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ABSTRACT. We use farm survey data and a damage control framework to analyze
impacts of Bt cotton on yields and pesticide use in Pakistan. We also derive optimal lev-
els of pesticide use with and without Bt, taking into account health and environmental
externalities. This has not been done previously in the literature. Conventional cotton
growers suffer from significant insect crop damage; they underuse pesticides from a
profit-maximizing perspective. Yet, the picture is reversed when externalities are also
considered. The social optimum of pesticide use is much lower than the private opti-
mum, and both optima are lower with Bt than without this technology. Bt controls pest
damage more effectively. Hence, yields on Bt farms are about 20 per cent higher in spite of
lower pesticide use. Large pest damage is a typical phenomenon in developing countries.
In such situations, Bt can contribute to productivity growth, while reducing pesticide
applications and associated negative externalities.

1. Introduction
Bt cotton has been genetically modified with genes from Bacillus thuringien-
sis (Bt) to make the plant resistant to the bollworm, a major insect pest
in cotton production. As one of the first genetically modified (GM) crops,
Bt cotton was commercialized in the United States in 1996. Since then,
this technology has been approved and widely adopted in several other
cotton-growing countries. In 2012, GM cotton was grown on 60 million
acres worldwide (James, 2012). Studies show that Bt has substantially
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reduced chemical pesticide use while increasing crop yields in farmers’
fields (Huang et al., 2002; Qaim and Zilberman, 2003; Thirtle et al., 2003;
Bennett et al., 2004, 2006; Qaim and de Janvry, 2005; Shankar and Thirtle,
2005; Qaim et al., 2006).

Nevertheless, there are open questions concerning Bt cotton impacts.
First, most of the existing studies concentrated on China, India, and a
few other countries; it is unclear whether the observed effects would
also hold under different conditions. Second, most impact studies have
looked at differences in yield and pesticide use between Bt adopters and
non-adopters without controlling for possible selection bias (Crost et al.,
2007). Third, reductions in chemical pesticide use through Bt could bring
about important health and environmental benefits. While some health and
environmental benefits were identified in previous research (Shelton et al.,
2002; Bennett et al., 2004; Hossain et al., 2004; Wolfenbarger et al., 2008;
Kouser and Qaim, 2011), they were not monetized and integrated into
broader economic analysis. This is considered important for a better under-
standing of how GM crops can contribute to sustainable development. We
address some of these research gaps by focusing on Bt cotton in Pakistan.

Pakistan is the fourth largest cotton producer in the world with a total
cotton area of 8.4 million acres (Government of Pakistan, 2012). Although
unapproved Bt cotton varieties had been grown in Pakistan since 2002
(Hayee, 2004), Bt technology was officially approved only in 2010. Unlike
other countries, where Bt cotton was commercialized by the US company
Monsanto, Bt varieties were developed by different public and private sec-
tor organizations in Pakistan. In 2012, 6.9 million acres were grown with
Bt varieties in Pakistan, equivalent to 82 per cent of the country’s total
cotton area (James, 2012). Two recent studies found that Bt adoption is ben-
eficial for Pakistani cotton farmers, resulting in higher productivity and
income (Ali and Abdulai, 2010; Nazli et al., 2012). These studies build on
data from 2007 and 2009, before officially approved Bt varieties were avail-
able. Ali and Abdulai (2010) and Nazli et al. (2012) compared cotton yields
and pesticide use between adopters and non-adopters, using propensity
score matching techniques.

We add to this existing research on Bt cotton impacts in Pakistan by using
more recent survey data collected in late 2010, and by employing a produc-
tion function and damage control framework (Lichtenberg and Zilberman,
1986). This framework is well suited to model insect pest damage and the
damage-abating nature of Bt and chemical pesticides (Huang et al., 2002;
Qaim and de Janvry, 2005; Kuosmanen et al., 2006). More importantly, we
add to the international literature by calculating optimal levels of pesticide
use with and without Bt, also taking into account the health and environ-
mental externalities of pesticide use. This has not been done previously,
but is important to better understand the potential of Bt technology to
contribute to sustainable agricultural development.

The rest of this article proceeds as follows. The next section discusses the
survey data and descriptive statistics. Section 3 presents the methodology,
including details of the damage control framework and the calculation of
optimal pesticide use levels. Estimation results are presented and discussed
in section 4, while section 5 concludes.
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2. Data and descriptive statistics
2.1. Farm survey
We carried out a survey of cotton farmers in Punjab, Pakistan, starting in
late 2010, right after the harvest for the 2010 season, the first season in
which officially approved Bt cotton varieties were grown. With 80 per cent
of the country’s total cotton area, Punjab is the leading cotton-growing
province in Pakistan. Within Punjab, a multi-stage sampling procedure
was used. First, four major cotton-producing districts were purposively
selected, namely Vehari, Bahawalnagar, Bahawalpur and Rahim Yar Khan.
These four districts account for 42 per cent of the total cotton area in Punjab
(Government of Pakistan, 2009). Then, we randomly selected two tehsils
(administrative units) in each district and four villages in each tehsil, result-
ing in a total of 32 villages. At the last stage, a complete list of cotton
farmers was prepared in each village, from which 11 farmers were ran-
domly selected. Thus, our sample consists of 352 cotton farmers, of which
248 are Bt adopters and 104 are non-adopters. Among the 248 adopters, 75
have completely switched to Bt, while 173 are partial adopters growing Bt
in addition to conventional cotton. The sample is representative of cotton
farmers in this part of Pakistan.

We used a structured questionnaire, including questions on general
socioeconomic characteristics of the farm household and details about
inputs used and output obtained in the cotton enterprise during the pre-
ceding season. The face-to-face interviews were conducted by a team
of four enumerators, who were selected, trained and supervised by the
researchers.

2.2. Descriptive statistics
For most sample farmers, cotton is the main crop because of its high prof-
itability. In addition, farmers grow wheat, rice, maize, vegetables and a
few other crops. Some general descriptive statistics are shown in table 1.
While cotton holdings of Bt adopters and non-adopters are similar in size,
Bt adopters have significantly larger farms than non-adopters. They are
also better educated and are more likely to own a tractor. Furthermore, Bt
adopters are less likely to be credit constrained. Bt seeds are not much more
expensive than conventional cotton seeds in Pakistan. But even when no
credits are required for purchasing Bt seeds, constrained access to financial
resources is often associated with higher risk aversion, which can nega-
tively affect technology adoption (Feder et al., 1985; Marra et al., 2003). We
also asked farmers whether or not they had heard about Bt cotton. In
most cases, the answer was yes; we then asked in a follow-up question
when they had first learned about Bt. Based on this, we constructed a
Bt awareness exposure variable, measured in years. Diagne and Demont
(2007) and Kabunga et al. (2012) pointed at the importance of considering
awareness exposure in technology adoption research. Unsurprisingly, Bt
adopters have known the technology for longer than non-adopters, as is
shown in table 1. These comparisons suggest that there are systematic dif-
ferences between adopters and non-adopters, which need to be accounted
for in impact assessment.
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Table 1. Descriptive statistics of sample farm households

Bt adopters (N = 248) Non-adopters (N = 104)

Standard Standard
Variables Mean deviation Mean deviation

Age (years) 40.56 12.26 42.44 13.28
Education (years of

schooling)
8.04∗∗∗ 4.27 6.77 4.62

Household size
(number)

5.85 1.85 5.73 1.79

Farm size (acres) 25.39∗∗∗ 32.09 12.42 14.62
Cotton area (acres) 9.12 16.27 8.07 11.77
Tractor

ownership (%)
62.10∗∗∗ – 40.79 –

Credit
constrained (%)

27.02∗∗∗ – 55.96 –

Off-farm
employment (%)

41.53∗ – 49.82 –

Distance to
market (km)

11.14 0.51 11.23 0.51

Bt awareness
exposure (years)

4.21∗∗∗ 1.74 3.27 2.06

Notes: For identifying differences in mean values, an independent sample t-test
was used for continuous and a chi-square test for categorical variables.
∗∗∗, ∗∗, ∗ indicate that mean values are significantly different at the 1%, 5% and
10% level, respectively.

Table 2 shows comparisons between Bt and non-Bt cotton at the plot
level. For partial adopters, we collected input-output data for both Bt and
conventional plots, so that the number of plot observations is larger than
the number of farmers interviewed. Cotton yields are significantly higher
on Bt than on non-Bt plots; the observed yield difference is 28 per cent. This
difference is not due to higher genetic yield potentials of Bt varieties, but
due to reduced crop damage. In spite of chemical pesticide applications,
bollworms cause sizeable yield damage in conventional cotton, which can
be controlled more effectively with Bt technology. Significant yield advan-
tages were also reported in earlier studies on Bt cotton impacts in Pak-
istan (Ali and Abdulai, 2010; Nazli et al., 2012), India (Bennett et al., 2006;
Subramanian and Qaim, 2010; Kathage and Qaim, 2012), China (Pray et al.,
2002), and other developing countries (Qaim, 2009).

Table 2 shows that fertilizer use, irrigation and labor inputs are higher
on Bt than on non-Bt plots. This is not due to higher input require-
ments of Bt cotton. However, higher yields through better damage control
provide incentives for intensified production. In the production func-
tion framework below we will control for these inputs to establish the
net treatment effects of Bt technology. As expected, for chemical pesti-
cides the pattern is reversed: farmers use significantly lower pesticide
quantities on Bt than on non-Bt plots. To further differentiate between
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Table 2. Descriptive statistics of sample plots

Bt-plots (N = 248) Non Bt-plots (N = 277)

Standard Standard
Variables Mean deviation Mean deviation

Yield (kg/acre) 972.50∗∗∗ 16.83 759.28 14.26
Pesticide quantity

(liters/acre)
2.73∗∗∗ 1.07 3.46 1.40

Fertilizer (kg/acre) 106.00∗∗∗ 37.22 83.89 33.29
Labor (hours/acre) 68.62∗∗∗ 29.70 51.09 16.42
Irrigation (hours/acre) 25.71∗∗∗ 9.22 19.30 6.51
Seed (kg/acre) 7.75 2.75 7.73 2.38
Crop duration (days) 234.56∗∗∗ 35.58 218.11 25.95
Soil quality (low = 1 to

high = 4)
3.38 0.86 3.26 0.97

Notes: ∗∗∗, ∗∗, ∗ indicate that mean values are significantly different at the 1%,
5% and 10% level, respectively.

types of pesticides, we used the pesticide hazard categories of the World
Health Organization (WHO, 2010). Figure A1, in the online appendix
available at http://journals.cambridge.org/EDE, shows that the biggest
differences between Bt and non-Bt plots are observed for pesticides of high
and moderate toxicity. Pesticides in these categories are often responsible
for significant health and environmental problems, especially in develop-
ing countries where agro-chemicals are not always handled with suffi-
cient care (Jeyaratnam, 1990; Krishna and Qaim, 2008; Asfaw et al., 2010).
Hence, pesticide reductions through Bt can cause significant health and
environmental benefits.

3. Methodology
3.1. Controlling for selection bias
Many earlier studies on Bt cotton were criticized for providing biased
impact estimates, because heterogeneity between Bt adopters and non-
adopters was not properly accounted for. Such heterogeneity may stem
from observable factors, such as farmers’ education, access to extension,
and soil quality, or from unobservable factors, such as farmers’ ability and
motivation. There are different ways to avoid or reduce selection bias. One
option is to use an experimental approach and randomly assign the treat-
ment. This was not possible in our case, because farmers had self-selected
into the group of Bt adopters. Another option is to use difference-in-
difference or fixed-effects estimators, as was recently done for Bt cotton
in India (Crost et al., 2007; Kathage and Qaim, 2012; Krishna and Qaim,
2012; Qaim and Kouser, 2013). The advantage of such estimators is that
time-invariant heterogeneity cancels out. The drawback is that panel data
are required. When only cross-section data are available, as is true for
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our case in Pakistan, either propensity score matching or instrumen-
tal variable (IV) techniques can be used (Rosenbaum and Rubin, 1983;
Smith and Todd, 2001; Deaton, 2010). While propensity score matching
only controls for observed heterogeneity, IV approaches can also con-
trol for unobserved heterogeneity, when suitable instruments are available
(Heckman and Vytlacil, 2005; Greene, 2008).

In this study, we use an IV approach to estimate the impact of Bt on
cotton productivity. The model consists of two stages, the selection and the
outcome equation. The selection equation is a binary choice model, where
farmers choose whether or not to adopt Bt based on farm, household and
contextual characteristics:

Bt = αC + μ (1)

where Bt is a dummy variable for Bt cotton adoption, C is a vector of
covariates, α is a vector of parameters to be estimated, and μ is an error
term with mean zero and variance σ 2

μ. The outcome equation is a cotton
production function:

Y = θ Bt + βL + ε (2)

where Y is cotton yield, L is a vector of inputs and other control vari-
ables and ε is a random error term. For proper model identification, C
contains the same variables as L plus at least one instrument that is corre-
lated with Bt adoption but uncorrelated with yield. We discuss the concrete
instruments used further below. The IV estimator (treatment effect model),
which uses predicted values for Bt in the outcome equation, controls
for observed and unobserved heterogeneity between adopters and non-
adopters. Therefore, θ is an unbiased estimate of the impact of Bt on
cotton yield.

3.2. Damage control specification
Unlike normal inputs in a production function – like fertilizer, labor or irri-
gation, which directly contribute to increasing yield – chemical pesticides
and Bt do not increase yield but help control possible crop damage due
to pests. Lichtenberg and Zilberman (1986) were the first to point out that
a damage control function should be used for estimating the productivity
of pest control agents, rather than directly including them in the produc-
tion function. A damage control framework was used in several studies for
estimating Bt productivity effects (Huang et al., 2002; Qaim and Zilberman,
2003; Qaim and de Janvry, 2005; Shankar and Thirtle, 2005; Shankar et al.,
2008). The general form of the damage control framework is:

Y = F(X)G(Z) (3)

where X is a vector of normal yield-increasing inputs, and Z is a vector of
damage control agents like chemical pesticides and Bt. G(Z) is the damage
control function, which is linked to the production function F(X) in a mul-
tiplicative fashion. F(X) is concave in X , and G(Z) is defined in the [0, 1]
interval and increasing in Z . When Z increases, G(Z) approaches 1, mean-
ing that crop damage is effectively controlled. On the other hand, when Z
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decreases, approaches 0, meaning that significant crop damage due to pests
occurs; in the extreme case there is complete crop damage.

For F(X), we employ a quadratic functional form, which is popular in
micro-level production function research. For comparison, we will show
that alternative functional forms lead to similar results. For G(Z), differ-
ent functional forms were suggested and used in the literature, such as
logistic, Weibull or exponential specifications (Lichtenberg and Zilberman,
1986; Qaim and de Janvry, 2005; Shankar et al., 2008). All of these lead to
comparable results in our case, as we demonstrate further below. For the
main analysis, we employ the exponential specification. Thus,

G(Z) = 1 − e−γ1 Q−γ2 Bt (4)

where Q represents pesticide quantity (measured in liters/acre), Bt is the
instrumented adoption dummy, and γ1 and γ2 are the respective param-
eters to be estimated. Using subscripts, the full production function and
damage control model is

Yi =
⎡
⎣β0 +

∑
j

β j X ji +
∑

j

∑
k

β jk X ji Xki +
∑

l

βl Hli +
∑

m

βm Dmi

⎤
⎦

× [1 − e−γ1 Qi −γ2 Bti ] + εi (5)

where Yi is cotton yield (in kg/acre) on a given plot i . X j is a vector of j dif-
ferent normal production inputs, including fertilizer (in kg/acre), labor (in
hours/acre) and irrigation (in hours/acre). The term with the double sum-
mation sign describes the input interaction terms for all j �= k, and square
terms for all j = k. Hl includes l different human capital variables referring
to the farmer who is cultivating plot i , such as age and education (in years
of schooling), while Dm is a vector of dummies for m districts to control for
variation in regional conditions.

Equation (5) is estimated with a non-linear least squares estimator. To
control for selection bias, we employ a two-stage estimation technique,
using predictions of the Bt treatment variable from the first-stage selection
equation, as explained above. However, while this two-stage estimator is
consistent in linear models, this is not always the case in non-linear mod-
els (Amemiya, 1974). Terza et al. (2008) showed that two-stage residual
inclusion estimation is a consistent alternative for some non-linear speci-
fications, such as limited dependent variable or count data models. This
procedure is less straightforward in our case, because equation (5) has both
linear and non-linear components, which are combined in a multiplicative
way. We therefore use the conventional two-stage approach for estimation,
which was also done in previous damage control studies (Huang et al.,
2002; Qaim and Zilberman, 2003; Qaim and de Janvry, 2005). When inter-
preting the results, it should be kept in mind that some inconsistency may
be possible. We will return to this issue further below.

3.3. Optimal level of pesticide use
Based on the estimates of the production function and damage control
model, we can calculate the optimal level of pesticide use at sample mean
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Figure 1. Private and social optimal pesticide use with and without Bt cotton

values. From production theory we know that the optimal level is where
the value marginal product (VMP) of pesticide use is equal to pesticide
price (Pp). VMP is calculated as the physical marginal product (PMP)
multiplied by cotton output price (Pc). PMP is derived by taking the
partial derivative of equation (5) with respect to pesticide. Hence, VMP
is calculated as:

VMP = Pc ∗ PMP = Pc ∗ F(X)γ1e−γ1 Q−γ2 Bt (6)

PMP is estimated separately for Bt and non-Bt cotton by using mean values
of all explanatory variables in both subsamples. Equating VMP for each
technology with pesticide price results in the optimal level of pesticide use:

Q∗ =
ln(F(X)γ1) − ln

(
Pp

Pc

)
− γ2 Bt

γ1
. (7)

When Bt controls pest damage effectively, the last term to be subtracted
in the numerator (γ2 Bt) is positive. Hence, the optimal level of pesticide
use with Bt will be smaller than without Bt. This is shown in figure 1. The
continuous line represents VMP for non-Bt cotton (VMPN ). Bt adoption
reduces pesticide productivity at any given Q, which causes a leftward shift
in the curve from VMPN to VMPBt . Optimal levels of pesticide use with
and without Bt are Q∗

Bt and Q∗
N , respectively.

Up till now, we have only considered pesticide price as the cost of pes-
ticide use, which is the private perspective of farmers. Therefore, Q∗

Bt
and Q∗

N can be termed private optimal levels of pesticide use with and
without Bt. Yet, as is well known, the social cost of chemical pesticide
use is higher, because pesticide active ingredients cause negative health
and environmental externalities (Pingali, 2001; Arias-Estévez et al., 2008).
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Pimentel (2005) estimated that the external costs of pesticide use are US$9
billion per year in the United States alone, including human health impacts,
groundwater contamination and other environmental losses. For develop-
ing countries, such costs have not been quantified comprehensively. They
may be much higher, because pesticide regulations are laxer. Moreover, in
developing countries chemical pesticides are often applied manually with-
out protective clothing, so that farmers are exposed to significant toxic
loads during spraying operations. Accordingly, incidents of acute pesticide
poisoning are commonplace in developing countries (Jeyaratnam, 1990;
Krishna and Qaim, 2008).

Figure 1 includes negative externalities of pesticide use. From a social
perspective, the optimal level of pesticide use is where VMP equals pes-
ticide price (Pp) plus health and environmental costs (HE). For simplicity,
we assume that HE is constant for each liter of pesticide applied. Hence,
socially optimal levels of pesticide use are Q∗∗

Bt and Q∗∗
N for Bt and non-Bt

cotton, respectively. Unsurprisingly, these social optima are lower than the
private ones, and the Bt optimum is lower than the non-Bt one. Using the
damage control estimates and inserting mean values for the Bt and non-Bt
subsamples, the socially optimal levels can be calculated as:

Q∗∗ =
ln(F(X)γ1) − ln

(
Pp+H E

Pc

)
− γ2 Bt

γ1
. (8)

This analysis shows that – in addition to private financial gains – Bt
adoption can cause health and environmental benefits by reducing nega-
tive pesticide externalities. This is backed up by empirical evidence. Studies
show that Bt cotton has substantially reduced pesticide poisoning symp-
toms among smallholder farmers in China, India and South Africa (Bennett
et al., 2003; Huang et al., 2003; Hossain et al., 2004; Kouser and Qaim, 2011).
There is also research showing the positive environmental effects of Bt
crops, including enhanced biocontrol services through higher diversity of
beneficial insects, and better soil and groundwater quality through lower
pesticide contamination (Shelton et al., 2002; Knox et al., 2006; Morse et al.,
2006; Wolfenbarger et al., 2008; Lu et al., 2012).

Kouser and Qaim (2013) tried to quantify and monetize the positive
health and environmental impacts of Bt cotton adoption in Pakistan. They
carried out a choice experiment with the same sample of farmers as is used
in this study. Based on the choice experimental data, Kouser and Qaim
(2013) estimated farmers’ willingness to pay (WTP) for a reduction in
negative pesticide impacts on health, farmland biodiversity, and soil and
groundwater contamination. Thus, they calculated health and environ-
mental costs per unit of pesticide use. Multiplying this cost per unit of
pesticide by the Bt-induced reduction in pesticide quantity results in a
value that can be interpreted as the reduction in pesticide externalities
through Bt adoption, or the health and environmental benefit caused by Bt
technology. Kouser and Qaim (2013) did not calculate privately or socially
optimal levels of pesticide use.

We take the per-unit cost estimates by Kouser and Qaim (2013) as the
health and environmental costs of pesticide use, which we termed HE in
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the analysis above. One disadvantage is that Kouser and Qaim (2013) car-
ried out their WTP analysis only with farmers. As the non-farm community
may also have a WTP for lower pesticide contamination, they proba-
bly underestimate the full magnitude of negative pesticide externalities.
This would also affect our results: underestimated negative externalities
would result in an overstated social optimum of pesticide use. On the
other hand, stated preference data from a choice experiment may suffer
from hypothetical bias (e.g., Florax et al., 2005; Travisi and Nijkamp, 2008;
Kouser and Qaim, 2013), which could lead to overestimated externalities
with the opposite effect on the social optimum. Such uncertainty is normal
when dealing with monetary values of health and environmental effects,
but should be kept in mind when interpreting the concrete numerical
results.

4. Estimation results
4.1. Bt cotton adoption
Before focusing on the production and damage control functions
we estimate a Bt cotton adoption model, as shown in equation (1)
above. Building on the innovation adoption literature (Feder et al., 1985;
Abdulai and Huffman, 2005; Kabunga et al., 2012), we first specify a model
that only considers typical adoption determinants, without including other
exogenous variables required for the IV approach. Estimation results for
this adoption model are shown in column (1) of table 3. The estimates
are based on a probit model and expressed in terms of marginal effects
at sample mean values. Farmers’ age and education have no influence on
Bt cotton adoption. But the duration of awareness exposure has a posi-
tive and significant effect. Each additional year of exposure increases the
probability of adoption by four percentage points. Sources of information
also seem to matter. If fellow farmers were named as the primary source
of agricultural information, the likelihood of Bt cotton adoption is 12.7 per-
centage points higher than when other sources – such as extension officers –
were mentioned. This makes sense, as illegal Bt cotton varieties had already
been traded informally before official Bt varieties were approved in 2010.
Bandiera and Rasul (2006) and Matuschke and Qaim (2009) also pointed
out that informal social networks can play an important role in innova-
tion adoption. Other important determinants of Bt adoption are tractor
ownership (as a proxy for productive assets) and access to credit. A credit
constraint decreases the probability of adoption by 21.2 per cent.

This adoption model also helps to identify possible instruments for Bt
that can be used in the two-stage IV regressions to control for selection bias.
We use Bt awareness exposure and credit constraint as instruments. Both
are significantly correlated with Bt adoption, as was shown in table 3. At
the same time, we tested that these two variables are not directly correlated
with yield. In theory, one may suppose that awareness exposure and credit
constraint could be correlated with individual characteristics that might
also affect cotton productivity. For instance, farmers who have known
about Bt for longer may also be more informed about other innovations.
Similarly, access to financial markets may be correlated with access to
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Table 3. Determinants of Bt cotton adoption

(1) Adoption model (2) First stage of IV model

Marginal Standard Marginal Standard
Variables effects errors effects errors

Age (years) 0.002 0.002 0.003 0.002
Education (years) 0.001 0.006 0.014∗∗ 0.007
Bt awareness exposure

(years)
0.041∗∗∗ 0.013 0.056∗∗∗ 0.015

Info source fellow
farmer (dummy)

0.127∗∗ 0.053 – –

Tractor ownership
(dummy)

0.100∗ 0.055 – –

Farm size (acres) −0.0003 0.001 – –
Credit constrained

(dummy)
−0.212∗∗∗ 0.051 −0.165∗∗∗ 0.058

Distance to market (km) −0.002 0.003 – –
Household size

(number)
−0.003 0.013 – –

Off-farm employment
(dummy)

−0.144∗∗∗ 0.050 – –

Pesticide (liters/acre) – – −0.262∗∗∗ 0.028
Fertilizer (kg/acre) – – 0.014∗∗∗ 0.004
Square of fertilizer – – −0.00002 0.00001
Labor (hours/acre) – – 0.020∗∗∗ 0.005
Square of labor – – −0.0001 0.0001
Irrigation (hours/acre) – – 0.064∗∗∗ 0.017
Square of irrigation – – −0.001∗ 0.0003
Fertilizer–labor

interaction
– – −0.00002 0.00004

Fertilizer–irrigation
interaction

– – −0.0002 0.0001

Labor–irrigation
interaction

– – 0.0001 0.0003

Seed rate (kg/acre) – – −0.003 0.013
Crop length (days) – – 0.003∗∗∗ 0.001
Soil quality(low = 1 to

high = 4)
0.024 0.026 −0.013 0.030

Vehari district 0.043 0.068 −0.131 0.080
Bahawalpur district −0.002 0.067 0.063 0.083
Rahim Yar Khan district 0.097 0.069 0.087 0.082

Model statistics
Observations 525 525
Wald χ2 88.91∗∗∗ 190.42∗∗∗

Notes: Standard errors are robust.
∗∗∗, ∗∗, ∗ indicate that estimates are statistically significant at the 1%, 5% and
10% level, respectively.
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agricultural inputs. However, such correlation is only problematic when
unobserved variables are important. In our outcome equations, we control
for all relevant inputs, and we also include farmer education and age as
human capital variables and as proxies for entrepreneurial skills. Hence,
we argue that our two instruments are valid, although we recognize that a
small degree of uncertainty remains. Finding exogenous instruments for Bt
adoption, which are completely unrelated to yield from a theory perspec-
tive, is very difficult with observational data. Results from the first-stage
selection equation are shown in column (2) of table 3. Next to the two
instruments, all exogenous variables from the production function are now
included as covariates.

4.2. Production function and damage control estimates
We now turn to the production function, which is estimated as the second-
stage outcome equation in the IV model (treatment effect model). First,
we specify a normal production function, where pest control agents are
included just like normal yield-increasing inputs (equation (2)). As was
mentioned above, we use a quadratic specification. Table A1 in the online
appendix demonstrates that the signs and significant levels of the main
variables of interest are also the same with other functional forms, such
as the Cobb–Douglas and Translog. Estimation results with the quadratic
specification are presented in column (1) of table 4. The significance of the
ath (ρ) parameter, which is based on a likelihood-ratio test and shown at
the bottom of the table, indicates that the null hypothesis of zero correla-
tion between the error terms of the selection and outcome equations has to
be rejected. Hence, the IV approach – as used here – is preferred over the
ordinary least squares estimator.

The estimation results in column (1) of table 4 suggest that Bt increases
cotton yield by 187 kg per acre. Compared to mean cotton yields on non-
Bt plots, this is equivalent to a yield gain of 25 per cent. Pesticide use
also affects cotton yield positively. One additional liter increases yield by
75 kg per acre. These results underline the severity of insect pest damage
in Pakistani cotton production. Other significant factors for cotton yield are
fertilizer use and irrigation, while the labor effect is positive but insignifi-
cant. Crop length has a positive impact on yield. This is expected, because
keeping the crop longer on the field usually means one additional round of
manual picking. Education has a small but significantly negative effect on
yield. As education often improves access to higher-paying off-farm activ-
ities, better educated farmers may spend less management time on cotton
farming.

In column (2) of table 4 we use the damage control specification, as dis-
cussed in equations (3)–(5) above. The coefficients of the normal inputs
and other farm and household characteristics are similar to those in the
standard production function (compare with column (1)). Some of them
are slightly larger, which is to be expected. In column (1) the effect is
interpreted as the contribution to actual output, while in column (2) the
influence on potential output is measured. The damage control estimates
are shown in the lower part of column (2). The coefficients demonstrate that
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Table 4. Production function and damage control estimates

(1) Standard production (2) Damage control
function specification

Standard Standard
Variables Coefficients errors Coefficients errors

Bt adoption (dummy, IV) 187.214∗∗∗ 50.620 – –
Pesticide (liters/acre) 75.370∗∗∗ 9.246 – –
Fertilizer (kg/acre) 2.498∗∗ 1.041 3.758∗∗∗ 1.112
Square of fertilizer −0.001 0.003 −0.003 0.003
Labor (hours/acre) 1.090 1.460 3.348∗∗ 1.424
Square of labor −0.006 0.011 −0.014 0.012
Irrigation (hours/acre) 9.917∗∗ 4.853 13.992∗∗∗ 4.334
Square of irrigation −0.066 0.103 −0.085 0.072
Fertilizer–labor

interaction
0.004 0.008 0.001 0.011

Fertilizer–irrigation
interaction

−0.050 0.034 −0.064∗ 0.034

Labor–irrigation
interaction

0.086 0.063 0.096 0.064

Seed rate (kg/acre) −3.613 3.194 −5.929 3.672
Crop length (days) 0.930∗∗∗ 0.261 1.170∗∗∗ 0.277
Soil quality (low = 1 to

high = 4)
−6.539 7.194 −6.165 8.708

Age (years) −0.631 0.512 −0.574 0.660
Education (years) −3.965∗∗ 1.689 −3.295∗ 1.946
Vehari district 7.728 21.791 18.116 24.770
Bahawalpur district 57.788∗∗∗ 19.127 80.198∗∗∗ 23.136
Rahim Yar Khan district 3.845 19.638 29.892 23.668
Constant −66.004 111.101 67.071 128.577
Damage control function
Pesticide (liters/acre) – – 0.619∗∗∗ 0.063
Bt adoption (dummy, IV) – – 0.693∗∗∗ 0.094
Model statistics
Observations 525 525
R-squared 0.70 0.97
ath(ρ) −0.240∗∗ –

Notes: Standard errors are robust.
∗∗∗, ∗∗, ∗ indicate that estimates are statistically significant at the 1%, 5% and
10% level, respectively.

both pesticides and Bt contribute significantly to controlling crop damage
due to insect pests.

Some robustness checks for these damage control estimates are provided
in table A2 in the online appendix. Above we discussed the fact that the two
instruments that we used for Bt adoption may not be perfect. In column (1)
of table A2 we show the results without the IV approach; that is, we use
observed instead of predicted values for Bt adoption. Both the pesticide

https://doi.org/10.1017/S1355770X1300051X Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X1300051X


Environment and Development Economics 717

Figure 2. Predicted damage control function with and without Bt cotton

and Bt coefficients are also positive and significant. The Bt coefficient is
slightly larger than the one shown in table 4, which we would expect
when there is positive selection bias. While this is not a proof of instru-
ment validity, the comparison adds further confidence in the estimation
results. Furthermore, the similarity between the IV and single-equation
estimates suggests that the two-stage estimation procedure probably does
not introduce a significant bias in this non-linear context, which was
another concern discussed above. Finally, we tested whether the results are
potentially driven by the exponential specification of the damage control
function. We ran the same model also with logistic and Weibull specifica-
tions, results of which are shown in columns (2) and (3) of online appendix
table A2. As one would expect, the coefficient magnitudes vary, but the
signs and significant levels are consistent across functional forms for both
pesticide and Bt adoption.

4.3. Crop damage with and without Bt
We use the damage control estimates from table 4 to predict crop dam-
age with and without Bt at different levels of pesticide use. The results are
shown in figure 2. In non-Bt cotton, we predict zero damage control when
no pesticides are used. This result occurs by definition in the exponential
damage control specification; it is of little practical relevance, as there are
hardly any non-Bt cotton growers who use zero chemical pesticides. In Bt
cotton, damage control without chemical pesticides would be around 50
per cent. Most of the remaining damage is probably due to sucking pests,
which are not controlled by Bt. At mean values of pesticide use, damage
control in Bt cotton is around 89 per cent, which is significantly higher
than in non-Bt cotton. More effective damage control with Bt is also the
reason for the positive yield effects of this technology. According to this
specification, the Bt impact on effective yield is around 22 per cent.
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Figure 3. Predicted value marginal product (VMP) curves and optimal levels of
pesticide use with and without Bt cotton

These results support the hypothesis by Qaim and Zilberman (2003)
that Bt yield effects are higher in situations where crop damage is not
effectively controlled through chemical pesticides. Similar effects were
also observed in Argentina, India and South Africa (Thirtle et al., 2003;
Qaim and de Janvry, 2005; Shankar et al., 2008; Kathage and Qaim, 2012).
In the United States, Australia, and partly also in China, Bt yield effects are
lower due to more effective chemical pest control in conventional cotton
(Qaim, 2009).

4.4. Optimal levels of pesticide use
We use equation (6) and the damage control estimates to calculate VMP
curves for pesticide use in Bt and non-Bt cotton. These curves are displayed
in figure 3. As expected, VMP decreases with increasing pesticide use, and
for any given level of pesticide, VMP is lower in Bt than non-Bt cotton. This
is why farmers have an incentive to use lower pesticide quantity with Bt
technology. Figure 3 also shows a horizontal line for mean pesticide price,
which is around 1,000 Pakistani Rupees (Rs) per liter. Equation (7) was used
to calculate private optimal pesticide use, which is 5.8 and 6.7 liters per
acre for Bt and conventional cotton, respectively. The difference of about
one liter is equivalent to a reduction of 14 per cent through Bt adoption.
This relatively small difference is due to the fact that the pesticide price
line crosses both VMP curves in their very flat part.

The private optima are much higher than actual levels of pesticide use
among sample farmers. According to this calculation, average Bt adopters
and non-adopters underuse chemical pesticides by 53 per cent and 48 per
cent, respectively. Hence, farmers could increase their profits by apply-
ing more pesticides. In principle, pesticide underuse may be due to three
reasons. First, farmers may not be sufficiently aware of pest damage and
chemical pest control options. This is not untypical in developing countries,
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Table 5. Estimated health and environmental costs of
pesticide use

Type of effect Monetary value (Rs/ml)

Health effects 1.96∗∗∗
(0.13)

Farmland biodiversity effects 1.80∗∗∗
(0.004)

Soil and groundwater effects 3.04∗∗∗
(0.12)

Notes: Standard errors are given in parentheses.
∗∗∗ indicates statistical significance at the 1% level.
Source: Kouser and Qaim (2013).

especially when agricultural training and extension systems are weak.
Second, cash and credit constraints may restrict farmers’ timely access
to chemical pesticides. Third, farmers may deliberately use lower levels
of pesticides, because they also consider health and environmental costs.
Which of these reasons dominates cannot be established based on the data
available.

We now look at health and environmental costs more specifically to
calculate the social optimum of pesticide use. As explained, we use mon-
etary values of the negative impacts per unit of pesticide on farmers’
health, farmland biodiversity, and soil and groundwater, as derived by
Kouser and Qaim (2013). These values are shown in table 5. Summing up,
chemical pesticides cause health and environmental costs worth 6.8 Rs per
ml, or 6,800 Rs per liter. This is much larger than the mean pesticide price
of around 1,000 Rs per liter, pointing to large negative externalities.

We use these values for health and environmental costs in connection
with equation (8) to calculate socially optimal levels of pesticide use. The
social optimum is at 2.2 and 3.0 liters per acre for Bt and non-Bt plots,
respectively. The significant difference between the two technology alter-
natives is due to the greater distance between the VMP curves for Bt and
non-Bt cotton at this higher cost level (see figure 3). Comparing with actual
mean values of pesticide use, both Bt and non-Bt farmers overuse chemical
pesticides from a social perspective.

5. Conclusions
While there is a growing body of literature on the impacts of GM crops,
there are still open questions about how these crops can contribute to
sustainable agricultural development. We have analyzed the impacts of
insect-resistant Bt cotton on yields and pesticide use in Pakistan, employ-
ing a damage control framework and instrumental variables to control for
selection bias.

The estimates demonstrate that conventional cotton growers in Pak-
istan suffer from significant crop damage due to insect pests. This damage
is not effectively controlled by chemical pesticides. Hence, yield levels
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obtained in non-Bt cotton are relatively low. More effective damage control
would not only add to farmers’ profits, but would also contribute to higher
productivity and agricultural growth. Given that land and water resources
are becoming increasingly scarce, productivity growth should be a central
component of any development strategy. Encouraging farmers to use more
pesticides would be one option, but this would also cause additional neg-
ative health and environmental externalities. Our estimates suggest that
increasing pesticide use is not desirable, when negative externalities are
taken into account. In other words, while Pakistani cotton farmers under-
use pesticides from a private profit-maximizing perspective, the picture is
reversed when the full social cost of pesticide use is considered. In this
situation, Bt technology can be a much more sustainable alternative. Our
results show that Bt adoption reduces insect crop damage significantly
and thus contributes to higher yields. Net Bt yield gains are above 20 per
cent. At the same time, Bt adoption reduces chemical pesticide use and
associated negative externalities.

Finding perfect instruments was difficult with the observational data
used in this study. Furthermore, the two-stage estimation procedure that
we used may not be fully consistent in the non-linear damage control con-
text. While robustness checks were carried out, these limitations should be
kept in mind when interpreting the exact numerical results.

Large insect pest damage is a typical phenomenon in developing coun-
tries, especially in the tropical small farm sector, where pest damage
is severe and technical, financial, human capital and institutional con-
straints are widespread. In such situations, Bt crops can contribute to
sustainable productivity growth. Obviously, the effectiveness of pest con-
trol could also be increased by means other than Bt or chemical pesticides,
for instance through integrated pest management (IPM). However, IPM
is relatively labor intensive and requires substantial site-specific knowl-
edge, which is also why widespread adoption in developing countries
has not yet occurred. Bt can complement and facilitate IPM strategies.
GM technologies should not be seen as a substitute for better agronomy
or other natural resource management technologies. Sustainable devel-
opment requires a smart combination of innovations from all areas of
agricultural research.
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