but only
when s = 0. Note that the first equation of the system (3.5) implies that γ = −A11,
and we find, making use of (B 1), that the growth rate for this mode is

γR =−Re(A11)=

(
sαncαn − αn
n2(s2

α − α
2)
+ sαcα − α

) (
s2
αn − α

2n2
) 1

2α5F2
B. (B 2)

Thus, we have one non-zero branch of modes, which are the usual Rayleigh–Taylor
modes for the stagnant base configuration. Also, for any negative Bo, if B= 0, that is
α2
=−Bo, then A21= 0 without any restrictions on m and n. We can see that A11= 0

in this case as well, so that γR = 0, which indicates the marginal stability mode for
the Rayleigh–Taylor instability of the stagnant base configuration.

Appendix C. Large-shear asymptotic solutions for the threshold viscosity ratio

Consider the asymptotics of (5.19) as s ↑∞. Note that p1 ∝ s2 and q1 ∝ s2. Hence,
equation (5.19) simplifies to p1 = 0, which in view of (5.14) implies k206(k206k118 −

k208k116) = 0. Since k206 > 0, it follows that k206k118 = k208k116. In terms of system
parameters, this equation involves m and n only:

(1/2)ϕ(m− n2)(m(n(8n− 3)+ 7)+ n(n(7n− 3)+ 8))
= (n+ 1)(n+m)(m2(n(3n+ 8)+ 3)− 4mn2(n2

− 1)− n4(n(3n+ 8)+ 3)), (C 1)

where ϕ= n3
+ 3 n2

+ 3 mn+m. For n↑∞, we look for solutions in the form m∼χn2

with 0 < χ < 1. The leading order is proportional to n8, yielding 9χ 2
− 4χ − 1 = 0.

The only acceptable solution is χ = (2 +
√

13)/9 ≈ 0.623. Note that even for s = 1
and n= 4, our (mentioned above) result md = 10.2783 implies md/n2

≈ 0.643 (cf. the
asymptotic value 0.623).
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If s ↑∞ but n ↓ 1, it turns out that no appropriate solutions exist for md. Then the
curve m=md(n) should intersect the sector boundary m= 1 at some finite n= n0 > 1.
Substituting m = 1 into (C 1), we obtain the following equation for n0: (n − 1)4 −
16n2
= 0; this has a single acceptable solution, n0 = 3+

√
8.
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