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We study the existence and multiplicity of positive solutions for the Dirichlet problem
—Au = Af(2)|u|?%u + [u|P"2u  in 2,

where A >0,1<¢<2,p=2*=2N/(N—2),0€ 2 CRY, N > 3, is a bounded
domain with smooth boundary 82 and f is a non-negative continuous function on £2.
Assuming that f satisfies some hypothesis, we prove that the equation admits at
least three positive solutions for sufficiently small A.

1. Introduction

Let 2 C RN, N > 3, be a bounded domain with smooth boundary 042, and consider
the semilinear elliptic problems involving concave-convex nonlinearities

—Au=A(2)|ul!Pu+ulPPu in 2, ue H(R),

where A > 0, 1 < ¢ < 2 and f is a continuous function on §2. Ambrosetti et al. [3]
(f=1,2<p<2*=2N/(N —2)) and Wu [11] (f € C(£2) and changes sign,
2 < p < 2*) showed that this equation has at least two positive solutions for A
sufficiently small. Li et al. [7] proved that the nonlinear Dirichlet problem

—Au=M(2)|u|"u+ g(z,u) in 2, wue€ H D),

admits at least two non-negative solutions under suitable assumptions on g(z,u).
It is well known that the critical problem

—Au=u>"" in,
u>0 in £2, (1.1)
u € Hy(£2),
has no solution if {2 is a bounded star-shaped domain (Pohozaev identity). Adding

a lower perturbation term f(z,u) to (1.1), Brézis and Nirenberg [4] proved the
existence of a positive solution by using the mountain-pass theorem.
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In this paper, adding a perturbation term to (1.1), we show the multiplicity of
positive solutions for the semilinear elliptic equations

—Au=Af(2)|u|"2u+ [ul* 2u in 2, we HN), (Exs)

where A > 0,1 < ¢<2,2*=2N/(N—-2),0€ 2 Cc RV, N > 3, is a bounded
domain with smooth boundary 0f2 and f is a continuous function on (2. Associated
with equation (E)y), we define the energy functional Jy, for u € H{(£2),

nw =3 [P =2 [ ety -5 [ e

q.J0 2

where u* = max{u,0} > 0. By the result in [8], the functional .J, is of class C*.
We know that the weak solutions of equation (Es) are equivalent to the critical
points of Jj.

Assume that f satisfies the following conditions:

(fl) f€C(2) and f = 0;

(f2) there exist positive numbers dy and py such that B™(0;3p) C £2 and f(z) >
do > 0 for any z € BN (0;3po).

Let DM2(RN) = {u € L¥ (RY) and Vu € L?(RY)} with the norm

\w%z/ Vul?
RN

and let S be the best Sobolev constant defined by

2% /2
S = inf / |Vu|2</ |u|? ) > 0.
uweD1:2(RN)\{0} JrN RN
Set

9 — g \Z0/("=2) 2F —2 (4-2")/2" GN/2—Ng/4+q/2
A = )|n|- S —iVg 7% > 0. 1.2
(5=%) (gt "

This paper is organized as follows. In § 2, we use the argument of Tarantello [10]
to divide the Nehari manifold M), into two parts M, and M for A € (0, A). In §3,
we prove that if f satisfies (f1), then for A € (0, A) there is a positive ground-state
solution uy € M of equation (Eyz) in 2. In §4, we study the idea of category to
show that if f satisfies (f1) and (f2), then for sufficiently small A there exist at least
three positive solution of equation (Exy) in {2 (one is the ground-state solution
uy € My and the others are in M ).

2. Nehari manifold

We define the Palais-Smale (PS) sequences, (PS)-values, and (PS)-conditions in
HL($2) for Jy as follows.
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DEFINITION 2.1.

(i) For 8 € R, a sequence {u,} is a (PS)g-sequence in H}(£2) for Jy if Jy(u,) =
B+ o(1) and J} (u,) = o(1) strongly in H~*(£2) as n — oo.

(ii) B € Ris a (PS)-value in H}(£2) for Jy if there is a (PS)g-sequence in Hg (£2)
for J,.

(iii) Jy satisfies the (PS)g-condition in Hg(£2) if every (PS)s-sequence in H}(§2)
for J) contains a convergent subsequence.

Since Jy is not bounded below on H}(2), we consider the Nehari manifold
M = {u € Hy(2)\ {0} | (J}(u),u) = 0},
where

(o)) = ull — X /Q F(2) () — /Q (W) =0, (2.1)

Note that M) contains all non-zero solutions of equation (E) ). Moreover, we have
that Jy is bounded below on M.

LEMMA 2.2. The energy functional Jy is coercive and bounded below on M) .

Proof. For u € My, by (2.1), the Holder inequality (p; = 2*/(2*—¢q) and ps = 2*/q)
and the Sobolev embedding theorem, we get

) = 252y =A%) [ sy (2.24)

2+2 2*q
1 2% —q *_ ) /2% cr—
> il 3G )i 0 s, (220)
Hence, we have that .Jy is coercive and bounded below on M. O

Define
Ua(u) = (J5(u), u).
Then for u € M), we get

(W4 (), w) = 2[ull3y — Mg /Q F(2)(uhye -2 /ﬂ (u*)?
— 2 gllul - @ -0 / () (2.3a)
(9]

*

=A2"-q) /Q FE) @)= (2" = 2)|ullF. (2.30)
We apply the method in [10]. Let

M = {u € M, | (¥} (u),u) >0},
MY = {u € M, | (¢} (u),u) =0},
M, = {ue M) | (\(u),u) <0}

Then we have the following results.
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LEMMA 2.3. Let u € H(82) be a critical point of J. Then u is a non-negative
solution of equation (Eyxy). Moreover, if u # 0, then u is positive in (2.

Proof. Suppose that u € Hg(£2) satisfies (J}(u), ) = 0 for any ¢ € H(£2), that
i

S,
/ VuVp = )\/ f()(wh) 1y —|—/ ()2 "Ly for any ¢ € HL(£2).
2 7 2

Thus, u is a weak solution of —Au = Af(2)(u)9~! + (ut)? =1 in 2. Since f = 0
in 2, by the maximum principle, u is non-negative. If © # 0, we have that w is
positive in 2. O

LEMMA 2.4. Let A be a constant defined as in (1.2). If 0 < X\ < A, then MY = @.

Proof. Assuming the contrary, there exists a number Ao € (0, A) such that MY #
@. Then, for u € My , by (2.3), we have

iy =52 [ @h® =a5=t [ oty

q

Using (f1), the Holder inequality and the Sobolev embedding theorem, we get

1/(2*-2)
2 — "
ullsr > ("52 /2)

2* —q
and
2* _q 5 . ) 1/(2—q)
lulln < (Mgl =0/ s )
Thus,
(2—q)/(2"-2) *
2-¢\"" 2’2 (4=2")/2" GN/2=Na/4+q/2 _
A > - ” |2 S A,
2" —q (2* = g)|floo
which is a contradiction. O

Lemma 2.5 can be proved by using the equality (2.3b).

LEMMA 2.5. If u € M, then

/ f()(wh)e>0.
Q

Foru € H = {u € H}(Q2) | ut # 0}, let

1/(2°-2)

2 _ 2
(2= g)llul; o

(2* = q) [p(ut)*

tmax = tmax(u) = l:
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LEMMA 2.6. For each v € HT, we have that
(i) if
| fewty =0,
0
then there exists a unique positive number t— = t~(u) > tmax such that
tu € My and Jx(t"u) = sup;»q Ja(tu),
(i) if 0 <A< A and
[ s@utyo.
19
then there exist unique positive numbers t+ = t1(u) < tmax < t7 =t~ (u)

such that ttu € M, t"u € My and
In(tTu) = inf  J\(tu), Ja(t"u) = sup Jx(tu).

0<t<tmax t>tmax

Proof. For each u € HT, define

*

k() = k() = £ uly 270 [ty
o)
Clearly, we get that £(0) = 0 and k(t) — —oo as t — co. Since

K(8) = (2 — gt ull?y — (2 — gy 0 /Q (),

we have k' (tmax) = 0, k'(t) > 0 for 0 < t < tmax, and k'(t) < 0 for ¢ > tyax. Thus,
k(t) achieves its maximum at ¢y,.x. Moreover, we have

— (2 —q)||ull? (2-9)/(2"-2)
E(tmax) = {(2* —9) IQ(UJ")?]

el e
{@*q) f9<u+>2*} /Q(“ )

(e

ullZ; ><2q>/<2*2>

[
. <fQ(U+)2*

lullZ

* (2—q)/(2"-2)
2~ 2\ [ 2—q o
> |ul4 =2 5%/2 . 2.4
(522 (222 (2.4
(i) Since
[ st =o.
Q
there exists a unique positive number ¢~ = ¢t~ (u) > tpnax such that

k(t’):/\/ﬂf(z)(zﬁ)q and k(7)< 0.
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Then it is easy to check that t~u € M, . For ¢t > t,ax, we have that

K0 = g |2 = llally - @ =) [ @) ] <o

Gt =l o3 [ ety = [

:1[tq(k(t) —)\/Qf(z)(uﬂq)] —0 ast=t",
g—;J,\(tu) = }2 {Htu”%{ — (2 -1) /Q(mﬁ)?* —(¢— m/g f(Z)(W)q}
s|e-olty - @ -0 [ @] wi-e

12
<0 fort=t",

and Jy(tu) — —oc as t — oo. Hence, Jx(t7u) = sup,>q Jx(tu).
(ii) Since 0 < A < A and
[ sty o,
Ie;

by (2.4), we have

k(0) =0
</f@WﬁW<AWW“m”S”WﬂMW%
2

* (2—q)/(2"-2)
< ||u||§{<2 - 2) (2_(152*/2)
2* —q 2* —q

< k(tmax)-

It follows that there exist unique positive numbers ¢+ = ¢*(u) and ¢~ = ¢t~ (u) such
that t+ < tpax < t7,

k@W=AAfMWP=Mf)

and k/(t7) < 0 < k/(tT). Similarly, we have that tTu € My, t~u € M, Jy(tTu) <
Ja(tu) < Jx(t7u) for each t € [tT,¢7] and Jy(tTu) < Jx(tu) for each t € [0, timax]-

Hence,
Ja(ttu) = ogtigtfmx I (tu), In(t"u) = t}sllrix I (tu).
O
Applying lemma 2.4 (MY = @ for 0 < A < A), we write M, = M, UM, and
define
ay = inf Jy(u); ay = inf Jy(u); a, =infu € M, Jx(u).

u€Mx u€ M,

Then we have the following results.
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LEMMA 2.7.
(i) If A € (0, 4), then ay < af <O0.
(i) If XA € (0, 3qA), then ay = do > 0 for some constant

dO = dO(N>QaSa |Q‘7>" |f‘00)

Proof. (i) Let u € My, by (2.3a), we get

2—q 2 +)2*
s lulfy > [ ()

Ia(u) = (; = ;) lull3, + <611 - 21> /QW)Q*
<|G=3)+ G-z)a=5m

2—q

= =l
< 0.

Then

By the definitions of a;y and a:\*', we deduce that a)y < ozj\' < 0.
(ii) Let uw € M, , by (2.3a) and the Sobolev embedding theorem, we get

2—q . _o* .
sl < [ @t <SRl

This implies

1/(2" -2
2-q )" )SN/4 f M
Il g > g or any u € M, .

Using (2.2b) and (2.5), we obtain that

1 _ *
)l | 3 ol = (252 )|9| 05 gl

9 _ g \/(27-2) 9 _ g \2-9/(2"-2)
> q SaN/4 S(2-a)N/4
2* —q N 2* —q

) A<2* _q> 9|(2*‘q)/2*5‘q/2f|°°} '
2*q

Hence, if A € (0, %q/l), then for any v € M,

Ia(u) 2 do(N,q, 5, 92|, A, | floeo) > 0
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_1 ’U¢2—i cu+2*
=5 vl =5 [ et
= {u € HY(2)\ {0} | (J(w) u) = 0}.

Note that Jy = J! and My = M. From the results of lemma 2.6, there exist the
unique t~ =t~ (u) > 0 and a unique ty = to(u) > 0 such that t~u € M, and
tou € My = M'. Then we have the following results.

For ¢ > 0, we define

LEMMA 2.8.

(i) For each
uwe X ={uc H}(2)|u" #0 and |jul|g =1},

there exists a unique number t°(u) > 0 such that t°(u)u € M° and

ma J(tu) = J°(1°(u)u) = (; - ;) <c /Q (u+)2*>_2/(2*_2).

(ii) For each u € H}(£2) and X € (0,1), we have
_ 2—q _
(1= NIV @) = =5 2N
< Ja(u)
< 40T )+ = NI
(iii) For each u € X' and X € (0, 1), we have
(1= 02y (tom) = =5 EXIF I
< J)\(t u)
< 1+ N2 (tow) + = EXI )
Proof. (i) For each u € X, let
1 o« .
f(t) = Jo(tu) = 3* — —#* / c(u™)?.
2% o
Then f(t) - —oo as t — oo,

f’(t):t—tQ*—l/Qc(u“L)?* and f”(t)=1—(2*—1)t2*_2/nc(u+)2*.

t°(u) = (/Qc(uﬂ?*)_l/(y_m > 0.

Let
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Then f/(t°(u)) =0, t°(u)u € M° and

(t°(w)* f"(t°(w)) = a(t“(u)u) — (2" — 1) /Q cft®(u)u ]
= (2 = 2%)(t%(u))?a(u) < 0.

Thus, there exists a unique ¢“(u) > 0 such that t°(u)u € M* and
I{1>ag(J (tu) = J(t(u)u)

(D))

(ii) By the Holder and Young inequalities, we get

| JRCIT

(1= ATV O () — Allfllié(flz

2—q 2/(2
< llperemo lullly < =57 IAI756 + sallully.

Then

< JA(U)

2 — _
< (14 N)JYOIHN @) + Q—qqkllf\\ié(/fzfﬁw

(iii) For each u € X, by (i), (ii) and

sup Jl/(li/\)(tu) _ Jl/(li/\)(tl/(li/\)(u)u) _ (1 4 )\)2/(2*—2)J0(t0u)
t=0

we then obtain
(1= N2/ 2 g (tgu) — Allf [EA
< JA(t u)

< (1+ N2/ =2) 1 () + Allf\liéf@ e

3. Existence of a ground-state solution

First of all, recall the definition of the numbers ), ai and a, before lemma 2.7.
Next, we use an idea in Tarantello [10] to show the existence of a (PS),,-sequence
and a (PS)a;—sequence in HE(02) for Jy.

PROPOSITION 3.1.
(i) For X € (0,A), there is a (PS)a, -sequence {u,} C My in HE(£2) for J,.

(ii) For A € (0,%qA), we have that ay > 0 (lemma 2.7) and there is a (PS)Q;—
sequence {u,} C My in H(82) for Jy.
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Proof. The proof is similar to [12, proposition 9]. O

THEOREM 3.2. Assume that f satisfies (f1). If X € (0, A), then there exists at least
one positive ground-state solution wy of equation (Exy) in §2. Moreover, we have
that uy € M;\r and Jy(uy) = ay = aj\'.

Proof. By proposition 3.1(i), there is a minimizing sequence {u,} C M) for Jy
such that Jy(u,) = ax +o0,(1) and J} (u,) = 0,(1) in H~1(£2). Since J,, is coercive
on My, {u,} is bounded in H{(£2). Then there exist a subsequence {u,} and
uyx € H} () such that u, — uy weakly in H}(£2), u, — uy a.e. in 2, u, — uy
strongly in L°((2) for any 1 < s < 2*. It is easy to see that uy is a solution of
equation (Ey¢) in (2. First, we claim that uy is positive. By (2.2a) and uy € My,
we get

q(2* —2) 2%q
f(z Up, —— Jx(u,) for each n € N.
M [ 1) = S Dl — ot ()

Letting n — oo, we deduce that

2%
)‘/f ’U/)\ = 2*jaA>O.

Thus, uy is a non-zero solution of equation (Eys) in {2. By lemma 2.3, u is positive.
Next, we want to show that u,, — uy strongly in H}(£2) and Jy(uy) = ay. Since
uy € My, by (2.2a) and the Fatou lemma, we have

qq) JRCIsE

ay < Ja(un) = %HU/\H%{ - >‘<2*2*_
) [ )

1 2% —q
< . . = 2 _
< lim inf (N lunllr A( 2
< liminf Jy (u,) = ax.
n—oo
It follows that Jy(uy) = ay and limy, oo [|un||% = |lua||%. Applying the Brézis-Lieb
lemma, we obtain

lun = uxllZ = lunllE = lluallfr + 0n(1) = 0a(1),

that is, u,, — wuy strongly in Hg(2). Finally, we claim that uy € M, . On the
contrary, assume that

uy € My (M) = @ for A € (0, 4)).

2)(ui)?
A/Qf()(n >0,

by lemma 2.6, there exist positive numbers tg < tmax <1ty = 1 such that tgu,\ S
M tyuy € My and

Since

J)\(taL’LL)\) < J)\(ta’LL)\) = J)\(U)\) = ),

which is a contradiction. Hence, uy € M;f' and Jy(uy) = ay = a;\r. O
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4. Existence of multiple solutions

In this section, we use the idea of category to prove theorem 4.13. Initially, we want
to show that Jy satisfies the (PS)gs-condition in H{(£2) for 8 € (—oo, (1/N)SN/2 —
CoA?/(2=9) where Cj is defined in the following lemma.

LEMMA 4.1. Assume that f satisfies (f1). If {u,} is a (PS)g-sequence in H}($2)
for Jx with u, — u weakly in H}(£2), then J{(u) = 0 in H='(£2) and there is a
constant Cy = Co(N, q,S,|92|, | fleo) > 0 such that Jy(u) = —Co\>/ =9,

Proof. Since {u,} is a (PS)g-sequence in H}(§2) for Jy with u, — u weakly in
H}(£2), it is easy to check that J4(u) = 0 in H~!(§2). Then we have (J} (u),u) =0,
that is,

fully =2 | @ty = [ @

Thus, by (2.2b) and the Young inequality (p1 = 2/q and ps = 2/(2 — q))

1 2% —q *_ o
I0) > gl = A( ) 121 - sy

1 1 _
> 7l =l — Cox/ =0
= —Co)¥ (379,
where COZCO(N,Q,57|Q|,|f|oo) > 0. .

LEMMA 4.2. Assume that f satisfies (f1). Then Jy satisfies the (PS)a-condition in
H}(82) for B € (—o0, (1/N)SN/2—Cy ¥/ (=D where Cy > 0 is given in lemma 4.1.

Proof. Let {u,} be a (PS)g-sequence in H}(§2) for Jy such that Jy(u,) = B+o0,(1)
and J{(un) = 0,(1) in H~'(42). Similarly to the proof of theorem 3.2, we have that
there exist a subsequence {u,} and non-negative u € HZ(2) such that u, — u
weakly in H}(£2), u, — u a.e. in 2, u, — u strongly in L*(£2) for any 1 < s < 2*.

Then we get
A ) ()= A/ f(2)u? + o0,(1) (. £2 is bounded in RY),
Q 2
lun — ull% = llunll% — [Jull3 + 0n(1) (. H}(2) is a Hilbert space),

/ [(un —u)T]? = / (u)? —/ u* +0,(1) (. Brézis Lieb lemma).
Q o 17

(4.1)
By lemma 4.1, J} (u) = 0 in H~!($2). Since Jy(uy,) = B+ 0,(1) and J{(un) = 0, (1)
in H=1(£2), by (4.1), we deduce that
1

3o [ [ =) = 5= y(w) + 0u(1) (42)

3lun —ullf -

and

uy — ul|% — un—u+2*:0n .
lum — ully [j( VP = 0,(1)
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Now, we may assume that

llw, —ul|3; — 1 and Q[(un —uw)T)? =1 asn— oo (4.3)

Applying the Sobolev inequality, we obtain
lun — ullf = S (u — ) ¥ |72+

Then 1 > SIN=2/N_Tf 1 # 0 (I > S¥/?), by lemma 4.1, (4.2) and (4.3), we have

that
1 1 1
S > —gN/2 _ 2/(2—q)
8 (2 2*>Z+JA(U)/N5 Co ,
which is a contradiction. Hence, [ = 0, that is, u,, — u strongly in H}(£2). O

Recall that the best Sobolev constant S is defined as

[Vul|Z
ueD12®RN)\{0} [|u|? .

S:

It is well known that
_ NV —2)(vR /e
A EREC O

solves —Au = v ~1 in RN and |VU |2, = |U QLZ = SN/2 Let 29 € BY(0; po) and
let n € C§°(£2) be a cut-off function such that 0 <7 < 1, |[Vn| < C and n(z) =1
for |z] < 2pp and n(z) = 0 for |z| > 3py. We define

z—z20\ c1eN=2/2p(2)
- T+ |z — 2o ]2

us(z) = E(Q_N)/Qn(z)U(

where ¢; = [N(N — 2)](N=2)/4,

From now on, we assume that < N/(N —2) < ¢<2and N > 4.
LEMMA 4.3. Assume that f satisfies (f1) and (f2). There then exists a number
0 < A* < 2qA such that if X € (0, A*), then

1
sup Jy (tue) < NSN/Q — CoNC=9D yniformly in z € BN(O; £0)s
>0

where € < pg, and Cy > 0 is given in lemma 4.1. In particular,
1
0<a, < NSNM — CoXY =D for any X € (0, A%).
Proof. First, we consider the functional I: Hi(£2) — RY defined by

1
Iw) = $lully = 57 [ 1

o

STEP 1. Show that

1
sup I(tu.) < —SN2 + 0(eN72).
+>0 N
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It is known (see [4], [6, lemma 3.2], [9] or [11, lemma 1.46]) that
Juclar = U] s, + OE), (4.4)
IVuelzz = [VU|[72gn) + OV 2). (4.5)
Moreover, for N/(N —2) < g < 2and N > 4,
uell22 > ce? + O(eN72), where § = N — J(N —2)q.
Using (4.4) and (4.5), we obtain that
IVucl2: o [IVURa@s) +OEY™?)  IVUILa@n)
e s [0 oy TOEY) 10T o,

Uz ) OV 72) = VU2 ey O(e™)
U172+ @xy + OENNIUNL 2+ vy
=0(N?). (4.6)

Since

1, b\ 1/ a \V?
max iat —2—*15 =N\ 5z for any a > 0 and b > 0,

by (4.6), we deduce that
L (Ve 3 )N” Lgn -
supI(tu.) = = +—5— < —SN2 L 0@EN?).
mpite) =5 (s) < =
STEP 2. Choose a positive number A; < %q/l such that
1
NSN/z — CoNY2=9D >0 for any A € (0, 4).
y (f1), we get
Ja(tus) < 38| Vue|7. forallt > 0.
Using (4.5), {uc} is uniformly bounded in H}(£2) for 0 < & < 1. Since J is

continuous in H}(§2), there exists to > 0 (independent of ¢) such that

sup Jy(tue) < —SN/Q CoX¥ =9 for any \ € (0,4;) and 0 < e < 1.
0<t<to

Applying the results in step 1 and (f2), we have that for N/(N —2) < ¢ < 2 and
N >4,

sup Jj (tue) = sup [I(tus) - %)\/ f(z)ud dz]
Q

t>to t2>to

1 td
< =SM2 4L 0N - —OAdO/ ul dz
N q BN (zo;p0)
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. 4 e(N—=2)q/2
< —GN/2 N=2y_ 20y¢g / d
NS +0(e ) q 0 BN (0300) (€2 F pp) IV =2)dl/2 ’

1 q _
< NSN/Q + 0N - %A““’doC(N, Po),

where § = N — (N — 2)¢. Choose a positive number [(2 —¢)f]/g <7< N —2—0
such that 7+ 6 < N —2 and 7+ 6 < 27/(2 — q). Let A = ¢7. Then there exists a
number Ay > 0 such that

tg -
oEN?) - EO)\H_QCZ()C(N, po) < —CoA? =9 for any A € (0, Ay).
Let A* = min{Al,p([)(Q_q)(N_Q)]/Q,Ag} > 0. We obtain

1
sup J (tue) < —§N/2 _ 0 \2/ (20,
t>0 N
Moreover, since
[ sG>0,
0

by lemma 2.6(ii), there exists t; = ¢ (u-) > 0 such that ¢t;u. € M, and

1
ay < Ia(toue) < sup Jy(tue) < NSN/Z — CO)\Q/(Q*‘I) for any A € (0, A%).
t>0

O

We need the Palais—Smale decomposition lemma to prove lemma 4.5. Recall that
the best Sobolev constant S is independent of the domain and is never achieved
except when 2 = RV,

LeMMA 4.4 (PS decomposition lemma for Jy). Let {u,} be a (PS)s-sequence in
HY(82) for Jo. Then there exist a subsequence {u,}, a non-negative integer I,
sequences {28159 in 2, € > 0, functions u in Hi(2) and w' # 0 in HY(RY)
for 1 < i <[ such that

1 4
— dist(2y,,002) — 00 asn — oo,

—Au = |u* 2ut in £2,

—Aw' = [0 ()t in RV,

7
e’ﬂ e’ﬂ

Loz
Up = U+ Z () w’< ; ") +0,(1)  strongly in H'(RY),
1

1
Jo(un) = Jo(u) + Z Jo(w) 4 0,,(1).

Proof. See [9, theorem 3.1] and [11, theorem 8.13]. O
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LEMMA 4.5. There exists a number g > 0 such that if u € My(§2) and Jo(u) <
ao(£2) + 0p = (1/N)SN/2 + 5y, then

/ i|Vu|2dz # 0.
ry |2]

Proof. Assuming the contrary, there exists a sequence {u,} in My({2) such that
Jo(un) = a(£2) + 0,(1) as n — oo and

/ |Z—||Vun|2dz:0 for all n.
RN |R

Using the argument in [5, p. 156], we have that every minimizing sequence in Mo ({2)
of ag(£2) is a (PS)a,(02)-sequence in H (£2) for Jo. Thus, {u,} is a (PS)q,-sequence
in H}(82) for Jy. We know that

1
ao($2) = Oéo(RN) = NSN/27

and inf,enz(0) Jo(v) = ao(42) is not achieved. Now, applying the Palais-Smale
decomposition lemma (lemma 4.4), we have that there exist sequences €, > 0 and
{zn} C 2 such that

1
— dist(z,,,02) = 00 asn — o0
€n

and

€n €n

1 (N=2)/2 Z— 2z
un(z) = () U( ") +o0,(1) strongly in H*(R"),

where U is the positive solution of equation (1.1) in RY. Since £2 is a bounded
domain and {z,} C £, there is a subsequence {e,} such that €, — 0. Suppose the
subsequence z, /|z,| — 2o as n — 0o, where 2 is a unit vector in RY. Then, by the
Lebesgue dominated convergence theorem, we have

Oz/ i|Vun|2dz
e

= / M\VU\Q dz 4 0,(1)
R

N |€nz + 2|

=5N22 +0(1),
which is a contradiction. O

From now on, we assume that A € (0, %q/l). Using the results of lemma 2.6, let
K\ (u) = Jx(t, u) = sup,5q Ja(tu) for each u € Hj(£2) \ {0}. For ¢ € R, define

[Ky < ={ue X[ Ki(u) <c},

where
Y ={uec H}N) |us #0and |jul|g =1}

Then we have the following lemma.
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LEMMA 4.6.
(i) K € CHXZ,R) and

(KA (u), ) = t, (JAlt, u), @) (4.7)
for all p € T, X = {p € H}(2) | (p,u) = 0}.
(ii) u € X is a critical point of Ky(u) if and only if t;u € HE(£2) is a critical
point of Jy.

Proof. (i) For u € X, we have
d d?
ah(tu) =0 and @J,\(tu) <0

t=ty t=ty

(see the proof of lemma 2.6). Then, using the implicit function theorem, we obtain
that ¢, € C1(X,(0,00)). Therefore,

Ky (u) = Jy(t, u) € CH(X,R).
Since t, u € M), we can obtain (J} (¢, u),u) = 0. Thus,

(KA (u), ) = (JAltyu) t, ) + (a(t,w), (8, o))
=t (Jy(t u), ) forall p € T,X.

(ii) By (i), K4(u) = 0 if and only if (J{ (¢, u),p) = 0 for all ¢ € T,X. Since
H&( ) is a Hilbert space and (J} (t;, u),u) = 0, this is equivalent to J§ (¢, u) = 0 in
H9). B

LEMMA 4.7. Assume that f satisfies (f1). There exists a number Ay € (0, A*) such
that if 0 < X\ < A, then

~ 2]

where Cy > 0 is given in lemma 4.1.

1
/ i|Vu|2dz #0 foranyuc€ {KA < NSN/Z _CO)\Q/@—q)]7
R

Proof. By lemma 4.3, the set
1
{KA < NSN/Q — CoNY (2_@}

is non-empty. For any u € [Ky < (1/N)SN/2 — CoA?/2=9)], we have u € X, tu €
M), and

1
Ia(tou) < ﬁsN/Q — CpA\¥/ (279,

By lemma 2.8, for A € (0,1), we get

Joltow) < (1= 2q) /2| Ia(trw) + = AIFID |
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where tou € My. Hence, there exists Ag € (0, A*) such that if 0 < A < Ag, then
1
Jo(tou) < NSN/2 + do = ao($2) + do.

By lemma 4.5, we obtain

/ i|V(t0u)\2dz7§0 or / i|Vu|2d,z7é0.
R RN

~ 2] 2]
O
We shall attempt to show that, for a sufficiently small o > 0,
1
cat <[KA < ﬁSN/Q - COAZ/@‘I)D > 2. (4.8)

To prove (4.8), we need some preliminaries. Recall the definition of the Lyusternik—
Schnirelman category.

DEFINITION 4.8.

(i) For a topological space X, we say a non-empty, closed subset A C X is
contractible to a point in X if and only if there exists a continuous mapping

7:[0,1] x A= X
such that, for some xg € X,
n(0,z) =2 forallze A
and

n(l,z) =xz¢ forall x € A.

(ii) We define
cat(X) = min {k € N | 3 closed subsets Ag,..., 4, C X:

k
A; is contractible to a point in X, Vj and U A; = X}.
j=1

When there do not exist finitely many closed subsets Aj,..., Ay C X such that
A; is contractible to a point in X for all j and U?:l A; = X, we say cat(X) = oo.
We need the following two lemmas.

LEMMA 4.9. Suppose that X is a Hilbert manifold and ¥ € C*(X,R). Assume that
there exist co € R and k € N and

(1) ¥(z) satisfies the (PS).-condition for ¢ < co,
(i) cat({z € X | ¥(x) < co}) 2 k.

Then W(x) has at least k critical points in {x € X;¥(x) < ¢o}.
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Proof. See [2, theorem 2.3]. O

LEMMA 4.10. Let N > 1, SN=1 = {2 € RV | |z| = 1} and let X be a topological
space. Suppose that there are two continuous maps

F: 815 X, G: X - SNt

such that G o F is homotopic to the identity map of SV, that is, there exists a
continuous map ¢: [0,1] x SN=t — SN=1 gych that

€(0,2) = (GoF)(z) for each z € SN71,
(l,2) ==z for each z € SN71,
Then cat(X) > 2.
Proof. See [1, lemma 2.5]. O

In the following section, assume that f satisfies (f1) and (f2). Let A = &7
(lemma 4.3) and z € SN¥~1. Then

clg(N—Q)/Qn(z)

€ = S H1 [0} s
u (Z) [52 ¥ |Z — p02/2|2}(N72)/2 0( )
where ¢; = [N(N — 2)](N=2/4 By lemma 2.6(ii), there exists a unique number
t~(g,2) > 0 such that ¢t (e, 2)u. € M, (£2). We define a map F.: SN~ — H{(£2)

by
_ t~ (e, Z)uc(2)
1= (&, 2)ue (2) ]|

Then we have the following lemma.

F.(2)(2) for z € SN,

LEMMA 4.11. There exists o(e) > 0 such that
1
F.(SV Y ¢ [KA < NSN/Q — Co\?/(2=a) _ a(s)] for any X € (0,A%).

Proof. Since there exists ¢~ (g, Z) > 0 such that ¢t~ (e, Z)u. € M, (§2), and by the
definition of K, we obtain that there exists s(e, Z) > 0 such that

t™ (g, 2)uc(2) _ s(e. 3 t (g, 2)ue(2)
KA<||t—<a,z>ue<z>||Hl> - ‘“( (© )t_(&z)ue(zﬂm)’

where s(e,z) = ||t~ (¢, Z)ue(2)|| g2 - By lemma 4.3, there exists A* > 0 such that for
any A € (0, 4*) we have

1
In(t™ (g, 2)ue) < sup Jy(tue) < NSN/Z — O\ (2=
120

uniformly in z € SN ~!. Thus, the conclusion holds. O

Applying lemma 4.7 for A € (0, Ag), we obtain

1
/N |—§||vu|2dz £0 foranyue |K, < NSN/Q — CpN\Y/ (=) |
R
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Now, we define

G: {KA < %SN” - Co)\2/(2‘q>} — gN-1

—1
/ i|Vu|2 dz| ] .
Y |2|

GOFEISNilg)SNil

by

Glu) = /RN |z|Vu|2dz(

LEMMA 4.12. For any X € (0, Ag), the map

is homotopic to the identity, where A =™ (lemma 4.3).
Proof. Recall that

wele) = g (2252,

where ¢; = [N(N — 2)]V=2/4 and z € SN~1. Define
€(0,2): [0,1] x SN=1 — gN-1
by

< (1 =20)t (e, 2)uc(2) + 20uc(2)

(1 —20)t= (g, 2)uc(2) + 20u.(2)| g1

¢(0,z) = Us(1-0)=(2) o 1
G<||U2(19)a(2)|H1) foroelz 1.
zZ for 6 = 1.

) for 6 € [0, 1),

We need to show that limg_,;- ¢(6,2) = z and

lim  ((0,%) = G(“(Z)>

0—(1/2)~ e (2)|| 1

(a) limg_,- ¢(6,2) = z: for % < 0 < 1, since

)

/RN 2] V[;( )U<2(1—9)5>}
_ [2(1 — O)elz + poz/2 et
_/]RN |[2(1*9)6]z+pog/2|‘VU( )|#dz + o(1)
=SV 4 o(1) asf 17,

2
dz

we have
lim ¢(0,z) = z.

0—1—

(b) By the continuity of G, it is easy to check that

lim  ((6,7) = G(“(z)>

9—(1/2)~ ([we ()| 2
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Thus, ¢(6,2) € C([0,1] x S¥N=1 SVN=1) and

€(0,2) = G(F.(2)) forallze SN
C(1,2) =2 for all z € SNV,

provided that A € (0, Ag). This completes the proof. O

THEOREM 4.13. Assume that f satisfies (f1) and (f2) and that N/(N —2) < ¢ < 2
for N > 4. For X € (0, Ag), Jx(u) has at least two critical points in

Ky < S5V _ gop2/e-a)|.
N
Moreover, there exist at least three positive solutions of equation (Eyxy) in (2.
Proof. Applying lemmas 4.10 and 4.12, we have, for A € (0, Ag),
1
cat ([KA < NSN/2 — CpA¥/(2—a) _ U(E):|> > 2.
Next, we need to show that K, satisfies the (PS)g-condition for
1
0<pB< NSN/Q — CpAY =D _(c).
Let {un} C X satisfy Ky(un) = 5+ o,(1) and

I3 (un) |2 5 = sup{(K} (un), ) | ¢ € Ty, X and [|o]l g = 1}

=o0,(1) asn — oo.
Since K (un) = Jx(tpun) = B+ 0n(1) as n — oo and t,u, € M, (£2), we get that

t2 =c+o0,(1) for some c > 0.

Using (4.7) and (J} (tpun), upn) = 0, we obtain that
I3 o)+ = 5 A )5 = 0a(1) a5 o0,
By lemma 4.2, K satisfies the (PS)g-condition for
0<B< %SN/Q — CoXY (=D _ g (e).
Now, we apply lemma 4.9, to obtain that K has at least two critical points in

1
Ky < NSN/Q — O\ (9

Moreover, by lemmas 4.6(ii) and 2.3 and theorem 3.2, there are at least three
positive solutions of equation (Eys) in £2. O
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