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We study the existence and multiplicity of positive solutions for the Dirichlet problem

−∆u = λf(z)|u|q−2u + |u|p−2u in Ω,

where λ > 0, 1 < q < 2, p = 2∗ = 2N/(N − 2), 0 ∈ Ω ⊂ R
N , N � 3, is a bounded

domain with smooth boundary ∂Ω and f is a non-negative continuous function on Ω̄.
Assuming that f satisfies some hypothesis, we prove that the equation admits at
least three positive solutions for sufficiently small λ.

1. Introduction

Let Ω ⊂ RN , N � 3, be a bounded domain with smooth boundary ∂Ω, and consider
the semilinear elliptic problems involving concave–convex nonlinearities

−∆u = λf(z)|u|q−2u + |u|p−2u in Ω, u ∈ H1
0 (Ω),

where λ > 0, 1 < q < 2 and f is a continuous function on Ω̄. Ambrosetti et al . [3]
(f ≡ 1, 2 < p � 2∗ = 2N/(N − 2)) and Wu [11] (f ∈ C(Ω̄) and changes sign,
2 < p < 2∗) showed that this equation has at least two positive solutions for λ
sufficiently small. Li et al . [7] proved that the nonlinear Dirichlet problem

−∆u = λf(z)|u|q−2u + g(z, u) in Ω, u ∈ H1
0 (Ω),

admits at least two non-negative solutions under suitable assumptions on g(z, u).
It is well known that the critical problem

−∆u = u2∗−1 in Ω,

u > 0 in Ω,

u ∈ H1
0 (Ω),

⎫⎪⎬
⎪⎭ (1.1)

has no solution if Ω is a bounded star-shaped domain (Pohozaev identity). Adding
a lower perturbation term f(z, u) to (1.1), Brézis and Nirenberg [4] proved the
existence of a positive solution by using the mountain-pass theorem.
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In this paper, adding a perturbation term to (1.1), we show the multiplicity of
positive solutions for the semilinear elliptic equations

−∆u = λf(z)|u|q−2u + |u|2∗−2u in Ω, u ∈ H1
0 (Ω), (Eλf )

where λ > 0, 1 < q < 2, 2∗ = 2N/(N − 2), 0 ∈ Ω ⊂ RN , N � 3, is a bounded
domain with smooth boundary ∂Ω and f is a continuous function on Ω̄. Associated
with equation (Eλf ), we define the energy functional Jλ, for u ∈ H1

0 (Ω),

Jλ(u) = 1
2

∫
Ω

|∇u|2 − λ

q

∫
Ω

f(z)(u+)q − 1
2∗

∫
Ω

(u+)2
∗
,

where u+ = max{u, 0} � 0. By the result in [8], the functional Jλ is of class C1.
We know that the weak solutions of equation (Eλf ) are equivalent to the critical
points of Jλ.

Assume that f satisfies the following conditions:

(f1) f ∈ C(Ω̄) and f � 0;

(f2) there exist positive numbers d0 and ρ0 such that BN (0; 3ρ0) ⊂ Ω and f(z) �
d0 > 0 for any z ∈ BN (0; 3ρ0).

Let D1,2(RN ) = {u ∈ L2∗
(RN ) and ∇u ∈ L2(RN )} with the norm

‖u‖2
D =

∫
RN

|∇u|2

and let S be the best Sobolev constant defined by

S = inf
u∈D1,2(RN )\{0}

∫
RN

|∇u|2
( ∫

RN

|u|2∗
)2∗/2

> 0.

Set

Λ =
(

2 − q

2∗ − q

)(2−q)/(2∗−2)( 2∗ − 2
(2∗ − q)|f |∞

)
|Ω|(q−2∗)/2∗

SN/2−Nq/4+q/2 > 0. (1.2)

This paper is organized as follows. In § 2, we use the argument of Tarantello [10]
to divide the Nehari manifold Mλ into two parts M+

λ and M−
λ for λ ∈ (0, Λ). In § 3,

we prove that if f satisfies (f1), then for λ ∈ (0, Λ) there is a positive ground-state
solution uλ ∈ M+

λ of equation (Eλf ) in Ω. In § 4, we study the idea of category to
show that if f satisfies (f1) and (f2), then for sufficiently small λ there exist at least
three positive solution of equation (Eλf ) in Ω (one is the ground-state solution
uλ ∈ M+

λ and the others are in M−
λ ).

2. Nehari manifold

We define the Palais–Smale (PS) sequences, (PS)-values, and (PS)-conditions in
H1

0 (Ω) for Jλ as follows.
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Definition 2.1.

(i) For β ∈ R, a sequence {un} is a (PS)β-sequence in H1
0 (Ω) for Jλ if Jλ(un) =

β + o(1) and J ′
λ(un) = o(1) strongly in H−1(Ω) as n → ∞.

(ii) β ∈ R is a (PS)-value in H1
0 (Ω) for Jλ if there is a (PS)β-sequence in H1

0 (Ω)
for Jλ.

(iii) Jλ satisfies the (PS)β-condition in H1
0 (Ω) if every (PS)β-sequence in H1

0 (Ω)
for Jλ contains a convergent subsequence.

Since Jλ is not bounded below on H1
0 (Ω), we consider the Nehari manifold

Mλ = {u ∈ H1
0 (Ω) \ {0} | 〈J ′

λ(u), u〉 = 0},

where
〈J ′

λ(u), u〉 = ‖u‖2
H − λ

∫
Ω

f(z)(u+)q −
∫

Ω

(u+)2
∗

= 0. (2.1)

Note that Mλ contains all non-zero solutions of equation (Eλf ). Moreover, we have
that Jλ is bounded below on Mλ.

Lemma 2.2. The energy functional Jλ is coercive and bounded below on Mλ.

Proof. For u ∈ Mλ, by (2.1), the Hölder inequality (p1 = 2∗/(2∗−q) and p2 = 2∗/q)
and the Sobolev embedding theorem, we get

Jλ(u) =
2∗ − 2
2∗2

‖u‖2
H − λ

(
2∗ − q

2∗q

) ∫
Ω

f(z)(u+)q (2.2 a)

� 1
N

‖u‖2
H − λ

(
2∗ − q

2∗q

)
|Ω|(2∗−q)/2∗

S−q/2‖u‖q
H |f |∞. (2.2 b)

Hence, we have that Jλ is coercive and bounded below on Mλ.

Define
ψλ(u) = 〈J ′

λ(u), u〉.
Then for u ∈ Mλ, we get

〈ψ′
λ(u), u〉 = 2‖u‖2

H − λq

∫
Ω

f(z)(u+)q − 2∗
∫

Ω

(u+)2
∗

= (2 − q)‖u‖2
H − (2∗ − q)

∫
Ω

(u+)2
∗

(2.3 a)

= λ(2∗ − q)
∫

Ω

f(z)(u+)q − (2∗ − 2)‖u‖2
H . (2.3 b)

We apply the method in [10]. Let

M+
λ = {u ∈ Mλ | 〈ψ′

λ(u), u〉 > 0},

M0
λ = {u ∈ Mλ | 〈ψ′

λ(u), u〉 = 0},

M−
λ = {u ∈ Mλ | 〈ψ′

λ(u), u〉 < 0}.

Then we have the following results.
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Lemma 2.3. Let u ∈ H1
0 (Ω) be a critical point of Jλ. Then u is a non-negative

solution of equation (Eλf ). Moreover, if u 
≡ 0, then u is positive in Ω.

Proof. Suppose that u ∈ H1
0 (Ω) satisfies 〈J ′

λ(u), ϕ〉 = 0 for any ϕ ∈ H1
0 (Ω), that

is,
∫

Ω

∇u∇ϕ = λ

∫
Ω

f(z)(u+)q−1ϕ +
∫

Ω

(u+)2
∗−1ϕ for any ϕ ∈ H1

0 (Ω).

Thus, u is a weak solution of −∆u = λf(z)(u+)q−1 + (u+)2
∗−1 in Ω. Since f � 0

in Ω, by the maximum principle, u is non-negative. If u 
≡ 0, we have that u is
positive in Ω.

Lemma 2.4. Let Λ be a constant defined as in (1.2). If 0 < λ < Λ, then M0
λ = ∅.

Proof. Assuming the contrary, there exists a number λ0 ∈ (0, Λ) such that M0
λ0


=
∅. Then, for u ∈ M0

λ0
, by (2.3), we have

‖u‖2
H =

2∗ − q

2 − q

∫
Ω

(u+)2
∗

= λ
2∗ − q

2∗ − 2

∫
Ω

f(z)(u+)q.

Using (f1), the Hölder inequality and the Sobolev embedding theorem, we get

‖u‖H �
(

2 − q

2∗ − q
S2∗/2

)1/(2∗−2)

and

‖u‖H �
(

λ
2∗ − q

2∗ − 2
|Ω|(2∗−q)/2∗

S−q/2|f |∞
)1/(2−q)

.

Thus,

λ �
(

2 − q

2∗ − q

)(2−q)/(2∗−2)( 2∗ − 2
(2∗ − q)|f |∞

)
|Ω|(q−2∗)/2∗

SN/2−Nq/4+q/2 = Λ,

which is a contradiction.

Lemma 2.5 can be proved by using the equality (2.3 b).

Lemma 2.5. If u ∈ M+
λ , then

∫
Ω

f(z)(u+)q > 0.

For u ∈ H+ = {u ∈ H1
0 (Ω) | u+ 
≡ 0}, let

tmax = tmax(u) =
[

(2 − q)‖u‖2
H

(2∗ − q)
∫

Ω
(u+)2∗

]1/(2∗−2)

> 0.
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Lemma 2.6. For each u ∈ H+, we have that

(i) if ∫
Ω

f(z)(u+)q = 0,

then there exists a unique positive number t− = t−(u) > tmax such that
t−u ∈ M−

λ and Jλ(t−u) = supt�0 Jλ(tu),

(ii) if 0 < λ < Λ and ∫
Ω

f(z)(u+)q > 0,

then there exist unique positive numbers t+ = t+(u) < tmax < t− = t−(u)
such that t+u ∈ M+

λ , t−u ∈ M−
λ and

Jλ(t+u) = inf
0�t�tmax

Jλ(tu), Jλ(t−u) = sup
t�tmax

Jλ(tu).

Proof. For each u ∈ H+, define

k(t) = ku(t) = t2−q‖u‖2
H − t2

∗−q

∫
Ω

(u+)2
∗
.

Clearly, we get that k(0) = 0 and k(t) → −∞ as t → ∞. Since

k′(t) = (2 − q)t1−q‖u‖2
H − (2∗ − q)t2

∗−q−1
∫

Ω

(u+)2
∗
,

we have k′(tmax) = 0, k′(t) > 0 for 0 < t < tmax, and k′(t) < 0 for t > tmax. Thus,
k(t) achieves its maximum at tmax. Moreover, we have

k(tmax) =
[

(2 − q)‖u‖2
H

(2∗ − q)
∫

Ω
(u+)2∗

](2−q)/(2∗−2)

‖u‖2
H

−
[

(2 − q)‖u‖2
H

(2∗ − q)
∫

Ω
(u+)2∗

](2∗−q)/(2∗−2) ∫
Ω

(u+)2
∗

= ‖u‖q
H

[(
2 − q

2∗ − q

)(2−q)/2∗−2

−
(

2 − q

2∗ − q

)(2∗−q)/(2∗−2)]

×
(

‖u‖2∗

H∫
Ω

(u+)2∗

)(2−q)/(2∗−2)

� ‖u‖q
H

(
2∗ − 2
2∗ − q

)(
2 − q

2∗ − q
S2∗/2

)(2−q)/(2∗−2)

. (2.4)

(i) Since ∫
Ω

f(z)(u+)q = 0,

there exists a unique positive number t− = t−(u) > tmax such that

k(t−) = λ

∫
Ω

f(z)(u+)q and k′(t−) < 0.
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Then it is easy to check that t−u ∈ M−
λ . For t > tmax, we have that

k′(t) =
1

tq+1

[
(2 − q)‖tu‖2

H − (2∗ − q)
∫

Ω

(tu+)2
∗
]

< 0,

d
dt

Jλ(tu) = t‖u‖2
H − tq−1λ

∫
Ω

f(z)(u+)q − t2
∗−1

∫
Ω

(u+)2
∗

=
1
t

[
tq

(
k(t) − λ

∫
Ω

f(z)(u+)q

)]
= 0 as t = t−,

d2

dt2
Jλ(tu) =

1
t2

[
‖tu‖2

H − (2∗ − 1)
∫

Ω

(tu+)2
∗ − (q − 1)λ

∫
Ω

f(z)(tu+)q

]

=
1
t2

[
(2 − q)‖tu‖2

H − (2∗ − q)
∫

Ω

(tu+)2
∗
]

as t = t−

< 0 for t = t−,

and Jλ(tu) → −∞ as t → ∞. Hence, Jλ(t−u) = supt�0 Jλ(tu).

(ii) Since 0 < λ < Λ and ∫
Ω

f(z)(u+)q > 0,

by (2.4), we have

k(0) = 0

<

∫
Ω

f(z)(u+)q � λ|Ω|(2∗−q)/2∗
S−q/2|f |∞‖u‖q

H

< ‖u‖q
H

(
2∗ − 2
2∗ − q

)(
2 − q

2∗ − q
S2∗/2

)(2−q)/(2∗−2)

� k(tmax).

It follows that there exist unique positive numbers t+ = t+(u) and t− = t−(u) such
that t+ < tmax < t−,

k(t+) = λ

∫
Ω

f(z)|u|q = k(t−)

and k′(t−) < 0 < k′(t+). Similarly, we have that t+u ∈ M+
λ , t−u ∈ M−

λ , Jλ(t+u) �
Jλ(tu) � Jλ(t−u) for each t ∈ [t+, t−] and Jλ(t+u) � Jλ(tu) for each t ∈ [0, tmax].
Hence,

Jλ(t+u) = inf
0�t�tmax

Jλ(tu), Jλ(t−u) = sup
t�tmax

Jλ(tu).

Applying lemma 2.4 (M0
λ = ∅ for 0 < λ < Λ), we write Mλ = M+

λ ∪ M−
λ and

define

αλ = inf
u∈Mλ

Jλ(u); α+
λ = inf

u∈M+
λ

Jλ(u); α−
λ = inf u ∈ M−

λ Jλ(u).

Then we have the following results.

https://doi.org/10.1017/S0308210509001462 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001462


Semilinear elliptic problems with concave and convex nonlinearities 121

Lemma 2.7.

(i) If λ ∈ (0, Λ), then αλ � α+
λ < 0.

(ii) If λ ∈ (0, 1
2qΛ), then α−

λ � d0 > 0 for some constant

d0 = d0(N, q, S, |Ω|, λ, |f |∞).

Proof. (i) Let u ∈ M+
λ , by (2.3 a), we get

2 − q

2∗ − q
‖u‖2

H >

∫
Ω

(u+)2
∗
.

Then

Jλ(u) =
(

1
2

− 1
q

)
‖u‖2

H +
(

1
q

− 1
2∗

) ∫
Ω

(u+)2
∗

<

[(
1
2

− 1
q

)
+

(
1
q

− 1
2∗

)
2 − q

2∗ − q

]
‖u‖2

H

= −2 − q

qN
‖u‖2

H

< 0.

By the definitions of αλ and α+
λ , we deduce that αλ � α+

λ < 0.

(ii) Let u ∈ M−
λ , by (2.3 a) and the Sobolev embedding theorem, we get

2 − q

2∗ − q
‖u‖2

H <

∫
Ω

(u+)2
∗ � S−2∗/2‖u‖2∗

H .

This implies

‖u‖H >

(
2 − q

2∗ − q

)1/(2∗−2)

SN/4 for any u ∈ M−
λ . (2.5)

Using (2.2 b) and (2.5), we obtain that

Jλ(u) � ‖u‖q
H

[
1
N

‖u‖2−q
H − λ

(
2∗ − q

2∗q

)
|Ω|(2∗−q)/2∗

S−q/2|f |∞
]

>

(
2 − q

2∗ − q

)q/(2∗−2)

SqN/4
[

1
N

(
2 − q

2∗ − q

)(2−q)/(2∗−2)

S(2−q)N/4

− λ

(
2∗ − q

2∗q

)
|Ω|(2∗−q)/2∗

S−q/2|f |∞
]
.

Hence, if λ ∈ (0, 1
2qΛ), then for any u ∈ M−

λ ,

Jλ(u) � d0(N, q, S, |Ω|, λ, |f |∞) > 0.
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For c > 0, we define

Jc(u) =
1
2

∫
Ω

|∇u|2 − 1
2∗

∫
Ω

c(u+)2
∗
,

M c = {u ∈ H1
0 (Ω) \ {0} | 〈Jc′(u), u〉 = 0}.

Note that J0 = J1 and M0 = M1. From the results of lemma 2.6, there exist the
unique t− = t−(u) > 0 and a unique t0 = t0(u) > 0 such that t−u ∈ M−

λ and
t0u ∈ M0 = M1. Then we have the following results.

Lemma 2.8.

(i) For each
u ∈ Σ = {u ∈ H1

0 (Ω) | u+ 
≡ 0 and ‖u‖H = 1},

there exists a unique number tc(u) > 0 such that tc(u)u ∈ M c and

max
t�0

Jc(tu) = Jc(tc(u)u) =
(

1
2

− 1
2∗

)(
c

∫
Ω

(u+)2
∗
)−2/(2∗−2)

.

(ii) For each u ∈ H1
0 (Ω) and λ ∈ (0, 1), we have

(1 − λ)J1/(1−λ)(u) − 2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q)

� Jλ(u)

� (1 + λ)J1/(1+λ)(u) +
2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q) .

(iii) For each u ∈ Σ and λ ∈ (0, 1), we have

(1 − λ)N/2J0(t0u) − 2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q)

� Jλ(t−u)

� (1 + λ)N/2J0(t0u) +
2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q) .

Proof. (i) For each u ∈ Σ, let

f(t) = Jc(tu) = 1
2 t2 − 1

2∗ t2
∗
∫

Ω

c(u+)2
∗
.

Then f(t) → −∞ as t → ∞,

f ′(t) = t − t2
∗−1

∫
Ω

c(u+)2
∗

and f ′′(t) = 1 − (2∗ − 1)t2
∗−2

∫
Ω

c(u+)2
∗
.

Let

tc(u) =
( ∫

Ω

c(u+)2
∗
)−1/(2∗−2)

> 0.
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Then f ′(tc(u)) = 0, tc(u)u ∈ M c and

(tc(u))2f ′′(tc(u)) = a(tc(u)u) − (2∗ − 1)
∫

Ω

c[tc(u)u+]2
∗

= (2 − 2∗)(tc(u))2a(u) < 0.

Thus, there exists a unique tc(u) > 0 such that tc(u)u ∈ M c and

max
t�0

Jc(tu) = Jc(tc(u)u)

=
(

1
2

− 1
2∗

)(
c

∫
Ω

(u+)2
∗
)−2/(2∗−2)

.

(ii) By the Hölder and Young inequalities, we get∣∣∣∣
∫

Ω

f(z)|u|q
∣∣∣∣ � ‖f‖L2/(2−q)‖u‖q

H � 2 − q

2
‖f‖2/(2−q)

L2/(2−q) + 1
2q‖u‖2

H .

Then

(1 − λ)J1/(1−λ)(u) − 2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q)

� Jλ(u)

� (1 + λ)J1/(1+λ)(u) +
2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q) .

(iii) For each u ∈ Σ, by (i), (ii) and

sup
t�0

J1/(1±λ)(tu) = J1/(1±λ)(t1/(1±λ)(u)u) = (1 ± λ)2/(2∗−2)J0(t0u)

we then obtain

(1 − λ)2
∗/(2∗−2)J0(t0u) − 2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q)

� Jλ(t−u)

� (1 + λ)2
∗/(2∗−2)J0(t0u) +

2 − q

2q
λ‖f‖2/(2−q)

L2/(2−q) .

3. Existence of a ground-state solution

First of all, recall the definition of the numbers αλ, α+
λ and α−

λ before lemma 2.7.
Next, we use an idea in Tarantello [10] to show the existence of a (PS)αλ

-sequence
and a (PS)α−

λ
-sequence in H1

0 (Ω) for Jλ.

Proposition 3.1.

(i) For λ ∈ (0, Λ), there is a (PS)αλ
-sequence {un} ⊂ Mλ in H1

0 (Ω) for Jλ.

(ii) For λ ∈ (0, 1
2qΛ), we have that α−

λ > 0 (lemma 2.7) and there is a (PS)α−
λ
-

sequence {un} ⊂ M−
λ in H1

0 (Ω) for Jλ.
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Proof. The proof is similar to [12, proposition 9].

Theorem 3.2. Assume that f satisfies (f1). If λ ∈ (0, Λ), then there exists at least
one positive ground-state solution uλ of equation (Eλf ) in Ω. Moreover, we have
that uλ ∈ M+

λ and Jλ(uλ) = αλ = α+
λ .

Proof. By proposition 3.1(i), there is a minimizing sequence {un} ⊂ Mλ for Jλ

such that Jλ(un) = αλ + on(1) and J ′
λ(un) = on(1) in H−1(Ω). Since Jλ is coercive

on Mλ, {un} is bounded in H1
0 (Ω). Then there exist a subsequence {un} and

uλ ∈ H1
0 (Ω) such that un ⇀ uλ weakly in H1

0 (Ω), un → uλ a.e. in Ω, un → uλ

strongly in Ls(Ω) for any 1 � s < 2∗. It is easy to see that uλ is a solution of
equation (Eλf ) in Ω. First, we claim that uλ is positive. By (2.2 a) and uλ ∈ Mλ,
we get

λ

∫
Ω

f(z)(u+
n )q =

q(2∗ − 2)
2(2∗ − q)

‖un‖2
H − 2∗q

2∗ − q
Jλ(un) for each n ∈ N.

Letting n → ∞, we deduce that

λ

∫
Ω

f(z)(u+
λ )q � − 2∗q

2∗ − q
αλ > 0.

Thus, uλ is a non-zero solution of equation (Eλf ) in Ω. By lemma 2.3, u is positive.
Next, we want to show that un → uλ strongly in H1

0 (Ω) and Jλ(uλ) = αλ. Since
uλ ∈ Mλ, by (2.2 a) and the Fatou lemma, we have

αλ � Jλ(uλ) =
1
N

‖uλ‖2
H − λ

(
2∗ − q

2∗q

) ∫
Ω

f(z)(u+
λ )q

� lim inf
n→∞

(
1
N

‖un‖2
H − λ

(
2∗ − q

2∗q

) ∫
Ω

f(z)(u+
n )q

)

� lim inf
n→∞

Jλ(un) = αλ.

It follows that Jλ(uλ) = αλ and limn→∞ ‖un‖2
H = ‖uλ‖2

H . Applying the Brézis–Lieb
lemma, we obtain

‖un − uλ‖2
H = ‖un‖2

H − ‖uλ‖2
H + on(1) = on(1),

that is, un → uλ strongly in H1
0 (Ω). Finally, we claim that uλ ∈ M+

λ . On the
contrary, assume that

uλ ∈ M−
λ (M0

λ = ∅ for λ ∈ (0, Λ)).

Since
λ

∫
Ω

f(z)(u+
λ )q > 0,

by lemma 2.6, there exist positive numbers t+0 < tmax < t−0 = 1 such that t+0 uλ ∈
M+

λ , t−0 uλ ∈ M−
λ and

Jλ(t+0 uλ) < Jλ(t−0 uλ) = Jλ(uλ) = αλ,

which is a contradiction. Hence, uλ ∈ M+
λ and Jλ(uλ) = αλ = α+

λ .
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4. Existence of multiple solutions

In this section, we use the idea of category to prove theorem 4.13. Initially, we want
to show that Jλ satisfies the (PS)β-condition in H1

0 (Ω) for β ∈ (−∞, (1/N)SN/2 −
C0λ

2/(2−q)), where C0 is defined in the following lemma.

Lemma 4.1. Assume that f satisfies (f1). If {un} is a (PS)β-sequence in H1
0 (Ω)

for Jλ with un ⇀ u weakly in H1
0 (Ω), then J ′

λ(u) = 0 in H−1(Ω) and there is a
constant C0 = C0(N, q, S, |Ω|, |f |∞) > 0 such that Jλ(u) � −C0λ

2/(2−q).

Proof. Since {un} is a (PS)β-sequence in H1
0 (Ω) for Jλ with un ⇀ u weakly in

H1
0 (Ω), it is easy to check that J ′

λ(u) = 0 in H−1(Ω). Then we have 〈J ′
λ(u), u〉 = 0,

that is,

‖u‖2
H − λ

∫
Ω

f(z)(u+)q =
∫

Ω

(u+)2
∗
.

Thus, by (2.2 b) and the Young inequality (p1 = 2/q and p2 = 2/(2 − q))

Jλ(u) � 1
N

‖u‖2
H − λ

(
2∗ − q

2∗q

)
|Ω|(2∗−q)/2∗

S−q/2‖u‖q
H |f |∞

� 1
N

‖u‖2
H − 1

N
‖u‖2

H − C0λ
2/(2−q)

= −C0λ
2/(2−q),

where C0 = C0(N, q, S, |Ω|, |f |∞) > 0.

Lemma 4.2. Assume that f satisfies (f1). Then Jλ satisfies the (PS)β-condition in
H1

0 (Ω) for β ∈ (−∞, (1/N)SN/2−C0λ
2/(2−q)), where C0 > 0 is given in lemma 4.1.

Proof. Let {un} be a (PS)β-sequence in H1
0 (Ω) for Jλ such that Jλ(un) = β+on(1)

and J ′
λ(un) = on(1) in H−1(Ω). Similarly to the proof of theorem 3.2, we have that

there exist a subsequence {un} and non-negative u ∈ H1
0 (Ω) such that un ⇀ u

weakly in H1
0 (Ω), un → u a.e. in Ω, un → u strongly in Ls(Ω) for any 1 � s < 2∗.

Then we get

λ

∫
Ω

f(z)(u+
n )q = λ

∫
Ω

f(z)uq + on(1) (∵ Ω is bounded in RN ),

‖un − u‖2
H = ‖un‖2

H − ‖u‖2
H + on(1) (∵ H1

0 (Ω) is a Hilbert space),∫
Ω

[(un − u)+]2
∗

=
∫

Ω

(u+
n )2

∗ −
∫

Ω

u2∗
+ on(1) (∵ Brézis–Lieb lemma).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.1)
By lemma 4.1, J ′

λ(u) = 0 in H−1(Ω). Since Jλ(un) = β +on(1) and J ′
λ(un) = on(1)

in H−1(Ω), by (4.1), we deduce that

1
2‖un − u‖2

H − 1
2∗

∫
Ω

[(un − u)+]2
∗

= β − Jλ(u) + on(1) (4.2)

and
‖un − u‖2

H −
∫

Ω

[(un − u)+]2
∗

= on(1).
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Now, we may assume that

‖un − u‖2
H → l and

∫
Ω

[(un − u)+]2
∗ → l as n → ∞. (4.3)

Applying the Sobolev inequality, we obtain

‖un − u‖2
H � S‖(un − u)+‖2

L2∗ .

Then l � Sl(N−2)/N . If l 
= 0 (l � SN/2), by lemma 4.1, (4.2) and (4.3), we have
that

β =
(

1
2

− 1
2∗

)
l + Jλ(u) � 1

N
SN/2 − C0λ

2/(2−q),

which is a contradiction. Hence, l = 0, that is, un → u strongly in H1
0 (Ω).

Recall that the best Sobolev constant S is defined as

S = inf
u∈D1,2(RN )\{0}

‖∇u‖2
L2

‖u‖2
L2∗

.

It is well known that

U(z) =
[N(N − 2)](N−2)/4

[1 + |z|2](N−2)/2

solves −∆u = u2∗−1 in RN and ‖∇U‖2
L2 = ‖U‖2∗

L2∗ = SN/2. Let z0 ∈ BN (0; ρ0) and
let η ∈ C∞

0 (Ω) be a cut-off function such that 0 � η � 1, |∇η| � C and η(z) = 1
for |z| < 2ρ0 and η(z) = 0 for |z| > 3ρ0. We define

uε(z) = ε(2−N)/2η(z)U
(

z − z0

ε

)
=

c1ε
(N−2)/2η(z)

[ε2 + |z − z0|2](N−2)/2 ,

where c1 = [N(N − 2)](N−2)/4.
From now on, we assume that < N/(N − 2) < q < 2 and N > 4.

Lemma 4.3. Assume that f satisfies (f1) and (f2). There then exists a number
0 < Λ∗ < 1

2qΛ such that if λ ∈ (0, Λ∗), then

sup
t�0

Jλ(tuε) <
1
N

SN/2 − C0λ
2/(2−q) uniformly in z0 ∈ BN (0; ρ0),

where ε � ρ0, and C0 > 0 is given in lemma 4.1. In particular,

0 < α−
λ <

1
N

SN/2 − C0λ
2/(2−q) for any λ ∈ (0, Λ∗).

Proof. First, we consider the functional I : H1
0 (Ω) → RN defined by

I(u) = 1
2‖u‖2

H − 1
2∗

∫
Ω

|u|2∗
.

Step 1. Show that
sup
t�0

I(tuε) � 1
N

SN/2 + O(εN−2).

https://doi.org/10.1017/S0308210509001462 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001462


Semilinear elliptic problems with concave and convex nonlinearities 127

It is known (see [4], [6, lemma 3.2], [9] or [11, lemma 1.46]) that

‖uε‖2
L2∗ = ‖U‖2

L2∗ (RN ) + O(εN ), (4.4)

‖∇uε‖2
L2 = ‖∇U‖2

L2(RN ) + O(εN−2). (4.5)

Moreover, for N/(N − 2) < q < 2 and N > 4,

‖uε‖2
L2 � cεθ + O(εN−2), where θ = N − 1

2 (N − 2)q.

Using (4.4) and (4.5), we obtain that

‖∇uε‖2
L2

‖uε‖2
L2∗

− S =
‖∇U‖2

L2(RN ) + O(εN−2)

‖U‖2
L2∗ (RN ) + O(εN )

−
‖∇U‖2

L2(RN )

‖U‖2
L2∗ (RN )

=
‖U‖2

L2∗ (RN )O(εN−2) − ‖∇U‖2
L2(RN )O(εN )

(‖U‖2
L2∗ (RN ) + O(εN ))‖U‖2

L2∗ (RN )

= O(εN−2). (4.6)

Since

max
t�0

(
1
2
at2 − b

2∗ t2
∗
)

=
1
N

(
a

b2/2∗

)N/2

for any a > 0 and b > 0,

by (4.6), we deduce that

sup
t�0

I(tuε) =
1
N

(‖∇uε‖2
L2

‖uε‖2
L2∗

)N/2

� 1
N

SN/2 + O(εN−2).

Step 2. Choose a positive number Λ1 < 1
2qΛ such that

1
N

SN/2 − C0λ
2/(2−q) > 0 for any λ ∈ (0, Λ1).

By (f1), we get
Jλ(tuε) � 1

2 t2‖∇uε‖2
L2 for all t � 0.

Using (4.5), {uε} is uniformly bounded in H1
0 (Ω) for 0 < ε � 1. Since Jλ is

continuous in H1
0 (Ω), there exists t0 > 0 (independent of ε) such that

sup
0�t�t0

Jλ(tuε) <
1
N

SN/2 − C0λ
2/(2−q) for any λ ∈ (0, Λ1) and 0 < ε � 1.

Applying the results in step 1 and (f2), we have that for N/(N − 2) < q < 2 and
N > 4,

sup
t�t0

Jλ(tuε) = sup
t�t0

[
I(tuε) − tq

q
λ

∫
Ω

f(z)uq
ε dz

]

� 1
N

SN/2 + O(εN−2) − tq0
q

λd0

∫
BN (z0;ρ0)

uq
ε dz
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� 1
N

SN/2 + O(εN−2) − tq0
q

λd0

∫
BN (0;ρ0)

ε(N−2)q/2

(ε2 + ρ2
0)[(N−2)q]/2 dz

� 1
N

SN/2 + O(εN−2) − tq0
q

λ1+θd̄0C(N, ρ0),

where θ = N − 1
2 (N − 2)q. Choose a positive number [(2 − q)θ]/q < τ < N − 2 − θ

such that τ + θ < N − 2 and τ + θ < 2τ/(2 − q). Let λ = ετ . Then there exists a
number Λ2 > 0 such that

O(εN−2) − tq0
q

λ1+θd̄0C(N, ρ0) < −C0λ
2/(2−q) for any λ ∈ (0, Λ2).

Let Λ∗ = min{Λ1, ρ
[(2−q)(N−2)]/2
0 , Λ2} > 0. We obtain

sup
t�0

Jλ(tuε) <
1
N

SN/2 − C0λ
2/(2−q).

Moreover, since ∫
Ω

f(z)uq
ε > 0,

by lemma 2.6(ii), there exists t−ε = t−ε (uε) > 0 such that t−ε uε ∈ M−
λ and

α−
λ � Jλ(t−ε uε) � sup

t�0
Jλ(tuε) <

1
N

SN/2 − C0λ
2/(2−q) for any λ ∈ (0, Λ∗).

We need the Palais–Smale decomposition lemma to prove lemma 4.5. Recall that
the best Sobolev constant S is independent of the domain and is never achieved
except when Ω = RN .

Lemma 4.4 (PS decomposition lemma for J0). Let {un} be a (PS)β-sequence in
H1

0 (Ω) for J0. Then there exist a subsequence {un}, a non-negative integer l,
sequences {zi

n}∞
n=1 in Ω, εi

n > 0, functions u in H1
0 (Ω) and wi 
= 0 in H1(RN )

for 1 � i � l such that

1
εi
n

dist(zi
n, ∂Ω) → ∞ as n → ∞,

−∆u = |u|2∗−2u+ in Ω,

−∆wi = |wi|2∗−2(wi)+ in RN ,

un = u +
l∑

i=1

(
1
εi
n

)(N−2)/2

wi

(
z − zi

n

εi
n

)
+ on(1) strongly in H1(RN ),

J0(un) = J0(u) +
l∑

i=1

J0(wi) + on(1).

Proof. See [9, theorem 3.1] and [11, theorem 8.13].
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Lemma 4.5. There exists a number δ0 > 0 such that if u ∈ M0(Ω) and J0(u) �
α0(Ω) + δ0 = (1/N)SN/2 + δ0, then

∫
RN

z

|z| |∇u|2 dz 
= 0.

Proof. Assuming the contrary, there exists a sequence {un} in M0(Ω) such that
J0(un) = α0(Ω) + on(1) as n → ∞ and

∫
RN

z

|z| |∇un|2 dz = 0 for all n.

Using the argument in [5, p. 156], we have that every minimizing sequence in M0(Ω)
of α0(Ω) is a (PS)α0(Ω)-sequence in H1

0 (Ω) for J0. Thus, {un} is a (PS)α0-sequence
in H1

0 (Ω) for J0. We know that

α0(Ω) = α0(RN ) =
1
N

SN/2,

and infv∈M0(Ω) J0(v) = α0(Ω) is not achieved. Now, applying the Palais–Smale
decomposition lemma (lemma 4.4), we have that there exist sequences εn > 0 and
{zn} ⊂ Ω such that

1
εn

dist(zn, ∂Ω) → ∞ as n → ∞

and

un(z) =
(

1
εn

)(N−2)/2

U

(
z − zn

εn

)
+ on(1) strongly in H1(RN ),

where U is the positive solution of equation (1.1) in RN . Since Ω is a bounded
domain and {zn} ⊂ Ω, there is a subsequence {εn} such that εn → 0. Suppose the
subsequence zn/|zn| → z0 as n → ∞, where z0 is a unit vector in RN . Then, by the
Lebesgue dominated convergence theorem, we have

0 =
∫

RN

z

|z| |∇un|2 dz

=
∫

RN

εnz + zn

|εnz + zn| |∇U |2 dz + on(1)

= SN/2z0 + o(1),

which is a contradiction.

From now on, we assume that λ ∈ (0, 1
2qΛ). Using the results of lemma 2.6, let

Kλ(u) = Jλ(t−u u) = supt�0 Jλ(tu) for each u ∈ H1
0 (Ω) \ {0}. For c ∈ R, define

[Kλ � c] = {u ∈ Σ | Kλ(u) � c},

where
Σ = {u ∈ H1

0 (Ω) | u+ 
≡ 0 and ‖u‖H1 = 1}.

Then we have the following lemma.
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Lemma 4.6.

(i) Kλ ∈ C1(Σ, R) and

〈K ′
λ(u), ϕ〉 = t−u 〈J ′

λ(t−u u), ϕ〉 (4.7)

for all ϕ ∈ TuΣ = {ϕ ∈ H1
0 (Ω) | 〈ϕ, u〉 = 0}.

(ii) u ∈ Σ is a critical point of Kλ(u) if and only if t−u u ∈ H1
0 (Ω) is a critical

point of Jλ.

Proof. (i) For u ∈ Σ, we have

d
dt

Jλ(tu)
∣∣∣∣
t=t−

u

= 0 and
d2

dt2
Jλ(tu)

∣∣∣∣
t=t−

u

< 0

(see the proof of lemma 2.6). Then, using the implicit function theorem, we obtain
that t−u ∈ C1(Σ, (0,∞)). Therefore,

Kλ(u) = Jλ(t−u u) ∈ C1(Σ, R).

Since t−u u ∈ Mλ, we can obtain 〈J ′
λ(t−u u), u〉 = 0. Thus,

〈K ′
λ(u), ϕ〉 = 〈J ′

λ(t−u u), t−u ϕ〉 + 〈J ′
λ(t−u u), 〈(t−u )′, ϕ〉u〉

= t−u 〈J ′
λ(t−u u), ϕ〉 for all ϕ ∈ TuΣ.

(ii) By (i), K ′
λ(u) = 0 if and only if 〈J ′

λ(t−u u), ϕ〉 = 0 for all ϕ ∈ TuΣ. Since
H1

0 (Ω) is a Hilbert space and 〈J ′
λ(t−u u), u〉 = 0, this is equivalent to J ′

λ(t−u u) = 0 in
H−1(Ω).

Lemma 4.7. Assume that f satisfies (f1). There exists a number Λ0 ∈ (0, Λ∗) such
that if 0 < λ � Λ0, then

∫
RN

z

|z| |∇u|2 dz 
= 0 for any u ∈
[
Kλ <

1
N

SN/2 − C0λ
2/(2−q)

]
,

where C0 > 0 is given in lemma 4.1.

Proof. By lemma 4.3, the set
[
Kλ <

1
N

SN/2 − C0λ
2/(2−q)

]

is non-empty. For any u ∈ [Kλ < (1/N)SN/2 − C0λ
2/(2−q)], we have u ∈ Σ, t−u u ∈

Mλ and

Jλ(t−u u) <
1
N

SN/2 − C0λ
2/(2−q).

By lemma 2.8, for λ ∈ (0, 1), we get

J0(t0u) � (1 − λq)−N/2
[
Jλ(t−u u) +

2 − q

2
λ‖f‖2/(2−q)

L2/(2−q)

]
,
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where t0u ∈ M0. Hence, there exists Λ0 ∈ (0, Λ∗) such that if 0 < λ � Λ0, then

J0(t0u) � 1
N

SN/2 + δ0 = α0(Ω) + δ0.

By lemma 4.5, we obtain∫
RN

z

|z| |∇(t0u)|2 dz 
= 0 or
∫

RN

z

|z| |∇u|2 dz 
= 0.

We shall attempt to show that, for a sufficiently small σ > 0,

cat
([

Kλ <
1
N

SN/2 − C0λ
2/(2−q)

])
� 2. (4.8)

To prove (4.8), we need some preliminaries. Recall the definition of the Lyusternik–
Schnirelman category.

Definition 4.8.

(i) For a topological space X, we say a non-empty, closed subset A ⊂ X is
contractible to a point in X if and only if there exists a continuous mapping

η : [0, 1] × A → X

such that, for some x0 ∈ X,

η(0, x) = x for all x ∈ A

and

η(1, x) = x0 for all x ∈ A.

(ii) We define

cat(X) = min
{

k ∈ N | ∃ closed subsets A1, . . . , Ak ⊂ X :

Aj is contractible to a point in X, ∀j and
k⋃

j=1

Aj = X

}
.

When there do not exist finitely many closed subsets A1, . . . , Ak ⊂ X such that
Aj is contractible to a point in X for all j and

⋃k
j=1 Aj = X, we say cat(X) = ∞.

We need the following two lemmas.

Lemma 4.9. Suppose that X is a Hilbert manifold and Ψ ∈ C1(X, R). Assume that
there exist c0 ∈ R and k ∈ N and

(i) Ψ(x) satisfies the (PS)c-condition for c � c0,

(ii) cat({x ∈ X | Ψ(x) � c0}) � k.

Then Ψ(x) has at least k critical points in {x ∈ X; Ψ(x) � c0}.
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Proof. See [2, theorem 2.3].

Lemma 4.10. Let N � 1, SN−1 = {z ∈ RN | |z| = 1} and let X be a topological
space. Suppose that there are two continuous maps

F : SN−1 → X, G : X → SN−1

such that G ◦ F is homotopic to the identity map of SN−1, that is, there exists a
continuous map ζ : [0, 1] × SN−1 → SN−1 such that

ζ(0, z) = (G ◦ F )(z) for each z ∈ SN−1,

ζ(1, z) = z for each z ∈ SN−1.

Then cat(X) � 2.

Proof. See [1, lemma 2.5].

In the following section, assume that f satisfies (f1) and (f2). Let λ = ετ

(lemma 4.3) and z̄ ∈ SN−1. Then

uε(z) =
c1ε

(N−2)/2η(z)
[ε2 + |z − ρ0z̄/2|2](N−2)/2 ∈ H1

0 (Ω),

where c1 = [N(N − 2)](N−2)/4. By lemma 2.6(ii), there exists a unique number
t−(ε, z̄) > 0 such that t−(ε, z̄)uε ∈ M−

λ (Ω). We define a map Fε : SN−1 → H1
0 (Ω)

by

Fε(z̄)(z) =
t−(ε, z̄)uε(z)

‖t−(ε, z̄)uε(z)‖H1
for z̄ ∈ SN−1.

Then we have the following lemma.

Lemma 4.11. There exists σ(ε) > 0 such that

Fε(SN−1) ⊂
[
Kλ � 1

N
SN/2 − C0λ

2/(2−q) − σ(ε)
]

for any λ ∈ (0, Λ∗).

Proof. Since there exists t−(ε, z̄) > 0 such that t−(ε, z̄)uε ∈ M−
λ (Ω), and by the

definition of Kλ, we obtain that there exists s(ε, z̄) > 0 such that

Kλ

(
t−(ε, z̄)uε(z)

‖t−(ε, z̄)uε(z)‖H1

)
= Jλ

(
s(ε, z̄)

t−(ε, z̄)uε(z)
‖t−(ε, z̄)uε(z)‖H1

)
,

where s(ε, z̄) = ‖t−(ε, z̄)uε(z)‖H1 . By lemma 4.3, there exists Λ∗ > 0 such that for
any λ ∈ (0, Λ∗) we have

Jλ(t−(ε, z̄)uε) � sup
t�0

Jλ(tuε) <
1
N

SN/2 − C0λ
2/(2−q)

uniformly in z̄ ∈ SN−1. Thus, the conclusion holds.

Applying lemma 4.7 for λ ∈ (0, Λ0), we obtain∫
RN

z

|z| |∇u|2 dz 
= 0 for any u ∈
[
Kλ <

1
N

SN/2 − C0λ
2/(2−q)

]
.
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Now, we define

G :
[
Kλ <

1
N

SN/2 − C0λ
2/(2−q)

]
→ SN−1

by

G(u) =
∫

RN

z

|z| |∇u|2 dz

(∣∣∣∣
∫

RN

z

|z| |∇u|2 dz

∣∣∣∣
)−1

.

Lemma 4.12. For any λ ∈ (0, Λ0), the map

G ◦ Fε : SN−1 → SN−1

is homotopic to the identity, where λ = ετ (lemma 4.3).

Proof. Recall that

uε(z) = ε(2−N)/2η(z)U
(

z − ρ0z̄/2
ε

)
,

where c1 = [N(N − 2)](N−2)/4 and z̄ ∈ SN−1. Define

ζ(θ, z̄) : [0, 1] × SN−1 → SN−1

by

ζ(θ, z̄) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G

(
(1 − 2θ)t−(ε, z̄)uε(z) + 2θuε(z)

‖(1 − 2θ)t−(ε, z̄)uε(z) + 2θuε(z)‖H1

)
for θ ∈ [0, 1

2 ),

G

(
u2(1−θ)ε(z)

‖u2(1−θ)ε(z)‖H1

)
for θ ∈ [ 12 , 1),

z̄ for θ = 1.

We need to show that limθ→1− ζ(θ, z̄) = z̄ and

lim
θ→(1/2)−

ζ(θ, z̄) = G

(
uε(z)

‖uε(z)‖H1

)
.

(a) limθ→1− ζ(θ, z̄) = z̄: for 1
2 < θ < 1, since

∫
RN

z

|z|

∣∣∣∣∇
[
η(z)U

(
z − ρ0z̄/2
2(1 − θ)ε

)]∣∣∣∣
2

dz

=
∫

RN

[2(1 − θ)ε]z + ρ0z̄/2
|[2(1 − θ)ε]z + ρ0z̄/2| |∇U(z)|2 dz + o(1)

= SN/2z̄ + o(1) as θ → 1−,

we have
lim

θ→1−
ζ(θ, z̄) = z̄.

(b) By the continuity of G, it is easy to check that

lim
θ→(1/2)−

ζ(θ, z̄) = G

(
uε(z)

‖uε(z)‖H1

)
.
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Thus, ζ(θ, z̄) ∈ C([0, 1] × SN−1, SN−1) and

ζ(0, z̄) = G(Fε(z̄)) for all z̄ ∈ SN−1,

ζ(1, z̄) = z̄ for all z̄ ∈ SN−1,

provided that λ ∈ (0, Λ0). This completes the proof.

Theorem 4.13. Assume that f satisfies (f1) and (f2) and that N/(N − 2) < q < 2
for N > 4. For λ ∈ (0, Λ0), Jλ(u) has at least two critical points in

[
Kλ <

1
N

SN/2 − C0λ
2/(2−q)

]
.

Moreover, there exist at least three positive solutions of equation (Eλf ) in Ω.

Proof. Applying lemmas 4.10 and 4.12, we have, for λ ∈ (0, Λ0),

cat
([

Kλ � 1
N

SN/2 − C0λ
2/(2−q) − σ(ε)

])
� 2.

Next, we need to show that Kλ satisfies the (PS)β-condition for

0 < β � 1
N

SN/2 − C0λ
2/(2−q) − σ(ε).

Let {un} ⊂ Σ satisfy Kλ(un) = β + on(1) and

‖K ′
λ(un)‖T −1

un Σ = sup{〈K ′
λ(un), ϕ〉 | ϕ ∈ TunΣ and ‖ϕ‖H1 = 1}

= on(1) as n → ∞.

Since Kλ(un) = Jλ(tnun) = β + on(1) as n → ∞ and tnun ∈ M−
λ (Ω), we get that

t2n = c + on(1) for some c > 0.

Using (4.7) and 〈J ′
λ(tnun), un〉 = 0, we obtain that

‖J ′
λ(tnun)‖H−1 =

1
tn

‖K ′
λ(un)‖T −1

un Σ = on(1) as n → ∞.

By lemma 4.2, Kλ satisfies the (PS)β-condition for

0 < β � 1
N

SN/2 − C0λ
2/(2−q) − σ(ε).

Now, we apply lemma 4.9, to obtain that Kλ has at least two critical points in
[
Kλ <

1
N

SN/2 − C0λ
2/(2−q)

]
.

Moreover, by lemmas 4.6(ii) and 2.3 and theorem 3.2, there are at least three
positive solutions of equation (Eλf ) in Ω.
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